河北省秦皇岛市七年级数学下学期期末考试试题

合集下载

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题). (共10题;共30分)1. (3分) (2019七下·廉江期末) 下列个数:,,,,,其中无理数有()A . 个B . 个C . 个D . 个【考点】2. (3分) (2019八下·吴兴期末) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .【考点】3. (3分) (2019八下·平昌期末) 下列等式成立的是()A .B .C .D .【考点】4. (3分) (2020八上·温岭期末) 下列计算正确的是()A . a3+a2=a5B . a6÷(﹣a3)=﹣a3C . (﹣a2)3=a6D .【考点】5. (3分)(2018·肇庆模拟) 如图,已知AB∥CD,∠1=62°,则∠2的度数是()A . 28°B . 62°C . 108°D . 118°【考点】6. (3分) (2016九下·崇仁期中) 函数中,自变量x的取值范围是()A . x≥2B . x>2C . x<2D . x≠2【考点】7. (3分) (2019八上·河东期中) 如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE的是()A . ∠B=∠CB . AD=AEC . ∠BDC=∠CEBD . BD=CE【考点】8. (3分) (2019八下·天台期中) 如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB 重合,点A落在点A′处,折痕为DG,则A′G的长是()A . 1B .C .D . 2【考点】9. (3分) (2018八上·潘集期中) 如图,AB∥CD , BP和CP分别平分∠ABC和∠DCB , AD过点P ,且与AB垂直.若AD=8,则点P到BC的距离是()A . 8B . 6C . 4D . 2【考点】10. (3分)下列命题中正确的是()A . 有两条边分别相等的两个等腰三角形全等B . 两腰对应相等的两个等腰三角形全等C . 有两条边分别相等的两个直角三角形全等D . 斜边和一条直角边对应相等的两个直角三角形全等【考点】二、填空题(共6小题,每小题3分,计18分) (共6题;共18分)11. (3分) (2019八上·陕西月考) 若一个正数的平方根是和,则这个正数是________.【考点】12. (3分) (2017八上·秀洲月考) 如图,在△ABC中,AB=AC,AD平分∠BAC,AD=3,BC=8,则AC=________。

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2017七下·苏州期中) 下列运算正确的是()A . (-2x2y)3=-6x6y3B . a3÷a3 =aC . 3ab2·(-2a)=-6a2b2D .2. (2分)长度单位1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A . 2.51×10-5米B . 25.1×10-6米C . 0.251×10-4米D . 2.51×10-4米3. (2分) (2017九上·巫溪期末) 方程x2﹣12x+27=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A . 21B . 21或15C . 15D . 不能确定4. (2分) (2019八上·洪山期末) 下列各多项式从左到右变形是因式分解,并分解正确的是()A . (a﹣b)3﹣b(b﹣a)2=(b﹣a)2(a﹣2b)B . (x+2)(x+3)=x2+5x+6C . 4a2﹣9b2=(4a﹣9b)(4a+9b)D . m2﹣n2+2=(m+n)(m﹣n)+25. (2分) (2016九上·乌拉特前旗期中) 有下列四个命题中,其中正确的有()①圆的对称轴是直径;②等弦所对的弧相等;③圆心角相等所对的弦相等;④半径相等的两个半圆是等弧.A . 4个B . 3个C . 2个D . 1个6. (2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A . ∠1=∠2B . ∠2=∠4C . ∠3=∠4D . ∠1+∠4=180°7. (2分)已知关于x的不等式2x-a>-3的解集如图所示,则a的值是()A . 0B . 1C . -1D . 28. (2分) (2015七下·西安期中) 若三角形三个内角的比为1:2:3,则这个三角形是()A . 钝角三角形B . 锐角三角形C . 直角三角形D . 等腰直角三角形9. (2分)解不等式>的下列过程中错误的是()A . 去分母得5(2+x)>3(2x-1)B . 去括号得10+5x>6x-3C . 移项,合并同类项得-x>-13D . 系数化为1,得x>1310. (2分)如图,将周长为12的△DEF沿FE方向平移1个单位得到△ABC,则四边形ABFD的周长为()A . 10B . 12C . 14D . 1611. (2分)二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是()A .B .C .D .12. (2分)如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A . 63°B . 83°C . 73°D . 53°13. (2分) (2018七下·长春月考) 图(1)是一个长为 ,宽为()的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)拼成一个正方形,则中间空白部分的面积是()A .B .C .D .14. (2分)(2017·石家庄模拟) 如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC 的度数别为x°、y°,根据题意,下列的方程组正确的是()A .B .C .D .15. (2分)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A . 2cm2B . 2acm2C . 4acm2D . (a2-1)cm216. (2分)不等式组的整数解的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共4题;共4分)17. (1分) (2017七下·濮阳期中) 如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为M,若∠1=50°,则∠2=________.18. (1分)(2017·冷水滩模拟) 若实数a、b满足a+b=﹣2,a2b+ab2=﹣10,则ab的值是________.19. (1分) (2017七下·宁波期中) 若方程组的解中x与y的值相等,则k的值是________.20. (1分) (2018七下·苏州期中) 已知x-y=5,(x+y)2=49,则x2+y2的值等于________三、解答题 (共6题;共55分)21. (20分)计算:(1)(x﹣6)2.(2)(﹣2x﹣y)2.(3)(﹣p+3q)2.(4) [(2m+n)(2m﹣n)]2.22. (5分) (2018七上·安图期末) 已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.23. (5分)已知三角形的一个外角等于60°,且三角形中与这个外角不相邻的两个内角中,其中一个比另一个大10°,则这个三角形的三个内角分别是多少?24. (5分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD25. (10分)(2018·高安模拟) 某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?26. (10分)(2017·南岗模拟) 已知四边形ABCD是正方形,点E、F分别在边AB、边BC上,DE⊥AF,DE 与AF交于点O,将线段AE沿AF进行平移至FG,过点G作GH⊥AB的延长线于点H.(1)判断四边形BFGH的形状并证明;(2)写出图中所有面积相等的图形.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共4分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共55分)21-1、21-2、21-3、21-4、22-1、23-1、24-1、25-1、25-2、26-1、26-2、。

河北省秦皇岛市七年级下学期数学期末考试试卷(二)

河北省秦皇岛市七年级下学期数学期末考试试卷(二)

河北省秦皇岛市七年级下学期数学期末考试试卷(二)姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2018·滨州) 下列运算:①a2•a3=a6 ,②(a3)2=a6 ,③a5÷a5=a,④(ab)3=a3b3 ,其中结果正确的个数为()A . 1B . 2C . 3D . 42. (2分)(2017·梁溪模拟) 如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D任意两点之间的最长距离为()A . 24cmB . 26cmC . 32cmD . 36cm3. (2分) (2019九上·临沧期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分) (2016八上·青海期中) 小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A . ①B . ②C . ③D . ①和②5. (2分)一个布袋中有1个红球,3个黄球,4个蓝球,它们除颜色外完全相同. 从袋中随机取出一个球,取到黄球的概率是()A .B .C .D .6. (2分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠AGF的度数是()A . 360°B . 540°C . 720°D . 无法确定7. (2分) (2015七下·定陶期中) 如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A . 25°B . 28°C . 30°D . 32°8. (2分)如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A . 1.1,8B . 0.9,3C . 1.1,12D . 0.9,89. (2分)如图,已知AC∥BD,OA=OC,则下列结论不一定成立的是()A . ∠B=∠DB . ∠A=∠BC . AD=BCD . OA=OB10. (2分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,AC=3,BC=4,则CD的长是()A . 1B .C .D . 211. (2分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()A . 2+B . 2+2C . 12D . 1812. (2分)(2019·金台模拟) 下列运算中,计算正确的是()A . (3a2)3=27a6B . (a2b)3=a5b3C . x6+x2=x3D . (a+b)2=a2+b213. (2分) (2017七下·兴化月考) 在下列多项式乘法运算中,不能运用平方差公式进行运算的是()A . (2x+3y) (-2x+3y)B . (a-2b) (a+2b)C . (-x-2y) (x+2y)D . (-2x-3y) (3y -2x)14. (2分)(2016·慈溪模拟) 如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A . 114°B . 123°C . 132°D . 147°二、填空题 (共5题;共6分)15. (1分) (2015七下·常州期中) (﹣0.125)100×8100=________.16. (1分)某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:摸球的次数100200300400500600摸到白球的次数58118189237302359摸到白球的频率0.580.590.630.5930.6040.598从这个袋中随机摸出一个球,是白球的概率约为________ .(结果精确到0.1)17. (1分) (2018八下·深圳月考) 如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=________.18. (1分)已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是________ .19. (2分) (2019八上·朝阳期中) 如图,已知AB⊥BD,AB∥ED,AB=ED,要说明△ABC≌△EDC,若以“SAS”为依据,还要添加的条件为________;若添加条件AC=EC,则可以用________公理(或定理)判定全等.三、简答题 (共6题;共61分)20. (10分) (2017八上·沂水期末) 计算:(1)(﹣3x2y2)2•2xy+(xy)5;(2)(x+y)(x﹣y)﹣x(x+y)+2xy.21. (15分)在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x的几组对应值.所挂物体质量x/kg012345弹簧长度y/cm182022242628(1)上述反映了哪两个变量之问的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg时,弹簧有多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?22. (5分) (2019七下·北京期中) 已知:AD⊥BC于D,EG⊥BC于G,∠1 =∠3,求证:AD平分∠BAC.23. (10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC 于点G,线段AE交CD于点F,(1)求证:△ACE≌△BCD(2)求证:=24. (11分)(2019·十堰) 如图1,中,为内一点,将绕点按逆时针方向旋转角得到,点的对应点分别为点,且三点在同一直线上.(1)填空: ________(用含的代数式表示);(2)如图2,若,请补全图形,再过点作于点,然后探究线段之间的数量关系,并证明你的结论;(3)若,且点满足,直接写出点到的距离.25. (10分) (2018九上·建瓯期末) 如图,在Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线;(2)若∠BAC=30°,DE=2,求AD的长.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共5题;共6分)15-1、16-1、17-1、18-1、19-1、三、简答题 (共6题;共61分)20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。

河北省秦皇岛市七年级下学期数学期末试卷

河北省秦皇岛市七年级下学期数学期末试卷

河北省秦皇岛市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共38分)1. (4分)如果y﹣x﹣2=0,那么用含有y的代数式表示3x﹣1应该为()A . 3y﹣1B . 3y+1C . 3y﹣7D . 3y+72. (4分)下列方程组中,二元一次方程组一共有()个.( 1 ),(2),(3),(4).A . 1个B . 2个C . 3个D . 4个3. (4分) (2017七下·延庆期末) 一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为()A . x>﹣2B . x≤3C . ﹣2≤x<3D . ﹣2<x≤34. (4分)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A . 矩形B . 平行四边形C . 正五边形D . 正三角形5. (4分) (2015九上·阿拉善左旗期末) 如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是()A .B .C .D .6. (2分) (2016七下·大冶期末) 若﹣<﹣,则a一定满足是()A . a>0B . a<0C . a≥0D . a≤07. (4分)(2017·洛宁模拟) 已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A . (1,2)B . (2,9)C . (5,3)D . (﹣9,﹣4)8. (4分)(2017·深圳) 下列哪一个是假命题()A . 五边形外角和为B . 切线垂直于经过切点的半径C . 关于轴的对称点为D . 抛物线对称轴为直线9. (4分)(2019·西安模拟) 一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()A . 35°B . 30°C . 25°D . 15°10. (4分)下列各组数中,是方程2x-y=8的解的是()A .B .C .D .二、填空题 (共6题;共24分)11. (4分) (2020七上·巴东期末) 已知关于x的方程2(x+a)=5x-1的解是3,则a的值为________.12. (4分) (2018八上·辽宁期末) 如图,已知a // b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为________.13. (4分) (2019七下·长春期中) 若则的值为________.14. (4分) (2017七下·云梦期末) 不等式组的解集是,则关于的方程的解为________.15. (4分)用两类不同形状的正多边形密铺地面,除了正三角形与正六边形可供选择外,还可以选择________与________来密铺.16. (4分)方程|2x+1|=3的解为________.三、解答题 (共9题;共88分)17. (8分) (2019七下·长春月考) 解方程:18. (8分)(2017·江阴模拟) 计算下列各题:(1)解方程:x2+3=3(x+1)(2)解不等式组:.19. (8分) (2017七上·昌平期末) 已知:如图,OA⊥OB,∠BOC=50°,且∠AOD:∠COD=4:7.画出∠BOC 的角平分线OE,并求出∠DOE的度数.20. (8分) (2019七下·南安期末) 列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?21. (10分)(2017·黑龙江模拟) 已知,如图平面直角坐标系内,O为坐标原点,A(﹣1,3),B(﹣5,﹣1),连接AB,①请画出将线段AB绕点O顺时针旋转90°得到的线段CD(C为A旋转后的对应点),并直接写出C、D两点的坐标;②连接BC、BD,构成△BCD,用一条线段将△BCD分割成两部分后,再拼成一个相邻两边长分别为和4的中心对称图形.22. (10分)某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?23. (10.0分)(2017·龙岩模拟) 如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B.(1)请你在图中把图补画完整;(2)求C′B的长.24. (13.0分)(2018·龙岗模拟) 六一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?25. (13.0分) (2017七下·三台期中) 如图,已知直线l1∥l2 ,直线l3和直线l1 , l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试写出∠PAC,∠APB,∠PBD 之间的关系,并说明理由.(图3只写结论,不写理由)参考答案一、选择题 (共10题;共38分)1-1、2-1、3、答案:略4、答案:略5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共88分)17-1、18-1、18-2、19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、。

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八上·辽阳月考) (- )2的平方根是x,64的立方根是y,则x+y的值为()A . 3B . 7C . 3或7D . 1或72. (2分)(2017·岱岳模拟) 已知非零实数a,b,满足|3a﹣4|+|b+2|+ +4=3a,则a+b等于()A . ﹣1B . 9C . 1D . 23. (2分)下列说法错误的是().A . 如果,那么B . 如果是正数,那么是负数C . 如果是大于1的数,那么是小于-1的数D . 一个数的相反数不是正数就是负数4. (2分)是整数,则正整数的最小值是()A . 4B . 5C . 6D . 75. (2分) (2016九上·大石桥期中) 已知点A(a,2015)与点A′(﹣2016,b)是关于原点O的对称点,则a+b的值为()A . 1B . 5C . 6D . 46. (2分)甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么()A . 甲校的女生人数多B . 乙校的女生人数多C . 两个学校的女生一样多D . 不能判断7. (2分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A . 75°B . 55°C . 40°D . 35°8. (2分) (2018八上·梁子湖期末) 如图,在中,和的平分线相交于点O,过O点作交AB于点E,交AC于点F,过点O作于D,下列四个结论.点O到各边的距离相等设,,则,正确的结论有个.A . 1个B . 2个C . 3个D . 4个9. (2分) (2019七下·随县月考) 如果二元一次方程ax+by+2=0有两个解与,那么下列各组中仍是这个方程的解的是()A .B .C .D .10. (2分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,-2),则△ABC外接圆的圆心坐标是()A . (2,3)B . (3,2)C . (1,3)D . (3,1)二、填空题 (共6题;共6分)11. (1分) (2018七下·腾冲期末) 计算:|一|=________.12. (1分) (2018八上·仙桃期末) 如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为________.13. (1分)(2017·衡阳模拟) 如图,在平面直角坐标系中,直线l:y= x,点A1(0,1),过点A1作y轴的垂线交直线l于点B1 ,以原点O为圆心,OB1长为半径画弧交y轴于点A2;再过点A2作y轴的垂线交直线l于点B2 ,以原点O为圆心,OB2长为半径画弧交y轴于点A3 ,…,按此作法进行下去,则OA2017=________.14. (1分)若+|b+1|+(c+1)2=0,则a+b﹣c=________.15. (1分)将100个数据分成8个组,如下表:则第六组的频数为________.16. (1分)(2013·衢州) 不等式组的解集是________.三、解答题 (共8题;共82分)17. (10分)(2017·青岛模拟) 计算题(1)解不等式组:.(2)化简:(x﹣)÷ .18. (5分) (2017七下·双柏期末) 如图:AC ∥ED ,∠A=∠EDF,试说明AB ∥FD.19. (5分)小兰在玩具厂劳动,做4只小狗、7辆小汽车用去3小时42分,做5只小狗、6辆小汽车用去3小时37分.平均做1只小狗与1辆小汽车各用多少时间?20. (11分) (2018八上·长春期末) 在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取了一部分同学就“我最喜爱的体育项目”进行了一次调查(每位同学必选且只选一项).下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙一共抽取了________名学生.(2)补全条形统计图;(3)求“其他”部分对应的扇形圆心角的度数.21. (16分) (2017七下·徐州期中) 如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(利用网格点和三角板画图)(1)画出平移后的△A′B′C′.(2)画出AB边上的高线CD;(3)画出BC边上的中线AE;(4)若连接BB′、CC′,则这两条线段之间的关系是________.22. (10分) (2017八下·临泽期末) 如图,平行四边形中,对角线交于O, ,(1)若的周长为10cm,求平行四边形的周长(2)若∠DAB=108°,AE平分∠BAC,试求∠ACB的度数。

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2016次相遇地点的坐标是()A . (﹣1,﹣1)B . (2,0)C . (﹣1,1)D . (1,﹣1)2. (2分)下列说法正确的是()A . 一个数的平方根有两个,它们互为相反数B . 一个数的立方根不是正数就是负数C . 负数没有立方根D . 如果一个数的立方根是这个数本身,那么这个数一定是-1或0或13. (2分)下列语句:①的算术平方根是4 ②③平方根等于本身的数是0和1 ④其中正确的有()个A . 1B . 2C . 3D . 44. (2分)我们学习了数据收集,下列正确的是()A . 折线图易于显示数据的变化趋势B . 条形图能够显示每组中的百分比的大小C . 扇形图显示部分在总体中的具体数据D . 直方图能够显示数据的大小5. (2分)下列各组x、y的值,是二元一次方程x﹣y=5的一个解的是()A .B .C .D .6. (2分) (2018七下·郸城竞赛) 若m>n,下列不等式不成立的是()A . m+2>n+2B . 2m>2nC .D . -3m>-3n7. (2分)如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A . 60°B . 33°C . 30°D . 23°8. (2分)若不等式组的解集为0<x<1,则a、b的值分别为()A . a=2,b=1B . a=2,b=3C . a=﹣2,b=3D . a=﹣2,b=19. (2分) (2020七下·海沧期末) 下列命题是真命题的是()A . 两直线平行,同旁内角相等B . 点P(﹣2,﹣3)到x轴的距离是2C . 立方根等于本身的数是0和1D . 若关于x的一元一次不等式组无解,则m的取值范围是m£ 110. (2分)下列各组数据中,组中值不是10的是()A . 7≤x<13B . 8≤x<12C . 3≤x<7D . 0≤x<20二、填空题 (共7题;共18分)11. (1分) (2016七上·岑溪期末) 方程组的解是,则a+b=________.12. (3分) (2017七下·德州期末) 完成下面的证明.已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD(已知)∴∠2=∠C (________)又∵∠A=∠1(已知)∴AC∥DE (________)∴∠2=∠E (________)∴∠C=∠E(等量代换)13. (1分)(2019·鄞州模拟) 若关于的二元一次方程组的解是,则代数式的值是________.14. (1分)随着黄石市精神文明建设的不但推进,市民每天用于读书、读报、参加“全民健身运动”的时间越来越多.如图是我市晚报记者在抽样调查了一些市民用于上述活动的时间后,绘制的频率分布直方图,从左到右的前七个长方形面积之和为,最后一组的频数是,则此次抽样的样本容量是________.15. (1分) (2017八上·双柏期末) 的值为________.16. (1分) (2017八下·泉山期末) 将直线y=3x向上平移1个单位,可以得到直线________.17. (10分) (2018七下·浦东期中) 如图,AE、BF、DC是直线,B在直线AC上,E在直线DF上,∠1=∠2,∠A=∠F.求证:∠C=∠D.证明:因为∠1=∠2(已知),∠1=∠3________得∠2=∠3________所以AE//________ ________得∠4=∠F________因为________(已知)得∠4=∠A所以________//________ ________所以∠C=∠D________三、解答题 (共8题;共73分)18. (10分) (2020七下·海淀月考) 如图,点 O 在直线 AB 上,OC⊥OD,∠EDO 与∠1 互余.(1)求证:ED//AB;(2) OF 平分∠COD 交 DE 于点 F,若ÐOFD=70°,补全图形,并求∠1 的度数.19. (20分)计算(1)(﹣1)2+()﹣1﹣5÷(2010﹣π)0(2) +(3)(2ab2c﹣3)﹣2÷(a﹣2b)3(4)﹣x+y.20. (5分) (2017七下·农安期末) 不等式组的解集是0<x<2,求ab的值.21. (5分)已知是关于x、y的二元一次方程ax﹣(2a﹣3)y=7的解,求a的值.22. (5分) (2019七下·马山期末) 解不等式组并把解集在数轴上表示出来.23. (10分) (2019九上·潮南期末) 在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系是格点三角形(顶点在网格线的交点上)(1)先作关于原点成中心对称的△ ,再把△ 向上平移4个单位长度得到△ ;(2)△ 与是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.24. (8分)(2020·内江) 我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有________名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为________,图中m的值为________;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.25. (10分) (2017七下·黔东南期末) 开学初,小芳和小敏到学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小敏用31元钱买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本各多少元?(2)为了奖励班上表现突出的学生,班主任张老师拿出200元钱交给班长,班长到学校商店购买上述价格的钢笔和笔记本两种奖品,计划购买钢笔和笔记本的数量共是45个,要求购买笔记本的数量不小于钢笔数量的2倍.共有哪几种购买方案?请写出费用最少的方案及最少费用是多少元?参考答案一、选择题 (共10题;共20分)1-1、2-1、答案:略3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共18分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共73分)18-1、18-2、答案:略19-1、答案:略19-2、答案:略19-3、答案:略19-4、答案:略20-1、答案:略21-1、答案:略22-1、23-1、答案:略23-2、答案:略24-1、24-2、24-3、答案:略25-1、答案:略25-2、答案:略。

2020-2021学年河北省秦皇岛市某校初一(下)期末考试数学试卷

2020-2021学年河北省秦皇岛市某校初一(下)期末考试数学试卷

2020-2021学年河北省秦皇岛市某校初一(下)期末考试数学试卷一、选择题1. 把方程4x −y =3改写成用含x 的式子表示y 的形式,正确的是( ) A.y =4x −3 B.y =4x +3 C.x =y+34D.x =3−y 42. 代入法解方程组{y =2x −1,x −2y =4时,代入正确的是( )A.x −4x +1=4B.x −2(2x −1)=4C.x −4x −1=4D.x −4x −2=43. 下列运算正确的是( ) A. a 2⋅a 3=a 6 B. a 2−a 1=a C.(a 2)3=a 6 D.a 8÷a 2=a 44. 多项式36a 2bc −48ab 2c +12abc 的公因式是( ) A.24abc B.12abcC.12a 2b 2c 2D.6a 2b 2c 25. 已知ab =−2,a +b =3,则a 2b +ab 2的值是( ) A.6 B.−6 C.1 D.−16. 在△ABC 中,∠A =20∘,∠B =60∘,则△ABC 的形状是( ) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形7. 如果一个等腰三角形两边的长分别是1,5,那么它的周长是( ) A.11 B.7C.7或11D.以上选项都不对8. 两个数2−m 和−1在数轴上从左到右排列,那么关于x 的不等式(2−m )x +2>m 的解集是( ) A.x >−1 B.x <−1 C.x >1 D.x <19. 已知一元一次不等式组{x <3,x <a +1的解集为x <3,那么a 的取值范围是( )A.a ≥2B.a >2C.a ≤2D.a <210. 某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折. A.6折 B.7折C.8折D.9折11. 如图,DE//BC ,BE 平分∠ABC ,若∠1=68∘ ,则∠AEB 的度数为( )A.34∘B.32∘C.22∘D.56∘12. 如图,BD 是△ABC 的中线,点E ,F 分别为BD ,CE 的中点,若△AEF 的面积为3,则△ABC 的面积是( )A.9B.10C.11D.12二、填空题二元一次方程组{2x +5y =k,x −4y =15的解互为相反数,则k 的值为________.若2m =3,2n =2,则2m−2n 的值为________.已知x 2+y 2=39,x −y =3,则(x +y )2的值________.4x 2−(k −1)x +1能用完全平方公式因式分解,则k 的值为________.写出一个能使不等式12x −2<0成立的x 的值________.若关于x 的不等式2(x −1)≤x +m 恰好有3个正整数解,则m 的取值范围为________.如图,AB//CD ,∠BAP =120∘,∠APC =40∘ ,则∠PCD =________度.如图,已知∠1=∠2,AD =2BC ,△ABC 的面积为3,则△CAD 的面积为________.三、解答题分解因式(1)3ax 2+6axy +3ay 2;(2)(4m 2+9)2−144m 2;(3)x 4−18x 2+81;(4)x 2(x −y )−y 2(x −y ).(1)解不等式:2x +7≥1−x ,并在数轴上表示解集;(2)解不等式组{4(x +1)≤7x +13,x −4<x−83,并求它的所有整数解的和.先化简,再求值: (m −2n )(m +2n )−(m −n )(m −2n )+4n 2,其中m =−2,n =12.若关于x ,y 的二元一次方程组的解满足{2x +y =−m +5,x −y =4m −2且x +y ≥0,求m 的取值范围.如图,在△ABC 中,AE 平分∠BAC ,AD 是BC 边上的高.(1)在图中将图形补充完整;(2)当∠B =28∘,∠C =72∘时,求∠DAE 的度数.又到毕业季,文具店有A ,B 两款毕业纪念册,近两周的销售情况如下表:(1)求A ,B 两款毕业纪念册的销售单价;(2)九年级一班共有班费529元,全部用来购买这两种款式的毕业纪念册,全班60人,若想每人一本纪念册,则最多能够买多少本A 款毕业纪念册?参考答案与试题解析2020-2021学年河北省秦皇岛市某校初一(下)期末考试数学试卷一、选择题 1.【答案】 A【考点】解二元一次方程 【解析】把x 看做已知数求出y 即可. 【解答】解:方程4x −y =3, 移项得:−y =3−4x ,两边都乘以−1得:y =4x −3. 故选A . 2.【答案】 B【考点】代入消元法解二元一次方程组 【解析】由代入消元法即可得出答案. 【解答】解:{y =2x −1,①x −2y =4,②①代入②得:x −2(2x −1)=4. 故选B . 3.【答案】 C【考点】幂的乘方及其应用 同底数幂的除法 同底数幂的乘法 合并同类项【解析】各式计算结果,即可做出判断. 【解答】解:A .a 2⋅a 3=a 5,故此选项错误;B .a 2−a 1,不是同类项,无法合并,故此选项错误;C .(a 2)3=a 6,故此选项正确;D.a8÷a2=a6,故此选项错误.故选C.4.【答案】B【考点】公因式【解析】多项式各项都含有的相同因式,叫做这个多项式各项的公因式.根据多项式的定义进行计算求解即可.【解答】解:36a2bc−48ab2c+12abc=12abc(3a−4b+1),所以多项式36a2bc−48ab2c+12abc的公因式为12abc.故选B.5.【答案】B【考点】因式分解的应用列代数式求值【解析】直接提取公因式将原式分解因式,进而将已知代入求出答案.【解答】解:∵a+b=3,ab=−2,∴a2b+ab2=ab(a+b)=−2×3=−6.故选B.6.【答案】D【考点】三角形内角和定理【解析】根据三角形的内角和定理求出∠C,即可判定△ABC的形状.【解答】解:∵∠A=20∘,∠B=60∘,∴∠C=180∘−∠A−∠B=180∘−20∘−60∘=100∘,∴△ABC是钝角三角形.故选D.7.【答案】A【考点】三角形三边关系等腰三角形的性质【解析】解决本题要注意分为两种情况1为底或5为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答. 【解答】解:∵ 等腰三角形有两边的长分别是1,5, ∴ 此题有两种情况:①1为底边,那么5就是腰,则等腰三角形的周长为1+5+5=11; ②5为底边,那么1是腰,1+1<5,不能围成三角形,应舍去, ∴ 该等腰三角形的周长为11. 故选A . 8.【答案】 B【考点】解一元一次不等式 数轴【解析】先根据题意判断出2−m <−1 ,即2−m <0 ,再根据不等式的基本性质求解即可. 【解答】解:由题意知2−m <−1. ∵ (2−m )x +2>m , ∴ (2−m )x >m −2,不等式两边同时除以2−m ,得x <−1, ∴ 不等式(2−m )x +2>m 的解集为x <−1. 故选B . 9.【答案】 A【考点】解一元一次不等式组 【解析】根据题意知道不等式组的解集为x <3,得出a +1≥3,直接求出a 的取值范围. 【解答】解:∵ {x <3,x <a +1的解集为x <3,∴ a +1≥3, ∴ a ≥2. 故选A . 10.【答案】 B【考点】一元一次不等式的实际应用 【解析】=利润率,列不等式求解.本题根据题意,结合:售价×折扣−进价=利润,利润进价【解答】解:设至多可以打x折,由题意得,1100×0.1x−700≥10%,700解得:x≥7,即至多打7折.故选B.11.【答案】A【考点】平行线的性质角平分线的定义【解析】根据平行线的性质可得∠ABC=∠1,由BE平分∠ABC即可得∠CBE的度数.【解答】解:∵ DE//BC,∴ ∠ABC=∠1=68∘,∠AEB=∠CBE.∵ BE平分∠ABC,∠ABC=34∘=∠AEB.∴ ∠CBE=12故选A.12.【答案】D【考点】三角形的角平分线、中线和高【解析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵F是CE的中点,∴S△ACE=2S△AEF=6,∵E是BD的中点,∴S△ADE=S△ABE ,S△CDE=S△BCE,∴S△ACE=1S△ABC ,2∴S△ABC=12.故选D.二、填空题【答案】−9【考点】代入消元法解二元一次方程组二元一次方程组的解解一元一次方程【解析】因为x和y的值互为相反数,所以有x=−y,把它代入方程x−4y=15中,将直接求出x和y,然后把所求结果代入方程2x+5y=k中,解答k值.【解答】解:∵x和y的值互为相反数,∴x=−y代入方程x−4y=15,∴ y=−3,则x=3.把x=3,y=−3代入2x+5y=k中,k=2×3+5×(−3)=−9.故答案为:−9.【答案】34【考点】幂的乘方与积的乘方同底数幂的除法【解析】利用同底数幂除法法则的逆运算和同底数幂的除法的逆运算进行计算,即可得出结论.【解答】解:∵2m=3,2n=2,∴2m−2n=2m÷22n=2m÷(2n)2=3÷22=3.4.故答案为:34【答案】69【考点】完全平方公式列代数式求值【解析】先把x−y=3两边平方得到2xy=30,而(x+y)2=x2+2xy+y2,然后利用整体的方法计算.【解答】解:∵ x−y=3,∴(x−y)2=9,即x2−2xy+y2=9.∵x2+y2=39,∴ 39−2xy=9,∴ 2xy=30,∴(x+y)2=x2+2xy+y2=39+30=69.故答案为:69.【答案】5或−3【考点】完全平方公式【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵4x2−(k−1)x+1=(2x)2−(k−1)x+12,∴−(k−1)x=±4x,∴−(k−1)=±4,解得k=5或k=−3.故答案为:5或−3.【答案】3(答案不唯一)【考点】解一元一次不等式【解析】解不等式求得不等式的解集,在解集范围内取值即可.【解答】x−2<0,解:∵ 12∴ x−4<0,∴ x<4,∴ x=3(答案不唯一).故答案为:3(答案不唯一).【答案】1≤m<2【考点】解一元一次不等式一元一次不等式的整数解【解析】首先利用不等式的基本性质解不等式,然后根据正整数解只有3个,求出m的取值范围.【解答】解:2(x−1)≤x+m,x≤m+2.∵正整数解有3个,∴ 正整数解为1,2,3,∴3≤m+2<4,∴1≤m<2.故答案为:1≤m<2.【答案】160【考点】平行线的性质【解析】过P点作PE//AB,由平行线的性质结合∠APC的度数可求解∠CPE的度数,根据CD//AB可得CD//PE,即可求解∠C的度数.【解答】解:如图,过P点作PE//AB,∴∠A+∠APE=180∘.∵∠A=120∘,∴∠APE=180∘−120∘=60∘.∵∠APC=40∘,∴∠CPE=∠APE−∠APC=60∘−40∘=20∘.∵AB//CD,∴CD//PE,∴∠C+∠CPE=180∘,∴∠C=180∘−20∘=160∘.故答案为:160.【答案】6【考点】三角形的面积平行线之间的距离平行线的判定【解析】根据平行线之间的距离相等即可求出△CAD的面积.【解答】解:∵ ∠1=∠2,∴ AD//BC,∴AD与BC之间的距离处处相等.∵ AD=2BC,△ABC的面积为3,∴ △CAD的面积为6.故答案为:6.三、解答题【答案】解:(1)3ax2+6axy+3ay2 =3a(x2+2xy+y2)=3a(x+y)2.(2)(4m2+9)2−144m2=(4m2+9−12m)(4m2+9+12m)=(2m−3)2(2m+3)2.(3)x4−18x2+81=(x2−9)2=(x+3)2(x−3)2.(4)x2(x−y)−y2(x−y)=(x−y)(x2−y2)=(x−y)(x−y)(x+y)=(x +y)(x −y)2.【考点】提公因式法与公式法的综合运用因式分解-运用公式法【解析】(1)先提取3a ,再用公式法分解;(2)先用平方差公式分解,再用完全平方公式分解,即可解答; 本题利用提公因式法和公式法分解即可;(4)先提取公因式(x −y),再用平方差公式分解,即可.【解答】解:(1)3ax 2+6axy +3ay 2 =3a(x 2+2xy +y 2)=3a(x +y)2.(2)(4m 2+9)2−144m 2=(4m 2+9−12m)(4m 2+9+12m)=(2m −3)2(2m +3)2.(3)x 4−18x 2+81=(x 2−9)2=(x +3)2(x −3)2.(4)x 2(x −y)−y 2(x −y)=(x −y)(x 2−y 2)=(x −y)(x −y)(x +y)=(x +y)(x −y)2.【答案】解:(1)移项,得:2x +x ≥1−7,合并同类项,得:3x ≥−6,系数化为1,得:x ≥−2,将不等式的解集表示在数轴上如下:(2){4(x +1)≤7x +13,(1)x −4<x −83,(2) 解不等式(1)得:x ≥−3,解不等式(2)得:x <2,所以不等式组的解集为−3≤x <2,所以不等式组所有整数解的和为−3−2−1+0+1=−5.【考点】在数轴上表示不等式的解集解一元一次不等式一元一次不等式组的整数解解一元一次不等式组【解析】无无【解答】解:(1)移项,得:2x +x ≥1−7,合并同类项,得:3x ≥−6,系数化为1,得:x ≥−2,将不等式的解集表示在数轴上如下:(2){4(x +1)≤7x +13,(1)x −4<x −83,(2) 解不等式(1)得:x ≥−3,解不等式(2)得:x <2,所以不等式组的解集为−3≤x <2,所以不等式组所有整数解的和为−3−2−1+0+1=−5.【答案】解:(m −2n)(m +2n)−(m −n)(m −2n)+4n 2=m 2−4n 2−m 2+3mn −2n 2+4n 2=3mn −2n 2,当m =−2,n =12时,原式=3×(−2)×12−2×(12)2=−72. 【考点】整式的混合运算——化简求值【解析】【解答】解:(m −2n)(m +2n)−(m −n)(m −2n)+4n 2=m 2−4n 2−m 2+3mn −2n 2+4n 2=3mn −2n 2,当m =−2,n =12时, 原式=3×(−2)×12−2×(12)2=−72.【答案】解:解方程组{2x +y =−m +5,x −y =4m −2,得:{x =m +1,y =−3m +3.∵ x +y ≥0,∴ m +1−3m +3≥0,解得m ≤2.【考点】加减消元法解二元一次方程组二元一次方程组的解【解析】【解答】解:解方程组{2x +y =−m +5,x −y =4m −2,得:{x =m +1,y =−3m +3.∵ x +y ≥0,∴ m +1−3m +3≥0,解得m ≤2.【答案】解:(1)如图.(2)在△ABC 中,∠B =28∘,∠C =72∘,∴ ∠BAC =180∘−∠B −∠C =80∘.∵ AE 平分∠BAC ,∴ ∠CAE =12∠BAC =40∘. ∵ AD 是BC 边上的高,∴ AD ⊥BC ,∴ ∠CAD =90∘−∠C =18∘,∴ ∠DAE =∠CAE −∠CAD =40∘−18∘=22∘.【考点】三角形的高角平分线的定义三角形内角和定理【解析】(1)暂无.【解答】解:(1)如图.(2)在△ABC 中,∠B =28∘,∠C =72∘,∴ ∠BAC =180∘−∠B −∠C =80∘.∵ AE 平分∠BAC ,∴ ∠CAE =12∠BAC =40∘.∵ AD 是BC 边上的高,∴ AD ⊥BC ,∴ ∠CAD =90∘−∠C =18∘,∴ ∠DAE =∠CAE −∠CAD =40∘−18∘=22∘.【答案】解:(1)设A 款毕业纪念册的售价为x 元,B 款毕业纪念册的售价为y 元,根据题意可得:{15x +10y =230,20x +10y =280,解得:{x =10,y =8.答:A ,B 两款毕业纪念册的销售单价分别为10元、8元.(2)设能够买a 本A 款毕业纪念册,则购买B 款毕业纪念册(60−a)本, 根据题意可得:10a +8(60−a)≤529,解得:a ≤24.5,答:最多能够买24本A 款毕业纪念册.【考点】二元一次方程组的应用——销售问题一元一次不等式的实际应用【解析】(1)暂无.【解答】解:(1)设A 款毕业纪念册的售价为x 元,B 款毕业纪念册的售价为y 元,根据题意可得:{15x +10y =230,20x +10y =280,解得:{x =10,y =8.答:A ,B 两款毕业纪念册的销售单价分别为10元、8元.(2)设能够买a 本A 款毕业纪念册,则购买B 款毕业纪念册(60−a)本, 根据题意可得:10a +8(60−a)≤529,解得:a ≤24.5,答:最多能够买24本A 款毕业纪念册.。

河北省秦皇岛市七年级下学期期末考试数学试题

河北省秦皇岛市七年级下学期期末考试数学试题

河北省秦皇岛市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·朝阳期中) 由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆.请将7550000用科学记数法表示为()A . 755×104B . 75.5×105C . 7.55×106D . 0.755×1072. (2分)(2019·石家庄模拟) 下列运算正确是()A . =±5B . 3a﹣1=C . (2x2)3=2x6D . (﹣a)3•a2=﹣a53. (2分)(2019·抚顺模拟) 下列事件中,属于必然事件的是()A . 随意翻到一本书的某页,这页的页码是奇数B . 测量某天的最低气温,结果为﹣150℃C . 把4个球放到3个抽屉里,其中一个抽屉里至少有2个球D . 我市天气预报中说“明天降雪的概率是80%”,表示明天我市有80%的地区降雪4. (2分) (2019八上·潘集月考) 下列运算中,正确的是()A . x2•x3=x6B . (ab)3=a3b3C . 3a+2a=5a2D . (x3)2=x55. (2分) (2019八上·淮安期中) 下列交通标志图案是轴对称图形的是A .B .C .D .6. (2分) (2020八下·通榆期末) 如图,在 ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A . 35°B . 30°C . 25°D . 20°7. (2分)等腰三角形的两边长分别为2和3,则周长为()A . 5B . 7C . 8D . 7或88. (2分)(2019·滨州) 如图,,,平分,则的度数等于().A . 26°B . 52°C . 54°D . 77°9. (2分) (2016七上·临清期末) 如图,若输入x的值为﹣5,则输出的结果y为()A . ﹣6B . 5C . ﹣5D . 610. (2分)已知,如图,AD=AC,BD=BC,O为AB上一点,则图中共有全等三角形的对数是()A . 1对B . 2对C . 3对D . 4对二、填空题 (共6题;共6分)11. (1分) (2019八上·鞍山期末) 计算: ________.12. (1分)(2012·镇江) 化简:(m+1)2﹣m2=________.13. (1分) (2017七下·洪泽期中) 计算:(2x)2•3x=________.14. (1分)(2016·兴化模拟) 如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为________.15. (1分) (2018七下·韶关期末) 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=________°.16. (1分) (2019八上·灵宝月考) 若△ABC的三个内角度数之比为2∶3∶4,则相应的外角度数之比为________。

秦皇岛市七年级下学期期末数学试题

秦皇岛市七年级下学期期末数学试题

秦皇岛市七年级下学期期末数学试题一、选择题1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a 2.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a =3.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④4.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( ) A .2cmB .3cmC .8cmD .15cm5.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 6.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)2 7.若x 2+kx +16是完全平方式,则k 的值为( ) A .4B .±4C .8D .±8 8.△ABC 是直角三角形,则下列选项一定错误的是( )A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:2 9.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )A .12B .12±C .6D .6±10.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( ) A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题11.若a m =5,a n =3,则a m +n =_____________. 12.若关于x 、的方程()2233b a axb y -+++=是二元一次方程,则b a =_______13.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________. 14.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.15.计算(﹣2xy )2的结果是_____.16.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.17.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.18.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABCS =,则图中阴影部分的面积是 ________.19.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.20.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.三、解答题21.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2; (2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2. 22.计算: (1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2; (3)(x+5)2﹣(x ﹣2)(x ﹣3); (4)(2x+y ﹣2)(2x+y+2).23.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ; (3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚.24.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P、Q为有理数,且关于x、y的方程组3 33x y p qx y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y是“爱心点”,求p、q的值.25.计算:(1)()2202011 3.142π-⎛⎫-+-+ ⎪⎝⎭(2)()2462322x y x xy--(3)()()22342a b a a b---(4)()()2323m n m n-++-26.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC∆中,点I是ABC∠、ACB∠的平分线的交点,点D是MBC∠、NCB∠平分线的交点,,BI DC的延长线交于点E.(1)若50BAC∠=︒,则BIC∠=°;(2)若BAC x∠=︒(090x<<),则当ACB∠等于多少度(用含x的代数式表示)时,//CE AB,并说明理由;(3)若3D E∠=∠,求BAC∠的度数.27.平面内的两条直线有相交和平行两种位置关系.①如图a,若//AB CD,点P在AB、CD外部,则BPD∠、B、D∠之间有何数量关系?解:BPD B D∠=∠-∠.证明:∵//AB CD,∴B BOD∠=∠,又∵POD BOD∠+∠=______,在POD中,由三角形内角和定理可得____________180POD∠+∠+∠=︒,故______BPD D∠=∠+∠,从而得BPD B D∠=∠-∠.②若//AB CD,将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则BPD∠、B、D∠之间有何数量关系?请证明你的结论;③在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则BPD∠、B、D∠、BQD∠之间有何数量关系?请证明你的结论;28.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系. 【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BCAB b225315()BC AB a BC a AB a BC AB b BCAB b22(5)(3)15a b BCb a AB a b .AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b,故选:A . 【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.C解析:C 【分析】根据同底幂的运算法则依次判断各选项. 【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a ,错误 故选:C . 【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.3.D解析:D 【详解】解:①∵∠1=∠2,∴AB ∥CD ,故本选项正确; ②∵∠3=∠4,∴BC ∥AD ,故本选项错误; ③∵∠A=∠CDE ,∴AB ∥CD ,故本选项正确; ④∵∠A+∠ADC=180°,∴AB ∥CD ,故本选项正确. 故选D.4.C解析:C 【解析】 【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边. 【详解】 ∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm 之间(不包含3和13). 故选C 【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.5.D解析:D根据三角形任意两边之和大于第三边进行分析即可. 【详解】解:A 、1+2<4,不能组成三角形; B 、2+3=5,不能组成三角形; C 、5+6<12,不能组成三角形; D 、4+6>8,能组成三角形. 故选:D . 【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.6.D解析:D 【解析】 【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解. 【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确. 故选D . 【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.7.D解析:D 【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵216x kx ++是完全平方式, ∴8k =±, 故选:D . 【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.8.B解析:B 【分析】根据三角形内角和定理得出∠A +∠B +∠C =180°,和选项求出∠C (或∠B 或∠A )的度数,再判断即可.【详解】解:A、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故A选项是正确的;B、∵∠A=60°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴△ABC是锐角三角形,故B选项是错误的;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故C选项是正确的;D、∵∠A:∠B:∠C=1:1:2,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故D选项是正确的;故选:B.【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.9.B解析:B【解析】【分析】利用完全平方公式的结构特征判断即可确定出a的值.【详解】解:∵x2-ax+36是一个完全平方式,∴a=±12,故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.B解析:B根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵P在第二象限,且点P到x轴、y轴的距离分别是1,3,∴点P的横坐标为-3,纵坐标为1,∴P点的坐标为(-3,1).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题11.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.13.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=解析:a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,故答案为:a4-4a3b+6a2b2-4ab3+b4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.14.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.15.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.16.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B =180°﹣∠C =180°﹣105°=75°,∵BC ∥DE ,∴∠AFE =∠B =75°,在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.18.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.19.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).20.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.三、解答题21.(1)0;(2)﹣5a2+6ab﹣8b2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a 2+b 2﹣(a 2﹣6ab +9b 2)=﹣4a 2+b 2﹣a 2+6ab ﹣9b 2=﹣5a 2+6ab ﹣8b 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.22.(1)2;(2)7a 4+4a 6+a 2;(3)15x+19;(4)4x 2+4xy+y 2﹣4【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、绝对值的性质进行计算,再算加减即可;(2)首先利用积的乘方的计算法则、单项式乘以单项式计算法则计算,再合并同类项即可;(3)首先利用完全平方公式、多项式乘以多项式计算法则计算,再合并同类项即可; (4)首先利用平方差计算,再利用完全平方公式进行计算即可.【详解】解:(1)原式=8﹣1﹣5=2;(2)原式=9a 4﹣2a 4+4a 6+a 2,=7a 4+4a 6+a 2;(3)原式=x 2+10x+25﹣(x 2﹣3x ﹣2x+6),=x 2+10x+25﹣x 2+3x+2x ﹣6,=15x+19;(4)原式=(2x+y )2﹣4,=4x 2+4xy+y 2﹣4.【点睛】本题考查的是实数的运算,幂的运算及合并同类项,整式的混合运算,掌握以上知识点是解题的关键.23.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.24.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A点为“爱心点”,理由如下:当A(5,3)时,m﹣1=5,22n+=3,解得:m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.25.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.26.(1)115;(2)180-2x ,理由见解析;(3)45°.【分析】(1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,∠BEC=22.5°,再推理出12BEC BAC ∠=∠,即可求出BAC ∠的度数. 【详解】(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,∴()180BIC IBC ICB ∠=︒-∠+∠ ()11802ABC ACB =-∠+∠︒ ()11801802A =-︒︒-∠ 1901152BAC =+∠=︒; 故答案为:115.(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:∵CE ∥AB ,∴∠ACE=∠A=x °,∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,∴∠ACG=2∠ACE=2x °,∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;(3)由题意知:△BDE 是直角三角形∠D+∠E=90°若∠D=3∠E 时∠BEC=22.5°,∵90BEC BDC ∠=︒-∠190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭ 12BAC =∠, ∴45BAC ∠=︒.【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.27.①见解析;②BPD B D ∠=∠+∠,证明见解析;③BPD B D BQD ∠=∠+∠+∠,证明见解析.【分析】①先根据平行线的性质可得B BOD ∠=∠,再根据平角的定义可得180POD BOD ∠+∠=︒,然后根据三角形的内角和定理可得180POD BPD D ∠+∠+∠=︒,最后根据等量代换即可得证;②如图(见解析),先根据平行线的性质可得B BQD ∠=∠,再根据三角形的外角性质可得BPD BQD D ∠=∠+∠,然后根据等量代换即可得;③如图(见解析),先根据三角形的外角性质可得BED B BQD ∠=∠+∠,BPD D BED ∠=∠+∠,再根据等量代换即可得.【详解】①BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵180POD BOD ∠+∠=︒,在POD 中,由三角形内角和定理可得180POD BPD D ∠+∠+∠=︒,故BOD BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠;②BPD B D ∠=∠+∠,证明如下:如图,延长BP ,交CD 于点Q ,∵//AB CD ,B BQD ∴∠=∠,由三角形的外角性质得:BPD BQD D ∠=∠+∠,BPD B D ∴∠=∠+∠;③BPD B D BQD ∠=∠+∠+∠,证明如下:如图,延长BP ,交CD 于点E ,由三角形的外角性质得:BED B BQD BPD D BED ∠=∠+∠⎧⎨∠=∠+∠⎩, 则BPD B D BQD ∠=∠+∠+∠.【点睛】本题考查了平行线的性质、三角形的内角和定理、三角形的外角性质等知识点,熟练掌握三角形的外角性质是解题关键.28.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。

2022-2023学年河北省秦皇岛市青龙县七年级(下)期末数学试卷(含解析)

2022-2023学年河北省秦皇岛市青龙县七年级(下)期末数学试卷(含解析)

2022-2023学年河北省秦皇岛市青龙县七年级(下)期末数学试卷一、选择题(本大题共16小题,共42.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各组数中,是二元一次方程5x−y=2的一个解的是( )A. {x=3y=1 B. {x=1y=3 C.{x=3y=0 D.{x=0y=22. 下列语句是命题的是( )A. 画出两个相等的线段B. 所有的同位角都相等吗C. 延长线段AB到C,使得BC=BAD. 相等的角是对顶角3. 在同一平面内,不重合的两条直线的位置关系是( )A. 平行B. 相交C. 平行或相交D. 以上都不对4. 计算a2⋅a3的结果正确的是( )A. a5B. a6C. 6aD. 5a25. 如果a>b,下列各式中不正确的是( )A. a−3>b−3B. −2a<−2bC. −2a>−2bD. −a+1<−b+16. 以下列数据为三边长能构成三角形的是( )A. 1,2,3B. 2,3,4C. 14,4,9D. 7,2,47. 根据国家统计局数据显示,我国冰雪运动参与人数达到346000000人.数据346000000用科学记数法表示为( )A. 0.346×109B. 3.46×108C. 346×106D. 3.46×1098. 下列计算中,正确的是( )A. a2+b3=a5B. (a3)2=a5C. a10÷a2=a5D. a5+a5=2a59. 如图,直线a,b被直线c所截,若要使a//b.则需满足的条件是( )A.∠1=∠2B. ∠1=∠3C. ∠1=∠4D. ∠2+∠3=180°10. 下列等式由左边至右边的变形中,属于因式分解的是( )A. x2−9=(x+3)(x−3)B. x2−4+3x=(x+2)(x−2)+3xC. x2+5x−1=x(x+5)−1D. (x+2)(x−2)=x2−411. 如图,点O在直线AB上,OC⊥OD.若∠BOD=30°,则∠AOC=度.( )A. 100°B. 110°C. 115°D. 120°12. 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A. 60°B. 65°C. 75°D. 85°13. 在数轴上表示不等式组{x+3≥−2,7−x>5的解集,正确的是( )A. B.C. D.14. 在下列图形中,正确画出△ABC的边BC上的高的是( )A. B.C. D.15. 如图,l1//l2,则( )A. ∠α+∠β−∠γ=180°B. ∠α+∠β+∠γ=180°C. ∠α+∠β=2∠γD. ∠α+∠β=∠γ16. 在中国传统数学著作《九章算术》中有这样一个问题:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价,问牛、马价各几何?”译文:“今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于12匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于12头牛的价格.问每头牛、每匹马的价格各是多少?”设每匹马的价格为x 钱,每头牛的价格为y 钱,则依据条件可列方程组为( )A. {x +2y =10000+12x 2x +y =10000−12y B. {2x +y =10000+12x x +2y =10000−12y C. {2x +y =10000+12y x +2y =10000−12x D. {x +2y =10000+12y2x +y =10000−12x 二、填空题(本大题共9小题,共18.0分)17. 已知x−2y =5,用含y 的式子表示x ,得x = ______ .18. 计算2x 2y ⋅xy 2的结果是______ .19. 用不等式表示“m 的3倍与n 的一半的差不大于6”:______ .20. 如图,∠1=∠2,∠A =70°,则∠ADC =______度.21. 已知3a =2,3b =6,则3a +b = ______ .22. 如图,∠CBD 是△ABC 的外角,∠A =38°,∠CBD =68°,则∠C 的度数是______ .23. 分解因式:x 3−4x = .24. 如图,△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是28,则△ABE 的面积______ .25. 有甲、乙、丙三种商品,若购甲1件、乙2件、丙3件,共需136元;若购甲3件、乙2件、丙1件,共需240元,则购甲、乙、丙三种商品各1件共需______ 元.三、解答题(本大题共6小题,共58.0分。

河北省秦皇岛市七年级下学期数学期末试卷

河北省秦皇岛市七年级下学期数学期末试卷

河北省秦皇岛市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·奉化期末) 把一条弯曲的公路改成直道,可以缩短路程,这其中蕴含的数学道理是()A . 垂线段最短B . 两点确定一条直线C . 两点之间线段最短D . 两点之间直线最短2. (2分)如图,给出了一个轴对称图形的一半,其中虚线是这个图形的对称轴,请你猜想整个图形是()A . 三角形B . 长方形C . 五边形D . 六边形3. (2分) (2019七下·嘉兴期中) 生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为()A . 4.32×10-5B . 4.32×10-6C . 4.32×105D . 4.32×1064. (2分)(2020·南充模拟) 下列事件属于必然事件的是()A . 经过有交通信号的路口,遇到红灯B . 任意买一张电影票,座位号是双号C . 向空中抛一枚硬币,不向地面掉落D . 三角形中,任意两边之和大于第三边5. (2分)已知正整数a、b、c,a b<c,c最大为6 ,存在以 a、b、c为三边长的三角形的个数为()A . 1 0B . 12C . 13D . 146. (2分)下列运算正确的是()A . 4m﹣m=3B .C .D . ﹣(m+2n)=﹣m+2n7. (2分) (2019八上·天津月考) 如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中能使△ABC≌△DEF的条件有()A . 1组B . 2组C . 3组D . 4组8. (2分) (2019七下·端州期中) 如图,由AB∥CD,可以得到()A . ∠1=∠2B . ∠2=∠3C . ∠2=∠4D . ∠A=∠C9. (2分)(2018·辽阳) 如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为()A . 5B .C . 4D .10. (2分)(2020·合肥模拟) 甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为和,起跑前乙在起点,甲在乙前面50m处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是()A .B .C .D .二、填空题 (共9题;共11分)11. (2分) (2019七上·洪泽期末) 若一个角的度数是26°45′,则这个角的余角为________°.12. (1分)(2019·益阳) 小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是________.13. (1分)(2016·雅安) 已知a+b=8,a2b2=4,则﹣ab=________.14. (1分) (2017九上·成都开学考) 如图,在△ABC中,DE是BC的垂直平分线,垂足为点E,交AB于点D,若CE=5,△ABC的周长为25,则△ADC的周长为________.15. (1分)(2019·上海模拟) 计算:a﹣2b2•(a2b﹣2)﹣3=________.16. (1分) (2017八下·萧山期中) 如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为________.17. (2分)(2018·济南) 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为________.18. (1分) (2017·葫芦岛) 如图,直线y= x上有点A1 , A2 , A3 ,…An+1 ,且OA1=1,A1A2=2,A2A3=4,AnAn+1=2n ,分别过点A1 , A2 , A3 ,…An+1作直线y= x的垂线,交y轴于点B1 , B2 ,B3 ,…Bn+1 ,依次连接A1B2 , A2B3 , A3B4 ,…AnBn+1 ,得到△A1B1B2 ,△A2B2B3 ,△A3B3B4 ,…,△AnBnBn+1 ,则△AnBnBn+1的面积为________.(用含正整数n的式子表示)19. (1分)(2019·抚顺) 如图,直线的解析式是,直线的解析式是,点在上,的横坐标为,作交于点,点在上,以,为邻边在直线,间作菱形,分别以点,为圆心,以为半径画弧得扇形和扇形,记扇形与扇形重叠部分的面积为;延长交于点,点在上,以,为邻边在,间作菱形,分别以点,为圆心,以为半径画弧得扇形和扇形,记扇形与扇形重叠部分的面积为按照此规律继续作下去,则 __.(用含有正整数的式子表示)三、解答题 (共9题;共95分)20. (10分) (2017八下·黄山期末) 计算:(π﹣2016)0+()﹣1﹣×|﹣3|.21. (10分) (2018七下·福田期末) 先化简,再求值:,其中,.22. (11分) (2020八下·苏州期末) 某校音乐组决定围绕在“舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项) ”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题.(1)在这次调查中,一共抽查了________名学生,其中喜欢舞蹈活动项目的人数占抽查总人数的百分比为________;(2)请你补全条形统计图;(3)某班7位同学中,1人喜欢舞蹈,2人喜欢乐器,1人喜欢声乐,3人喜欢乐曲,老师要从这7人中任选1人参加学校社团展演,则恰好选出1人喜欢乐器的概率是________.23. (2分)已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.24. (15分) (2019八上·固镇月考) 某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式;(2)求当时销售西瓜获得的利润的最大值.25. (15分) (2020八下·和平月考) 在菱形中,点是对角线上一点,点在的延长线上,且,连接.(1)如图①,求证:;(2)如图②,连接与交于点求证;(3)连接,当时,与的数量关系是________26. (6分) (2020七下·成都期中) 请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的满足,求:① 的值;② 的值.27. (15分) (2020八下·番禺期末) 甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过300元后的价格部分打7折.(1)以(单位:元)表示商品原价,(单位:元)表示购物金额,分别就两家商场的让利方式写出与的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?28. (11分) (2019八下·桂林期末) 如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共95分)20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、。

秦皇岛市七年级下学期数学期末考试试卷

秦皇岛市七年级下学期数学期末考试试卷

秦皇岛市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·孝义期末) 方程1﹣ = 的解为()A . x=﹣B . x=C . x=D . x=12. (2分)已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()A . ﹣,B . ,﹣C . ,D . ﹣,﹣3. (2分) (2015七下·唐河期中) 已知是二元一次方程组的解,则2m﹣n的值是()A . 4B . 2C .D . ﹣44. (2分)不等式x+1>2x-4的解集是()A . x<5B . x>5C . x<1D . x>15. (2分) (2020八下·东湖月考) 如图,矩形ABCD中,AB=4cm,BC=8cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A . 8B . 10C . 15D . 206. (2分) (2019七下·定安期中) 如果的解集是,那么的取值范围是()A .B .C .D . 是任意有理数7. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .8. (2分)如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到△AEF,若AC=,则阴影部分的面积为()A . 1B .C .D .9. (2分)下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A . 4个B . 3个C . 2个D . 1个10. (2分)一个多边形内角和是720°,则这个多边形的边数为()A . 6B . 7C . 8D . 9二、填空题 (共5题;共5分)11. (1分) (2017八下·巢湖期末) 当m________时,一次函数y=(m+1)x+6的函数值随x的增大而减小.12. (1分) (2019七下·洪江期末) 把一张对边互相平行的纸条(AC′//BD′)折成如图所示,EF是折痕,若折痕EF与一边的夹角∠EFB=32°,则∠AEG=________.13. (1分) (2019七上·长春期末) 将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.14. (1分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM= HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有________(把所有符合题意结论的序号都填上).15. (1分)若关于x、y的二元一次方程组的解满足x+y=1,则a的值为________.三、解答题 (共8题;共68分)16. (10分) (2017七下·东城期中) 解方程组:(1).(2).17. (5分) (2017七下·大冶期末) 解不等式组,并把解集在数轴上表示出来.18. (10分) (2020八下·灵璧月考) 如图,在中,,于点D.(1)若,求的度数;(2)若点E在边AB上,交AD的延长线于点F.求证:.19. (7分) (2017七下·宁城期末) 对于实数x,规定表示不小于x的最小整数,例如,,,则(1)填空:① ________;②若,则x的取值范围是________.(2)已知x为正整数,且,求的值.20. (10分) (2019九上·吉林月考) 如图,在△ABC中,∠ABC=45°,它的外接圆的圆心O在其内部,连结OC ,过点A作AD∥OC ,交BC的延长线于点D .(1)求证:AD是⊙O的切线;(2)若∠BAD=105°,⊙O的半径为2,求劣弧AB的长.21. (5分)从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少?22. (15分)(2020·西安模拟) 问题探究(1)请在图①的的边上求作一点,使最短;(2)如图②,点为内部一点,且满足 .求证:点到点、、的距离之和最短,即最短;(3)问题解决:如图③,某高校有一块边长为400米的正方形草坪,现准备在草坪内放置一对石凳及垃圾箱在点处,使点到、、三点的距离之和最小,那么是否存在符合条件的点?若存在,请作出点的位置,并求出这个最短距离;若不存在,请说明理由.23. (6分) (2017七下·农安期末) 如图,在△ABC中,∠ABC=100°,∠ACB=40°,∠ABC的平分线BD交AC于点D,∠ACB的平分线CP交BD于点D.(1) BD与AC的位置关系是________.(2)求∠BPC的度数.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共68分)16-1、16-2、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、。

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷

河北省秦皇岛市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·孝义期末) 如图是人民公园的部分平面示意图,为准确表示地理位置,可以建立坐标系用坐标表示地理位置,若牡丹园的坐标是,南门的坐标是,则湖心亭的坐标为()A .B .C .D .2. (2分)下列四个式子:①(﹣1)0=﹣1,②(﹣1)﹣1=1,③ ,④ ,其中正确的有()A . 1个B . 2个C . 3个D . 4个3. (2分)(2017·柘城模拟) 今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为()A . 3.89×102B . 389×102C . 3.89×104D . 3.89×1054. (2分)计算3n· ()=—9n+1,则括号内应填入的式子为()A . 3n+1B . 3n+2C . -3n+2D . -3n+15. (2分) (2019七下·北京期末) 若m n,则下列不等式中,正确的是()A . m nB .C . m nD . 2 m n6. (2分)(2017·花都模拟) 如图,直线a∥b.下列关系判断正确的是()A . ∠1+∠2=180°B . ∠1+∠2=90°C . ∠1=∠2D . 无法判断7. (2分)(2014·贵港) 下列命题中,属于真命题的是()A . 同位角相等B . 正比例函数是一次函数C . 平分弦的直径垂直于弦D . 对角线相等的四边形是矩形8. (2分) (2019七下·闽侯期中) 某班级为了奖励在期中考试中取得好成绩的同学,花了900元钱购买甲、乙两种奖品共50件,其中甲种奖品每件15元,乙种奖品每件20元,若设购买甲种奖品x件,乙种奖品y元,则所列方程组正确是()A .B .C .D .9. (2分)(2018·贺州) 若一组数据:1、2、x、4、5的众数为5,则这组数据的中位数是()A . 1B . 2C . 4D . 510. (2分)如图,线段AB经过平移得到线段,其中点A、B的对应点分别为点、,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在上的对应点的坐标为()A . (a+2,b−3)B . (a+2,b+3)C . (a−2,b−3)D . (a−2,b+3)二、填空题 (共8题;共8分)11. (1分)当a=________ 时,方程组的解中,x与y的值到为相反数.12. (1分) (2016九上·重庆期中) 今年3月12日植树节活动中,某单位的职工分成两个小组植树,已知他们植树的总数相同,均为100多棵,如果两个小组人数不等,第一组有一人植了6棵,其他每人都植了13棵;第二组有一人植了5棵,其他每人都植了10棵,则该单位共有职工________人.13. (1分)(2017·深圳模拟) 因式分解:2x2﹣18=________.14. (1分)在同一平面上,若∠BOA=70°,∠BOC=15°,则∠AOC=________.15. (1分) (2019八下·广东月考) 某商场店庆活动中,商家准备对某种进价为800元、标价为1200元的商品进行打折销售,但要保证利润率不低于5%,则最多打________折.16. (1分) (2020七下·如东期中) 有这样的一列数a1、a2、a3、…、an ,满足公式an=a1+(n-1)d,已知a2=197,a5=188,若ak>0,ak+1<0,则k的值为________.17. (1分)(2020·黄冈模拟) 如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在M处,∠BEF =70°,则∠ABE=________度.18. (1分) (2016八上·海盐期中) 用不等式表示下列关系:x的3倍与8的和比y的2倍小:________.三、解答题 (共9题;共99分)19. (20分) (2020七上·江城开学考) 能用简便方法的要用简便方法计算.(1)(2)10÷8+3.96×12.5%+2.04×(3)2.5×32×12.5(4)20. (10分)解下列方程组::(1)(2).21. (20分) (2019七下·丹东期中) 利用乘法公式简算(1) 1102-109×111(2)(3) (x+3y+2)(x—3y+2)(4)化简求值:,其中,22. (10分) (2020八下·西安月考) 解下列不等式(组),并把解集表示在数轴上。

秦皇岛市七年级下学期期末数学试题

秦皇岛市七年级下学期期末数学试题

秦皇岛市七年级下学期期末数学试题一、选择题1.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 2.下列各式中,不能用平方差公式计算的是( )A .(x -y )(-x +y )B .(-x -y )(-x +y )C .(x -y )(-x -y )D .(x +y )(-x +y ) 3.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .4.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=-5.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩6.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( ) A .ab 2 B .a +b 2 C .a 2b 3 D .a 2+b 37.x 2•x 3=( ) A .x 5B .x 6C .x 8D .x 9 8.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)9.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-10.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( )A .4B .5C .6D .8 二、填空题 11.已知:()521x x ++=,则x =______________.12.已知5m a =,3n a =,则2m n a -的值是_________.13.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ . 14.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________. 15.等式01a =成立的条件是________.16.若29x kx -+是完全平方式,则k =_____.17.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.18.()22x y --=_____.19.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.20.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .三、解答题21.因式分解:(1)249x - (2) 22344ab a b b --22.四边形ABCD 中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数;(3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.23.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b;②研究①拼图发现,可以分解因式2a2+5ab+2b2=.24.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD 的度数.25.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?26.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.27.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.28.平面内的两条直线有相交和平行两种位置关系.①如图a ,若//AB CD ,点P 在AB 、CD 外部,则BPD ∠、B 、D ∠之间有何数量关系?解:BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵POD BOD ∠+∠=______,在POD 中,由三角形内角和定理可得____________180POD ∠+∠+∠=︒, 故______BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠.②若//AB CD ,将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论; ③在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则BPD ∠、B 、D ∠、BQD ∠之间有何数量关系?请证明你的结论;【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.2.A解析:A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A符合题意;B、两个括号中,含x项的符号相同,含y的项的符号相反,故能使用平方差公式,B不符合题意;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C不符合题意;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D不符合题意;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.3.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C .【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.4.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.5.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.6.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.8.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.10.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,解得,60x =︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.二、填空题11.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x +2≠0时,x +5=0,解得:x =﹣5.当x +2=1时,x =﹣1,当x +2=﹣1时,x =﹣3,x +5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.12.【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:,∵,∴,∴,故答案为:.【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:22m n m n a a a -=÷,∵5m a =,∴22525m a ==, ∴22252533m n m n a a a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 13.2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解.【详解】解:把代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二解析:2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【详解】解:把14xy=-⎧⎨=⎩代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.正确解一元一次方程是解题的关键.14.a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.15..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.解析:0a≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.16.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键17.【分析】已知是方程组的解,将代入到方程组中可求得a ,b 的值,即可得到关于x ,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.18.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.解:(﹣x ﹣2y )2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x 2+4xy +4y 2【分析】根据完全平方公式进行计算即可.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:(﹣x ﹣2y )2=x 2+4xy +4y 2.故答案为:x 2+4xy +4y 2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.19.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 20.4向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.三、解答题21.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.22.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°. 23.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+- 213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键.24.(1)见解析;(2)35°;(3)117°【分析】(1)由AC ∥BD 得∠D =∠DAE ,角的等量关系证明∠DAE 与∠C 相等,根据同位角得AD ∥BC ;(2)由BD ⊥BC 得∠HBC =90°,余角的性质和三角形外角性质解得∠C 的度数为35°; (3)由BF ∥AD 得∠D =∠DBF ,垂直的定义得∠DBC =90°,三角形的内角和定理,角的和差求得∠DBA =∠CBA =45°,由已知条件∠EFB =7∠DBF ,角的和差得出∠BAD 的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC =180°.∠BAC =∠BAD ,∴∠DBA =∠CBA =45°,又∵∠EFB =7∠DBF ,∠EFB =∠FBC+∠C ,∴7∠DBF =2∠DBF+∠DBC ,解得:∠DBF =18°,∴∠BAD =180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.25.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.26.a=4【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53x y =⎧⎨=-⎩, 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.27.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.28.①见解析;②BPD B D ∠=∠+∠,证明见解析;③BPD B D BQD ∠=∠+∠+∠,证明见解析.【分析】①先根据平行线的性质可得B BOD ∠=∠,再根据平角的定义可得180POD BOD ∠+∠=︒,然后根据三角形的内角和定理可得180POD BPD D ∠+∠+∠=︒,最后根据等量代换即可得证;②如图(见解析),先根据平行线的性质可得B BQD ∠=∠,再根据三角形的外角性质可得BPD BQD D ∠=∠+∠,然后根据等量代换即可得;③如图(见解析),先根据三角形的外角性质可得BED B BQD ∠=∠+∠,BPD D BED ∠=∠+∠,再根据等量代换即可得.【详解】①BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵180POD BOD ∠+∠=︒,在POD 中,由三角形内角和定理可得180POD BPD D ∠+∠+∠=︒,故BOD BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠;②BPD B D ∠=∠+∠,证明如下:如图,延长BP ,交CD 于点Q ,∵//AB CD ,B BQD ∴∠=∠,由三角形的外角性质得:BPD BQD D ∠=∠+∠,BPD B D ∴∠=∠+∠;③BPD B D BQD ∠=∠+∠+∠,证明如下:如图,延长BP ,交CD 于点E ,由三角形的外角性质得:BED B BQD BPD D BED ∠=∠+∠⎧⎨∠=∠+∠⎩, 则BPD B D BQD ∠=∠+∠+∠.【点睛】本题考查了平行线的性质、三角形的内角和定理、三角形的外角性质等知识点,熟练掌握三角形的外角性质是解题关键.。

秦皇岛市七年级下册末数学试卷及答案

秦皇岛市七年级下册末数学试卷及答案

一、填空题 1.若1x -+(y +1)2=0,则(x +y )3=_____.答案:0【分析】根据非负数的性质列式求出x 、y ,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x ﹣1=0,y+1=0,解得x =1,y =﹣1,所以,(x+y )3=(1﹣1)解析:0【分析】根据非负数的性质列式求出x 、y ,然后代入代数式进行计算即可得解.【详解】解:∵1x -+(y +1)2=0∴x ﹣1=0,y +1=0,解得x =1,y =﹣1,所以,(x +y )3=(1﹣1)3=0.故答案为:0.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.2.如图,//AB CD ,2P E 平分1PEB ∠,2P F 平分1PFD ∠,若设1PEB x ∠=︒,1PFD y ∠=︒则1P ∠=______度(用x ,y 的代数式表示),若3PE 平分2P EB ∠,3PF 平分2P FD ∠,可得3P ∠,4P E 平分3P EB ∠,4P F 平分3P FD ∠,可得4P ∠…,依次平分下去,则n P ∠=_____度.答案:【分析】过点P1作PG ∥AB ∥CD ,根据平行线的性质:两直线平行,内错角相等即可证得,再根据角平分线的定义总结规律可得.【详解】解:过点作∥AB ,可得∥CD ,∴,,解析:()x y + 12n x y -+⎛⎫⎪⎝⎭【分析】过点P 1作PG ∥AB ∥CD ,根据平行线的性质:两直线平行,内错角相等即可证得1E x PF y ︒=∠︒+,再根据角平分线的定义总结规律可得n P ∠. 【详解】解:过点1P 作1PG ∥AB ,可得1PG ∥CD ,设1PEB x ∠=︒,1PFD y ∠=︒, ∴11G x PEB EP =︒∠=∠,11G y PFD FP =︒∠=∠,∴11111P EP FP PEB P E F G G x y FD ∠=+=︒∠∠∠=︒++∠;同理可得:222P P EB P FD ∠+∠∠=,333P P EB P FD ∠+∠∠=,...,∵2P E 平分1PEB ∠,2P F 平分1PFD ∠, ∴()22212P P EB P FD x y ∠+∠=︒+︒∠=,()33314P P EB P FD x y ∠+∠=︒+︒∠=, ..., ∴12n n n n x y P P EB P FD -∠︒+︒∠+∠==, 故答案为:()x y +,12n x y -+⎛⎫ ⎪⎝⎭.【点睛】本题考查了平行线性质的应用和角平分线的定义,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会探究规律,利用规律解决问题,属于中考常考题型. 3.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P'(y -1,-x +1)叫做点P 的伴随点;已知点A 1的坐标为(3,2),点A 1的伴随点记为A 2,点A 2的伴随点记为A 3,点A 3的伴随点记为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,…;则点A 4的坐标为_____________,点A 2020的坐标为_____________.答案:【分析】先根据伴随点的定义依次求出点的坐标,再归纳类推出一般规律,由此即可得.,即,即,即,即归纳类推得:点的坐标是以循环变化的点的坐标与点的坐标相同,解析:(1,4)- (1,4)-【分析】先根据伴随点的定义依次求出点4235,,,A A A A 的坐标,再归纳类推出一般规律,由此即可得.【详解】1(3,2)A2(21,31)A ∴--+,即2(1,2)A -3(21,11)A ---+,即3(3,0)A -4(01,31)A -+,即4(1,4)A -5(41,11)A -+,即5(3,2)A归纳类推得:点123,,,,,n A A A A ⋯⋯的坐标是以1234,,,A A A A 循环变化的20204505=⨯∴点2020A 的坐标与点4A 的坐标相同,即为(1,4)-故答案为:(1,4)-,(1,4)-.【点睛】本题考查了点坐标的规律探索,根据点4235,,,A A A A 的坐标,正确归纳类推出一般规律是解题关键.4.如图,在平面直角坐标系中,有若千个整数点,其顺序按图中“→”方向排列,如()()()1, 0, 2, 0, 2, 1,….根据这个规律探索可得,第100个点的坐标为__________.答案:【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,依此类推横坐标为n 的有n 个点题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列解析:()142,【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,⋯依此类推横坐标为n 的有n 个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【详解】解:在横坐标上,第一列有一个点,第二列有2个点.…第n 个有n 个点,并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为111,,1,222n n n n n n ---⎛⎫⎛⎫⎛⎫-⋯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ; 偶数列的坐标为,,1,1222n n n n n n ⎛⎫⎛⎫⎛⎫-⋯- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ , 由加法推算可得到第100个点位于第14列自上而下第六行.14代入上式得(14,1452-)即(14,2), 故答案为(14,2).【点睛】本题的考查了对平面直角坐标系的熟练运用能力,用“从特殊到一般”的方法入手寻找规律是解答本题的关键.5.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.答案:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.【详解】解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2021÷4=505…1;∴A2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.6.一只电子玩具在第一象限及x,y轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点______.答案:(3,44)【分析】由题意分析得(0,1)用的次数是1次,即次,(0,2)用的次数是8次,即次,(0,3)用的次数是9次,即次,(0,4)用的次数是24次,即次,(0,5)用的次数是25次,即次解析:(3,44)【分析】由题意分析得(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,⨯次,(0,5)用(0,3)用的次数是9次,即23次,(0,4)用的次数是24次,即46的次数是25次,即25次,以此类推,(0,45)用的次数是2025次,即245次,后退4次可得2021次所对应的坐标.【详解】由题可知,电子玩具是每次跳一个单位长度,则(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,(0,3)用的次数是9次,即23次,(0,4)用的次数是24次,即46⨯次,(0,5)用的次数是25次,即25次,…以此类推,(0,45)用的次数是2025次,即245次,2025-1-3=2021,∴第2021次时电子玩具所在位置的坐标是(3,44).故答案为:(3,44).【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而确定次数的规律.7.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |.(1)若数轴上的点M ,N 分别对应的数为2M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.答案:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可.【详解】解:(1)由题意,M ,N 间的距离为(222==;∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧,∴MN 的中点表示的数为21-+; (2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1,∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下: 1>若点A 位于点B 左边: ①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边:①若点D 在点A 左边,如图所示:此时,31222BD AB AD =-=-=; ②若点D 在点A 右边,如图所示:此时,37222BD AD AB =+=+=; 综上,线段BD 的长度为12或72, 故答案为:2;21;12或72. 【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.8.对于正数x 规定1()1f x x =+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 答案:5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】 由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=. 【详解】 解:1()1f x x=+, 111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 9.阅读下列解题过程:计算:232425122222++++++ 解:设232425122222S =++++++① 则232526222222S =+++++②由②-①得,2621S =- 运用所学到的方法计算:233015555++++⋯⋯+=______________.答案:.【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=3151 4-.故答案是:3151 4-.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.10.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.答案:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 11.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.答案:﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x-<<时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01x<<时,[x]=0,(x)=1,[x)=0或1,∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!12.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.答案:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.答案:、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17;如果三次才输出结果:则x =(17-2)÷3=5;如果四次才输出结果:则x =(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.14.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.答案:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2, 解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,0),P6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P2017与P1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.15.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.答案:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们A的坐标是的边长依次为2,4,6,8,…,顶点依次用1A,2A,3A,4A…表示,则顶点2018答案:(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限解析:(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限和所在的正方形的序号确定点的坐标.详解:由图形可知,每四个所在的象限为一个循环,下标能被4整除的点在第四象限,下标被4除余1的点在第三象限,下标被4除余2的点在第二象限,下标被4除余3的点在2222224;第23262428;…,依此类推,第n 22n =2n .2018=4×504+2,则点2018A 在第二象限,所在正方形的边长为2×504,所以点2018A 的坐标为(-505,505).故答案为(-505,505).点睛:从图形的变体中找出点所在的象限随点的下标变化的规律,再找出每一正方形的边长随正方形的序列变化的规律.17.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.答案:①④⑤【分析】根据题意表示大于x 的最小整数,结合各项进行判断即可得出答案.解:①,根据表示大于x 的最小整数,故正确;②,应该等于,故错误;③,当x=0.5时,,故错误;④,根据解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.18.对任意两个实数a ,b 定义新运算:a ⊕b=()()a ab b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先2)⊕3=___.答案:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.一副直角三角只如图①所示叠成,含45︒角的三角尺ADE 固定不动,将含30角的三角尺ABC 绕顶点A 顺时针转动,使BC 与三角形ADE 的一边平行,如图②,当15BAD ∠=︒时,//BC DE ,则()90360BAD BAD ∠︒<∠<︒其他所有符合条件的度数为________.答案:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC ∥AE 时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB解析:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC ∥AE 时,∠EAB =∠B =60°,∴∠BAD=∠DAE +∠EAB =45°+60°=105°;当BC ∥DE 时,延长BA ,交DE 于F ,则∠AFE =∠B =60°,∴∠DAF =∠AFE -∠D =60°-45°=15°,∴∠DAB =15°+180°=195°;如图,当BC ∥AD 时,∠CAD =∠C =30°,∴∠BAD =360°-30°-90°=240°;如图,当BC ∥AE 时,∠CAE =∠C =30°,∴∠CAD =45°-30°=15°,锐角∠DAB =90°-∠CAD =75°,∴旋转角∠DAB =360°-75°=285°,故答案为:105°、195°、240°和285°.【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.20.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.答案:【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2,∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n12n=∠BEC,∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.答案:或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.22.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.答案:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.23.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.答案:【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.24.如图,已知∠A =(60﹣x )°,∠ADC =(120+x )°,∠CDB =∠CBD ,BE 平分∠CBF ,若∠DBE =59°,则∠DFB =___.答案:【分析】根据题意可得,设,分别表示出,进而根据平行线的性质可得∠DFB .【详解】∠A =(60﹣x )°,∠ADC =(120+x )°,,,,,,BE 平分∠CBF ,,设,∠DB解析:62︒【分析】根据题意可得//AB CD ,设EBF EBC α∠=∠=,分别表示出,ABD DBF ∠∠,进而根据平行线的性质可得∠DFB .【详解】∠A =(60﹣x )°,∠ADC =(120+x )°,180A ADC ∴∠+∠=︒,//AB CD ∴,CDB ABD ∴∠=∠,CDB CBD ∠=∠,ABD CBD ∴∠=∠,BE 平分∠CBF ,EBF EBC ∴∠=∠,设EBF EBC α∠=∠=,∠DBE =59°,∴59DBF α∠=︒-,59ABD DBC α∴∠=∠=︒+,5959118ABF ABD DBF αα∴∠=∠+∠=︒++︒-=︒,//AB CD ,180********DFB ABF ∴∠=︒-∠=︒-︒=︒.故答案为:62︒.【点睛】本题考查了平行线的判定与性质,角平分线的定义,证明//AB CD 是解题的关键. 25.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.答案:①④【分析】①由BC ∥OA ,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC ∥OA ,∠B =∠A =100°,∠AOB =∠ACB =180°-100°=80°,得到∠A +∠AOB =180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE =∠BOE =12∠BOF ,∠FOC =∠AOC =12∠AOF ,从而计算出∠EOC =∠FOE +∠FOC =40°.③由∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,得出∠OCB :∠OFB =1:2.④由∠OEB =∠OCA =∠AOE =∠BOC ,得到∠AOE -∠COE =∠BOC -∠COE ,∠BOE =∠AOC ,再得到∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°,从而计算出∠OCA =∠BOC =3∠BOE =60°.【详解】解:∵BC ∥OA ,∠B =∠A =100°,∴∠AOB =∠ACB =180°-100°=80°,∴∠A +∠AOB =180°,∴OB ∥AC .故①正确;∵OE 平分∠BOF ,∴∠FOE =∠BOE =12∠BOF ,∴∠FOC =∠AOC =12∠AOF ,∴∠EOC =∠FOE +∠FOC =12(∠BOF +∠AOF )=12×80°=40°.故②错误;∵∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,∴∠OCB :∠OFB =1:2.故③错误;∵∠OEB =∠OCA =∠AOE =∠BOC ,∴∠AOE -∠COE =∠BOC -∠COE ,∴∠BOE =∠AOC ,∴∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°, ∴∠OCA =∠BOC =3∠BOE =60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.26.如图,已知40ABC ∠=︒,点D 为ABC ∠内部的一点,以D 为顶点,作EDF ∠,使得//DE BC ,//DF AB ,则EDF ∠的度数为___________.答案:或【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵,,∴,∵,∴;②如图,∵,,∴,∵,∴,∴;综上所述解析:40︒或140︒【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴40DFC EDF ∠=∠=︒;②如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴180DFC EDF ∠+∠=︒,∴140EDF ∠=︒;综上所述:EDF ∠的度数为40︒或140︒;故答案为40︒或140︒.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键,注意分类讨论. 27.如图,已知//AB CD ,BF 平分ABE ∠,//BF DE ,且40D ∠=︒,则BED ∠的度数为______.答案:140°【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平解析:140°【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平行线的性质解答.【详解】解:如图,延长DE 交AB 的延长线于G ,∵//AB CD ,∴∠D =∠AGD =40°,∵BF //DE ,∴∠AGD =∠ABF =40°,∵BF 平分∠ABE ,∴∠EBF=∠ABF=40°,∵BF//DE,∴∠BED=180°﹣∠EBF=140°.故答案为:140°.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.∠=︒则∠4的度数是___度.28.如图,a∥b,∠2=∠3,140,答案:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a∥c,a∥d,则a∥b∥解析:40【分析】∠+∠=∠+∠根据平行线的性质得出分别作a∥c,a∥d,则a∥b∥c∥d,由题可知5678,∠=∠再用等式的性质得出58,∠=∠再根据平行线的性质由a∥c,b∥d,得出67,∠=∠∠=∠即可得出144015,48,∠=∠=︒.【详解】如图,作a∥c,a∥d,则a∥b∥c∥d,∵∠2=∠3,∠+∠=∠+∠∴5678,又∵c∥d,∠=∠∴67,∠=∠∴58,∵a∥c,b∥d,∠=∠∠=∠∴15,48,∠=∠=︒∴1440,故答案为:40.【点睛】本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行.29.如图,AB∥CD,EM是∠AMF的平分线,NF是∠CNE的平分线,EN,MF交于点O.若∠E+60°=2∠F,则∠AMF的大小是___.答案:【分析】作,则,,而,所以,同理可得,变形得到,利用等式的性质得,加上已给条件,于是得到,易得的度数.【详解】解:作,如图,,,,,是的平分线,,,,同理可得,,,,解析:40︒【分析】作//EH AB ,则1AME ∠=∠,2CNE ∠=∠,而12AME AMF ∠=∠,所以12MEN AMF CNE ∠=∠+∠,同理可得12F AMF CNE ∠=∠+∠,变形得到22F AMF CNE ∠=∠+∠,利用等式的性质得322F E AMF ∠-∠=∠,加上已给条件602MEN F ∠+︒=∠,于是得到3602AMF ∠=︒,易得AMF ∠的度数. 【详解】解:作//EH AB ,如图,//AB CD ,//EH CD ,1AME ∴∠=∠,2CNE ∠=∠,EM 是AMF ∠的平分线,12AME AMF ∴∠=∠, 12MEN ∠=∠+∠,12MEN AMF CNE ∴∠=∠+∠, 同理可得,12F AMF CNE ∠=∠+∠, 22F AMF CNE ∴∠=∠+∠,322F MEN AMF ∴∠-∠=∠, 602MEN F ∠+︒=∠,即260F MEN ∠-∠=︒,∴3602AMF ∠=︒, 40AMF ∴∠=︒,故答案为:40︒.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,合理作辅助线和把一般结论推广是解决问题的关键.30.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是 ______ .答案:.【解析】试题分析:设S =1+m +m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m ,得:mS =m +m2+m3+m4+…+m2016+m2017…………………②②一①得: 解析:.【解析】试题分析:设S =1+m +m 2+m 3+m 4+…+m 2016…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2016+m 2017…………………② ②一①得:mS―S =m 2017-1.∴S =. 考点:阅读理解题;规律探究题.31.某景区游船码头派车原定于8点整准时到达景区入口接工作人员,由于汽车在路上因故障导致8:10时车还未到达景区入口,于是工作人员步行前往码头.走了一段时间后遇到了前来接他的汽车,他上车后汽车立即掉头继续前进.到达码头时已经比原计划迟到了20min .已知汽车的速度是工作人员步行速度的6倍,则汽车在路上因故障耽误的时间为____min . 答案:【解析】【分析】正常8:00到景区,出故障后,耽误t 分钟,8点t 分到景区,他在景区等了10分钟,车没来,就走了a 分钟,在8点(10+a )分时遇到了车,他走a 分钟的路程,车走分钟就走完,也就是在解析:【解析】【分析】正常8:00到景区,出故障后,耽误t 分钟,8点t 分到景区,他在景区等了10分钟,车没来,就走了a 分钟,在8点(10+a )分时遇到了车,他走a 分钟的路程,车走6a 分钟就走完,也就是在8点(t-6a )时遇到了车,得出关系式10+a=t-6a ; 正常时从景区到码头用b 分钟,在他遇到车的地点到景区要(b-6a )分钟,也就是8点(t-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省秦皇岛市2016-2017学年七年级数学下学期期末考试试题
题号选择题填空题21 22 23 24 25 26 总分
得分
一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)
1.已知a>b,下列不等式中错误的是()
A.a+1>b+1 B.a﹣2>b﹣2 C.﹣4a<﹣4b D.2a<2b
2.下列命题:
①两点确定一条直线;②两点之间,线段最短;③对顶角相等;④内错角相等;
其中真命题的个数是()
A.1个 B.2个 C.3个 D.4个
3.多项式15m3n2+5m2n﹣20m2n3的公因式是()
A.5mn B.5m2n2 C.5m2n D.5mn2
4.若△ABC有一个外角是锐角,则△ABC一定是()
A.钝角三角形 B.锐角三角形 C.等边三角形 D.等腰三角形
5.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()
A .
B .
C . D.
6.下列运算正确的是()
A.a3•a2=a6 B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4 D.2a+3a=5a
7.下列各式中,能用平方差公式因式分解的是()
A.x2+x B.x2+8x+16 C.x2+4 D.x2﹣1
8.下列各图中,正确画出AC边上的高的是()
A.B.C. D.
9.以下列各组线段长为边,能组成三角形的是()
A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm
10.如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()
A.60° B.80°C.75°D.70°
11.如图,下列条件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判断直线l1∥l2的有()
A.5个B.4个C.3个 D.2个
12.已知a﹣b=1,则代数式2a﹣2b﹣3的值是()
A.﹣1 B.1 C.﹣5 D.5
13.分解因式2x2﹣4x+2的最终结果是()
A.2x(x﹣2)B.2(x2﹣2x+1)C.2(x﹣1)2D.(2x﹣2)2
14.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向向右平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为2016,则n的值为()
A.400 B.401 C.402 D.403
二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)
15.把1020000用科学记数法表示为:.
16.“a的3倍与4的差不大于1”列出不等式是.
17.如果x2+kx+1是一个完全平方式,那么k的值是.
18.若a m=6,a n=2,则a m﹣n的值为.
19.已知关于x的不等式组有且只有1个整数解,a的取值范围是.
20.如果a,b,c是整数,且c a b
=那么我们规定一种记号(a,b)=c,例如239
=那么记作
(3,9)=2,根据以上规定,求(-2,1)= .
三、解答题(耐心计算,认真推理,表露你萌动的智慧!解答写出文字说明、证明过程或演算步骤。

共60分)
21.(本题满分10分)
解不等式组,并把它的解集在数轴上表示出来.
22.(本题满分9分)先化简,再求值:
(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中:x=﹣2.
23.(本题满9分)如图,在△BCD中,BC=4,BD=5,
(1)求CD的取值范围;
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.
24. (本题满分10分)如图,已知点A,D,B在同一直线上,∠1=∠2,∠3=∠E,若∠DAE=100°,∠E=30°,求∠B的度数.
25.(本题满分10分)列方程组解应用题:
用白铁皮做罐头盒,每张铁皮可制作盒身16个或制盒底40个,一个盒身和两个盒底配成一套罐头
盒,现有36张白铁皮用多少张制盒身,多少张制盒底,可以使盒身和盒底正好配套?
26.(本题满分12分)先阅读下列材料,再解答下列问题:
材料:因式分解:(x+y)2+2(x+y)+1.
解:将“x+y”看成整体,令x+y=A,则
原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2.
上述解题中用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:1+2(x﹣y)+(x﹣y)2=__________.
(2)因式分解:(a+b)(a+b﹣4)+4
(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
七年级数学答案
1.D;
2.C;
3.C;
4.A;
5.A;
6.D;
7.D;
8.D ;
9. B;10.D ;11. B; 12.A;13.C; 14.C 15.1.02×106 ;16. 3a﹣4≤1 ; 17. ±2 ; 18. 3 ; 19. 0≤a<1 ; 20. 0
21.
解:,
由①得:x≥1,…………………………………………………3分
由②得x<4,……………………………………………………6分
……………………………8分
则不等式组的解集为:1≤x<4.…………………………… 10分
22.解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x………………………3分
=x2+3,………………………………………………6分
把x=2代入得:原式=22+3=7.……………………………9分
23.解:(1)∵在△BCD中,BC=4,BD=5,
∴1<DC<9;………………………………………………………3分
(2)∵AE∥BD,∠BDE=125°,
∴∠AEC=55°,……………………………………………………6分
又∵∠A=55°,
∴∠C=70°.…………………………………………………………9分
24. 解:∵∠1=∠2,
∴AE∥DC,………………………………………………………..1分
∴∠CDE=∠E,………………………………………………………2分
∵∠3=∠E,
∴∠CDE=∠3,………………………………………………………4分
∴DE∥BC,……………………………………………………………5分
∴∠B=∠ADE,………………………………………………………6分
∵∠ADE=180°﹣∠DAE﹣∠E=50°,……………………………9分
∴∠B=50°.…………………………………………………………10分
25.解:设用x张制作盒身,y张制作盒底,……………………………………………1分
根据题意,得,………………………………………………………6分
解得:.………………………………………………………………………….9分答:用20张制作盒身,16张制作盒底可以使盒身与盒底正好配套.………………10分26.【解答】解:(x﹣y+1)2;………………………………………3分
(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,…………5分
故(a+b)(a+b﹣4)+4=(a+b﹣2)2;…………………………………7分
(3)(n+1)(n+2)(n2+3n)+1
=(n2+3n)[(n+1)(n+2)]+1
=(n2+3n)(n2+3n+2)+1
=(n2+3n)2+2(n2+3n)+1………………………………………………………9分
=(n2+3n+1)2,……………………………………………………………………11分
∵n为正整数,
∴n2+3n+1也为正整数,
∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.…….12分。

相关文档
最新文档