七年级下学期数学期末2
人教版数学七年级第二学期期末考试试卷及答案二
人教版数学七年级第二学期期末考试试卷及答案一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×1083.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.54.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是20005.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a46.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.010.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣611.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=1012.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.2513.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x215.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.816.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=.18.计算:199×201=.19.已知10x=2,10y=5,则10x+y=.20.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为.三.解答题(共8小题)21.(1);(2);22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为人;(2)被调查的学生人数为人,A组人数为人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=2﹣1 ⑦×=2﹣1(2)写出你猜想的第n个等式(用含n的式子表示);(3)请你验证猜想的正确性.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为.参考答案与试题解析一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.要了解一批节能灯的使用寿命适合抽样调查,原调查方式不合适;B.为保证“神舟9号”的成功发射,对其零部件进行检查采用全面调查,原调查方式不合适;C.对乘坐某班次客车的乘客进行安检,采用普查的方式,原调查方式不合适;D.调查本班同学的视力,采用普查的方式,原调查方式合适;故选:D.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23 000 000=2.3×107.故选:B.3.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.5【分析】直接利用二元一次方程的解法得出答案.【解答】解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.5.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x2•x3=x5,原题计算正确,不合题意;B、(x3)2=x6,原题计算正确,不合题意;C、a+2a=3a,原题计算正确,不合题意;D、a8÷a2=a6,原题计算错误,符合题意.故选:D.6.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b【分析】由大正方形面积=两个小正方形面积+2个长方形面积,可得(a+b)2=a2+2ab+b2【解答】解:∵大正方形面积=两个小正方形面积+2个长方形面积∴(a+b)2=a2+2ab+b2故选:A.7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个【分析】将x看做已知数求出y,找出正整数解即可.【解答】解:∵x+2y=11,∴y=,则:当x=1时,y=5;当x=3时,y=4;当x=5时,y=3;当x=7时,y=2;当x=9时,y=1;故选:C.9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.0【分析】直接利用负整数指数幂的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:∵﹣12=﹣1,(x﹣3.14)0=1,2﹣1=,0,∴最小的数是:﹣12.故选:A.10.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣6【分析】直接利用乘法公式结合整式的混合运算法则分别计算得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故原题计算错误;B、(﹣x﹣y)2=x2+2xy+y2,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(a﹣2)(a+3)=a2+a﹣6,故原题计算错误;故选:B.11.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=10【分析】先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加即可得出答案.【解答】解:∵(x+5)(2x﹣3)=2x2﹣3x+10x﹣15=2x2+7x﹣15,又∵(x+5)(2x﹣3)=2x2+mx﹣15,∴m=7;故选:A.12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x2【分析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.15.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.8【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.16.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4【分析】表示出长方形的面积,利用多项式乘以多项式法则计算,即可确定出需要C类卡片的张数.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3.故选:C.二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,移项得:﹣y=1﹣2x,解得:y=2x﹣1.故答案为:2x﹣1.18.计算:199×201=39999.【分析】先变形为原式=(200﹣1)×(200+1),然后利用平方差公式计算.【解答】解:原式=(200﹣1)×(200+1)=2002﹣12=40000﹣1=39999.故答案为39999.19.已知10x=2,10y=5,则10x+y=10.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1020.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为5.【分析】设小矩形的长为x,宽为y,根据矩形的对边相等已经大矩形的长为5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5×4﹣5xy)中即可求出结论.【解答】解:设小矩形的长为x,宽为y,依题意,得:,解得:,∴5×4﹣5xy=5×4﹣5×3×1=5.故答案为:5.三.解答题(共8小题)21.(1);(2);【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2(2y﹣3)+3y=8,解得:y=2,把y=2代入①得:x=1,则方程组的解为;(2),①×2+②得:5x=15,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为.22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);【分析】(1)根据同底数幂的乘法和同底数幂的除法求出即可;(2)先算乘方,再合并即可;(3)根据单项式乘以单项式法则求出即可.【解答】解:(1)a5•a3÷a2=a5+3﹣2=a6;(2)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(3)(﹣2a2b)•(abc)=﹣a3b2c.23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、积的乘方运算法则分别计算得出答案.【解答】解:(1)5x(2x+1)﹣(x+3)(5x﹣1)=10x2+5x﹣(5x2+14x﹣3)=10x2+5x﹣5x2﹣14x+3=5x2﹣9x+3;(2)(π﹣2020)0+()﹣2﹣2101×()100=1+9﹣(2×)100×2=1+9﹣2=8.24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.【分析】(1)根据完全平方公式可知:(a+2)2=a2+2a+1,可作判断;(2)先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;故答案为:②;(2)(a+2)2+3(a+1)(a﹣1)=a2+2a+1+3(a2﹣1)=a2+2a+1+3a2﹣3=4a2+2a﹣2,当x=﹣1时,原式=4×1+2×(﹣1)﹣2=4﹣2﹣2=0.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为4人;(2)被调查的学生人数为50人,A组人数为3人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出E组的人数;(2)用(1)求出的样本容量乘以A组人数所占的百分比,求出A组的人数,用总人数乘以C组人数所占的百分比得出C组的人数,从而补全统计图;(3)用360°乘以“B”所占的百分比即可;(4)用总人数乘以发言次数不少于12次的人数所占的百分比即可.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴E组人数为:50×8%=4(人);故答案为:4;(2)被调查的学生人数为50,A组人数为:50×6%=3(人),C组的人数是50×30%=15(人),补全频数分布直方图如下:故答案为:50,3;(3)“B”所对应的圆心角的度数是:360°×20%=72°;(4)F 组所占的百分比是×100%=10%,则全年级在这天里发言次数不少于12次的人数有:1500×(10%+8%)=270(人).26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=72﹣1 ⑦7×9=82﹣1(2)写出你猜想的第n个等式(用含n的式子表示)n(n+2)=(n+1)2+1;(3)请你验证猜想的正确性.【分析】(1)由规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,进行解答;(2)把规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,用n的等式表示出来;(3)运用整数的混合运算顺序和运算法则对等式左右两边进行计算便可.【解答】解:(1)由题中前面6个算式可知,两个相差2的两个整数的积等于两个数的平均数的平方与1的差,所以,⑥6×8=72﹣1,⑦7×9=82﹣1,故答案为:7;7;9;8;(2)由规律可知:n(n+2)=(n+1)2﹣1,故答案为:n(n+2)=(n+1)2﹣1;(3)∵左边=n(n+2)=n2+2n,右边=n2+2n+1﹣1=n2+2n,∴左边=右边,∴n(n+2)=(n+1)2﹣1.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①a2﹣b2图②(a+b)(a﹣b);(2)比较两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为12;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为264﹣1.【分析】(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2,而图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,可表示出面积为(a+b)(a﹣b).(2)由由图①与图②的面积相等,可以得到乘法公式;①利用公式将4m2﹣n2写成(2m﹣n)(2m+n)进而求出答案,②连续两次利用平方差公式进行计算即可,将原式转化为(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),再连续使用平方差公式,得出最后的结果.【解答】解:(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2;图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,其面积为(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图①与图②的面积相等,可以得到乘法公式,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;①4m2﹣n2=(2m﹣n)(2m+n)=3×4=12,故答案为:12;②(x﹣3)(x+3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(2+1)(22+1)(24+1)(28+1)…(232+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),=(22﹣1)(22+1)(24+1)(28+1)…(232+1),=(24﹣1)(24+1)(28+1)…(232+1),=(28﹣1)(28+1)…(232+1),=264﹣1.。
北师大版七年级数学第二学期期末试卷及答案二
北师大版七年级数学第二学期期末试卷及答案一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a63.(3分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.4.(3分)已知:a﹣b=2,ab=﹣1,则a2+b2=()A.0B.2C.4D.65.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.6.(3分)下列语句正确的有()个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A.0B.1C.2D.37.(3分)如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为()A.B.C.D.8.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对9.(3分)端午节期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠”.在此活动中,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品件数x(件)之间的关系式是()A.y=48x B.y=48x+20C.y=48x﹣80D.y=48x+4010.(3分)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4二、填空题(本大题共8小题,每小题题3分,共24分)11.(3分)若一个角的余角是其补角的,则这个角的度数为.12.(3分)光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为米.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为.14.(3分)把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率.15.(3分)某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成个,这些细菌再继续分裂t分后共分裂成个.16.(3分)(2+1)(22+1)(24+1)…(232+1)的个位数字是.17.(3分)已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有对,互余的角有对.18.(3分)已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交边AB于点D,交边AC于点E,BF垂直平分CE,交AC于点F,则∠A=度.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).20.(6分)已知:如图,在△ABC中,BD⊥AC于D,点E在边BC上,EF⊥AC于F,点M、G在边AB上,∠AMD=∠AGF,BD与GF交于点H,∠BHG=∠FEC=54°.(1)求∠GFC的度数.(2)判断DM与BC的位置关系,并说明理由.21.(6分)先化简,再求值:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b),其中a4=9﹣2,2b=42.四、解答题(本大题共2小题,22题6分,23题8分共14分)22.(6分)已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.23.(8分)已知:如图,点B、E、C、F四点在一条直线上,且AB∥DE,AB=DE,BE=CF.(1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.五、解答题(本大题共2小题,24题6分,25题8分,共14分)24.(6分)某城市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图形回答:(1)当每户每月的用水量不足5吨时,每吨水费多少元?当每户每月的用水量超过5吨时,超过的部分每吨交水费多少元?(2)若某户居民某月交了水费19.5元,则该户居民用了多少吨水?25.(8分)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,∠BMN=∠ACB,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.3.(3分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.【分析】让黄球的个数除以球的总个数即为所求的概率.【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.故选:C.4.(3分)已知:a﹣b=2,ab=﹣1,则a2+b2=()A.0B.2C.4D.6【分析】原式利用完全平方公式变形,把已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,ab=﹣1,∴原式=(a﹣b)2+2ab=4﹣2=2.故选:B.5.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向左对折,向上对折,从直角三角形的一直角边的正中间剪去一个正方形,展开后实际是从正方形的一条对角线上剪去两个小长方形,得到结论.故选B.6.(3分)下列语句正确的有()个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A.0B.1C.2D.3【分析】根据平行公理及推论、概率公式以及概率的意义分别对每一项进行分析,即可得出答案.【解答】解:(1)线段是轴对称图形,对称轴是这条线段的垂直平分线和这条线段所在直线,故本选项错误;(2)确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,故本选项错误;(3)两直线平行,同位角相等,故本选项错误;(4)经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;故选:A.7.(3分)如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为()A.B.C.D.【分析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x间的函数是增函数,根据球的特征进行判断分析即可.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R 时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.8.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OC,然后判断出△AOE和△COE全等,再根据等腰三角形三线合一的性质可得AD⊥BC,从而得到△ABC关于直线AD轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.9.(3分)端午节期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠”.在此活动中,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品件数x(件)之间的关系式是()A.y=48x B.y=48x+20C.y=48x﹣80D.y=48x+40【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【解答】解:∵凡在该商店一次性购物超过100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与办公用品件数x(件)的函数关系式是:y=(60x﹣100)×0.8+100=48x+20(x>2),故选:B.10.(3分)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4【分析】根据SAS证明△AEF≌△ABC,由全等三角形的性质和外角性质可依次判断即可求解.【解答】解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EF A,∴∠EAB=∠F AC,∠AFC=∠C,∴∠EF A=∠AFC,即F A平分∠EFC.又∵∠AFB=∠C+∠F AC=∠AFE+∠BFE,∴∠BFE=∠F AC.故①②③④正确.故选:D.二、填空题(本大题共8小题,每小题题3分,共24分)11.(3分)若一个角的余角是其补角的,则这个角的度数为45°.【分析】设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,再根据题意列出方程,求出x的值即可.【解答】解:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=45°.故答案为:45°.12.(3分)光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为 1.5×1011米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3×108×5×102=1.5×1011.故答案为:1.5×1011.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为75°或15°.【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【解答】解:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°,∴∠ABC=∠C=75°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠ABC=∠C=∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75°或15°.14.(3分)把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率.【分析】先求出将长度为6的铁丝截成3段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.【解答】解:因为将长度为6的铁丝截成3段,每段长度均为整数厘米,共有3种情况,分别是1,1,4;1,2,3;2,2,2;其中能构成三角形的是:2,2,2一种情况,所以能构成三角形的概率是.故答案为:.15.(3分)某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成64个,这些细菌再继续分裂t分后共分裂成22t+6个.【分析】把3分、t分转化为含30秒的次数,根据乘方的意义得结论.【解答】解:因为3分=6个30秒,所以1个细菌经过3分钟分裂成26个,即64个.t分=2t个30秒,再继续分裂t分钟,即一个细菌分裂了(2t+6)次,此时共分裂22t+6个.故答案为:64,22t+6.16.(3分)(2+1)(22+1)(24+1)…(232+1)的个位数字是5.【分析】先根据平方差公式进行计算,求出264的末位数字是6,再求出答案即可.【解答】解:(2+1)(22+1)(24+1)…(232+1)=(2﹣1)(2+1)(22+1)(24+1)…(232+1)=(22﹣1)(22+1)(24+1)…(232+1)=(24﹣1)(24+1)…(232+1)=…=264﹣1,∵21=2,22=4,23=8,24=16,25=32,26=64,…∴264的末位数字是6,∴264﹣1的末位数字是5,故答案为:5.17.(3分)已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有5对,互余的角有3对.【分析】可以在Rt△ABC和Rt△BDC、Rt△ADC分别找出与相等和互余的角.【解答】解:图形中相等的角有∠A=∠BCD,∠B=∠ACD,∠A=∠BCD,∠ACB=∠BDC,∠ACB=∠CDA,∠BDC=∠CDA,一共5对,互余的角有∠A和∠B,∠A和∠ACD,∠B和∠BCD,一共3对.故答案为:5;3.18.(3分)已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交边AB于点D,交边AC于点E,BF垂直平分CE,交AC于点F,则∠A=36度.【分析】连结BE,根据线段垂直平分线的性质,三角形外角的性质,等腰三角形的性质可得5∠A=180°,即可得出答案.【解答】解:连结BE,∵DE垂直平分AB,∴∠ABE=∠A,∵BF垂直平分AC,∴∠BEF=∠C,∵∠BEC=∠ABE+∠A,∴∠C=2∠A,∵AB=AC,∴∠C=∠ABC=2∠A,∴5∠A=180°,解得∠A=36°.故答案为:36.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).【分析】(1)先算乘方,再算除法,最后合并同类项即可;(2)先变形,再根据平方差公式进行计算,最后求出即可.【解答】解:(1)原式=a4+a8﹣a6÷a2=a4+a8﹣a4=a8;(2)原式=20192﹣(2019+1)×(2019﹣1)=20192﹣20192+1=1.20.(6分)已知:如图,在△ABC中,BD⊥AC于D,点E在边BC上,EF⊥AC于F,点M、G在边AB上,∠AMD=∠AGF,BD与GF交于点H,∠BHG=∠FEC=54°.(1)求∠GFC的度数.(2)判断DM与BC的位置关系,并说明理由.【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的判定解答即可.【解答】解:(1)∵BD⊥AC于D,EF⊥AC于F,∴∠BDF=∠EFC=90°,∴BD∥EF,∴∠HBE=∠FEC,∵∠BHG=∠FEC=54°,∴∠BHG=∠HBE=54°,∴GF∥BC,∴∠GFE=∠FEC=54°,∴∠GFC=∠HFE+∠EFC=54°+90°=144°;(2)DM∥BC,理由如下:∵∠AMD=∠AGF,∴DM∥GF,∵GF∥BC,∴DM∥BC.21.(6分)先化简,再求值:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b),其中a4=9﹣2,2b=42.【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,求出a、b的值,最后再代入求出即可.【解答】解:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b)=a2﹣4ab+4b2﹣2a2﹣ab+2ab+b2+a2﹣b2=4b2﹣3ab,∵a4=9﹣2,2b=42,∴a4=(3﹣1)4,2b=24,∴a=±,b=4,当a=,b=4时,原式=4×42﹣3××4=60;当a=﹣,b=4时,原式=64+4=68.四、解答题(本大题共2小题,22题6分,23题8分共14分)22.(6分)已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.【分析】(1)利用网格特点,分别画出A、B、C关于直线的对称点A1、B1、C1即可;(2)由于P A=P A1,则|PB﹣P A|=|PB﹣P A1|,而|PB﹣P A1|≤A1B,当点P、A1、B共线时取等号,从而得到|PB ﹣P A|的最大值.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,点P为所作,|PB﹣P A|的最大值为3.23.(8分)已知:如图,点B、E、C、F四点在一条直线上,且AB∥DE,AB=DE,BE=CF.(1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.【分析】(1)直接利用全等三角形的判定方法得出答案;(2)由全等三角形的性质可得出结论.【解答】(1)证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)AC=DF,AC∥DF.理由如下:∵△ABC≌△DEF,∴AC=DF,∠ACB=∠DFE,∴AC∥DF.五、解答题(本大题共2小题,24题6分,25题8分,共14分)24.(6分)某城市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图形回答:(1)当每户每月的用水量不足5吨时,每吨水费多少元?当每户每月的用水量超过5吨时,超过的部分每吨交水费多少元?(2)若某户居民某月交了水费19.5元,则该户居民用了多少吨水?【分析】(1)根据图象给出的数据即可求出答案.(2)设该户居民用了x吨水,根据题意列出方程即可求出答案.【解答】解:(1)当用水量不足5吨时,每吨水费为:=元/吨,当用水量超过5吨时,每吨水费为:=元/吨.(2)设该户居民用了x吨水,由题意可知:5×+(x﹣5)=19.5,解得:x=7,答:该户居民用了7吨水.25.(8分)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,∠BMN=∠ACB,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.【分析】(1)由“SAS”可证△ABD≌△FCD,可得AB=CF,由“ASA”可证△ACE≌△BCE,可得AE=BE,可得结论;(2)如图,过点M作MH∥AC,交AB于H,交BD于P,由“SAS”可证BPH≌△MPG,可得GM=BH,由“ASA”可证△BMN≌△HMN,可得BN=NH,可得结论.【解答】解:(1)∵BD⊥AC,CE⊥AB,∴∠ADB=∠BDC=∠AEC=90°,∴∠A+∠ABD=90°,∠A+∠ACE=90°,∴∠ABD=∠ACE,在△ABD和△FCD中,,∴△ABD≌△FCD(SAS),∴AB=CF,∵CE平分∠ACB,∴∠ACE=∠BCE,在△ACE和△BCE中,,∴△ACE≌△BCE(ASA),∴AE=BE,∴BE=AB=CF;(2)BN=MG,理由如下:如图,过点M作MH∥AC,交AB于H,交BD于P,∵BD=CD,BD⊥CD,∴∠DBC=∠DCB=45°,∵MH∥AC,∴∠PMB=∠DCB=∠PBM=45°,∠BPM=∠BDC=90°,∴BP=PM,∵∠BHP+∠HBP=90°,∠BHP+∠HMN=90°,∴∠HBP=∠HMN,在△BHP和△MGP中,,∴△BPH≌△MPG(ASA),∴GM=BH,∵∠BMN=∠ACB=22.5°,∴∠BMN=∠HMN=22.5°,在△BMN和△HMN中,,∴△BMN≌△HMN(ASA)∴BN=NH,∴BN=BH=MG.。
2023年江苏省七年级下学期数学期末试题卷(附答案) (2)
江苏省七年级下学期数学期末试题卷本试卷由填空题、选择题和解答题三大题组成,共29小题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上.1.下列运算正确的是A.a·a2=a2 B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a52.某红外线遥控器发出的红外线波长为0.00 000 094m,用科学记数法表示这个数是A.9.4×10-7m B.9.4×107m C.9.4×10-8m D.9.4×108m3.一个正多边形的每个外角都等于36°,那么它是A.正六边形 B.正八边形 C.正十边形 D.正十二边形4.不等式组221xx≤⎧⎨+>⎩的最小整数解为A.-1 B.0 C.1 D.25.如图,直线l、n分别截∠A的两边,且l∥n.根据图中标示的角,判断下列各角的度数关系,正确的是A.∠2+∠5 >180°B.∠2+∠3< 180°C.∠1+∠6> 180°D.∠3+∠4<180°6.数a、b、c在数轴上对应的点如图所示,则下列式子中正确的是A.a-c>b-c B.a+c<b+cC.ac>bc D.a cb b <7.下列命题中是真命题的是A.质数都是奇数B.如果a=b,那么a=bC.如果a>b,那么(a+b)(a-b)>0 D.若x<y,则x-202X<y-202X8.关于x,y的方程组225y x mx m+=⎧⎨+=⎩的解满足x+y=6,则m的值为A.-1 B.2 C.1 D.49.(3x+2)(-x4+3x5)+(3x+2)(-2x4+x5)+(x+1)(3x4-4x5)与下列哪一个式子相同A.(3x4-4x5) (2x+1) B.-(3x4-4x5)(2x+3)C.(3x4-4x5) (2x+3) D.-(3x4-4x5)(2x+1)10.小新原有50元,表格中记录了他今天所支出各项费用,其中饼干支出的金额被涂黑,若每包饼干的售价为3元,则小明可能剩下的金额数是A.7元B.8元C.9元D.10元二、填空题本大题共8小题.每小题3分,共24分把答案直接填在答题卡相对应的位置上.11.命题“内错角相等”是▲命题(填“真”、“假”).12.(▲)(2a-3b)=12a2b-18ab2.13.已知2x=3y+7,则32x y-=▲.14.如果(x+3)(x+a)=x2-2x-15,则a=▲.15.如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是▲.16.已知关于x的方程x-(2x-a)=2的解是负数,则a的取值范围是▲.17.计算:498×502-5002=▲.18.已知不等式组1xx n<⎧⎨>⎩有解,则n的取值范围是▲.三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分9分,每小题3分)将下列各式分解因式:(1)4m2-36mn+81n2;(2)x2-3x-10;(3)18a2-50.20.(本题满分8分,每小题4分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]·x2y;(2)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=12.21.(本题满分8分,每小题4分)解下列方程组:(1)524235x yx y-=⎧⎨-=-⎩(2)42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,每小题4分)解不等式(组)(1)334642x x--<-,并把解在数轴上表示出来; (2)()32412123x xxx⎧-->-⎪⎨+>-⎪⎩.23.(本题满分5分)如图,EF//AD,∠1=∠2,∠BAC=70°.填空:解:∵EF//AD(已知),∴∠2=▲(▲),∵∠1=∠2( ▲),∴∠1=∠3( ▲),∴AB∥▲( ▲).∴∠BAC+▲=180°( ▲).∵∠BAC=70°( ▲),∴∠AGD=▲°.24.(本题满分5分)某厂家为支援灾区人民,捐赠帐篷16800顶,该厂家备有2辆大货车、8辆小货车运送,每次每辆大货车所运帐篷数比小货车所运帐篷数的2倍少30顶,已知大、小货车每天均运送一次,2天恰好运完,求大、小货车每辆每次各运送帐篷多少顶?25.(本题满分5分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕.(1)试判断B'E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.26.(本题满分6分)已知关于x、y的方程组316215x aybx y-=⎧⎨+=⎩的解是76xy=⎧⎨=⎩(1)求(a+10b)2-(a-10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.27.(本题满分7分)如图,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD =∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?28.(本题满分7分)甲、乙两商场以同样价格出售同样的商品,并且又推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.(1)若小明妈妈准备用120元去商场购物,你建议小明妈妈去▲商场花费少(直接写“甲”或“乙”);(2)根据两家商场的优惠活动方案,问顾客到哪家商场购物花费少?请说明理由.29.(本题满分8分)如图,在△ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以72cm/s的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF+S△ACE<S△ABC.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
人教版七年级数学下册期末测试卷 (2)
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
人教版七年级(下)期末数学试卷二
七年级(下)期末数学试卷6.14作业一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中只有一项符合题目要求)1.(3分)4的算术平方根是()A.2B.4C.﹣2D.﹣42.(3分)点P(x,y)在第二象限,且点P到x轴、y轴的距离分别为6,7,则点P的坐标为()A.(﹣6,7)B.(6,﹣7)C.(7,﹣6)D.(﹣7,6)3.(3分)若a>b,则下列式子正确的是()A.1﹣4a>1﹣4b B.a<b C.﹣a>﹣b D.2a﹣4>2b﹣44.(3分)下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量5.(3分)有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去xC.②×2+①,消去y D.②×2﹣①,消去y6.(3分)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上7.(3分)如图,下列条件中,能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠BAC=∠ACD D.∠BAD=∠BCD8.(3分)某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是269.(3分)2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5h 共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组()A.B.C.D.10.(3分)若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.C.2D.3二、填空题(本大题共8个小题,每小题3分,共24分)11.(3分)为了了解某校七年级1500名学生的数学期中考试成绩,从中抽取了200名学生的成绩进行统计,在这个问题中,样本容量是.12.(3分)“a的2倍与b的一半的差不大于0”用不等式表示为.13.(3分)点P(x﹣2,x+3)在第一象限,则x的取值范围是.14.(3分)若实数a与b满足(4a﹣b)2+|3a﹣b+2|=0,则ab的平方根为.15.(3分)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于.16.(3分)已知是二元一次方程组的解,则的值为.17.(3分)过平面上一点O作三条射线OA、OB和OC,已知OA⊥OB,∠AOC:∠AOB=1:2,则∠BOC =°.18.(3分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,若点A的坐标为(a,b),则点A2021的坐标为.三、解答题(本大题共6个小题,共46分)19.(6分)如图,三角形ABC三个顶点的坐标分别为A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),将三角形ABC进行平移得到三角形A1B1C1,三角形ABC中任意一点P(x1,y1)平移后的对应点P1的坐标为(x1+6,y1+4).(1)请问:三角形ABC是如何平移得到三角形A1B1C1的?画出三角形A1B1C1;(2)写出点A1,B1,C1的坐标.20.(6分)解不等式组,并在数轴上表示出不等式组的解集.21.(6分)请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式性质).即∠BAF=.∴∠4=∠BAF.(等量代换).∴AB∥CD().22.(8分)某校七年级数学兴趣小组成员小华对本班上学期期末考试数学成绩作了统计分析,绘制成如下频数分布表和频数分布直方图.分组50≤x <60 60≤x <70 70≤x <80 80≤x <90 90≤x ≤100 频数2 a 20 16 4 占调查总人数的百分比 4% 16% m 32% n请你根据图表提供的信息,解答下列问题:(1)分布表中a = ,m = ,n = ;(2)补全频数分布直方图;(3)如果80分以上为优秀,已知该年级共有学生600人,请你估计七年级学生这次考试优秀的人数是多少?23.(10分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A 、B 两种型号家用净水器各购进了多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)24.(10分)先阅读,再完成练习一般地,数轴上表示数x 的点与原点的距离,叫做数x 的绝对值,记作|x |,|x |<3.x 表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x |<3的解集是﹣3<x <3;|x |>3x 表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数或大于3的数,它们到原点距离大于3,所以x>3的解集是x<﹣3或x>3解答下面的问题:(1)不等式|x|<5的解集为,不等式|x|>5的解集为.(2)不等式|x|<m(m>0)的解集为.不等式|x|>m(m>0)的解集为.(3)解不等式|x﹣3|<5.(4)解不等式|x﹣5|>3.。
七年级数学(下)期末考试含答案解析
七年级数学(下)期末考试(考试时间:120分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七年级下全册。
第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6B.36C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1B.0C.2D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2B.3C.4D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2B.m<2C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)13.389-+= .A Ox-1-5-4-3-2-115432114.已知(m +2)x|m |﹣1+3>0是关于x 的一元一次不等式,则m 的值为 .15.如图,点D 在射线BE 上,AD BC ∥.若145ADE ∠=︒,则DBC ∠的度数为 ; 16.已知一组数据有50个,其中最大值是142,最小值是98.若取组距为5,则可分为 组. 17.若方程组⎩⎨⎧-=++=+ay x ay x 13313的解满足x+y=0,则a 的值是 .三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.计算(5分)|﹣|+3﹣2+19.解方程组(5分)20.(6分)解下列不等式组,并把解集在数轴上表示出来。
2016-2017学年第二学期七年级期末数学模拟试卷(二)及答案
2016-2017学年第二学期七年级期末数学模拟试卷二本次考试范围:苏科版七下全部内容,八年级数学上册《全等三角形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。
一、选择题(每小题3分,共30分)1.下列运算中,正确的是 ( ) A .a 2+a 2=2a 4 B .a 2•a 3=a 6 C .(-3x )2÷3x =3x D .(-ab 2)2=-a 2b 42.现有4根小木棒的长度分别为2cm ,3cm ,4cm 和5cm .用其中3根搭三角形,可以搭出不同三角形的个数是 ( ) A .1个 B .2个 C .3个 D .4个 3.如下图,下列判断正确的是 ( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2.则AB ∥CDC .若∠A =∠3,则 AD ∥BC D .若∠A +∠ADC =180°,则AD ∥BC4.如果a > b ,那么下列不等式的变形中,正确的是 ( ) A .a -1<b -1 B .2a <2b C .a -b <0 D .-a +2<-b +2 5.若5x 3m-2n-2y n -m +11=0是二元一次方程,则 ( )A .m =3,n =4B .m =2,n =1C .m =-1,n =2D .m =1,n =26.已知方程组⎩⎨⎧3x +5y = k +8,3x +y =-2k .的解满足x + y = 2 ,则k 的值为 ( )A .-4B .4C .-2D .27.若不等式组⎩⎨⎧3x +a <0,2x + 7>4x -1.的解集为x <4,则a 的取值范围为 ( )A .a <-12B .a ≤-12C .a >-12D .a ≥-12 8.四个同学对问题“若方程组 111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组 111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 ( ) A⎩⎨⎧==84y x ; B ⎩⎨⎧==129y x ; C ⎩⎨⎧==2015y x ; D ⎩⎨⎧==105y x9. 如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90° 10. 如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使得CC '∥AB ,则旋转角的度数为( ) A .35° ; B .40° ; C .50° ; D .65° 二、填空题(每空3分,共24分) 11.计算:3x 3·(-2x 2y ) = . 12.分解因式:4m 2-n 2 = .第3题图第9题图ABCB ′C ′第10题图13.已知一粒米的质量是0.000021千克,0.000021用科学记数法表示为 __ .14.若⎩⎨⎧x = 2,y = 1.是方程组⎩⎨⎧2ax +y = 5,x + 2y = b .的解,则ab = .15.二元一次方程3x +2y =15共有_______组正整数解....16.关于x 的不等式(a +1)x>(a +1)的解集为x <1,则a 的范围为 .17.如图,已知Rt △ABC 中∠A =90°,AB =3,AC =4.将其沿边AB 向右平移2个单位得到△FGE ,则四边形ACEG 的面积为 .18.某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线A B 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. (1)如图1,若已经向右摆放了3根小棒,且恰好有∠A 4A 3A =90°,则θ= . (2)如图2,若只能..摆放5根小棒,则θ的范围是 . 三、解答题(共11题,计76分)19.(本题满分6分)计算:(1)(-m )2·(m 2)2÷m 3; (2)(x -3)2-(x +2)(x -2).20.(本题满分6分)分解因式:(1)x 3-4xy 2; (2) 2m 2-12m +18.21.(本题满分6分)(1)解不等式621123x x ++-<; (2)解不等式组()523215122x x x x⎧-<-⎪⎨-<-⎪⎩22.(本题满分6分)已知长方形的长为a ,宽为b ,周长为16,两边的平方和为14.①求此长方形的面积; ②求ab 3+2a 2b 2+a 3b 的值.23.(本题满分6分)在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13. (1)求a 、b 的值;θA 4A 3A 2AA 1BCθA 6A 5A 4A 3A 2AA 1BC图1图2A B CEF G第16题图第18题图(2)当-1<x <2,求y 的取值范围.24. (本题满分6分)如图2,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E , BD 是△ABC 的角平分线.求∠DEB 的度数.25. (本题满分6分)已知,如图,AC 和BD 相交于点O ,OA=OC ,OB=OD ,求证:AB ∥CD .26.(本题8分) 某公司准备把240吨白砂糖运往A 、B 两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量 运往A 地的费用 运往B 地的费用 大车 15吨/辆 630元/辆 750元/辆 小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A 地,其中大车有m 辆,其余货车前往B 地,且运往A 地的白砂糖不少于115吨.①求m 的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.27.(8分)(1)如图①,在凹四边形ABCD 中,∠BDC =135°,∠B =∠C =30°,则∠A = °;(2)如图②,在凹四边形ABCD 中,∠ABD 与∠ACD 的角平分线交于点E ,∠A =60°,∠BDC =140°,则∠E = °;(3)如图③,∠ABD ,∠BAC 的平分线交于点E ,∠C =40°,∠BDC =150°,求∠AEB 的度数;(4)如图④,∠BAC ,∠DBC 的角平分线交于点E ,则∠B ,∠C 与∠E 之间有怎样的数量关系 。
山东省济宁市金乡县2022-2023学年七年级下学期第二次学情监测(期末)数学试卷(含答案)
2022—2023学年度第二学期第二次学情监测七年级数学试题一、选择题 (每小题 3 分,共 30 分,下列各小题均有四个答案,其中只有一个是正确的。
)A ±8 B. 4C. 8D. 23. 在平面直角坐标系中,第一象限内的点P (a +3,a )到 y 轴的距离是 5 ,则 a 的值为()A .﹣8 B .2或﹣8C .2D .84. 小鸡孵化场孵化出 1000 只小鸡,在 60 只上做记号,再放入鸡群中让其充分跑散,再任意抓出 50 只,其中做有记号的大约是()A .3 只B .5 只C .15 只D .25 只5. 下列命题中真命题的个数有( ) (1)经过一点有且只有一条直线与这条直线平行(2)过一点有且只有一条直线与已知直线垂直(3)两条平行线被第三条直线所截,内错角的平分线互相垂直(4)过直线 m 外一点 P 向这条直线作垂线段,这条垂线段就是点 P 到直线 m 的距离(5)如果两条直线都和第三条直线平行,那么这两条直线也互相平行A. 1 个B. 2 个C. 3 个 D 4 个6. 小明求得方程组的解为,由于不小心,滴上了墨水,刚好遮住了两个数○和□,则这两个数分别为( )A .﹣2和2B .﹣2和4C .2和﹣4D .2和﹣27. 如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠⎩⎨⎧=-=+□y x y x 23124⎩⎨⎧==4y x ○CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°8. 在平面直角坐标系中,将点A (m ,n +2)先向上平移 2 个单位,再向左平移 3 个单位,得到点 A ' ,若点 A ' 位于第二象限,则 m 、n 的取值范围分别是( )A .m <-2,n >1B .m <3,n <0C .m <3,n >﹣4D .m <-2,n <﹣49. 《算法统宗》是一本通俗实用的数学书,也是将数字入诗的代表作,这本书由明代程大位花了近 20 年完成,程大位还有一首类似二元一次方程组的饮酒数学诗:“肆中饮客乱纷纷,薄酒为醨厚酒醇.醇酒二瓶醉五客,薄酒三瓶醉二人,共同饮了一十六,三十四客醉颜生,试问高明能算士,几多醨酒几多醇?”这首诗是说,好酒二瓶,可以醉倒 5 位客人;薄酒三瓶,可以醉倒二位客人,如果 34 位客人醉倒了,他们总共饮下 16 瓶酒.试问:其中好酒、薄酒分别是多少瓶?设有好酒x 瓶,薄酒y 瓶.依题意,可列方程组为()A .B .C .D .10. 定义新运算“⊕”如下:当 a >b 时,a ⊕ b =ab+b ;当 a <b 时,a ⊕ b =ab ﹣b ,若 3⊕(x +2)>0,则 x 的取值范围是()A .﹣1< x <1 或 x <﹣2B . x <﹣2 或 1< x <2C .﹣2< x <1 或 x >1D . x <﹣2 或 x >2二、填空题 (共 5 小题,每小题 3 分,共 15 分)⎪⎩⎪⎨⎧=+=+34325216y x y x ⎪⎩⎪⎨⎧=+=+34325.216y x y x ⎪⎩⎪⎨⎧=+=+3431316y x y x ⎪⎩⎪⎨⎧=+=+34235.216y x y x11. 如果一个实数的算术平方根与它的立方根相等,则这个数是 .12. 一个两位数,个位数字比十位数字大 5 ,如果把个位数字与十位数字对调,那么所得到的新数与原数的和是 99 ,这个数为 .13. 已知 ∠AOB 和 ∠CO'D 的两边分别互相平行, ∠AOB = 60°,则 ∠CO'D 的度数为 .14. 已知关于 x 的不等式组有5个整数解,则a 的取值范围是 .15. 如图,点 O (0,0),A 1(1,2),A 2(2,0),A 3(3,﹣2),A 4(4,0)…….根据这个规律,探究可得点 A 2023 的坐标是 .三、解答题 (本大题共 7 个小题,满分 55 分)16. (本题满分 6 分)(1)计算:49−327+|1−2|+(1−43)2.(2)解方程组:17. (本题满分 6 分)解不等式组,把其解集在数轴上表示出来,并写出它的全部整数解.18. (本题满分 7 分)济宁市一研究机构为了了解20~70岁年龄段市民的不同年龄结构,随机选⎩⎨⎧--≥-0125>a x x ⎩⎨⎧-=+=-154653y x y x ⎪⎩⎪⎨⎧-≤-+-3122112x x x x )>(阅读下面的文字,解答问题.现规定:分别用[x] 和〈x〉表示实数x的整数部分和小数部分,如实数 3.14 的整数部分是[3.14]=3,小数部分是〈3.14〉=0.14;实数7的整数部分是[7]=2,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即7−2就是7 的小数部分,所以〈7〉=7−2.(1)[2]= ,〈2〉= ;[11]= ,〈11〉= .(2)如果〈5〉=a,[101]=b,求a+b−5的立方根.20. (本题满分8 分)21. (本题满分9 分)金乡县吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大、小两种型号的渣土运输车运输土方.已知1辆大型渣土运输车和 1 辆小型渣土运输车每次共运15 吨; 3 辆大型渣土运输车和8 辆小型渣土运输车每次共运70 吨.(1)1辆大型渣土运输车和1辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20 辆参与运输土方,若每次运输土方总量不小于148 吨,且小型渣土运输车至少派出7 辆,问该渣土运输公司有哪几种派出方案?(3)在(2) 的条件下,已知一辆大型渣土运输车运输花费500 元/次,一辆小型渣土运输车运输花费300 元/次,为了节约开支,该公司应选择哪种方案划算?22. (本题满分11 分)长江汛期即将来临,为了便于夜间查看江水及两岸河堤的情况,防汛指挥部在一危险地带两岸各安置了一探照灯(如图1),假定这一带长江两岸河堤是平行的,即PQ∥MN ,连结AB ,且∠ABN=45°.灯A 射线自AQ 顺时针旋转至AP便立即回转,灯 B 射线自BM 顺时针旋转至BN 便立即回转,两灯不停交叉照射巡视.若灯 A 转动的速度是 1 度/秒,灯 B 转动的速度是 3 度/秒.B(1)若两灯同时转动,在灯B 射线第一次转到BN 之前,两灯射出的光线交于点 C .①如图1,当两灯光线同时转动50 秒时,求∠ABC 的度数.②如图2,当两灯光线同时转动55秒时,过C作CD⊥BC交PQ于点D,求∠ABC 与∠ACD 的比值.(2)若灯A 射线先转动30 秒,灯B 射线才开始转动,在灯A 射线第一次转到AP 之前,B 灯转动几秒,两灯的光线互相平行?2022-2023 学年度第二学期期末学情监测七年级数学试题答案一、选择题(每小题 3 分,共 30 分)题号12345678910选项B D C A A D D C B C 二、填空题(每小题 3 分,共 15 分)11. 0或1 12. 27 13. 60°或120° 14. 15. (2023,-2)三、解答题(本大题共 7 个小题,满分 55 分)16.(本题满分 6 分)(1) (2)17.(本题满分 6 分)解不等式①得, x >3;解不等式②得, x ≤5;不等式组的解集为 (3分) 作图略(2分) 整数解:4或5 (1分)18、(本题满分7 分)(1)a=30 ;m=30 ; 108° (每空1分)(2) (2分) (3)60万人 (2分)19、(本题满分 8 分)(1)1 ; ; 3 ; (每空1分)(2)a = (1分), b =10 (1分), a+b-=8 (1分),a+b-的立方根是 2 .(1分)12-≤-<a 2310+⎩⎨⎧-=-=33y x 53≤x <12-311-25-5520、(本题满分 8 分)(1)坐标系如图 (2分),a=1 (1分); b=-1 (1分)(2)△ABC 如图 (1分),S △ABC = 4.5 (3分)21、(本题满分 9 分)(1)一辆大型渣土车每次运 10 吨,一辆小型渣土车每次运 5 吨 (3分)(3)设派出大型渣土运输车 a 辆,则派出小型运输车(20-a)辆,(4)根据题意,可得:(5)解得:9.6≤ a ≤13, ∵a 为整数, ∴ a =10、11、12、13,(6)则渣土运输公司有4种派出方案,如下:(7)方案一:派出大型渣土运输车10辆、小型渣土运输车10辆;(8)方案二:派出大型渣土运输车11辆、小型渣土运输车9辆;(9)方案三:派出大型渣土运输车12辆、小型渣土运输车8辆;(10)方案四:派出大型渣土运输车13辆、小型渣土运输车7辆; (4分)(11)(3) 方案一运输费用:10×500+10×300=8000;方案二运输费用:11×500+9×300=8200方案三运输费用:12×500+8×300=8400;方案四运输费用:13×500+7×300=86008000<8200<8400<8600 ,故该公司选择方案一最划算. (2分)22、(本题满分 11 分)解:(1)①当转动50秒时, ∠MBC=50×3°=150°;∠CBN=180°-∠MBC=30°;.∠ABC=∠ABN-∠CBN=45°-30°=15°(2分)②过点C 作CH ∥MN ,因为PQ ∥MN ,所以CH ∥PQ当转动55秒时,∠MBC=55×3°=165°,∠CBN=180°-∠MBC=15°∠ABC=∠ABN-∠CBN=45°-15°=30°;∠QAC=55°因为PQ ∥MN ∥CH ,所以∠ACH=∠QAC,∠HCB=∠CBN所以∠ACB=∠ACH+∠HCB=∠QAC+∠CBN=55°+15°=70°因为CD ⊥BC ,所以∠BCD=90°所以∠ACD=∠BCD-∠ACB=90°-70°=20°则∠ABC:∠ACD=3:2 (4分)(2) 设A 灯转动t 秒,两灯的光互相平行,⎩⎨⎧≥-≥-+720148)20(510a aaA灯先转动30秒,则AQ转到AP还需要180-30=150(秒)即,①当B射线第一次垂直MN时,用时90÷3=30(秒),此时A射线共计运动30+30=60秒,即∠QAE=60°,即在灯B射线到达BN之前,如图3所示,∵PQ∥MN,BF∥AE,∴∠ABF=∠EAB,∠PAB=∠ABN,∴180°-∠ABN-∠ABF=180°-∠BAP-∠BAE,∴∠MBF=∠QAE,即有:3t=30+t,解得:t=15(秒);②如图4,在灯B射线到达BN之后,回到BM前,根据①,同理:∠MBF=∠QAE=(30+t)°∵∠FBN=(3t-180)°即有:3t-180+(30+t)=180,解得:t=82.5.③如图5,在灯B射线回到BM后,第二次到BN前,由题意得:3t-360=30+t,解得:t=195(舍去).综上所述,A 灯转动15秒或82.5秒时,两灯的光束互相平行. (5分)150t0<<。
七年级下册数学期末试题 二
第1页 (共8页)xx 县20 —20 学年度第二学期期末教学质量检测义务教育七年级数 学 试 卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。
) 题号 Ⅰ Ⅱ总分 总分人一 二三 17 18 19 20 21 22 23 24 25 得分第Ⅰ卷(选择题 共30分)一、选择题(本大题10个小题,每小题3分,共30分。
请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。
)1.方程4x -3=x 的解是( )A .x = 34B .x = 43 C .x =1 D .x =-12.已知a >b ,且c 为有理数,则下列关系一定成立的是( )A .ac >bcB .c -a >c -bC .ac 2>bc 2D .c +a >c +b3.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能铺成一个平面图案的是( ) A .正方形和正六边形 B .正三角形和正方形C .正三角形和正六边形D .正三角形、正方形和正六边形4.下列图案既是中心对称图形又是轴对称图形的是( ).A .B .C .D .5.现有5cm ,6cm ,11cm ,13cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成不同的三角形的个数是( ) A .1个 B .2个 C .3个 D .4个得 分 评 卷 人///////////密///////封///////线///////内///////不///////要///////答///////题///////////学校 班级 姓名 考号第2页 (共8页)6.若⎩⎨⎧==23y x 是方程3x -ay =0的一个解,则a 的值为( )A .3B .4C .4.5D .67.如图1所示,△ABC 是等腰直角三角形,点D 是斜边BC 的中点,△ABD 绕点A 旋转到△ACE 的位置,恰好与△ACD 组成正方形ADCE ,则△ABD 所经过的旋转是( )A .顺时针旋转225°B .逆时针旋转45°C .顺时针旋转315°D .逆时针旋转90°8.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是( ) A .⎩⎨⎧=-=+705.25.24205.25.2y x y x B .⎩⎨⎧=+=-4205.25.270y x y xC . ⎩⎨⎧=-=+4205.25.270y x y x D .⎩⎨⎧=+=+4205.25.270y x y x 9.下列判断正确的是( )A .方程(x -3)(y +1)=0的解是⎩⎨⎧-==13y xB .方程2x -4y =8的解必是方程组⎩⎨⎧=+=-753842y x y x 的解C .t 可以取任意数时,⎩⎨⎧+=+=2345t y t x 都是方程3x -5y =2的解D . 二元一次方程组一定只有一组解10.若不等式组⎪⎪⎩⎪⎪⎨⎧++≥++≥++a x a x x x )1(343450312恰有三个整数解,则a 的取值范围为( )第3页 (共8页)A .12≤a ≤1B .12<a ≤1C .1≤a <32D .1≤a ≤32第Ⅱ卷(非选择题 共90分)二、填空题(本大题6个小题,每小题3分,共18分。
2022-2023学年北师大版七年级下学期期末数学复习题2(含答案)
2022-2023学年北师大版七年级下学期期末数学复习题2一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)如图,直线b、c被直线a所截,则∠1与∠2是( )A.同位角B.内错角C.同旁内角D.对顶角2.(3分)某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A.0.12B.0.38C.0.32D.323.(3分)如图,E为BC上一点,AB∥DE,∠1=∠2,则AE与DC的位置关系是( )A.相交B.平行C.垂直D.不能确定4.(3分)有下列说法:①任何无理数都是无限小数;②实数与数轴上的点一一对应;③在数轴上,原点两旁的两个点所表示的数都是互为相反数;④π5是分数,它是有理数;⑤81的算术平方根是9.其中正确的个数是( )A.1B.2C.3D.45.(3分)如图,直线a∥b,∠1=30°,∠2=40°,且∠ADC=∠ACD,则∠3是( )A.70°B.40°C.45°D.35°6.(3分)对任意实数x,点P(x,x2﹣2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为( )A.6B.8C.10D.128.(3分)返校后,老师给同学们分发防疫口罩,如果该班每个学生分5个还差3个,如果每个学生分4个则多出3个,设这批口罩共有y个,该班共有x名学生,列出方程组为( )A.5x+3=y4x―3=y B.5x+3=y 4x+3=yC.5x―y=34x―y=3D.5x―y=3 y―4x=39.(3分)数轴上A、B两点表示的数分别为﹣2和2,数轴上点C在点A的左侧,到点A 的距离等于点B到点A的距离,则点C所表示的数为( )A.﹣3+2B.﹣3―2C.﹣4+2D.﹣4―210.(3分)已知AB∥CD,∠EAF=13∠EAB,∠ECF=13∠ECD,若∠E=66°,则∠F为( )A.23°B.33°C.44°D.46°二、填空题(每小题3分,共15分)11.(3分)若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k= .12.(3分)已知a为整数,且340<a+2<18,则a的值为 .13.(3分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元.14.(3分)已知图为矩形,根据图中数据,则阴影部分的面积为 .15.(3分)直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…,按这样的运动规律,动点第2021次运动到的点的坐标为 .三、解答题(本大题共8个小题,满分75分)16.(9分)计算:16+(―12)×3―27+(―2)3.17.(9分)为了掌握防疫期间学生们的线上学习情况,返校后,特选取了一个水平相当的七年级班级进行跟踪调研,将同学们的考试成绩进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率147.5~59.520.05259.5~71.540.10371.5~83.5a0.20483.5~95.5100.25595.5~107.5b c6107.5~12060.15合计40 1.00根据表中提供的信息解答下列问题:(1)表格中a= ,b= ,c= ;(2)补充完整频数分布直方图;(3)若全市七年级共有120个班(平均每班40人),用这份试卷检测,规定108分及以上为优秀,预计全市优秀人数为 ;72分及以上为及格,及格的百分比为 .18.(9分)在边长为1的正方形网格中,A(2,4)、B(4,1)、C(﹣3,4).(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标;(2)直接写出线段AB平移至线段CD处所扫过的面积;(3)平移线段AB,使其两端点都在坐标轴上,则平移后点B的坐标为 .19.(9分)已知y>x―6+12―2x+x,且|y2―49|+2x―y―z=0,求3x―y+3z 的值.20.(9分)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.21.(9分)若关于x的不等式组x>m+2―2x―1≥4m+1无解,且关于x的一元一次方程x+m﹣2=2﹣x有非负整数解,求所有满足条件的整数m的和.22.(9分)为了创建平安校园,某学校计划增加15台监控设备,现有甲、乙两种型号的设备,其中每台价格、有效监控半径如下表所示.经调查,购买一台甲型设备比购买一台乙型设备少150元,购买3台甲型设备比购买2台乙型设备多150元.甲型设备乙型设备价格(元/台)a b有效半径(米/台)100150(1)求a、b的值;(2)若购买该批设备的资金不超过7200元,且两种型号的设备均要至少买一台,则学校有哪几种购买方案?(3)在(2)的条件下,要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.23.(12分)在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a﹣b﹣2|+a+2b―11=0.(1)直接写出A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(﹣3,m),如图(1)所示.若S△ABC=16,求点D的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP﹣∠OPE).2019-2020学年河南省焦作市沁阳市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)如图,直线b、c被直线a所截,则∠1与∠2是( )A.同位角B.内错角C.同旁内角D.对顶角【解答】解:如图所示:直线b,c被直线a所截,∠1与∠2在直线a的同侧,则∠1与∠2是同位角.故选:A.2.(3分)某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A.0.12B.0.38C.0.32D.32【解答】解:∵总人数为100人,在40~42(岁)组内有职工32名,∴这个小组的频率为32÷100=0.32.故选:C.3.(3分)如图,E为BC上一点,AB∥DE,∠1=∠2,则AE与DC的位置关系是( )A.相交B.平行C.垂直D.不能确定【解答】解:AE∥DC;∵AB∥DE,∴∠1=∠AED,∵∠1=∠2,∴∠AED=∠2,∴AE∥DC,故选:B.4.(3分)有下列说法:①任何无理数都是无限小数;②实数与数轴上的点一一对应;③在数轴上,原点两旁的两个点所表示的数都是互为相反数;④π5是分数,它是有理数;⑤81的算术平方根是9.其中正确的个数是( )A.1B.2C.3D.4【解答】解:①任何无理数都是无限小数,故①正确;②实数与数轴上的点一一对应,故②正确;③在数轴上,在原点两旁,且到原点的距离相等的两个点所表示的数都是互为相反数,故③不正确;④π5是无理数,不是分数,故④不正确;⑤81的算术平方根是3,故⑤不正确;所以,上列说法中,其中正确的个数是2,故选:B.5.(3分)如图,直线a∥b,∠1=30°,∠2=40°,且∠ADC=∠ACD,则∠3是( )A.70°B.40°C.45°D.35°【解答】解:∵∠ADC=∠1+∠2=30°+40°=70°,∵∠ADC=∠ACD,∴∠DAC=180°﹣2∠ADC=40°,∵直线a∥b,∴∠3=∠DAC=40°,故选:B.6.(3分)对任意实数x,点P(x,x2﹣2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:(1)当0<x<2时,x>0,x2﹣2x=x(x﹣2)<0,故点P在第四象限;(2)当x>2时,x>0,x2﹣2x=x(x﹣2)>0,故点P在第一象限;(3)当x<0时,x2﹣2x>0,点P在第二象限.故选:C.7.(3分)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为( )A.6B.8C.10D.12【解答】解:∵将△ABC沿AC方向平移至△DFE,且AC=CD,∴A点移动的距离是2AC,则BF=AD,连接FC,则S△BFC=2S△ABC,S△ABC=S△FDC=S△FDE=2,∴四边形AEFB的面积为:10.故选:C.8.(3分)返校后,老师给同学们分发防疫口罩,如果该班每个学生分5个还差3个,如果每个学生分4个则多出3个,设这批口罩共有y个,该班共有x名学生,列出方程组为( )A.5x+3=y4x―3=y B.5x+3=y 4x+3=yC.5x―y=34x―y=3D.5x―y=3 y―4x=3【解答】解:∵如果该班每个学生分5个还差3个,∴5x﹣y=3;∵如果每个学生分4个则多出3个,∴y﹣4x=3.∴根据题意可列出方程组5x―y=3 y―4x=3.故选:D.9.(3分)数轴上A、B两点表示的数分别为﹣2和2,数轴上点C在点A的左侧,到点A 的距离等于点B到点A的距离,则点C所表示的数为( )A.﹣3+2B.﹣3―2C.﹣4+2D.﹣4―2【解答】解:设点C所表示的数为x,则x<﹣2.∵AC=AB,∴﹣2﹣x=2―(﹣2),解得x=﹣4―2.故选:D.10.(3分)已知AB∥CD,∠EAF=13∠EAB,∠ECF=13∠ECD,若∠E=66°,则∠F为( )A.23°B.33°C.44°D.46°【解答】解:连接AC,设∠EAF=x°,∠ECF=y°,则∠EAB=3x°,∠ECD=3y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x°+∠ACE+3y°=180°,∴∠CAE+∠ACE=180°﹣(3x°+3y°),∠FAC+∠FCA=180°﹣(2x°+2y°),∴∠E=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(3x°+3y°)]=3x°+3y°=3(x°+y°),∠F=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°=2(x°+y°),∴∠F=23∠E,∵∠E=66°,∴∠F=44°,故选:C.二、填空题(每小题3分,共15分)11.(3分)若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k= ﹣2 .【解答】解:根据题意得:k―2≠0|k|―1=1,解得:k=﹣2.故答案为:﹣2.12.(3分)已知a为整数,且340<a+2<18,则a的值为 2 .【解答】解:∵3<340<4,4<18<5,∴a+2=4,∴a=2,故答案为:2.13.(3分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 80 万元.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元),则该企业第一季度月产值的平均值是13×240=80(万元).故答案是:80.14.(3分)已知图为矩形,根据图中数据,则阴影部分的面积为 8 .【解答】解:由图可知,阴影部分的面积=(3﹣1)×(5﹣1)=8,故答案为8.15.(3分)直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…,按这样的运动规律,动点第2021次运动到的点的坐标为 (2020,1) .【解答】解:点P的运动规律是每运动四次向右平移四个单位,∵2021=505×4+1,∴动点P第2021次运动时向右505×4+1=2021个单位,∴点P此时坐标为(2020,1),故答案为:(2020,1).三、解答题(本大题共8个小题,满分75分)16.(9分)计算:16+(―12)×3―27+(―2)3.【解答】解:原式=4+(―12)×(﹣3)﹣8=4+32―8=―5 2.17.(9分)为了掌握防疫期间学生们的线上学习情况,返校后,特选取了一个水平相当的七年级班级进行跟踪调研,将同学们的考试成绩进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率147.5~59.520.05259.5~71.540.10371.5~83.5a0.20483.5~95.5100.25595.5~107.5b c6107.5~12060.15合计40 1.00根据表中提供的信息解答下列问题:(1)表格中a= 8 ,b= 10 ,c= 0.25 ;(2)补充完整频数分布直方图;(3)若全市七年级共有120个班(平均每班40人),用这份试卷检测,规定108分及以上为优秀,预计全市优秀人数为 720人 ;72分及以上为及格,及格的百分比为 85% .【解答】解:(1)a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,故答案为:8、10、0.25;(2)补全直方图如下:(3)预计全市优秀人数为120×40×0.15=720(人),及格的百分比为0.2+0.25+0.25+0.15=0.85=85%,故答案为:720人,85%.18.(9分)在边长为1的正方形网格中,A(2,4)、B(4,1)、C(﹣3,4).(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标;(2)直接写出线段AB平移至线段CD处所扫过的面积;(3)平移线段AB,使其两端点都在坐标轴上,则平移后点B的坐标为 (2,0)或(0,﹣3) .【解答】解:(1)∵平移线段AB到线段CD,使点A与点C重合,A(2,4),C(﹣3,4),∴坐标变化规律是:横坐标减去5,纵坐标不变,∵B(4,1),∴点D的坐标为(﹣1,1);(2)∵平移线段AB到线段CD,∴AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴线段AB平移至线段CD处所扫过的面积为:5×3=15;(3)分两种情况:①如果平移后A的对应点在y轴上,B的对应点在x轴上,那么坐标变化规律是:横坐标减去2,纵坐标减去1,∵B(4,1),∴平移后点B的坐标为(2,0);②如果平移后A的对应点在x轴上,B的对应点在y轴上,那么坐标变化规律是:横坐标减去4,纵坐标减去4,∵A(4,1),∴平移后点B的坐标为(0,﹣3);故答案为:(2,0)或(0,﹣3).19.(9分)已知y>x―6+12―2x+x,且|y2―49|+2x―y―z=0,求3x―y+3z 的值.【解答】解:要使x―6+12―2x+x有意义,必须x―6≥0 12―2x≥0,解得:x=6,∵y>x―6+12―2x+x,∴y>6,∵|y2―49|+2x―y―z=0,∴y 2―49=02x―y―z=0,解得:y=7,z=5,∴3x―y+3z=36―7+35=―1+35.20.(9分)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.【解答】解:(1)∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,(2)∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.21.(9分)若关于x的不等式组x>m+2―2x―1≥4m+1无解,且关于x的一元一次方程x+m﹣2=2﹣x有非负整数解,求所有满足条件的整数m的和.【解答】解:x>m+2―2x―1≥4m+1,不等式组整理得:x>m+2x≤―2m―1,由不等式组无解,得到m+2≥﹣2m﹣1,解得:m≥﹣1,∵x+m﹣2=2﹣x有非负整数解,∴x=2―m 2,∴2―m2≥0,∴m≤4,∴﹣1≤m≤4,把m=﹣1代入x+m﹣2=2﹣x得:x=52,不符合题意;把m=0代入得:x=2,符合题意;把m=1代入得:x=32,不符合题意;把m=2代入得:x=1,符合题意,把m=3代入得:x=―12,不符合题意,把m=4代入得:x=0,符合题意,则所有满足条件的整数m的和为0+2+4=6.22.(9分)为了创建平安校园,某学校计划增加15台监控设备,现有甲、乙两种型号的设备,其中每台价格、有效监控半径如下表所示.经调查,购买一台甲型设备比购买一台乙型设备少150元,购买3台甲型设备比购买2台乙型设备多150元.甲型设备乙型设备价格(元/台)a b有效半径(米/台)100150(1)求a、b的值;(2)若购买该批设备的资金不超过7200元,且两种型号的设备均要至少买一台,则学校有哪几种购买方案?(3)在(2)的条件下,要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.【解答】解:(1)依题意,得:b―a=1503a―2b=150,解得:a=450 b=600.(2)设购买甲型设备x台,则购买乙型设备(15﹣x)台,依题意,得:15―x≥1450x+600(15―x)≤7200,解得:12≤x≤14.∵x为整数,∴x=12,13,14.答:学校有三种购买方案,方案1:购进甲型设备12台,乙型设备3台;方案2:购进甲型设备13台,乙型设备2台;方案3:购进甲型设备14台,乙型设备1台.(3)依题意,得:100x+150(15﹣x)≥1600,解得:x≤13,∴12≤x≤13,∴x=12或13.当x=12时,所需资金为:450×12+600×3=7200(元),当x=13时,所需资金为:450×13+600×2=7050(元).∵7200>7050,∴方案2省钱.答:最省钱的购买方案为购买甲型设备13台,乙型设备2台.23.(12分)在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a﹣b﹣2|+a+2b―11=0.(1)直接写出A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(﹣3,m),如图(1)所示.若S△ABC=16,求点D的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP﹣∠OPE).【解答】(1)解:∵|2a﹣b﹣2|+a+2b―11=0,∴2a ―b ―2=0a +2b ―11=0,解得:a =3b =4,∴A (0,3),B (4,0);(2)解:如图1,过点A 作FG ∥x 轴,过点B 作GH ∥y 轴,交FG 于G ,过点C 作CH ∥x 轴,交GH 于H ,过点C 作CF ∥y 轴,交FG 于F ,则四边形CFGH 为矩形,∵A (0,3),B (4,0),C (﹣3,m ),∴AF =3,CF =3﹣m ,AG =4,BG =3,BH =﹣m ,CH =7,∵S △ABC =S 矩形CFGH ﹣S △AFC ﹣S △AGB ﹣S △BHC =CF •CH ―12AF •CF ―12AG •BG ―12BH •CH =(3﹣m )×7―12×3×(3﹣m )―12×4×3―12×(﹣m )×7=212―2m ,∴212―2m =16,解得:m =―114,∴将线段AB 向左平移了3个单位,向下平移了234个单位,得到CD ,∴点D 的横坐标为4﹣3=1,点D 的纵坐标为0―234=―234,∴D (1,―234);(3)证明:延长AB 交CE 的延长线于N ,如图2所示:∵AN ∥CD ,∴∠DCN =∠N ,∵∠BCE =2∠ECD ,∴∠BCD =3∠DCN =3∠N ,∵PE 平分∠OPB ,∴∠NPE =∠OPE ,∵∠N =∠CEP ﹣∠NPE ,∴∠N =∠CEP ﹣∠OPE ,∴∠BCD =3(∠CEP ﹣∠OPE ).。
浙教版2019-2020学年初中数学七年级下学期期末复习专题2 二元一次方程
浙教版2019-2020学年初中数学七年级下学期期末复习专题2 二元一次方程一、单选题(共10题;共20分)1.下列方程中: ;;;;;.属于二元一次方程的个数有()A. 个B. 个C. 个D. 个2.若是关于x、y的二元一次方程,则a=()A. 1B. 2C. -2D. 2和-23.下列方程组中,属于二元一次方程组的是()A. B. C. D.4.下列方程组中,是三元一次方程组的是()A. B. C. D.5.已知关于x,y的方程组,则下列结论中正确的个数有( )①当a=10时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若3x-3a=35,则a=5A. 1个B. 2个C. 3个D. 4个6.用加减消元法解二元一次方程组:时,下列方法中无法消元的是( )A. ①×2-②B. ②×(-3)-①C. ①×(-2)+②.D. ①-②×37.解方程组,下列最佳方法是( )A. 代入法消去x,由(2)得:x=1+yB. 代入法消去y,由(1)得:y=1-x=0C. 加减法消去x,由(1)-(2)x3得:4y=5D. 加减法消去y,由(1)+(2)得:4x=98.按如图的运算程序,能使输出结果为3的x、y的值是( )A. B. C. D.9.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:“今有五雀,六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕雀重一斤.问燕雀一枚各重几何?”其大意是:“现在有5只雀,6只燕,分别集中放在天平上称重,聚在一起的雀重燕轻.将一只雀一只燕交换位置而放,重量相等.5只雀、6只燕重量共一斤,问雀和燕各重多少?”古代记1斤为16两,则设1只雀x两,一只燕y两,可列出方程()A. B. C. D.10.小明在拼图时,发现8个大小一样的小长方形恰好可以拼成一个大的长方形,如图1所示.小红看见了,说“我来试一试”,结果拼成如图2所示的正方形,中间还留有一个洞,恰好是边长为2cm的小正方形.则每个小长方形的长和宽分别为().A. 8cm和6cmB. 12cm和8cmC. 10cm和6cmD. 10cm和8cm二、填空题(共6题;共6分)11.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元,若该店第二天销售香蕉t千克,则第三天销售香蕉________千克.(用含t的代数式表示.)12.是二元一次方程的解,则a=________.13.甲乙两人同解方程组时甲正确解得,乙因抄错c而得,则a+c=________.14.已知a、b都是有理数,观察表中的运算,则m=________.15.对于问题“若方程组的解是,求方程组的解.”有同学提出了把第二个方程组的两个方程的两边都除以5,然后用“换元法”来解决,请用“换元法”求出该方程组的解为________.16.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为________.三、解答题(共8题;共65分)17.方程mx+ny=1的两个解是,,求m和n的值.18.已知方程组和方程组的解相同,求2a+b的值.19.用指定的方法解方程:(1)(代入消元法);(2)(加减消元法)20.利用两块完全相同的长方形木块测量一张桌子的高度,首先将木块按图一方式放置,再交换两木块的位置,按图二方式放置,测量数据如图,求桌子的高度.21.阅读材料:小丁同学在解方程组时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为解得,即,解得请你参考小丁同学的做法,解方程组:22.某校举办“迎冬奥会“学生书画展览,现要在长方形展厅中划出3个形状、大小完全一样的小长方形(图中阴影部分)区域摆放作品.(1)如图1,若大长方形的长和宽分别为45米和30米,设小长方形的长为x,宽为y,求出x和y的值.(2)如图2,若大长方形的长和宽分别为a和b.①求出1个小长方形周长与大长方形周长之比;②若作品展览区域(阴影部分)面积占展厅面积的,求x和y的数量关系.23.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)24.如图1是某机场的平地电梯,电梯AB的长度为120米,如图2所示.若两人不乘电梯在地面匀速行走,小明每分钟的路程是小王的1.5倍,且1.5分钟后,小明比小王多行走30米.(1)求两人在地面上每分钟各行走多少米?(2)若两人在平地电梯上行走,电梯向前行驶,两人也同时在电梯上行走.当小明到达B处时,小王还剩米.①求平地电梯每分钟行驶多少米?②当小明到达B处时,发现有一袋行李忘在A处,同时关注此时为7点55分,小明马上从地面返回A处,拿了行李后立即乘平地电梯(同时行走)去B处.问小明能否在8点前和小王汇合,并说明理由.答案解析部分一、单选题1.【答案】B【考点】二元一次方程的定义【解析】【解答】解:①4x−7=0属于一元一次方程的定义,故不符合题意;②3x+y=z属于三元一次方程,故不符合题意;属于一元二次方程,故不符合题意;④4xy=3属于二元二次方程,故不符合题意;属于二元一次方程,故符合题意;属于分式方程,故不符合题意.故答案为:B.【分析】根据二元一次方程的定义即可解答.2.【答案】C【考点】二元一次方程的定义【解析】【解答】解:由题意得:|a|-1=1,且a-2≠0,解得:a=-2,故答案为:C.【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得:|a|-1=1,且a-2≠0,解可得答案.3.【答案】B【考点】二元一次方程组的解【解析】【解答】A= ,方程组中有三个未知数,不是二元一次方程组;B. ,是二元一次方程组;C. ,方程组中未知数的最高次是2,不是二元一次方程组;D. ,方程组中不是二元一次方程,所以原方程组不是二元一次方程组;故答案为:B.【分析】根据二元一次方程组的定义判断即可.4.【答案】C【考点】三元一次方程组解法及应用【解析】【解答】解:A.4个未知数,不符合题意;B.2个未知数,不符合题意;C.有三个未知数,每个方程的次数是1,是三元一次方程组,符合题意;D.方程的次数为2,不符合题意;故答案为:C.【分析】利用三元一次方程组的定义判断即可.5.【答案】D【考点】二元一次方程组的解【解析】【解答】①把a代入方程组得,3x-5y=20, x-2y=5, 则x=2y+5, 有3×(2y+5)-5y=20, 解得y=5, x=15, 故①正确;② x、y互为相反数,得x=-y, ∴3x+5x=2a, x+2x=a-5, 解得x=5, a=20, 故故②正确;③ 设x=y 得,所以这是不可能的。
黑龙江省2023年七年级下学期期末考试数学试卷2
黑龙江省 七年级下学期期末考试数学试卷、1、在下列实数,3.14159265,,﹣8,,,中无理数有( )A .3个 B . 4个C . 5个D . 6个2、点A(-2,1)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3、方程2x-3y=5,x+y3=6,3x-y+2z=0,2x+4y,5x-y>0中是二元一次方程的有( )个。
A.1 B.2 C.3 D.4 4、下列运动属于平移的是( )A .荡秋千B .地球绕着太阳转C .风筝在空中随风飘动D .急刹车时,汽车在地面上的滑动 5、下列图形中,∠1与∠2是同位角的是( )A .(2)(3)B .(2)(3)(4)C .(1)(2)(4)D .(3)(4)6、不等式组⎩⎨⎧>--<32x x 的解集是( )A.x<-3B.x<-2C.-3<x<-2D.无解7、为了了解参加某运动会的20XX 名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是( ).A .20XX 名运动员是总体B .100名运动员是所抽取的一个样本C .样本容量为100名D .抽取的100名运动员的年龄是样本8、下列说法中:①过直线外一点有且只有一条直线与已知直线平行;②若a//b ,b//c ,则a ∥c ;③相等的角是对顶角;④直线外一点与直线上各点连接的所有线段中,垂线段最短。
其中正确 的有 ( )A 、1个B 、2个C 、3个D 、4个 9、已知实数x 、y 满足()013222=++-y x ,则x-y=A .3B .-3 C.1 D .-1{a y x ay x --=++=-73110、已知方程组的解x 为非正数,y 为非负数,则a 的取值范围是A 、3a 2≤-<B 、3a 2<≤-C 、3a 2<<-D 、3a 2≤≤-二、填空题(本题共10题,每小题3分,满分30分) 11、9的算术平方根是________12、方程2y+x=4用含y 的代数式表示x 的形式是________ 13、点A (a 2+1,﹣1﹣b 2)在第 象限 14、如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则 ∠DAC=_______ 15、若方程 2x1-m + ymn +2 =21是二元一次方程,则mn = 。
江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)
江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.2.计算x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy23.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣54.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.26.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y (x+2)28.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠39.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=______.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=______.13.已知:x a=4,x b=2,则x a+b=______.14.一个n边形的内角和是1260°,那么n=______.15.若正有理数m使得是一个完全平方式,则m=______.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为______.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=______°.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 中点,且S△ABC=4平方厘米,则S△BEF的值为______.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.解不等式组,并把它的解集在数轴上表示出来.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为______;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC 的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千b瓦时的部分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.【考点】负整数指数幂.【分析】根据负整数指数幂的运算方法:a﹣p=,求出用分数表示4﹣2的结果是多少即可.【解答】解:∵4﹣2==,∴用分数表示4﹣2的结果是.故选:D.【点评】此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.2.计算x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy2【考点】整式的除法.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.根据法则即可求出结果.【解答】解:x2y3÷(xy)2,=x2y3÷x2y2,=x2﹣2y3﹣2,=y.故选C.【点评】本题考查单项式除以单项式运算.(1)单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式;(2)单项式除法的实质是有理数除法和同底数幂除法的组合.3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.5【考点】二元一次方程的解.【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.2【考点】一元一次不等式的整数解.【分析】解不等式求得x的范围,再该范围内可得其最大整数解.【解答】解:移项、合并,得:2x≤5,系数化为1,得:x≤2.5,∴不等式的最大整数解为2,故选:D.【点评】本题主要考查解不等式的能力,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.6.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等【考点】命题与定理.【分析】利用平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,错误,是假命题,符合题意;B、垂直于同一直线的两条直线平行,正确,是真命题,不符合题意;C、对顶角相等,正确,是真命题,不符合题意;D、同角的余角相等,正确,是真命题,不符合题意;故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及余角的定义等知识,难度不大.7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y (x+2)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2Y,进而利用完全平方公式分解因式即可.【解答】解:2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.8.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3【考点】平行线的判定.【分析】根据题意,结合图形对选项一一分析,排除错误答案.【解答】解:A、∠1=∠3正确,内错角相等两直线平行;B、∠2+∠4=180°正确,同旁内角互补两直线平行;C、∠4=∠5正确,同位角相等两直线平行;D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个【考点】平行线的性质;余角和补角.【分析】先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.【解答】解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18【考点】整式的混合运算.【分析】阴影部分面积等于两个正方形面积之和减去两个直角三角形面积,求出即可.【解答】解:∵a+b=ab=6,∴S=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)= [(a+b)2﹣3ab]=×(36﹣18)=9,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=3x2﹣7x+2.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=3x2﹣6x﹣x+2=3x2﹣7x+2,故答案为:3x2﹣7x+2【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=﹣8.【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:∵a+b=﹣2,a﹣b=4,∴a2﹣b2=(a+b)(a﹣b)=﹣8.故答案为:﹣8.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.13.已知:x a=4,x b=2,则x a+b=8.【考点】同底数幂的乘法.【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵x a=4,x b=2,∴x a+b=x a•x b=8.故答案为:8.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.14.一个n边形的内角和是1260°,那么n=9.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.【解答】解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.【点评】此题主要考查了多边形的内角和公式,关键是掌握内角和公式.15.若正有理数m使得是一个完全平方式,则m=.【考点】完全平方式.【分析】根据完全平方式的结构解答即可【解答】解:∵是一个完全平方式,且m为正数,∴m=2×=.故答案为:.【点评】本题是完全平方公式的应用,掌握完全平方式的结构是解题的关键.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为30°.【考点】平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【解答】解:已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°﹣60°﹣90°=30°.故答案为:30°.【点评】此题考查了学生对平行线性质的应用,关键是由平行线性质得出同位角相等求出∠3.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=30°.【考点】平行线的性质.【分析】根据三角形的内角和得到∠C=75°,根据平行线的性质得到∠AED=∠C=75°,由折叠的想知道的∠DEF=∠AED=75°,于是得到结论.【解答】解:∵∠A+∠B=105°,∴∠C=75°,∵BC∥DE,∴∠AED=∠C=75°,∵把△ABC沿线段DE折叠,使点A落在点F处,∴∠DEF=∠AED=75°,∴∠FEC=180°﹣∠AED﹣∠DEF=30°,故答案为:30.【点评】此题考查了折叠的性质以及平行线的性质.此题比较简单,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 中点,且S△ABC=4平方厘米,则S△BEF的值为1cm2.【考点】三角形的面积.【分析】根据等底等高的三角形的面积相等可知,三角形的中线把三角形分成面积相等的两个三角形,然后求解即可.【解答】解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC=×4=2cm2,∵E是AD的中点,∴S△BDE=S△CDE=×2=1cm2,∴S△BEF=(S△BDE+S△CDE)=×(1+1)=1cm2.故答案为:1cm2.【点评】本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:7x=56,即x=8,把x=8代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可【解答】解:,解不等式①得x≥﹣2,解不等式②得x<4,故不等式组的解为:﹣2≤x<4,把解集在数轴上表示出来为:【点评】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【考点】完全平方公式.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【考点】平行线的判定与性质.【分析】(1)根据垂直定义求出∠CDF=∠EFB=90°,根据平行线的判定推出即可;(2)根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出BC∥DG,根据平行线的性质得出∠3=∠ACB即可.【解答】解:(1)CD平行于EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°.【点评】本题考查了平行线的性质和判定的应用,能正确运用性质和判定进行推理是解此题的关键,难度适中.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为3;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.【考点】解二元一次方程.【分析】(1)把x看做已知数求出y即可;(2)把表示出的y代入已知不等式求出x的范围即可;(3)把表示出的x代入已知不等式求出y的范围即可.【解答】解:(1)方程3x﹣2y=6,解得:y=;(2)由题意得:﹣1<≤3,解得:<x≤4;(3)由题意得:x=,代入不等式得:﹣1<≤3,解得:﹣<y≤,则y的最大值为.【点评】此题考查了解二元一次方程,把一个未知数看做已知数表示出另一个未知数是解本题的关键.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC 的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.【考点】三角形内角和定理.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再由角平分线的性质求出∠BAD的度数,由直角三角形的性质求出∠BAE 的度数,根据∠EAD=∠BAD﹣∠BAE即可得出结论;(2)首先利用三角形内角和定理可求出∠BAC的度数,进而可求出∠BAD的度数,由题意可知∠BAG=∠BAC,再利用已知条件和三角形外角和定理即可求出∠G的度数.【解答】解:(1)∵在△ABC中,∠B=62°,∠C=38°,∴∠BAC=180°﹣62°﹣38°=80°.∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=40°.∵AE⊥BC于点E,∴∠AEB=90°,∴∠BAE=90°﹣62°=28°,∴∠EAD=∠BAD﹣∠BAE=40°﹣28°=12°;(2)∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°,∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=(180°﹣x°﹣y°),AG平分∠BAD,∴∠BAG=∠BAD=(180°﹣x°﹣y°),∵∠BDF=∠BAD+∠B,∴∠G=∠BDF﹣∠GAD=x°,【点评】本题考查角平分线的定义、三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【考点】等腰三角形的性质;二元一次方程组的解;三角形三边关系.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千b瓦时的部分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)利用居民甲用电200千瓦时,交电费170元;居民乙用电400千瓦时,交电费400元,列出方程组并解答;(2)根据当居民月用电量0≤x≤150时,0.8x≤0.85x,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,分别得出即可.【解答】解:(1)依题意得出:,解得:.故:a=0.8;b=1.(2)设试行“阶梯电价”收费以后,该市一户居民月用电x千瓦时,其当月的平均电价每千瓦时不超过0.85元.当居民月用电量0<x≤150时,0.8x≤0.85x,故x≥0,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,解得:150≤x≤200,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,解得:x≤,不符合题意.综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过200千瓦时时,其月平均电价每千瓦时不超过0.85元.【点评】此题主要考查了一次函数的应用以及分段函数的应用,根据自变量取值范围不同得出x的取值是解题关键.。
河北省2023七年级下学期数学期末考试试卷(II)卷
河北省2023七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2021八上·涟源期末) 下列说法中,正确的个数为()①无限小数都是无理数:②无限不循环小数都是无理数;③无理数都是无限小数:④无理数也有负数;⑤无理数分为正无理数、零、负无理数.A . 1个B . 2个C . 3个D . 4个2. (2分) (2018八上·兰州期末) 已知P(0,a)在y轴的负半轴上,则Q()在()A . y轴的左边,x轴的上方B . y轴的右边,x轴的上方C . y轴的左边,x轴的下方D . y轴的右边,x轴的下方3. (2分) (2021七下·深圳月考) 下列四个图形中,∠1与∠2是对顶角的是()A .B .C .D .4. (2分) (2018七下·浦东期中) 所有和数轴上的点组成一一对应的数组成()A . 整数B . 有理数C . 无理数D . 实数5. (2分)吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最合适的调查方式是()A . 普查B . 抽样调查C . 在社会上随机调查D . 在学校里随机调查6. (2分)不等式1+x<0的解集在数轴上表示正确的是()A .B .C .D .7. (2分) (2020七下·长沙期末) 在平面直角坐标系.将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A . (2,4)B . (1,5)C . (1,-3)D . (-5,5)8. (2分) (2021七下·恩平期末) 某班主任把本班学生上学方式的调查结果绘制成如图,则乘公交车上学的学生人数在扇形统计图中对应的扇形所占的圆心角的度数为()A . 54°B . 60°C . 108°D . 120°9. (2分)已知方程组,且﹣1<x﹣y<0,则m的取值范围是()A . ﹣1<m<﹣B . 0<m<C . 0<m<1D . <m<110. (2分)一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A .B .C .D .11. (2分)(2017·平顶山模拟) 如图,在平行四边形ABCD中,以点A为圆心,一定长为半径作圆弧,分别交AD、AB于点E、F;再分别以点E、F为圆心,大于 EF的长为半径作弧,两弧交于点G;作射线AG,交边CD 于点H.若AB=6,AD=4,则四边形ABCH的周长与三角形ADH的周长之差为()A . 4B . 5C . 6D . 712. (2分)设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有()个.A . 50B . 90C . 99D . 100二、填空题 (共5题;共5分)13. (1分) (2021七下·东城期末) “两条直线被第三条直线所截,内错角相等”是命题.(填“真”或“假”)14. (1分)数学表达式中:①a2≧0②5p﹣6q<0 ③x﹣6=1 ④7x+8y⑤﹣1<0 ⑥x≠3不等式是(填序号)。
北京市第一七一中学2020-2021学年七年级下学期期末数学模拟试卷(2) -解析版
2020-2021学年北京171中七年级(下)期末数学模拟试卷(2)一、选择题(每题3分,共30分)1.下列各式计算正确的是()A.B.C.D.2+2.下列数学表达式中是不等式的是()A.5x=4B.2x+5y C.6<2x D.03.下列数据中不能确定物体的位置的是()A.南偏西40°B.幸福小区3号楼701号C.平原路461号D.东经130°,北纬54°4.把不等式﹣1<x≤2的解集表示在数轴上,正确的是()A.B.C.D.5.下列说法正确的有()(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)﹣a一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a,a一定是一个无理数.A.1个B.2个C.3个D.4个6.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7.老师对某班全体学生在电脑培训前后进行了一次水平测试,考分以同一标准划分为“不合格”、“合格”、“优秀”三个等级,成绩见下表.下列说法错误的是()成绩培训前培训后不合格4010合格825优秀215A.培训前“不合格”的学生占80%B.培训前成绩“合格”的学生是“优秀”学生的4倍C.培训后80%的学生成绩达到了“合格”以上D.培训后优秀率提高了30%8.已知是二元一次方程组的解,则的值为()A.±2B.C.2D.49.如图,能判断直线AB∥CD的条件是()A.∠1+∠3=180°B.∠3+∠4=180°C.∠1=∠2D.∠3=∠4 10.下列x,y的各对数值中,是方程组的解的是()A.B.C.D.二、填空题(每题3分,共18分)11.二元一次方程3x+2y=10的非负整数解是.12.如图,若AB∥CD,EF⊥CD,∠1=54°,则∠2=.13.①了解全国中小学生每天的零花钱;②了解一批灯泡的平均使用寿命;③调查20~25岁年轻人最崇拜的偶像;④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.上述调查适合做普查的是:.14.已知点P(﹣3,0),若x轴上的点Q与点P的距离等于2,则点Q的坐标为.15.已知关于x,y的二元一次方程组,则x﹣y的值是16.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,则化简:|m﹣1|﹣|2﹣m|=.三、解答题(共52分)17.解方程组.(1);(2).18.解不等式组:,并写出它的所有正整数解.19.初一年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初一学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)如果全市有6000名初一学生,那么在试卷评讲课中,“独立思考”的初一学生约有多少人?20.如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?21.某酒店的客房有三人间和双人间两种,三人间每间225元,双人间每间210元,一个50人的旅游团到了该酒店住宿,住了若干间客房,且每间客房恰好住满,一天共花去4530元,求两种客房各住了多少间?22.如图,直线a∥b,AB与a,b分别相交于点A,B,且AC⊥AB,AC交直线b于点C.(1)若∠1=70°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求直线a与b的距离.参考答案与试题解析一.选择题(共10小题)1.下列各式计算正确的是()A.B.C.D.2+【分析】根据同类二次根式的概念与合并法则及二次根式的性质和化简逐一计算可得.【解答】解:A.=2≠﹣2,此选项错误;B.与不能合并,即,此选项错误;C.=2,此选项正确;D.2与2不是同类二次根式,不能合并,此选项错误;故选:C.2.下列数学表达式中是不等式的是()A.5x=4B.2x+5y C.6<2x D.0【分析】主要依据不等式的定义(用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式)来判断.【解答】解:A、5x=4属于等式.故本选项错误;B、2x+5y中不含有不等号,属于它不是不等式.故本选项错误;C、6<2x符合不等式的定义.故本选项正确;D、0中不含有不等号,属于它不是不等式.故本选项错误;故选:C.3.下列数据中不能确定物体的位置的是()A.南偏西40°B.幸福小区3号楼701号C.平原路461号D.东经130°,北纬54°【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【解答】解:A.南偏西40°,不是有序数对,不能确定物体的位置,故本选项符合题意;B.幸福小区3号楼701号,相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;C.平原路461号,是有序数对,能确定物体的位置,故本选项不合题意;D.东经130°,北纬54°,是有序数对,能确定物体的位置,故本选项不合题意;故选:A.4.把不等式﹣1<x≤2的解集表示在数轴上,正确的是()A.B.C.D.【分析】根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:不等式﹣1<x≤2的解集表示在数轴上为:,故选:D.5.下列说法正确的有()(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)﹣a一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a,a一定是一个无理数.A.1个B.2个C.3个D.4个【分析】根据无理数的意义,实数与数轴的关系,立方根的意义,算术平方根可得答案.【解答】解:(1)无限不循环小数都是无理数,带根号的数有的是无理数,有的是有理数,如=2是有理数,是无理数,故(1)不符合题意;(2)立方根等于本身的数是0和1、﹣1,故(2)不符合题意;(3)当a=0时,﹣a=0,此时﹣a有平方根,所以﹣a可能有平方根,故(3)不符合题意;(4)实数与数轴上的点是一一对应的,故(4)符合题意;(5)两个无理数的差可能是无理数、也可能是有理数,故(5)不符合题意;(6)若面积为3的正方形的边长为a,则a=,是一个无理数,故(6)符合题意;故选:B.6.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格【分析】根据题意,结合图形,由平移的概念求解.【解答】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C符合.故选:C.7.老师对某班全体学生在电脑培训前后进行了一次水平测试,考分以同一标准划分为“不合格”、“合格”、“优秀”三个等级,成绩见下表.下列说法错误的是()成绩培训前培训后不合格4010合格825优秀215A.培训前“不合格”的学生占80%B.培训前成绩“合格”的学生是“优秀”学生的4倍C.培训后80%的学生成绩达到了“合格”以上D.培训后优秀率提高了30%【分析】此题只需根据统计表分别计算要求的数据,即可进行正确判断.【解答】解:A、×100%=80%,故正确;B、“优秀”学生为2人,所以培训前成绩“合格”的学生是“优秀”学生的4倍,故正确;C、×100%=80%,故正确;D、培训后优秀率:×100%=30%,培训前优秀率:×100%=4%,30%﹣4%=26%,所以培训后优秀率提高了26%,故错误.故选:D.8.已知是二元一次方程组的解,则的值为()A.±2B.C.2D.4【分析】把x=2,y=1代入方程组得出关于m、n的方程组,求出m=3,n=2,代入求出即可.【解答】解:把x=2,y=1代入方程组得:,解方程组得:m=3,n=2,==2,故选:C.9.如图,能判断直线AB∥CD的条件是()A.∠1+∠3=180°B.∠3+∠4=180°C.∠1=∠2D.∠3=∠4【分析】根据平行线的判定可得结论.【解答】解:A、∵∠1+∠3=180°,不能判定直线AB∥CD,不符合题意;B、∵∠3+∠4=180°,∵∠3+∠5=180°,∴∠4=∠5,∴AB∥CD,符合题意;C、∵∠1=∠2,不能判定直线AB∥CD,不符合题意;D、∵∠3=∠4,不能判定直线AB∥CD,不符合题意;故选:B.10.下列x,y的各对数值中,是方程组的解的是()A.B.C.D.【分析】求出方程组的解,即可做出判断.【解答】解:,②﹣①得:y=1,把y=1代入①得:x=1,则方程组的解为.故选:C.二.填空题(共6小题)11.二元一次方程3x+2y=10的非负整数解是或.【分析】利用列举法,列举出方程的所有非负正整数解即可.【解答】解:当x=0时,2y=10,解得y=5;当x=1时,2y=7,解得y=3.5(不合题意舍去);当x=2时,2y=4,解得:y=2;当x=3时,y=(不合题意舍去);当x≥4时,y<0(不合题意).故答案为:或.12.如图,若AB∥CD,EF⊥CD,∠1=54°,则∠2=36°.【分析】首先根据AB∥CD,可得∠1=∠3=54°,然后根据EF⊥CD,求得∠2=90°﹣∠3.【解答】解:∵AB∥CD,∴∠1=∠3=54°,∵EF⊥CD,∴∠2=90°﹣∠3=90°﹣54°=36°.故答案为:36°.13.①了解全国中小学生每天的零花钱;②了解一批灯泡的平均使用寿命;③调查20~25岁年轻人最崇拜的偶像;④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.上述调查适合做普查的是:④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①了解全国中小学生每天的零花钱;②了解一批灯泡的平均使用寿命;③调查20~25岁年轻人最崇拜的偶像;④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.上述调查适合做普查的是:④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查,故答案为:④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.14.已知点P(﹣3,0),若x轴上的点Q与点P的距离等于2,则点Q的坐标为(﹣1,O)或(﹣5,O.【分析】分点Q在点P的左边与右边两种情况求解即可.【解答】解:若点Q在点P的左边,则﹣3﹣2=﹣5,此时点Q为(﹣5,0),若点Q在点P的右边,则﹣3+2=﹣1,此时点Q为(﹣1,0),所以,点Q(﹣1,O)或(﹣5,O).故答案为:(﹣1,O)或(﹣5,O).15.已知关于x,y的二元一次方程组,则x﹣y的值是1【分析】利用加减消元法,将二元一次方程组转化为关于y的一元一次方程,求得y的值,再代入求得x的值,即可得到答案.【解答】解:,①﹣②×2得:3y=3k﹣3,解得:y=k﹣1,把y=k﹣1代入②得:x﹣2(k﹣1)=﹣k+2,解得:x=k,x﹣y=k﹣(k﹣1)=1,故答案为:116.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,则化简:|m﹣1|﹣|2﹣m|=﹣1.【分析】首先根据不等式的两边同时乘(或除以)同一个负数,不等号的方向改变,可得m﹣1<0,所以m<1;然后判断出2﹣m的正负,求出|m﹣1|﹣|2﹣m|的值是多少即可.【解答】解:因为(m﹣1)x>6,两边同除以m﹣1,得x<,所以m﹣1<0,m<1,所以2﹣m>0,所以|m﹣1|﹣|2﹣m|=(1﹣m)﹣(2﹣m)=1﹣m﹣2+m=﹣1.故答案为:﹣1.三.解答题(共6小题)17.解方程组.(1);(2).【分析】(1)用加减消元法解方程组即可;(2)先将方程组变形,然后再加减消元法解方程组即可.【解答】解:(1),②﹣①,得2x=10,∴x=5,将x=5代入①,得y=2,∴方程组的解为;(2),①×得,9x+12y=48③,②×2得,10x﹣12y=66④,④+③得,19x=114,∴x=6,将x=6代入①得,y=﹣,∴方程组的解为.18.解不等式组:,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找“确定不等式组的解集,在该解集内确定正整数即可.【解答】解:由①得,x>1;由②得,x≤3;∴不等式组的解集为:1<x≤3,∴它的所有正整数解有:2,3.19.初一年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初一学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)如果全市有6000名初一学生,那么在试卷评讲课中,“独立思考”的初一学生约有多少人?【分析】(1)根据专注听讲的人数和所占的百分比,可以求得本次抽查的人数;(2)根据统计图中的数据,可以计算出项目“主动质疑”所在的扇形的圆心角的度数;(3)根据统计图中的数据,可以计算出在试卷评讲课中,“独立思考”的初一学生约有多少人.【解答】解:(1)在这次评价中,一共抽查了224÷40%=560名学生,故答案为:560;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为:360°×=54°,故答案为:54;(3)6000×=1800(人),即“独立思考”的初一学生约有1800人.20.如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?【分析】利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积,或补直角三角形成长方形.【解答】解:(1)过点B,A分别作BF,AE垂直于x轴,所以四边形的面积=×3×6+×(6+8)×9+×2×8=80;(2)根据平移的性质可知,平移后的图形形状和大小不变,所以所得的四边形面积是80.21.某酒店的客房有三人间和双人间两种,三人间每间225元,双人间每间210元,一个50人的旅游团到了该酒店住宿,住了若干间客房,且每间客房恰好住满,一天共花去4530元,求两种客房各住了多少间?【分析】设三人间有x间,二人间有y间,根据“三人间人数+二人间人数=50、三人间费用+二人间费用=4530”列方程组求解可得.【解答】解:设三人间有x间,二人间有y间,根据题意,得:,解得:,答:三人间有8间,二人间有13间.22.如图,直线a∥b,AB与a,b分别相交于点A,B,且AC⊥AB,AC交直线b于点C.(1)若∠1=70°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求直线a与b的距离.【分析】(1)根据平行线的性质和垂直定义,∠1=70°,即可求∠2的度数;(2)根据AC=3,AB=4,BC=5,利用三角形的面积即可求直线a与b的距离.【解答】解:(1)∵a∥b,∴∠3=∠1=70°,∵AC⊥AB,∴∠2+∠3=90°,∴∠2=90°﹣70°=20°.答:∠2的度数为20°;(2)∵AC=3,AB=4,BC=5,设直线a与b的距离为h,∴S△ABC=AC×AB=BC×h,即5h=3×4,∴h=.答:直线a与b的距离为.。
人教版七年级数学第二学期期末考试试卷及答案
七年级数学第二学期期末试卷(满分120分,考试时间120分钟) 一、选择题1.19的算术平方根是()A.±13B.13C.−13D.±1812.如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.13a>13b D.﹣3a>﹣3b3.下列各数中,无理数是()A.√4B.3.14C.√−273D.5π4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.5.若{x=3y=2是方程kx+3y=1的解,则k等于()A.−53B.﹣4C.73D.146.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°7题9题8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL10.平面直角坐标系中,点A (﹣3,2),B (3,4),C (x ,y ),若AC//x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,4)B .2,(3,2)C .2,(3,0)D .1,(4,2)二、填空题:11.化简:√(−3)2= .12.如果2x ﹣7y =5,那么用含y 的代数式表示x ,则x = ..13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设: . .,结论: . ..14.点A (2m +1,m +2)在第二象限内,且点A 的横坐标、纵坐标均为整数,则点A 的坐标为 ..15.如图,已知AB∥CD,BC 平分∠ABE,∠C=35°,则∠CEF 的度数是 ..16.√−83的绝对值是 ..17.不等式组{2x +1>−12x +1<3的解集是 .. 18.已知点A 的坐标为(2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为 ..19.在一本书上写着方程组{x +py =2x +y =1的解是{x =0.5y =∎其中y 的值被墨渍盖住了,不过,我们可解出p = ..20.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排 .名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题21.计算:. 22.解方程组:.23.解不等式:.并把解集在数轴上表示出来.24.求不等式组:{5x<3x+23x−3≤2(2x−1)的整数解.25.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1,C1;(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是.26.已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.27.为了解某区2015年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以下统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量,“A等级”对应扇形的圆心角度数为;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.28.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.29.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?30.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司75 1.5 54000火车货运站 100 1.3 56600(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?31.夏季来临,某饮品店老板大白计划下个月(2015年8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:2014年8月该冰淇淋日销售量频数分布表 2014年8月该冰淇淋日销售量频数分布直方图日销售量分组频数500≤x<600 3600≤x<700 6700≤x<800800≤x<900由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.答案一、选择题1.B.2.D.3.D.4.A.5.A.6.B.7.C.8.D.9.C.10B.二、填空题:11.3 12.x=5+7y213.在同一平面内两条直线垂直于同一条直线那么这两条直线平行14.A(−1,1) 15.75° 16.2 17.−1<x<1 18.(-2,3) 19.320.解:设x个人缝制衣袖,y个人缝制衣身,z个人缝制衣领.则有{x+y+z=21010x=2×15y10x=2×12z,(工人们每天缝制出的衣袖、衣身、衣领正好配套。
人教版七年级下数学期末复习质量检测卷(二)(含答案)
数学学习质量检测卷(二)(期末)一.选择题(每题3分,满分27分)1.的平方根是()A.2 B.﹣2 C.D.±22.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)3.下列调查中,最适合全面调查(普查)的是()A.调查某型号炮弹的射程B.调查我市中学生观看电影《少年的你》的情况C.调查某一天离开重庆市的人口数量D.调查某班学生对南开校史知识的了解程度4.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.5.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.若是关于x、y的方程组的解,则a+b的值为()A.3 B.﹣3 C.2 D.﹣27.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.488.已知a>b,则下列四个不等式中,不正确的是()A.a﹣3>b﹣3 B.﹣a+2>﹣b+2 C.a>b D.1+4a>1+4b9.已知关于x、y的方程组,满足x≥y,则下列结论:①a≥﹣2;②a=﹣时,x=y;③当a=﹣1时,关于x、y的方程组的解也是方程x+y=2的解,④若y≤1,则a≤﹣1.其中正确的有()A.1个B.2个C.3个D.4个10.在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.二.填空题(满分18分,每小题3分)11.写出“全等三角形的面积相等”的逆命题.12.已知方程2x+3y﹣1=0,用含x的代数式表示y,则.13.已知角a的余角比它的补角的还少10°,则a=.14.如图,A(4,0),B(0,3),点C为AB中点,以点B为圆心,BC长为半径作圆弧,交线段OB于点D.则点D的坐标为.15.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数,●=.16.某楼梯的截面如图,其中ER=5米,RQ=10米,若在楼梯上铺设地毯,至少需要米.三.解答题17.(10分)(1)解方程组(2)解方程4x2﹣25=0(3)解不等式组,并把解集在数轴上表示出来18.(6分)计算:﹣+()2+|1﹣|.19.(8分)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?20.(8分)感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.阅读下面的解答过程,井填上适当的理由.解:过点E作直线EF∥CD∴∠2=∠D()∵AB∥CD(已知),EF∥CD,∴AB∥EF()∴∠B=∠1()∵∠1+∠2=∠BED,∴∠B+∠D=∠BED()应用与拓展:如图②,直线AB∥CD.若∠B=22°,∠G=35°,∠D=25°,则∠E+∠F=度.方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=80°,则∠D=度.21.(10分)我们居住的地球上有七大洲,各大洲面积之和约为15000万平方千米.根据图形提供的信息,解决下面的问题.(1)设计适当的表格表示数据资料.(2)画扇形统计图表示各大洲所占面积的百分比.(3)用文字语言描述数据资料信息.22.(8分)如图,把△ABC向上平移3个单位,再向右平移3个单位得到△A'B'C′.(1)在图中画出△A'B′C′;(2)请写出点A′,B',C'的坐标;(3)求出△ABC的面积.23.(10分)某农户今年1月初以20000元/亩的价格承包了10亩地用来种植某农作物,已知若按传统种植,每月每亩能产出3000千克,每亩的种植费用为2500元;若按科学种植,每月每亩产量可增加40%,但种植费用会增加2000元/亩,且前期需要再投入25万元,花费4个月的时间进行生长环境的改善,改善期间无法种植.已知每千克农作物市场售价为3元,每月底一次性全部出售,假设前x个月销售总额为y(万元).(1)当x=8时,分别求出两种种植方法下的销售总额y(万元);(2)问:若该农户选择科学种植,几个月后能够收回成本?(3)在(2)的条件下,假如从2020年1月初算起,那么至少要到何时,该农户获得的总利润能够超过传统种植同样时间内所获得的总利润?24.(12分)阅读材料,善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5∴y=﹣1把y=﹣1代入①得x=4∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x、y满足方程组①求x2+4y2的值;②求的值.参考答案一.选择题1. C.2. D.3. D.4. B.5. B.6. A.7. D.8. B.9. C.10. A.二.填空题11.面积相等的三角形全等.12. y=﹣x+.13.60°.14..15. 8.16. 15.三.解答题17.解:(1),由①得:3x﹣2y=8③,②+③得,6x=18,∴x=3,②﹣③得,4y=2,∴y=.故原方程组的解为:;(2)4x2﹣25=0,整理得x2=,解得:x=±;(2),由①得,x≤3,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤3.在数轴上表示为:18.解:原式=﹣2﹣+5+﹣1=2.19.解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.20.解:感知与填空:过点E作直线EF∥CD,∴∠2=∠D(两直线平行,内错角相等),∵AB∥CD(已知),EF∥CD,∴AB∥EF(两直线都和第三条直线平行,那么这两条直线也互相平行),∴∠B=∠1(两直线平行,内错角相等),∵∠1+∠2=∠BED,∴∠B+∠D=∠BED(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G作GN∥AB,则GN∥CD,如图②所示:由感知与填空得:∠E=∠B+∠EGN,∠F=∠D+∠FGN,∴∠E+∠F=∠B+∠EGN+∠D+∠FGN=∠B+∠D+∠EGF=22°+25°+35°=82°,故答案为:82.方法与实践:设AB交EF于M,如图③所示:∠AME=∠FMB=180°﹣∠F﹣∠B=180°﹣80°﹣60°=40°,由感知与填空得:∠E=∠D+∠AME,∴∠D=∠E﹣∠AME=60°﹣40°=20°,故答案为:20.21.解:(1)用表格表示数据资料如下:(2)所画的扇形统计图如图所示:(3)亚洲的面积最大,大洋洲的面积最小,亚洲面积约为大洋洲面积5倍.22.解:(1)如图所示,△A'B′C′即为所求.(2)A′(2,2),B'(7,5),C'(4,6);(3)△ABC的面积为4×5﹣×5×3﹣×2×4﹣×1×3=20﹣7.5﹣4﹣1.5=7.23.解:(1)若按传统种植,当x=8时,y=10×3000×3×8÷10000=72万元;若按科学种植,当x=8时,y=10×3000×(1+40%)×3×(8﹣4)÷10000=50.4万元;(2)设n个月后可收回成本.(n﹣4)﹣2×10﹣25≥0,解得,∴10个月后收回成本;(3)设m个月后该农户获得的总利润能够超过传统种植同样时间内所获得的总利润,根据题意得,,整理得,1.6m>57.4,解得:,∴m=36,∴至少36个月后,该农户获得的总利润能够超过传统种植同样时间内所获得的总利润.24.解:(1)由②得:3x+6x﹣4y=19,即3x+2(3x﹣2y)=19③,把①代入③得:3x+10=19,即x=3,知识像烛光,能照亮一个人,也能照亮无数的人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级下学期期末数学测试题
一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...
是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )
±4 B.
=-4
3.已知a >b >0,那么下列不等式组中无解..
的是( ) A .⎩⎨
⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩
⎨⎧<->b x a
x
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角
度可能为 ( )
(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为1
2x y =⎧⎨
=⎩
的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335
x y x y -=-⎧⎨+=⎩
6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大
小是( )
A .1000
B .1100
C .1150
D .1200
P
B
A
(1) (2) (3)
7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的
1
2
,则这个多边形的边数是( ) A .5 B .6 C .7 D .8
9.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )
A .10 cm 2
B .12 c m 2
C .15 cm 2
D .17 cm 2
10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4)
B.(4,5)
C.(3,4)
D.(4,3)
二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____.
12.不等式5x-9≤3(x+1)的解集是________.
13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.
14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选
一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.
16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.
17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是
_____________.(将所有答案的序号都填上) 18.若│x 2-25│
则x=_______,y=_______.
三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.
19.解不等式组:⎪⎩⎪
⎨⎧+<-≥--.215
12,
4)2(3x x x x ,并把解集在数轴上表示出来.
20.解方程组:2
31342
4()3(2)17
x y x y x y ⎧-=
⎪⎨⎪--+=⎩
21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
1D 2
A
E
C
B
C
A
D
22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.
F
D
C B
E
A
23.长沙市某公园的门票价格如下表所示:
某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?
24、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A ,B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案?请设计出来.
参考答案:
一、选择题:(共30分)
BCCDD,CBBCD
二、填空题:(共24分)
11.±7,7,-2 12. x≤6
13.三 14.垂线段最短。
15. 40 16. 400
17.①②③ 18. x=±5,y=3
三、解答题:(共46分)
19.解:第一个不等式可化为
x-3x+6≥4,其解集为x≤1.
第二个不等式可化为
2(2x-1)<5(x+1),
有 4x-2<5x+5,其解集为x>-7.
∴原不等式组的解集为-7<x≤1.
把解集表示在数轴上为:
20.解:原方程可化为
896 27170 x y
x y
-=
⎧
⎨
++=⎩
∴
8960 828680 x y
x y
--=
⎧
⎨
++=⎩
两方程相减,可得 37y+74=0,
∴ y=-2.从而
3
2
x=-.
因此,原方程组的解为
3
2
2 x
y
⎧
=-⎪
⎨
⎪=-⎩
21.∠B=∠C。
理由:
∵AD∥BC
∴∠1=∠B,∠2=∠C
∵∠1=∠2
∴∠B=∠C
22.解:因为∠AFE=90°,
所以∠AEF=90°-∠A=90°-35°=55°.
所以∠CED=•∠AEF=55°,
所以∠ACD=180°-∠CED-∠D
=180°-55°-42=83°.
23.A′(2,3),B′(1,0),C′(5,1).
23. 解:设甲、乙两班分别有x 、y 人.
根据题意得810920
55515
x y x y +=⎧⎨
+=⎩
解得5548x y =⎧⎨=⎩
故甲班有55人,乙班有48人.
24. 解:设用A 型货厢x 节,则用B 型货厢(50-x )节,由题意,得 3525(50)1530
1535(50)1150x x x x +-≥⎧⎨
+-≥⎩
解得28≤x ≤30.
因为x 为整数,所以x 只能取28,29,30.
相应地(5O-x )的值为22,21,20. 所以共有三种调运方案.
第一种调运方案:用 A 型货厢 28节,B 型货厢22节; 第二种调运方案:用A 型货厢29节,B 型货厢21节;
第三种调运方案:用A 型货厢30节,用B 型货厢20节.。