8.5.3平面与平面的平行

合集下载

【高中数学】平面与平面平行的判定定理(第1课时) 高一数学下学期课件(人教A版2019必修第二册)

【高中数学】平面与平面平行的判定定理(第1课时) 高一数学下学期课件(人教A版2019必修第二册)
因为这个定义给出了两个平面平行的充要条件,所以可以想到,如果一个平面内的
任意一条直线都与另一个平面平行,那么这两个平面一定平行.
如何判定一个平面内的任意一条直线都平行于另一个平面呢?有没有更简便的
方法?
新知探索
问题1:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个
平面.由此可以想到,如果一个平面内有两条平行或相交的直线都与另一个平面平行
∴//1 1 .而//1 1 ,∴//.
∴,,,四点共面.
练习
变1.如图,在正方体 − 1 1 1 1 中,,,,分别是
1 1 ,1 1 ,1 1 ,1 1 的中点.
求证:(2)平面//平面.
证明(2):易知,//1 1 ,1 1 //,∴//.
,是否就能使这两个平面平行?
我们可以借助以下两个实例进行观察.如图(1),和分别是矩形硬纸片的两条
对边所在直线,它们都和桌面平行,那么硬纸片和桌面平行吗?如图(2),和分别
是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺和桌面平行吗?
(1)
(2)
新知探索
如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行.
下图的长方体模型中,平面内两条相交直线,分别与平面’ ’ ’ ’ 内两
条相交直线’ ’ ,’ ’ 平行.由直线与平面平行的判定定理可知,这两条相交直线
,都与平面’ ’ ’ ’ 平行.此时,平面平行于平面’ ’ ’ ’ .


又 ⊄平面, ⊂平面,
∴//平面.
连接.∵,分别是1 1 ,1 1 的中点,
∴ ⋕ 1 1 .又 ⋕ 1 1 ,∴//且 = .
∴四边形是平行四边形.∴//.

《直线与平面平行的判定》教案、导学案、课后作业

《直线与平面平行的判定》教案、导学案、课后作业

《8.5.2 直线与平面平行》教案第1课时直线与平面平行的判定【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

【教学目标与核心素养】课程目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线与平面平行的判定定理及其应用.难点:直线与平面平行的判定定理,找平行关系.【教学过程】一、情景导入问题1.观察开门与关门,门的两边是什么位置关系.当门绕着一边转动时,此时门转动的一边与门框所在的平面是什么位置关系?【答案】平行.问题2.请同学门将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?桌面内有与l 平行的直线吗?【答案】平行,有.问题3.根据以上实例总结在什么条件下一条直线和一个平面平行? 要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本135-137页,思考并完成以下问题 1、直线与平面平行的判定定理是什么?2、怎样用符号语言表示直线与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、直线与平面平行的判定定理四、典例分析、举一反三题型一直线与平面平行的判断定理的理解 例1 下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α ②若直线l 上有无数个点不在平面α内,则l ∥α ③若直线l 与平面α平行,则l 与α内的任意一条直线都平行 ④若l 与平面α平行,则l 与α内任何一条直线都没有公共点 ⑤平行于同一平面的两直线可以相交A.1B.2C.3D.4【答案】B【解析】①a⊄α,则a∥α或a与α相交,故①不正确;②当l与α相交时,满足条件,但得不出l∥α,故②不正确;③若l∥α,则l与α内的无数条直线异面,并非都平行,故③错误;若l∥α,则l与α内的任何直线都没有公共点,故④正确;若a∥α,b∥α,则a与b可以相交,也可以平行或异面,故⑤正确.解题技巧(判定定理理解的注意事项)(1)明确判定定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β【答案】D.【解析】A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.题型二直线与平面平行的判断定理的应用例2 在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.【答案】证明见解析【解析】∵AE=EB,AF=FB,∴EF∥BD.EF⊄平面BCD,BD⊂平面BCD.∴ EF ∥平面BCD解题技巧: (判定定理应用的注意事项) (1)欲证线面平行可转化为线线平行解决.(2)判断定理中有三个条件,缺一不可,注意平行关系的寻求.常常利用平行四边形、三角形中位线、等比例线段、相似三角形.跟踪训练二1.如图,已知OA,OB,OC 交于点O,AD 12OB,E,F 分别为BC,OC 的中点.求证:DE∥平面AOC.【答案】证明见解析 【解析】 证明 在△OBC 中, 因为E,F 分别为BC,OC 的中点, 所以FE 12OB,又因为AD12OB,所以FE AD.所以四边形ADEF 是平行四边形. 所以DE ∥AF.又因为AF ⊂平面AOC,DE ⊄平面AOC. 所以DE ∥平面AOC. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本139页练习1、2、3题,143页习题8.5的4、5、6题.【教学反思】本节课,从内容上来说,学生基本掌握判定定理,但是在应用中,书写证明过程不太规范,需提高学生的逻辑思维能力.从方法上来说,通过本节课判定定理的学习,学生理解证明一条直线与一个平面平行,只要在这个平面内找出一条与此直线平行的直线就可以了,让学生初步感知空间问题可以转化为平面问题解决.《8.5.2 直线与平面平行》导学案第1课时直线与平面平行的判定【学习目标】知识目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线与平面平行的判定定理及其应用.【学习难点】:直线与平面平行的判定定理,找平行关系.【学习过程】一、预习导入阅读课本135-137页,填写。

8.5.3 平面与平面平行课件ppt

8.5.3 平面与平面平行课件ppt
∴PM∥AB1.
又AB1∥C1D,∴PM∥C1D.
又PM⊄平面C1BD,C1D⊂平面C1BD,
∴PM∥平面C1BD.
同理MN∥平面C1BD.
又PM∩MN=M,
∴平面PMN∥平面C1BD.
探究二
面面平行性质定理的应用
例2如图,已知平面α∥平面β,点P是平面α,β外的一点(不在α与β之间),直线
PB,PD分别与α,β相交于点A,B和C,D.
D.平面α内有无数个点到平面β的距离相等且不为0,那么这两个平面平行
或相交
答案 CD
解析 如图①,在平面α内作α,β交线的无数条平行线,可知A,B错误;
对C,由题意可知AB∥β,BC∥β,AB∩BC=B,由面面平行的判定定理可知
α∥β,C正确;
对D,参考选项C的解析,假设α内有一个点位于点A处,而其余点均位于直线
所以PQ∥平面CBE.
(方法二)如图②,连接AC,则Q∈AC,且Q是AC的中点.
因为P是AE的中点,所以PQ∥EC.
因为PQ⊄平面CBE,EC⊂平面CBE,
所以PQ∥平面CBE.
方法点睛 (1)线线、线面、面面间的平行关系的判定和性质,常常是通过
线线关系、线面关系、面面关系的相互转化来表达的,因此在证明有关问

4
3
15
∴ = ,∴5 = ,∴CD= 4 ,
15 27
∴PD=PC+CD=3+ 4 = 4 .
反思感悟 证明线线平行的方法
(1)定义法:在同一个平面内没有公共点的两条直线平行.
(2)平行线的传递性:平行于同一条直线的两条直线平行.

(3)线面平行的性质定理: ⊂
⇒a∥b,应用时题目条件中需有线面平行.

平面与平面平行课件-高一下学期数学人教A版(2019)必修第二册

平面与平面平行课件-高一下学期数学人教A版(2019)必修第二册
证明:如图,平面α//平面β ,平面γ分别与平面α,β相交 于直线a,b. ∵α∩γ=a,β∩γ=b, ∴a⊂α,b⊂β. 又 α//β, ∴a,b没有公共点. 又 a,b同在平面γ内, ∴a//b.
知识点二 平面与平面平行性质定理
二、平面与平面平行性质定理
性质定理:两个平面平行,如果另一个平面与这两个平面相交,那么 两条交线平行. 符号语言: α//β,α∩γ=a,β∩γ=b a//b.
3
PARTTHREE
课堂小结
课堂小结
KE TANG XIAO JIE
请回忆本节课内容,并回答下列问题:
(1)你学习了哪些知识? (2)本节课所学的知识中蕴含了什么样的数学思想?
类比、转化,特殊与一般的数学思想 (3)直线、平面之间的平行关系是如何相互转化的??
课堂小结
KE TANG XIAO JIE
知识点二 平面与平面平行性质定理
问题4:类比直线与平面平行的研究,下面我们研究平面与平面平行 的性质,也就是以平面与平面平行为条件,探究可以推出那些结论. 类比直线与平面平行的研究,已知两个平面平行,我们可以得到哪 些结论?
追问4.1:在分别位于两个平行平面内的直线中,平行是一种特殊情况,什么时候 这两条直线平行呢?在图中,平面A′B′C′D′与平面ABCD平行,在平面ABCD内过 点D有平行于直线B′D′的直线吗?如果有,怎样画出这条直线?
追问1.1:减少到一条可以吗?为什么? 分析:也就是说“如果一个平面内的一条直线平行于另一个平面,那么这两个 平面平行”.通过分析,这是不一定成立的.
知识点一 平面与平面平行判定定理
问题2:根据基本事实的推论2,3:两条平行直线或两条相交直线, 都可以确定一个平面.由此可以想到,“一个平面内两条平行直线 与另一个平面平行”或“一个平面内两条相交直线与另一个平面平 行”,能否判断这两个平面平行?用自然语言和符号语言表示你的 结论.

高中数学 第八章 立体几何初步 8.5 空间直线、平面的平行 8.5.2 第1课时 直线与平面平行的

高中数学 第八章 立体几何初步 8.5 空间直线、平面的平行 8.5.2 第1课时 直线与平面平行的

8.5.2 直线与平面平行第1课时直线与平面平行的判定[目标] 1.理解并掌握直线与平面平行的判定定理,明确定理中“平面外”三个字的重要性;2.能利用判定定理证明线面平行问题.[重点] 直线与平面平行的判定定理及应用.[难点] 在应用时在平面内找到直线与已知直线平行.要点整合夯基础知识点直线与平面平行的判定定理[填一填][答一答]1.直线和平面平行的判定定理中如果没有“不在一个平面内”的限制条件,结论还成立吗?为什么?提示:结论不一定成立.因为直线a可能在平面α内.2.如果一条直线与平面内无数条直线平行,那么这条直线与这个平面平行吗?提示:不一定平行,有可能直线在平面内.3.直线a∥直线b,直线a∥平面α,那么直线b与平面α的位置关系是什么?提示:b∥α或b⊂α.典例讲练破题型类型一线面平行判定定理的理解[例1]下列说法中正确的是()A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线a在平面α外,则a∥αC.若直线a∥b,b⊂α,则a∥αD.若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线[解析]选项A中,直线l⊂α时,l与α不平行;直线在平面外包括直线与平面平行和直线与平面相交两种情况,所以选项B不正确;选项C中直线a可能在平面α内;选项D正确.故选D.[答案] D正确理解直线与平面平行的判定定理和掌握直线和平面的位置关系是解决此类题目的关键,可以采用直接法,也可以使用排除法.[变式训练1]设b是一条直线,α是一个平面,则由下列条件不能得出b∥α的是(A) A.b与α内一条直线平行B.b与α内所有直线都无公共点C.b与α无公共点D.b不在α内,且与α内的一条直线平行解析:A 中b 可能在α内;B 、C 显然是正确的;D 是线面平行的判定定理,所以选A. 类型二 线面平行的证明[例2] 如图,在直三棱柱ABC -A 1B 1C 1中,M ,N 分别为棱AC ,A 1B 1的中点,求证:MN ∥平面BCC 1B 1.[分析] 要证明直线a 与平面α平行的关键是在平面α内找一条直线b ,使a ∥b .考虑是否有已知的平行线,若无已知的平行线,则根据已知条件作出平行线(有中点常作中位线).[证明] 取BC 的中点P ,连接B 1P 和MP ,因为M ,P 分别为棱AC ,BC 的中点,所以MP ∥AB ,且MP =12AB , 因为ABC -A 1B 1C 1是直三棱柱,所以A 1B 1∥AB ,A 1B 1=AB ,因为N 为棱A 1B 1的中点,所以B 1N ∥AB ,且B 1N =12AB . 所以B 1N ∥PM ,且B 1N =PM .所以MNB 1P 是平行四边形,所以MN ∥PB 1,又因为MN ⊄平面BCC 1B 1,PB 1⊂平面BCC 1B 1,所以MN ∥平面BCC 1B 1.判定直线与平面平行有两种方法:一是用定义;二是用判定定理.使用判定定理时关键是设法在平面内找到一条与已知直线平行的直线,一般是遵循先找后作的原则,即现有的平面中没有出现与已知直线平行的直线时,我们再考虑添加辅助线.具体操作中,我们可以利用几何体的特征,合理利用中位线定理,或者构造平行四边形等证明两直线平行.[变式训练2] 如图,S 是平行四边形ABCD 所在平面外一点,M ,N 分别是SA ,BD 上的点,且AM SM =DN NB.求证:MN ∥平面SBC .证明:如图,连接AN 并延长交BC 于P ,连接SP .因为AD ∥BC ,所以DN NB =AN NP, 又因为AM SM =DN NB ,所以AM SM =AN NP, 所以MN ∥SP ,又MN ⊄平面SBC ,SP ⊂平面SBC ,所以MN ∥平面SBC .类型三 线面平行判定定理的综合应用[例3] 一木块如图所示,点P 在平面VAC 内,过点P 将木块锯开,使截面平行于直线VB 和AC ,应该怎样画线?[解]在平面VAC内经过P作EF∥AC,且与VC的交点为F,与VA的交点为E.在平面VAB内,经过点E作EH∥VB,与AB交于点H,如图所示.在平面VBC内经过点F作FG∥VB,与BC交于点G.连接GH,则EF、FG、GH、HE为截面与木块各面的交线,即EF、FG、GH、HE就是应画的线.利用直线和平面平行的判定定理来证明线面平行,关键是寻找平面内与已知直线平行的直线,常利用平行四边形、三角形中位线、基本事实4等.[变式训练3]如图,设P,Q是正方体ABCD-A1B1C1D1的面AA1D1D,面A1B1C1D1的中心,证明:PQ∥平面ABB1A1.证明:连接AB1,因为P,Q分别为AD1,B1D1的中点,所以PQ∥AB1,AB1⊂平面ABB1A1,PQ⊄平面ABB1A1.所以PQ∥平面ABB1A1.课堂达标练经典1.如果直线a平行于平面α,则(B)A.平面α内有且只有一条直线与a平行B.平面α内无数条直线与a平行C.平面α内不存在与a平行的直线D.平面α内的任意直线与直线a都平行2.能保证直线a与平面α平行的条件是(D)A.b⊂α,a∥bB.b⊂α,c∥α,a∥b,a∥cC.b⊂α,A、B∈a,C、D∈b,且AC=BDD.a⊄α,b⊂α,a∥b3.已知l、m是两条直线,α是平面,若要得到“l∥α”,则需要在条件“m⊂α,l∥m”中另外添加的一个条件是l⊄α.解析:根据直线与平面平行的判定定理,知需要添加的一个条件是“l⊄α”.4.一块矩形木板ABCD的一边AB在平面α内,把这块矩形木板绕AB转动,在转动的过程中,AB的对边CD与平面α的位置关系是CD∥α或CD⊂α.解析:在旋转过程中CD∥AB,由直线与平面平行的判定定理得CD∥α,或CD⊂α.5.如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q分别是棱AB,AD,DD1,BB1的中点.求证:BC1∥平面EFPQ.证明:如图,连接AD1,由ABCD-A1B1C1D1是正方体,知C1D1綉BA,所以四边形ABC1D1为平行四边形,所以AD1∥BC1,因为F,P分别是AD,DD1的中点,所以FP∥AD1,所以BC1∥FP.又FP⊂平面EFPQ,BC1⊄平面EFPQ,所以BC1∥平面EFPQ.——本课须掌握的问题判断或证明线面平行的常用方法:(1)定义法:证明直线与平面无公共点(不易操作).(2)判定定理法:a⊄α,b⊂α,a∥b⇒a∥α.(3)排除法:证明直线与平面不相交,直线也不在平面内.。

8.5.1空间直线、平面的平行课件(人教版)

8.5.1空间直线、平面的平行课件(人教版)
那么该直线与交线平行.
符号表示 // , ⊂ , ∩ = //.
简记:线面平行,则线线平行.
作用:判定线线平行的重要依据.
关键:寻找面面交线.
β
α
a
b
应用举例
如图所示的一块木料中,棱平行于面A′C′.
(1)要经过面A′C′内的一点 和棱 将木料锯开,在木料表面应该怎样画线?
动.在转动的过程中( 离开桌面), 的对边与桌面有公共点吗?
边与桌面平行吗?
无论门扇转动到什么位置,因为
转动的一边与固定的一边总是平
行的,所以它与墙面是平行的;
(1)
(2)
硬纸板的边与 平行,只要
边 紧贴着桌面,边转动时
就不可能与桌面有公共点,所以
它与桌面平行.
新知探究
直线与平面平行的判定定理
如果平面外一条直线与此平面内的一条直线平行,那么该直线与
a
此平面平行.
符号表示

⊄α, ⸦,且//
//.
处理空间位置关系常用方法:
直线间的平行
空间几何问题




直线与平面的平行
平面几何问题
α
b
新知探究
求证:空间四边形相邻两边中点的连线平行于经过另外两边的平面.
求证:过直线的平面与平面相交于 ,则//.
已知: // , ⊂ , ∩ = .
求证: //.
证明:∵ ∩ = ,
β
a
∴ ⊂ .
又//,
∴ 与无公共点.
又 ⊂ , ⊂ ,
∴//.
α
b
新知探究
直线与平面平行的性质定理
一条直线与一个平面平行,如果过该直线的平面与此平面相交,

8.5.3 第一课时 平面与平面平行的判定

8.5.3 第一课时 平面与平面平行的判定

8.5.3 平面与平面平行第一课时平面与平面平行的判定课标要求素养要求1.借助长方体,通过直观感知,归纳出平面与平面平行的判定定理,并加以证明.2.会应用平面与平面平行的判定定理证明平面与平面平行.在发现、推导和应用平面与平面平行的判定定理的过程中,发展学生的数学抽象素养、逻辑推理素养和直观想象素养.教材知识探究贴瓷砖的工人在检验地面是否水平时,只需将水准器交叉放两次,若水准器的气泡都居中就能判定地面是水平的.问题(1)这个实例给出了判断两平面平行的一种怎样的方法?(2)若一个平面内有两条直线平行于另一个平面,那么这两个平面平行吗?提示(1)在一个平面内找两条相交线,分别平行于另一个平面即可.(2)不一定,这两个平面也可能相交.平面与平面平行的判定定理注意定理条件中直线a和b相交文字语言如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行符号语言a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α图形语言教材拓展补遗[微判断]1.若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行.(×)2.若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行.(√)3.若α∥β,β∥γ,则α∥γ.(√)4.若a⊂α,α∥β,则a∥β.(√)提示 1.两平面也可能相交.[微训练]在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G解析如图,∵EG∥E1G1,EG平面E1FG1,E1G1⊂平面E1FG1,∴EG∥平面E1FG1.又G1F∥H1E,同理可证H1E∥平面E1FG1,又H1E∩EG=E,H1E,EG⊂平面EGH1,∴平面E1FG1∥平面EGH1.答案 A[微思考]1.三角板的一条边所在平面与平面α平行,这个三角板所在平面与平面α平行吗?提示不一定.2.三角板的两条边所在直线分别与平面α平行,这个三角板所在平面与平面α平行吗?提示平行.3.如果一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行(请自己试着证明).题型一面面平行判定定理的理解抓住面面平行判定定理的5个条件,缺一不可【例1】α,β是两个不重合的平面,在下列条件下,可判定α∥β的是()A.α,β都平行于直线l,mB.α内有三个不共线的点到β的距离相等C.l,m是α内的两条直线且l∥β,m∥βD.l,m是异面直线且l∥α,m∥α,l∥β,m∥β解析对A,当α∩β=a,l∥m∥a时,不能推出α∥β;对B,当α∩β=a,且在平面α内同侧有两点,另一侧有一个点,三点到平面β的距离相等时,不能推出α∥β;对C,当l∥m时,不能推出α∥β;对D,∵l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,∴α内存在两条相交直线与平面β平行,故可得α∥β.答案 D规律方法(1)在判定两个平面是否平行时,一定要强调一个平面内的“两条相交直线”这个条件,线不在多,相交就行.(2)借助于常见几何体(如正方体)进行分析.【训练1】如果一个锐角的两边与另一个角的两边分别平行,下列结论一定成立的是()A.这两个角相等B.这两个角互补C.这两个角所在的两个平面平行D.这两个角所在的两个平面平行或重合答案 D题型二平面与平面平行的证明线∥面⇒面∥面【例2】如图,在多面体ABCDEF中,底面ABCD是平行四边形,点G和点H 分别是CE和CF的中点.证明:平面BDGH∥平面AEF.证明在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF,又因为GH平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH,在△ACF中,因为OA=OC,CH=HF,所以OH∥AF,又因为OH平面AEF,AF⊂平面AEF,所以OH∥平面AEF.又因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.规律方法平面与平面平行的判定方法(1)定义法:两个平面没有公共点.(2)判定定理:一个平面内的两条相交直线分别平行于另一个平面.(3)转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.(4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.【训练2】在正四棱台ABCD-A1B1C1D1中,A1B1=a,AB=2a,AA1=2a,E,F分别是AD,AB的中点.证明:平面EFB1D1∥平面BDC1.证明 连接A 1C 1,AC ,分别交B 1D 1,EF ,BD 于M ,N ,P ,连接MN ,C 1P .由题意,BD ∥B 1D 1. ∵BD平面EFB 1D 1,B 1D 1⊂平面EFB 1D 1, ∴BD ∥平面EFB 1D 1, 又∵A 1B 1=a ,AB =2a , ∴MC 1=12A 1C 1=22a .又∵E ,F 分别是AD ,AB 的中点, ∴NP =14AC =22a . ∴MC 1=NP .又∵AC ∥A 1C 1,∴MC 1∥NP . ∴四边形MC 1PN 为平行四边形. ∴PC 1∥MN . ∵PC 1平面EFB 1D 1,MN ⊂平面EFB 1D 1,∴PC 1∥平面EFB 1D 1,∵PC 1∩BD =P ,PC 1,BD ⊂平面BDC 1, ∴平面EFB 1D 1∥平面BDC 1.题型三 线面平行与面面平行的综合应用 探究1 面面平行中点的位置的确定【例3-1】 在正方体ABCD -A 1B 1C 1D 1中,O 为BD 的中点,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO?解当Q为C1C的中点时,平面D1BQ∥平面P AO.证明如下:在△DBD1中,P是DD1中点,O为DB中点,∴PO∥D1B,又∵PO⊂平面P AO,D1B平面P AO,∴D1B∥平面P AO.在正方体中,BQ∥AP,BQ平面P AO,P A⊂平面P AO,∴BQ∥平面P AO,又∵D1B∩BQ=B,D1B,BQ⊂平面D1BQ,∴平面D1BQ∥平面P AO,即当点Q为C1C的中点时,平面D1BQ∥平面P AO. 探究2平行关系的探究【例3-2】已知点S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG 为△SAB中AB上的高,D,E,F分别是AC,BC,SC的中点,试判断SG与平面DEF的位置关系,并给予证明.证明分析可知SG∥平面DEF.证明如下:法一连接CG,交DE于点H,连接FH.∵DE 是△ABC 的中位线, ∴DE ∥AB .在△ACG 中,D 是AC 的中点,且DH ∥AG , ∴H 为CG 的中点.∵F 是SC 的中点,∴FH 是△SCG 的中位线,∴FH ∥SG . 又SG平面DEF ,FH ⊂平面DEF ,∴SG ∥平面DEF .法二 ∵EF 为△SBC 的中位线,∴EF ∥SB . ∵EF平面SAB ,SB ⊂平面SAB ,∴EF ∥平面SAB .同理可得DF ∥平面SAB .又EF ∩DF =F ,EF ,DF ⊂平面DEF , ∴平面SAB ∥平面DEF .又SG ⊂平面SAB ,∴SG ∥平面DEF .规律方法 解决线面平行与面面平行的综合问题的策略(1)立体几何中常见的平行关系是线线平行、线面平行和面面平行,这三种平行关系不是孤立的,而是相互联系、相互转化的. (2)线线平行――→判定线面平行――→判定面面平行所以平行关系的综合问题的解决必须灵活运用三种平行关系的判定定理.【训练3】 如图所示,P 是△ABC 所在平面外的一点,点A ′,B ′,C ′分别是△PBC ,△PCA ,△P AB 的重心.(1)求证:平面ABC ∥平面A ′B ′C ′; (2)求△A ′B ′C ′与△ABC 的面积之比.(1)证明 分别连接P A ′,PB ′,PC ′并延长交BC ,AC ,AB 于点D ,E ,F ,连接DE ,EF ,DF .∵点A′,C′分别是△PBC,△P AB的重心,∴P A′=23PD,PC′=23PF,∴A′C′∥DF.∵A′C′平面ABC,DF⊂平面ABC,∴A′C′∥平面ABC.同理,A′B′∥平面ABC. 又A′C′∩A′B′=A′,A′C′,A′B′⊂平面A′B′C′,∴平面ABC∥平面A′B′C′.(2)解由(1)知A′C′∥DF且A′C′=23DF,又DF∥AC且DF=12AC,∴A′C′∥AC且A′C′=13AC.同理,A′B′∥AB且A′B′=13AB,B′C′∥BC且B′C′=13BC,∴△A′B′C′∽△ABC,∴S△A′B′C′∶S△ABC=1∶9.一、素养落地1.通过探索发现平面与平面平行的判定定理,重点培养数学抽象素养,通过应用平面与平面平行的判定定理,提升逻辑推理素养及直观想象素养.2.平面与平面平行的判定定理的理解(1)平面内两条相交直线a,b,即a⊂α,b⊂α,a∩b=P.(2)两条相交直线a,b都与平面β平行,即a∥β,b∥β.这两个条件缺一不可.二、素养训练1.在正方体中,相互平行的面不会是()A.前后相对侧面B.上下相对底面C.左右相对侧面D.相邻的侧面解析由正方体的模型知前后面、上下面、左右面都相互平行,故选D.答案 D2.下列命题中正确的是()A.一个平面内三条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内所有直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内有几条直线都平行于另一平面,那么这两个平面平行解析如果一个平面内所有直线都平行于另一个平面,即两个平面没有公共点,则两平面平行,故选B.答案 B3.如图,已知在三棱锥P-ABC中,D,E,F分别是棱P A,PB,PC的中点,则平面DEF与平面ABC的位置关系是________.解析在△P AB中,因为D,E分别是P A,PB的中点,所以DE∥AB.又DE平面ABC,AB⊂平面ABC,因此DE∥平面ABC.同理可证EF∥平面ABC. 又DE∩EF=E,DE,EF⊂平面DEF,所以平面DEF∥平面ABC.答案平行4.如图,在正方体ABCD-A1B1C1D1中,P为DD1中点.能否同时过D1,B两点作平面α,使平面α∥平面P AC?证明你的结论.解能作出满足条件的平面α,其作法如下:如图,连接BD1,取AA1中点M,连D1M,则BD1与D1M所确定的平面即为满足条件的平面α.证明如下:连接BD交AC于O,连接PO,则O为BD的中点,又P为DD1的中点,则PO∥D1B.∵BD1平面P AC,OP⊂平面P AC,故D1B∥平面P AC.又因为M为AA1的中点,故D1M∥P A,又D1M平面P AC,P A⊂平面P AC,从而D1M∥平面P AC.又因为D1M∩D1B=D1,D1M⊂α,D1B⊂α,所以平面α∥平面P AC.基础达标一、选择题1.下列四个说法中正确的是()A.平面α内有无数个点到平面β的距离相等,则α∥βB.α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥βC.平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥βD.平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β解析由面面平行的判定定理知C正确.答案 C2.如图所示,设E,F,E1,F1分别是长方体ABCD-A1B1C1D1的棱AB,CD,A1B1,C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是()A.平行B.相交C.异面D.不确定解析∵A1E∥BE1,A1E平面BCF1E1,BE1⊂平面BCF1E1,∴A1E∥平面BCF1E1. 同理,A1D1∥平面BCF1E1.又A1E∩A1D1=A1,A1E,A1D1⊂平面EFD1A1,∴平面EFD1A1∥平面BCF1E1.答案 A3.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六边形,则此六棱柱的面中互相平行的有()A.1对B.2对C.3对D.4对解析由图知平面ABB1A1∥平面EDD1E1,平面BCC1B1∥平面FEE1F1,平面AFF1A1∥平面CDD1C1,平面ABCDEF∥平面A1B1C1D1E1F1,∴此六棱柱的面中互相平行的有4对.答案 D4.在正方体ABCD-A1B1C1D1中,M为棱A1D1上的动点,O为底面ABCD的中心,点E,F分别是A1B1,C1D1的中点,下列平面中与OM扫过的平面平行的是() A.平面ABB1A1 B.平面BCC1B1C.平面BCFED.平面DCC1D1解析取AB,DC的中点分别为点E1和点F1,连接E1F1,则E1F1过点O,OM 扫过的平面即为平面A1E1F1D1(如图),故平面A1E1F1D1∥平面BCFE.答案 C5.经过平面α外两点,作与α平行的平面,则这样的平面可以作()A.1个或2个B.0个或1个C.1个D.0个解析①当经过两点的直线与平面α平行时,可作出一个平面β使β∥α.②当经过两点的直线与平面α相交时,由于作出的平面与平面α至少有一个公共点,故经过两点的平面都与平面α相交,不能作出与平面α平行的平面.故满足条件的平面有0个或1个.答案 B二、填空题6.已知平面α,β和直线a,b,c,且a∥b∥c,a⊂α,b,c⊂β,则α与β的关系是________________.解析b,c⊂β,a⊂α,a∥b∥c,若α∥β,满足要求;若α与β相交,交线为l,b∥c∥l,a∥l,满足要求,故答案为相交或平行.答案相交或平行7.已知平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,则α与β的位置关系是________(填“平行”或“相交”).解析若α∩β=l,则在平面α内,与l相交的直线a,设a∩l=A,对于β内的任意直线b,若b过点A,则a与b相交,若b不过点A,则a与b异面,即β内不存在直线b∥a,矛盾.故α∥β.答案平行8.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.解析以ABCD为下底面还原正方体,如图:则易判定四个命题都是正确的.答案①②③④三、解答题9.在如图所示的几何体中,三个侧面AA1B1B,BB1C1C,CC1A1A都是平行四边形.求证:平面ABC∥平面A1B1C1.证明∵四边形AA1B1B是平行四边形,∴A1B1∥AB,又A1B1平面ABC,AB⊂平面ABC.∴A1B1∥平面ABC,同理B1C1∥平面ABC,而A1B1∩B1C1=B1,A1B1,B1C1⊂平面A1B1C1,∴平面A1B1C1∥平面ABC.10.如图,已知在四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q 分别在P A,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.证明∵PM∶MA=BN∶ND=PQ∶QD,∴MQ∥AD,NQ∥BP,而BP⊂平面PBC,NQ平面PBC,∴NQ∥平面PBC. 又∵四边形ABCD为平行四边形,∴BC∥AD,∴MQ∥BC,而BC⊂平面PBC,MQ平面PBC,∴MQ∥平面PBC.又MQ∩NQ=Q,MQ,NQ⊂平面MNQ,∴平面MNQ∥平面PBC.能力提升11.如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH的边上及其内部运动,则M满足________时,有MN∥平面B1BDD1.解析连接HN,FH,FN.∵HN∥DB,FH∥D1D,HN∩HF=H,BD∩DD1=D,HN,HF⊂平面FHN,DB,DD1⊂平面B1BDD1,∴平面FHN∥平面B1BDD1.∵点M在四边形EFGH的边上及其内部运动,∴M∈FH.答案M在线段FH上12.如图,在四棱锥C-ABED中,四边形ABED是正方形,点G,F分别是线段EC,BD的中点.(1)求证:GF∥平面ABC;(2)若点P为线段CD的中点,平面GFP与平面ABC有怎样的位置关系?并证明.(1)证明如图,连接AE,由F是线段BD的中点,四边形ABED为正方形得F 为AE的中点,∴GF为△AEC的中位线,∴GF∥AC.又∵AC⊂平面ABC,GF平面ABC,∴GF∥平面ABC.(2)解平面GFP∥平面ABC,证明如下:连接FP,GP.∵点F,P分别为BD,CD的中点,∴FP为△BCD的中位线,∴FP∥BC.又∵BC⊂平面ABC,FP平面ABC,∴FP∥平面ABC,又GF∥平面ABC,FP∩GF =F,FP⊂平面GFP,GF⊂平面GFP,∴平面GFP∥平面ABC.创新猜想13.(多选题)在正方体ABCD-A1B1C1D1中,点E,F,G分别是棱A1B1,B1C1,BB1的中点,则()A.FG∥平面AA1D1DB.EF∥平面BC1D1C.FG∥平面BC1D1D.平面EFG∥平面BC1D1解析∵在正方体ABCD-A1B1C1D1中,点E,F,G分别是棱A1B1,B1C1,BB1的中点,∴FG∥BC1.∵BC1∥AD1,∴FG∥AD1,又∵FG平面AA1D1D,AD1⊂平面AA1D1D,∴FG∥平面AA1D1D,故选项A正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交,故选项B错误;∵FG∥BC1,FG平面BC1D1,BC1⊂平面BC1D1,∴FG∥平面BC1D1,故选项C正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故选项D错误.答案AC14.(多选题)如图是四棱锥的平面展开图,其中四边形ABCD为正方形,点E,F,G,H分别为P A,PD,PC,PB的中点,则在原四棱锥中()A.平面EFGH∥平面ABCDB.BC∥平面P ADC.AB∥平面PCDD.平面P AD∥平面P AB解析把平面展开图还原为四棱锥如图所示,则EH∥AB,又EH平面ABCD,AB⊂平面ABCD,所以EH∥平面ABCD.同理可证EF∥平面ABCD,又EF∩EH=E,EF,EH⊂平面EFGH,所以平面EFGH∥平面ABCD,故选项A正确;平面P AD,平面PBC,平面P AB,平面PDC是四棱锥的四个侧面,则它们两两相交,故选项D错误;∵AB∥CD,AB平面PCD,CD⊂平面PCD,∴AB∥平面PCD,同理BC∥平面P AD,故选项B,C正确.答案ABC。

8.5空间直线、平面的平行-2020-2021学年人教A版(2019)高中数学必修第二册同步讲义

8.5空间直线、平面的平行-2020-2021学年人教A版(2019)高中数学必修第二册同步讲义

8.5 空间直线、平面的平行【知识点一】直线与直线平行1.平行公理(公理4) 平行于同一条直线的两条直线互相平行.符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c . 2.等角定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.【知识点二】直线与平面平行的判定【知识点三】平面与平面平行的判定定理【知识点四】直线与平面平行的性质【知识点五】平面与平面平行的性质【例1-1】下列四个结论中错误命题的个数是________.①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.【变式1】下列三种说法:①若直线a,b相交,b,c相交,则a,c相交;②若a∥b,则a,b与c所成的角相等;③若a⊥b,b⊥c,则a∥c.其中正确的个数是________.【例1-2】(公理4与等角定理的应用) 如图,已知在棱长为a的正方体ABCD—A1B1C1D1中,M,N 分别是棱CD,AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.【变式1】如图所示,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若AC ⊥BD ,求证:四边形EFGH 是矩形.【例2-1】如图,正方体1111ABCD A B C D 中,E 为1DD 中点.求证:1//BD 平面AEC .【变式1】如图,四边形ABCD 是平行四边形,P 是平面ABCD 外一点,M ,N 分别是AB ,PC 的中点.求证:MN ∥平面P AD .【变式2】如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.求证:1//AB 平面1BC D ;【例3-1】(平面与平面平行的证明)如如图,在正方体ABCD­A1B1C1D1中,S是B1D1的中点,E,F,G 分别是BC,DC,SC的中点,求证:(1)直线EG//平面BDD1B1;(2)平面EFG//平面BDD1B1.【变式1】如图,在四棱锥P-ABCD中,点E为P A的中点,点F为BC的中点,底面ABCD是平行四边形,对角线AC,BD交于点O.求证:平面EFO∥平面PCD.【变式2】如图,在正方体ABCD-A1B1C1D1中,点S是B1D1的中点,点E,F,G分别是BC,DC 和SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【例4-1】(线面平行的性质)如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.【变式1】如图所示,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.【变式2】如图,在五面体EF ABCD中,已知四边形ABCD为梯形,AD∥BC,求证:AD∥EF.【例5-1】(面面平行的性质)(1)如图,平面α∥β,A,C∈α,B,D∈β,直线AB与CD交于点S,且AS=3,BS=9,CD=34,求CS的长.(2)如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段P A,PB,PC 于A′,B′,C′,若P A′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于()A.2∶25 B.4∶25C.2∶5 D.4∶5【变式1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.(1)求证:PQ∥平面DCC1D1;(2)求PQ的长;(3)求证:EF∥平面BB1D1D.课后练习题1.如图所示,在三棱柱ABC ­111A B C 中,E ,F ,G ,H 分别是AB ,AC ,11A B ,11A C 的中点,求证:(1)B ,C ,H ,G 四点共面;(2)1A E ∥平面BCHG .2.如图,在三棱锥A ﹣BCD 中,AB ⊥平面BCD ,BC ⊥BD ,BC=3,BD=4,直线AD 与平面BCD 所成的角为45°,点E ,F 分别是AC ,AD 的中点.(1)求证:EF ∥平面BCD ;(2)求三棱锥A ﹣BCD 的体积.3.如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.4.如图所示,在四棱锥P-ABCD中,BC//平面PAD,12BC AD,E是PD的中点.(1)求证:BC//AD;(2)求证:CE//平面PAB.5.如图,梯形ABCD中,//BC AD,E是PD的中点,过BC和点E的平面与PA交于点F.求证://BC EF.6.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点,求证:平面AFH∥平面PCE.7.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AD∥BC,平面A1DCE与B1B交于点E.求证:EC∥A1D.8.5 空间直线、平面的平行【知识点一】直线与直线平行1.平行公理(公理4) 平行于同一条直线的两条直线互相平行.符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c . 2.等角定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.【知识点二】直线与平面平行的判定【知识点三】平面与平面平行的判定定理【知识点四】直线与平面平行的性质【知识点五】平面与平面平行的性质【例1-1】下列四个结论中错误命题的个数是________.①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.【答案】2【解析】①④均为错误命题.①可举反例,如a,b,c三线两两垂直.④如图甲,c,d与异面直线l1,l2交于四个点,此时c,d异面;当点A在直线l1上运动(其余三点不动)时,会出现点A与B重合的情形,如图乙所示,此时c,d共面相交.【变式1】下列三种说法:①若直线a,b相交,b,c相交,则a,c相交;②若a∥b,则a,b与c所成的角相等;③若a⊥b,b⊥c,则a∥c.其中正确的个数是________.【答案】 1【解析】若a,b相交,b,c相交,则a,c相交、平行、异面均有可能,故①不对;若a⊥b,b⊥c,则a,c平行、相交、异面均有可能,故③不对;②正确.【例1-2】(公理4与等角定理的应用) 如图,已知在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1.证明 (1)如图 ,连结AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ACD 的中位线, ∴MN ∥AC ,且MN =12AC .由正方体的性质,得 AC ∥A 1C 1,且AC =A 1C 1. ∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知,MN ∥A 1C 1.又ND ∥A 1D 1,且∠DNM 与∠D 1A 1C 1的两边的方向相同,∴∠DNM =∠D 1A 1C 1.【变式1】如图所示,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若AC ⊥BD ,求证:四边形EFGH 是矩形.证明 (1)如图所示,连结EF ,FG ,GH ,HE ,在△ABD 中,∵E ,H 分别是AB ,AD 的中点,∴EH ∥BD ,且EH =12BD .同理FG ∥BD ,且FG =12BD ,∴EH ∥FG ,且EH =FG ,∴E ,F ,G ,H 四点共面.(2)由(1)知EH ∥FG ,且EH =FG ,∴四边形EFGH 为平行四边形.∵HG 是△ADC 的中位线,∴HG ∥AC .又EH ∥BD ,AC ⊥BD ,∴EH ⊥HG ,∴四边形EFGH 为矩形. 【例2-1】如图,正方体1111ABCD A B C D -中,E 为1DD 中点.求证:1//BD 平面AEC .【解析】证明:连结BD 与AC 交于点H ,连结HE . 在1BDD 中,,E H 分别为1DD 、BD 的中点. 得1//EH BD .又因为1BD ⊄平面AEC ,EH ⊂平面AEC , 所以1//BD 平面AEC【变式1】如图,四边形ABCD 是平行四边形,P 是平面ABCD 外一点,M ,N 分别是AB ,PC 的中点.求证:MN ∥平面P AD .【解析】如图,取PD 的中点G ,连接GA ,GN .∵G ,N 分别是△PDC 的边PD ,PC 的中点, ∴GN ∥DC ,GN =12DC .∵M 为平行四边形ABCD 的边AB 的中点, ∴AM =12DC ,AM ∥DC ,∴AM ∥GN ,AM =GN ,∴四边形AMNG 为平行四边形,∴MN ∥AG . 又MN ⊄平面PAD ,AG ⊂平面PAD , ∴MN ∥平面PAD .【变式2】如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.求证:1//AB 平面1BC D ;【答案】详见解析 【解析】如图所示:连接1B C 与1C B 交于点O ,连接OD , 因为O ,D 为中点, 所以1//OD AB ,又OD ⊂平面1BC D ,1AB ⊄平面1BC D , 所以1//AB 平面1BC D ;【例3-1】(平面与平面平行的证明)如如图,在正方体ABCD ­A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC ,SC 的中点,求证:(1)直线EG //平面BDD 1B 1; (2)平面EFG //平面BDD 1B 1.【解析】证明:(1)如图,连接SB ,因为E ,G 分别是BC ,SC 的中点, 所以EG //SB .又因为SB ⊂平面BDD 1B 1,EG ⊄平面BDD 1B 1, 所以直线EG //平面BDD 1B 1.(2)连接SD ,因为F ,G 分别是DC ,SC 的中点, 所以FG //SD .又因为SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, 所以FG //平面BDD 1B 1,由(1)有直线EG//平面BDD1B1;又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG//平面BDD1B1.【变式1】如图,在四棱锥P-ABCD中,点E为P A的中点,点F为BC的中点,底面ABCD是平行四边形,对角线AC,BD交于点O.求证:平面EFO∥平面PCD.【解析】证明因为四边形ABCD是平行四边形,AC∩BD=O,所以点O为BD的中点.又因为点F为BC的中点,所以OF∥CD.又OF⊄平面PCD,CD⊂平面PCD,所以OF∥平面PCD,因为点O,E分别是AC,P A的中点,所以OE∥PC,又OE⊄平面PCD,PC⊂平面PCD,所以OE∥平面PCD.又OE⊂平面EFO,OF⊂平面EFO,且OE∩OF=O,所以平面EFO∥平面PCD.【变式2】如图,在正方体ABCD-A1B1C1D1中,点S是B1D1的中点,点E,F,G分别是BC,DC 和SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【解析】证明(1)如图,连接SB.∵点E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴EG∥平面BDD1B1.(2)连接SD.∵点F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1.又EG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.【例4-1】(线面平行的性质)如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.证明因为AB∥平面MNPQ,平面ABC∩平面MNPQ=MN,且AB⊂平面ABC,所以由线面平行的性质定理,知AB∥MN.同理AB∥PQ,所以MN∥PQ.同理可得MQ∥NP.所以截面MNPQ是平行四边形.【变式1】如图所示,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.证明 连接MO .∵四边形ABCD 是平行四边形, ∴O 是AC 的中点.又∵M 是PC 的中点,∴AP ∥OM . 又∵AP ⊄平面BDM ,OM ⊂平面BDM , ∴AP ∥平面BDM .又∵AP ⊂平面APGH ,平面APGH ∩平面BDM =GH ,∴AP ∥GH .【变式2】如图,在五面体EF ABCD 中,已知四边形ABCD 为梯形,AD ∥BC ,求证:AD ∥EF .证明 ∵AD ∥BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF , ∴AD ∥平面BCEF ,∵AD ⊂平面ADEF ,平面ADEF ∩平面BCEF =EF , ∴AD ∥EF .【例5-1】(面面平行的性质)(1)如图,平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且AS =3,BS =9,CD =34,求CS 的长.证明 设AB ,CD 共面γ,因为γ∩α=AC ,γ∩β=BD ,且α∥β, 所以AC ∥BD ,所以△SAC ∽△SBD ,所以SC SC +CD =SASB ,即SC SC +34=39,所以SC =17.(2)如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A ,PB ,PC 于A ′,B ′,C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶5答案 B解析 ∵平面α∥平面ABC ,平面P AB 与它们的交线分别为A ′B ′,AB ,∴AB ∥A ′B ′, 同理B ′C ′∥BC ,易得△ABC ∽△A ′B ′C ′,S △A ′B ′C ′∶S △ABC =⎝⎛⎭⎫A ′B ′AB 2=⎝⎛⎭⎫P A ′P A 2=425. 【变式1】如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q 分别是BC ,C 1D 1,AD 1,BD 的中点.(1)求证:PQ ∥平面DCC 1D 1;(2)求PQ 的长;(3)求证:EF ∥平面BB 1D 1D .解析:(1)证明 如图,连接AC ,CD 1.因为ABCD 是正方形,且Q 是BD 的中点,所以Q 是AC 的中点,又P 是AD 1的中点,所以PQ ∥CD 1.又PQ ⊄平面DCC 1D 1,CD 1⊂平面DCC 1D 1,所以PQ ∥平面DCC 1D 1.(2)解 由(1)易知PQ =12D 1C =22a .(3)证明 方法一 取B 1D 1的中点O 1,连接FO 1,BO 1,则有FO 1∥B 1C 1且FO 1=12B 1C 1.又BE ∥B 1C 1且BE =12B 1C 1, 所以BE ∥FO 1,BE =FO 1.所以四边形BEFO 1为平行四边形,所以EF ∥BO 1,又EF ⊄平面BB 1D 1D ,BO 1⊂平面BB 1D 1D ,所以EF ∥平面BB 1D 1D .方法二 取B 1C 1的中点E 1,连接EE 1,FE 1,则有FE 1∥B 1D 1,EE 1∥BB 1,且FE 1∩EE 1=E 1,FE 1,EE 1⊂平面EE 1F ,B 1D 1,BB 1⊂平面BB 1D 1D ,所以平面EE 1F ∥平面BB 1D 1D .又EF ⊂平面EE 1F ,所以EF ∥平面BB 1D 1D .课后练习题1.如图所示,在三棱柱ABC ­111A B C 中,E ,F ,G ,H 分别是AB ,AC ,11A B ,11A C 的中点,求证:(1)B ,C ,H ,G 四点共面;(2)1A E ∥平面BCHG .【解析】(1)∵G ,H 分别是11A B ,11A C 的中点,∴11//GH B C ,而11//B C BC ,∴//GH BC ,即B ,C ,H ,G 四点共面.(2)∵E ,G 分别是AB ,11A B 的中点,∴1,AG EB 平行且相等,所以四边形1A EBG 为平行四边形,即1//A E GB ,又1A E ⊄面BCHG ,GB ⊂面BCHG ,∴1//A E 面BCHG ,2.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°,点E,F分别是AC,AD的中点.(1)求证:EF∥平面BCD;(2)求三棱锥A﹣BCD的体积.【答案】(1)证明见解析;(2)8【解析】(1)∵点E,F分别是AC,AD的中点,∴EF∥CD,又∵EF⊄平面BCD,CD⊂平面BCD,∴//EF平面BCD;(2)∵AB⊥平面BCD,∴∠ADB为直线AD与平面BCD所成的角,45,4ADB AB BD∴∠=︒∴==,∵BC⊥BD,162BCDBCS BD∴=⨯⨯=,∴三棱锥A﹣BCD的体积183BCDV s AB=⋅=.3.如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.【解析】证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面P AD,BC⊄平面P AD,∴BC ∥平面P AD .∵平面BCFE ∩平面P AD =EF ,BC ⊂平面BCFE ,∴BC ∥EF .∵AD =BC ,AD ≠EF ,∴BC ≠EF ,∴四边形BCFE 是梯形.4.如图所示,在四棱锥P-ABCD 中,BC//平面PAD ,12BC AD =,E 是PD 的中点.(1)求证:BC//AD ;(2)求证:CE//平面PAB .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:()1在四棱锥P ABCD -中,//BC 平面PAD ,BC ⊂平面ABCD ,平面ABCD 平面PAD AD =,//BC AD ∴,()2取PA 的中点F ,连接EF ,BF ,E 是PD 的中点,//EF AD ∴,12EF AD =, 又由()1可得//BC AD ,且12BC AD =, //BC EF ∴,BC EF =,∴四边形BCEF 是平行四边形,∴,EC FB//EC⊄平面PAB,FB⊂平面PAB,∴平面PAB.EC//BC AD,E是PD的中点,过BC和点E的平面与PA交于点F.求证:5.如图,梯形ABCD中,//BC EF.//【答案】证明见解析BC AD,BC⊄平面PAD,AD⊂平面PAD,【解析】∵//BC平面PAD,∴//∵BC⊂平面BCEF,平面BCEF平面PAD EF=,BC EF∴//6.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点,求证:平面AFH∥平面PCE.证明因为F为CD的中点,H为PD的中点,所以FH∥PC,又FH⊄平面PEC,PC⊂平面PEC,所以FH∥平面PCE.又AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE,又AF⊄平面PCE,CE⊂平面PCE,所以AF∥平面PCE.又FH⊂平面AFH,AF⊂平面7.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AD∥BC,平面A1DCE与B1B交于点E.求证:EC∥A1D.证明因为BE∥AA1,AA1⊂平面AA1D,BE⊄平面AA1D,所以BE∥平面AA1D.因为BC∥AD,AD⊂平面AA1D,BC⊄平面AA1D,所以BC∥平面AA1D.又BE∩BC=B,BE⊂平面BCE,BC⊂平面BCE,所以平面BCE∥平面AA1D.又平面A1DCE∩平面BCE=EC,平面A1DCE∩平面AA1D=A1D,所以EC∥A1D.。

8.5.3平面与平面平行课件(人教版)

8.5.3平面与平面平行课件(人教版)


b
b没有公共点
又因为 a , b
a / /b


讲授新课
平面与平面平行的性质定理
定理:如果两个平行的平面同时与第三平面相交,
那么它们的交线平行
符号表示:

∩ =
∩ =






应用面面平行性质定理的基本步骤
∵A1E∩EF=E,A1E,EF⊂平面EFA1,
∴平面EFA1∥平面BCHG.
复习回顾
定理:一条直线与一个平面平行,则过这条直线的
任一平面与此平面的交线与该直线平行。
符号表示:
a / /


a
a / /b

=b
作用: 可证明两直线平行
回顾:两平面平行,那么其中一个平面内的直
线与另一个平面具有什么关系?
例2 求证: 夹在两个平行平面间的平行线段相等.
如图, // , AB // CD ,且A ,C , B , D ,求证AB CD.
证明:过平行线AB,CD作平面,
与平面和分别相交于AC和BD.
// ,
BD // AC.
又AB // CD ,
8.5.3 平面与平面平行
一、复习回顾
平面与平面的位置关系
两个平面的位置关系只有两种
①两个平面平行——没有公共点;
记为 / /
②两个平面相交——有一条公共直线,
记为 a
➢探究1
1.若 // ,则对于平面 内的直线与平面 有什么
位置关系?
平行
2.若平面 内的所有直线都平行于平面 ,则 与
个平面平行

课件5:8.5.3 平面与平面平行

课件5:8.5.3 平面与平面平行
证明:因为D,E分别是棱AC,BC的中点,
所以DE是△ABC的中位线.所以DE∥AB.
因为DE⊄平面SAB,AB⊂平面SAB,
所以DE∥平面SAB. 同理可证DF∥平面SAC.
又因为DE∩DF=D,DE⊂平面DEF,DF⊂平面DEF,
所以平面DEF∥平面SAB.
题型2 平面与平面平行性质 例2 如图,已知平面α∥平面β,P∉α且P∉β,过点P的 直线m与α,β分别交于A,C,过点P的直线n与α,β分 别交于B,D,且PA=6,AC=9,PD=8,求BD的长.
下面证明A1E=EF=FC.
因为平面A1C1C∩平面AB1D1=EO1, 平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD, 所以EO1∥C1F. 在△A1C1F中,O1是A1C1的中点,所以E是A1F的中点,即A1E=EF. 同理可证OF∥AE,所以F是CE的中点,即CF=FE.
∥BC.易得△ABC∽△A′B′C′,S△A′B′C′∶S△ABC
=A′ABB′2=PAPA′2=245.
【答案】B
4.已知平面α∥β,直线a⊂α,有下列命题: ①a与β内的所有直线平行;②a与β内无数条直线平行; ③a与β内的任意一条直线都不垂直. 其中真命题的序号是________. 【解析】由面面平行的性质可知,过a与β相交的平面与β的交线才 与a平行,故①错误;②正确;平面β内的直线与直线a平行或异面 均可,其中包括异面垂直,故③错误. 【答案】②
解:与本例同理,可证 AB∥CD.
所以PPAC=PPDB,即63=BD8-8,所以 BD=24.
【例题迁移 2】 (变换条件与问法)将本例改为:已知三个 平面 α,β,γ 满足 α∥β∥γ,直线 a 与这三个平面依次交于 点 A,B,C,直线 b 与这三个平面依次交于点 E,F,G. 求证:BACB=FEGF.

【课件】平面与平面平行课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册

【课件】平面与平面平行课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册

AA1的中点,求证: 平面BDE//平面B1D1F
A1
分析:添辅助线,证明四边形AGED、四边形AGB1F
是平行四边形
F D
LOGO
C1
B1 E
G C
A
B
3. 如图,在正方体ABCD-A1B1C1D1中,E,F分别是
D1
C1
P
棱AA1,CC1的中点,点P在上底面A1B1C1D1内运动, A1 若PE∥平面BDF,请画出点P的轨迹.
2. 平面与平面平行的性质
①两个平面平行,则其中一个平面内的直线必平行于另一个平面 .
β // α a ⊂β
a // α 简述为:面面平行线面平行
a
探究新知 LOGO
问题9 类比直线与平面平行的研究,已知两个平面平行,我们可以得到哪些 结论? (1)其中一个平面内的直线与另一个平面具有什么样的的位置关系? (2)分别位于两个平行平面内的直线,具有什么样的位置关系?
MG∥AE, 又 GN 是△DEC 的中位线, GN∥EC, ∴ 平面MGN∥平面α, MN∥平面α.
A a
M
bB
EC ·N G D
例题讲解 变式:3.AB=6,BC=2,EF=3.求DE的长. DE=9
ab
LOGO
D A
变式:4. 如图,平面α∥β,A,C∈α,B,D∈β,直线AB B
与CD交于点S,且AS=3,BS=9,CD=34,求CS的长.
直线的条数不是关键,直线相交才是关键.
探究新知 LOGO
两条相交直线和两条平行直线都可以确定一个平面.为什么两条相交直线判
定两个平面平行,而不能利用两条平行直线呢?你能从向量的角度解释吗?
D
平面内的两条相交直线代表两个不共线向量, E 而平面内的任意向量都可以以它们为基底进行线 A

平面与平面平行(教学课件)高一数学同步备课系列(人教A版2019 必修第二册)

平面与平面平行(教学课件)高一数学同步备课系列(人教A版2019 必修第二册)
证明两个平面平行基本思路
线线平行
线面平行
面面平行
证明两个平面平行一般步骤
一:在一个平面内找出两条相交直线
二:证明两条相交直线分别平行于另一个平面
三:利用判定定理得结论
平面与平面平行的性质
下面我们研究平面与平面平行的性质,也就是以平面与平面平行为条件,
探究可以推出哪些结论.
D'
C'
如图示,平面A'C'//平面AC, B'D'⊂平面A'C', 显然,A'
B.如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行

C.平行于同一直线的两个平面一定相互平行
D.如果一个平面内的无数多条直线都平行于另一平面,那么这两个平面平行
解析
如果一个平面内任何一条直线都平行于另一个平面,
即两个平面没有公共点,
则两平面平行.
3.已知长方体ABCD-A′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面
两个平面不一定平行. 但若把两条平行直线改成相交直线,则两个平面
就会平行. 下面我们借助长方体来说明这个问题.
如图, 在平面ADD'A'内画一条与AA'平行的直线EF, 显然AA'与EF都平
行于平面DCC'D', 但这两条平行直线所在的平面ADD'A'与平面DCC'D'不平
D'
C'
行. 若平面ABCD内两条相交直线AC, BD分别与平
证明:连接MF,则有MF // A1 D1 // AD,


四边形MFDA为平行四边形,
AM / / DF .

立体几何 8.5.2 直线与平面平行(实用精品课件) 同步课堂(人教A版2019必修第二册)

立体几何 8.5.2 直线与平面平行(实用精品课件) 同步课堂(人教A版2019必修第二册)
F, G, H分别是AB, BC, CD, DA
上的点,EH∥FG. 则EH与BD
EH∥BD
的位置关系是________.
β
a
α
b
EH // FG
EH 平面BCD
FG 平面BCD
EH // 平面BCD
EH 平面ABD
面BCD 面ABD BD
EH // BD
线面平行的性质定理
[P143-7]如图,α∩β=CD,α∩γ=EF,β∩γ=AB,AB//α,
5
四边形FGBE 为平行四边形, EF // GB.
又BG 平面PBC , EF 平面PBC , EF // 平面PBC .
方法总结
线线平行
线面平行
①平行线的传递性
②三角形的中位线 (连中点)
③平行四边形的对边平行 (先证平行四边形)
④棱柱的侧棱互相平行
⑤三角形中线段对应成比例
a
(key:找面内线//面外线)
此 四 面 体 , 求 证 : 截 面 ∴截面MNPQ是平行四边形.
MNPQ是平行四边形.
析:已知AB//平面MNPQ,
CD//平面MNPQ
见多识广3——线面平行的性质
练习5.四棱锥P-ABCD的底面ABCD是平行四边形,
AC∩BD=O,M是PC的中点,在DM上取一点G,过G
和AP作平面交平面BDM于GH,求证:AP∥GH.
见多识广——证线面平行
练习2.正方体ABCD—A1B1C1D1中,E,F,G分别是
棱BC,CC1,BB1的中点. 求证:EF//平面AD1G.
证明 : 连接BC1.
由正方体性质知, D1C1 // A1B1 // AB, D1C1 AB.

新教材2020-2021学年高中第二册同步课件:8.5.3 平面与平面平行

新教材2020-2021学年高中第二册同步课件:8.5.3 平面与平面平行

的平面β有且只有1个.当a与α相交时,设a与α的交点为P,根据题意知,P∈β,P∈α,
则α∩β=l且P∈l,这与α∥β矛盾,所以这样的β不存在.综上所述,过平面α外一条
直线a与α平行的平面至多有1个.
3.(教材二次开发:练习改编)已知直线a⊂α,给出以下三个命题:
①若平面α∥平面β,则直线a∥平面β;
【思考】 面面平行还有哪些性质?
提示:(1)如果两个平面平行,那么其中一个平面内的任意一条直线与另一个平面 平行; (2)夹在两平行平面之间的平行线段相等; (3)两个平面平行,其中一个平面上任意一点到另一个平面的距离相等.
【基础小测】 1.辨析记忆(对的打“√”,错的打“×”) (1)如果一个平面内有无数条直线与另一个平面平行,那么这两个平面平行.
②若直线a∥平面β,则平面α∥平面β;
③若直线a不平行于平面β,则平面α不平行于平面β.
其中正确的命题是
()
A.②
B.③
C.①②
D.①③
关键能力·合作学习
类型一 面面平行的判定(直观想象、逻辑推理) 【题组训练】 1.(2020·泰安高一检测)如图,在下列四个正方体中,P,R,Q,M,N,G,H为所在棱 的中点,则在这四个正方体中,阴影平面与P,R,Q三点所在平面平行的是
()
2.(2020·孝感高一检测)如图,在三棱柱ABC -A1B1C1中,D,P分别是棱AB,A1B1的 中点,求证:平面APC1∥平面B1CD.
【解题策略】 平面与平面平行的判定方法 (1)定义法:两个平面没有公共点. (2)判定定理:一个平面内的两条相交直线分别平行于另一个平面. (3)利用线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平 行,则α∥β. (4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.

8.5.3 第二课时 平面与平面平行的性质

8.5.3 第二课时 平面与平面平行的性质
提示 1.直线l和m也可能是异面直线.
[微训练]
1.已知长方体ABCD-A′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面A′B′C′D′=E′F′,
则EF与E′F′的位置关系是( )
A.平行
B.相交
C.异面
D.不确定
解析 由面面平行的性质定理易得.
答案 A
2.若平面α∥平面β,直线a⊂α,点M∈β,过点M的所有直线中( ) A.不一定存在与a平行的直线 B.只有两条与a平行的直线 C.存在无数条与a平行的直线 D.有且只有一条与a平行的直线 解析 由于α∥β,a⊂α,M∈β,过M有且只有一条直线与a平行,故D项正确. 答案 D
(2)如图,设A1C1与B1D1交于点O1,连接AO1,与A1C交于点E. 又因为AO1⊂平面AB1D1, 所以点E也在平面AB1D1内, 所以点E就是A1C与平面AB1D1的交点. 连接AC交BD于O,连接C1O与A1C交于点F,则点F就是A1C与 平面C1BD的交点.8分
下面证明A1E=EF=FC. 因 为 平 面 A1C1CA∩ 平 面 AB1D1 = EO1 , 平 面 A1C1CA∩ 平 面 C1BD = C1F , 平 面 AB1D1∥平面C1BD, 所以EO1∥C1F. 在△A1C1F中,O1是A1C1的中点, 所以E是A1F的中点,即A1E=EF.11分 同理可证CF=EF,所以A1E=EF=FC.12分
4.如图,在正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上 分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.
证明 过 E 作 EG∥AB 交 BB1 于点 G,连接 GF,则BB11EA=BB11GB. ∵B1E=C1F,B1A=C1B,∴CC11FB=BB11GB.∴FG∥B1C1∥BC, 易得EG∥平面ABCD,FG∥平面ABCD, 又∵EG∩FG=G,EG,FG⊂平面EFG, ∴平面EFG∥平面ABCD, 又∵EF⊂平面EFG,∴EF∥平面ABCD.

8.5.3平面与平面的平行

8.5.3平面与平面的平行

的这种刨根究底的精神造就了西方发达的科学。在中国这些是经验,没
化归思想
有证明的迹象。

答:两条平行直线代表的是平面内的一组平行(共 线)向量,它们不能代表这个平面内与之不同方向的直 线;而又两条相交直线可以确定两个不共线的向量,由 平面向量基本定理,它们可以把这个平面内的所有向量 表示出来,从而可以表示平面内所有直线。因此,可以 用两条相交直线判定两个平面平行,而不能用两条平行 直线。
n// β,则α // β. ( X )
(2)若一个平面α内两条不平行的直线都平行于另一平
面β,则α // β. ( √ )
ห้องสมุดไป่ตู้
(3)平行于同一条直线的两个平面平行.( X ) (4)平行于同一个平面的两个平面平行. ( √ )
(5)一条直线与两个平行平面中的一个相交,则必与
另一个相交.
√ (

巩固检测
数学教育家米山国藏指出:“学生进入社会后,几乎没有机会应用它们在初中 或高中所学到的数学知识,因而这种作为知识的数学,通常在学生出校门后不到 一两年就忘掉了,然而不管从事什么业务工作,那种铭刻于头脑中的数学精神和 数学思想方法,却长期地在他们的生活和工作中发挥着重要作用。”
所以学习数学,数学忘记了,但数学化不会忘记,学习公理,公理忘记了,但 公理化不会忘记,学习形式体系,形式体系忘记了,但形式化不会忘记。也就是 数学化、公理化、形式化一辈子都对你产生影响。
证明: 因为∥ , 所以 与 没有公共点,
a∥b
a
因而交线a,b也没有公共点,
又因为a , b都在平面 内,
所以 a∥b.
性质定理剖析: 面//面
b
线//线
拓展深化
例5、求证:夹在两个平行

高中数学第八章立体几何初步8.5.3平面与平面平行同步练习含解析第二册

高中数学第八章立体几何初步8.5.3平面与平面平行同步练习含解析第二册

课时素养评价二十八平面与平面平行(20分钟35分)1.下列四个正方体图形中,A,B,C为正方体所在棱的中点,则能得出平面ABC∥平面DEF的是()【解析】选B。

在B中,如图,连接MN,PN,因为A,B,C为正方体所在棱的中点,所以AB∥MN,AC∥PN,因为MN∥DE,PN∥EF,所以AB∥DE,AC∥EF,所以AB∥平面DEF,AC∥平面DEF,又AB∩AC=A,所以平面ABC∥平面DEF.2.若三条直线a,b,c满足a∥b∥c,且a⊂α,b⊂β,c⊂β,则两个平面α,β的位置关系是()A。

平行 B.相交C.平行或相交D。

不能确定【解析】选C.由题意可知,b,c在平面β内,但不相交,因为a∥b∥c,所以a所在平面α与平面β不一定只平行,有可能相交.3。

平面α∥平面β,AB,CD是夹在α和β间的两条线段,E,F分别为AB,CD的中点,则EF与α()A。

平行 B.相交C.垂直D.不能确定【解析】选A。

若AB,CD共面,则EF∥AC,故EF∥α,若AB,CD是异面直线,则连接AD并取AD的中点M,连接EM与FM,则可得出EM∥平面β,且FM∥平面α,又因为平面α∥平面β,所以EM∥平面α,又EM∩FM=M,EM,FM⊂平面EFM,故平面EFM∥平面α,所以EF与α平行。

4.若夹在两个平面间的三条不共面的平行线段相等,则这两个平面的位置关系是.【解析】设α,β为平面,AA′,BB′,CC′为平行线段且相等.因为AA′ BB′,所以四边形AA′B′B为平行四边形。

所以AB∥A′B′,同理BC∥B′C′,所以AB∥β,BC∥β,又因为AB∩BC=B,所以平面α∥平面β.答案:平行5.棱长为2的正方体ABCD —A1B1C1D1中,E为棱CD的中点,过点E作平面α,使得平面α∥平面AB1C,则平面α在正方体表面上截得的图形的周长为.【解析】如图,F,G,H,I,J分别为棱AD,AA1,A1B1,B1C1,CC1的中点,则HI∥A1C1∥GJ,故G,H,I,J四点共面,同理E,F,G,J四点共面.因为EJ∥AB1,EF∥AC,EF∩EJ=E,EJ∥平面AB1C,EF∥平面AB1C,又EJ∩EF=E,所以平面EFGJ∥平面AB1C,又因为HE的中点为正方体的中心,FI 的中点也是正方体的中心,设正方体中心为O,则HE∩FI=O,所以H,I∈平面EFGJ,所以平面EFGHIJ即为平面α,根据三角形的中位线的性质可得,六边形每条边的长度都等于正方体表面对角线的一半,即每边长都等于=,故六边形的周长为6。

高中数学人教A版必修二教师用书19-20 第8章 8.5.3 平面与平面平行

高中数学人教A版必修二教师用书19-20 第8章 8.5.3 平面与平面平行

8.5.3平面与平面平行学习目标核心素养1.掌握空间平面与平面平行的判定定理和性质定理,并能应用这两个定理解决问题.( 重点)2.平面与平面平行的判定定理和性质定理的应用.( 难点)1.通过平面与平面平行的判定定理和性质定理的学习,培养直观想象的核心素养.2.借助平行关系的综合问题,提升逻辑推理的核心素养.1.平面与平面平行的判定( 1)文字语言:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.( 2)符号语言:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.( 3)图形语言:如图所示.2.平面与平面平行的性质定理( 1)文字语言:两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行.( 2)符号语言:α∥β,α∩γ=a,β∩γ=b⇒a∥b.( 3)图形语言:如图所示.( 4)作用:证明两直线平行.思考:如果两个平面平行,那么这两个平面内的所有直线都相互平行吗?[提示]不一定.它们可能异面.1.已知平面α内的两条直线a,b,a∥β,b∥β,若要得出平面α∥平面β, 则直线a,b的位置关系是( )A.相交B.平行C.异面D.垂直A[根据面面平行的判定定理可知a,b相交.]2.平面α与圆台的上、下底面分别相交于直线m,n,则m,n的位置关系是( )A.平行B.相交C.异面D.平行或异面A[因为圆台的上、下底面互相平行,所以由平面与平面平行的性质定理可知m∥n.]3.已知平面α∥平面β,直线l∥α,则( )A. l∥βB. l⊂βC. l∥β或l⊂βD. l, β相交C[假设l与β相交,又α∥β,则l与α相交,与l∥α矛盾,则假设不成立,则l∥β或l⊂β.]4.已知长方体ABCD-A′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面A′B′C′D′=E′F′,则EF与E′F′的位置关系是( ) A.平行B.相交C.异面D.不确定A[由面面平行的性质定理易得.]平面与平面平行的判定【例11111A1B1、B1C1、C1D1、D1A1的中点.求证:( 1)E、F、B、D四点共面;( 2)平面MAN∥平面EFDB.[思路探究]( 1)欲证E、F、B、D四点共面,需证BD∥EF即可.( 2)要证平面MAN∥平面EFDB,只需证MN∥平面EFDB,AN∥平面BDFE即可.[详解]( 1)连接B1D1,∵E、F分别是边B1C1、C1D1的中点,∴EF∥B1D1.而BD∥B1D1,∴BD∥EF.∴E、F、B、D四点共面.( 2)易知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN⊄平面EFDB,BD⊂平面EFDB.∴MN∥平面EFDB.连接MF.∵M、F分别是A1B1、C1D1的中点,∴MF∥A1D1,MF=A1D1.∴MF∥AD且MF=AD.∴四边形ADFM是平行四边形,∴AM∥DF.又AM⊄平面BDFE,DF⊄平面BDFE,∴AM∥平面BDFE.又∵AM∩MN=M,∴平面MAN∥平面EFDB.平面与平面平行的判定方法:( 1)定义法:两个平面没有公共点.( 2)判定定理:一个平面内的两条相交直线分别平行于另一个平面.( 3)转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.( 4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.1.如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形.点M,N,Q分别在P A,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.[证明]∵PM∶MA=BN∶ND=PQ∶QD,∴MQ∥AD,NQ∥BP.又∵BP⊂平面PBC,NQ⊄平面PBC,∴NQ∥平面PBC.∵四边形ABCD为平行四边形.∴BC∥AD,∴MQ∥BC.又∵BC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC.又∵MQ∩NQ=Q,∴平面MNQ∥平面PBC.平面与平面平行的性质[探究问题]1.平面与平面平行性质定理的条件有哪些?[提示]必须具备三个条件:①平面α和平面β平行,即α∥β;②平面γ和α相交,即α∩γ=a;③平面γ和β相交,即β∩γ=b.以上三个条件缺一不可.2.线线、线面、面面平行之间有什么联系?[提示]联系如下:【例2】如图,已知平面α∥平面β,P∉α且P∉β,过点P的直线m与α、β分别交于A、C,过点P的直线n与α、β分别交于B、D,且P A=6,AC=9,PD=8,求BD的长.[详解]因为AC∩BD=P,所以经过直线AC与BD可确定平面PCD,因为α∥β,α∩平面PCD =AB ,β∩平面PCD =CD ,所以AB ∥CD .所以P A AC =PBBD ,即69=8-BD BD .所以BD =245.1. 将本例改为:已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC = .15 [由题可知DE DF =ABAC ⇒AC =DF DE ·AB =52×6=15.]2.将本例改为:若点P 在平面α,β之间( 如图所示),其他条件不变,试求BD 的长.[详解] 与本例同理,可证AB ∥CD . 所以P A PC =PB PD ,即63=BD -88,所以BD =24.3.将本例改为:已知三个平面α、β、γ满足α∥β∥γ,直线a 与这三个平面依次交于点A、B、C,直线b与这三个平面依次交于点E、F、G. 求证:ABBC=EFFG.[证明]连接AG交β于H,连BH、FH、AE、CG.因为β∥γ,平面ACG∩β=BH,平面ACG∩γ=CG,所以BH∥CG.同理AE∥HF,所以ABBC =AHHG=EFFG.应用平面与平面平行性质定理的基本步骤:平行关系的综合应用【例3】如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M 是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH∥平面P AD.[证明]如图所示,连接AC交BD于点O,连接MO.∵ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥MO,而AP⊄平面BDM,OM⊂平面BDM,∴P A∥平面BMD,又∵P A⊂平面P AHG,平面P AHG∩平面BMD=GH,∴P A∥GH.又P A⊂平面P AD,GH⊄平面P AD,∴GH∥平面P AD.1.证明直线与直线平行的方法( 1)平面几何中证明直线平行的方法.如同位角相等,两直线平行;三角形中位线的性质;平面内垂直于同一直线的两条直线互相平行等.( 2)基本事实4.( 3)线面平行的性质定理.( 4)面面平行的性质定理.2. 证明直线与平面平行的方法:( 1)线面平行的判定定理.( 2)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.2.如图,三棱锥A-BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥平面EFGH.[证明]由于四边形EFGH是平行四边形,∴EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又∵EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.1.三种平行关系的转化.2.常用的面面平行的其他几个性质( 1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.( 2)夹在两个平行平面之间的平行线段长度相等.( 3)经过平面外一点有且只有一个平面与已知平面平行.( 4)两条直线被三个平行平面所截,截得的对应线段成比例.( 5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.1.判断正误( 1)α内有无数多条直线与β平行,则α∥β.( )( 2)直线a∥α,a∥β.则α∥β.( )( 3)直线a⊂α,直线b⊂β,且a∥β,b∥α,则α∥β.( )( 3)α内的任何直线都与β平行,则α∥β.( )[答案]( 1)×( 2)×( 3)×( 4)√2.a∥α,b∥β,α∥β,则a与b位置关系是( )A.平行B.异面C.相交D.平行或异面或相交D[如图①②③所示,a与b的关系分别是平行、异面或相交.]①②③3.若平面α∥平面β,直线a⊂α,点M∈β,过点M的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.有且只有一条与a平行的直线D[由于α∥β,a⊂α,M∈β,过M有且只有一条直线与a平行,故D项正确.] 4.用一个平面去截三棱柱ABC-A1B1C1,交A1C1,B1C1,BC,AC分别于点E,F,G,H.若A1A>A1C1,则截面的形状可以为.( 填序号)①一般的平行四边形;②矩形;③菱形;④正方形;⑤梯形.②⑤[当FG∥B1B时,四边形EFGH为矩形;当FG不与B1B平行时,四边形EFGH为梯形.]5.如图,在四面体ABCD中,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD .求证:BC=2EF.[证明]因为平面EFG∥平面BCD,平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD,所以EG∥BD,又G为AD的中点,故E为AB的中点,同理可得,F为AC的中点,所以BC=2EF.11。

8.5.3 平面与平面平行(第2课时)平面与平面平行的性质 教学设计

8.5.3 平面与平面平行(第2课时)平面与平面平行的性质 教学设计

【新教材】8.5.3 平面与平面平行教学设计(人教A版)第2课时平面与平面平行的性质在平面与平面的位置关系中,平行是一种非常重要的关系,本节内容是直线与平面平行关系延续和提高.通过本节使学生对整个空间中的平行关系有一个整体的认知,线线平行、线面平行、面面平行是可以相互转化的.课程目标1.理解平面和平面平行的性质定理并能运用其解决相关问题.2.通过对性质定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳平面和平面平行的性质定理,线线平行、线面平行、面面平行之间的转化;2.直观想象:题中几何体的点、线、面的位置关系.重点:平面和平面平行的性质定理.难点:平面和平面平行的性质定理的应用.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入如图,过长方体ABCD-A1B1C1D1的棱上三点E,F,G的平面与上底面A1B1C1D1和下底面ABCD的交线有什么关系?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本141-142页,思考并完成以下问题1、如果两个平面平行,那么其中一个平面内的直线和另一个平面有什么样的位置关系?2、满足什么条件时两个平面平行?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究探究1:如果两个平面平行,那么其中一个平面内的直线和另一个平面有什么样的位置关系?答案:平行.探究2:平行于同一个平面的两个平面什么关系?答案:平行.四、典例分析、举一反三题型一平面与平面平行的性质定理的应用例1 夹在两个平行平面间的平行线段相等.【答案】证明见解析【解析】如图,α//β,AB//CD,且A∈α,C∈α,B∈β,D∈β.求证:AB=CD.证明: 因为AB//CD,所以过AB,CD可作平面γ,且平面γ与平面α和β分别相交于AC和BD.因为α//β,所以BD//AC.因此四边形ABCD是平行四边形.所以AB=CD解题技巧(性质定理应用的注意事项)面面平行的性质定理是由面面平行得到线线平行.证明线线平行的关键是把要证明的直线看作是平面的交线,所以构造三个平面:即两个平行平面,一个经过两直线的平面,有时需要添加辅助面.跟踪训练一1、如图,在三棱锥P-ABC中,D,E,F分别是PA,PB,PC的中点,M是AB上一点,连接MC,N是PM与DE的交点,连接NF.求证:NF∥CM.【答案】证明见解析【解析】因为D,E,F分别为PA,PB,PC的中点,所以DE∥AB,又DE⊄平面ABC,AB⊂平面ABC,所以DE∥平面ABC,同理EF∥平面ABC,又DE∩EF=E,所以平面DEF∥平面ABC,又平面PMC∩平面ABC=MC,平面PMC∩平面DEF=NF,由面面平行的性质定理得,NF∥MC.题型二 平行关系的综合应用例2 如图,在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,E,F,P,Q 分别是BC,C 1D 1,AD 1,BD 的中点.(1)求证:PQ ∥平面DCC 1D 1;(2)求PQ 的长;(3)求证:EF ∥平面BB 1D 1D.【答案】(1)见解析(2 a. (3)见解析. 【解析】(1)法一 如图,连接AC,CD 1.因为P,Q 分别是AD 1,AC 的中点, 所以PQ ∥CD 1又PQ ⊄平面DCC 1D 1, CD 1⊂平面DCC 1D 1, 所以PQ ∥平面DCC 1D 1. 法二 取AD 的中点G,连接PG,GQ,则有PG ∥DD 1,GQ ∥DC,且PG∩GQ=G, 所以平面PGQ ∥平面DCC 1D 1. 又PQ ⊂平面PGQ,所以PQ ∥平面DCC 1D 1.(2)由(1)易知PQ=12D 1 a. (3)法一 取B 1D 1的中点O 1,连接FO 1,BO 1,则有FO 112B 1C 1. 又BE 12B 1C 1,所以BE FO 1.所以四边形BEFO 1为平行四边形,所以EF ∥BO 1,又EF ⊄平面BB 1D 1D,BO 1⊂平面BB 1D 1D,所以EF ∥平面BB 1D 1D.法二 取B 1C 1的中点E 1,连接EE 1,FE 1,则有FE 1∥B 1D 1,EE 1∥BB 1,且FE 1∩EE 1=E 1,所以平面EE 1F ∥平面BB 1D 1D.又EF ⊂平面EE 1F,所以EF ∥平面BB 1D 1D.解题技巧 (空间平行关系的注意事项)直线与平面平行,平面与平面平行的判定定理、性质定理,揭示了线线平行、线面平行、面面平行之间的转化关系,具体转化过程如图所示.跟踪训练二1、如图,在正方体ABCD-A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ 与平面PAO 平行?【答案】证明见解析【解析】如图,设平面D 1BQ∩平面ADD 1A 1=D 1M,点M 在AA 1上,平面D 1BQ∩平面BCC 1B 1=BQ,平面ADD 1A 1∥平面BCC 1B 1,由面面平行的性质定理可得BQ ∥D 1M.假设平面D 1BQ ∥平面PAO,由平面D 1BQ∩平面ADD 1A 1=D 1M,平面PAO∩平面ADD 1A 1=AP,可得AP ∥D 1M,所以BQ ∥D 1M ∥AP.因为P 为DD 1的中点, 所以M 为AA 1的中点,Q 为CC 1的中点, 故当Q 为CC 1的中点时,平面D 1BQ ∥平面PAO. 五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本142页练习4题,143页习题8.5的剩余题.直线与直线平行,直线与平面平行,平面与平面平行的判定定理、性质定理,揭示了线线平行、线面平行、面面平行之间的转化关系.故本节课课堂剩余5分钟,让学生将线线平行、线面平行、面面平行之间的转化关系捋顺.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体验探究 根据基本事实推论2,3,两条平行直线或两条相交直线,都可以确定
一个平面。
思考2:如果一个平面内有两条平行或相交的 直线都与另一个平面平行,是否就能使这两 个平面平行?
a
b
a
b
b Pa
பைடு நூலகம் aaa
体验探究
a
bb
a // a
a//m
m
假设
m
m
同理b // m 所以a / /b
矛盾
发现新知 平面与平面平行的判定定理
符号表示:a ,b ,且a / /b a / /
a
图形表示:
b
问题导引
我们前面研究了直线与平面平行,重点研究了其 判定和性质。
本节课我们要研究两个平面平行,还是要研究其 判定与性质。
一.复习 两个平面的位置关系:
1)两个平面相交—有无数个公共点 2)两个平面平行--没有公共点
两个平面平行的画法:
D
B
证明: 过平行线AB,CD,作平面γ,与
平面α和β分别相交于AC和BD.
∵ α ∥ β, ∴BD ∥ AC
又AB ∥ CD, ∴四边形ABCD是平行四边形
∴AB=CD
同学们这两个个结论实在是太明显太显然了,比公理还显 然,但注意它不是公理而是可以证明出来的性质,这在平时的 证明中可以当定理使用。注意我们证明题目时的论据都是来自 于教材,教材之外的不会考到,虽然教材之外补充了许多定理、 性质。
同学们,虽然这个定理是从生活生产实践中总结出来也是比较非常
显然比较非常明显的,是我们发现的,但它不是公理而是定理,因为我
们可以把它证明出来。
同学们有没有发现西方人没事找事做,吃饱了撑着?正因为西方人
的这种刨根究底的精神造就了西方发达的科学。在中国这些是经验,没
化归思想
有证明的迹象。

答:两条平行直线代表的是平面内的一组平行(共 线)向量,它们不能代表这个平面内与之不同方向的直 线;而又两条相交直线可以确定两个不共线的向量,由 平面向量基本定理,它们可以把这个平面内的所有向量 表示出来,从而可以表示平面内所有直线。因此,可以 用两条相交直线判定两个平面平行,而不能用两条平行 直线。
体验探究 探究二:两个平面平行的性质
问题3、类比直线与平面平行的研究,已知
两个平面平行,我们可以得到哪些结论?
从哪些角度考虑呢?
思考1、一个平面内的直线是否
平行于另一个平面?
思考2、分别在两个平面内的两
条直线具有什么位置关系? 即:平行或异面
结论:如果两个平面平行,一个平面内的直线一定
平行于另一个平面。 面//面
如果一个平面内两条相交直线与另一个平面
平行,则这两个平面平行.
符号语言:
图形表示:
a
b a
b
P
/
/
a / / b / /
同学们注意
这不是公理是 定理。
a
P
b
发现新知
判定定理:一个平面内两条相交直线分别平行于另一个平面,
那么这两个平面平行.
b
判定定理剖析:
Pa
线//线 线//面 面//面
证题思路:要证明两平面平行,关键是在其中一个 平面内找出两条相交直线分别平行于另一个平面。
反思:同学们,当我们学了新知识要跟旧知识联系起来,形成一个知识网
络,这样才能理解深刻,不会忘记。我们学习数学要见木也要见林,不能只见木 不见林,这个知识网络是干净、清澈、紧密,就像孙维刚老师说的:“八方联系, 浑然一体, 漫江碧透, 鱼翔浅底。”
拓展深化
例4、如图所示,已知正方体ABCD-A1B1C1D1,求证:
8.5.3平面与平面的平行
温州市瓯海区三溪中学 张明
此课件不是张明所有,而是张明所藏,张明只是再加工,用 于教学。课件主人不知姓啥名谁。此课件被张明设定为下载一次2 元,如果侵犯了作者版权,请私信谈之。
情境引入
旧知回顾:直线与平面平行的判定定理
如果平面外的一条直线与此平面内的一条直线平 行,那么该直线与此平面平行。
平面AB1D1∥平面BC1D.
证明:∵ ABCD-A1B1C1D1为正方体,

C1D1
// =
A1B1,AB
// =
A1B1.
∴ C1D1
// =
AB.
∴四边形AB C1D1为平行四边形.
∴D1A ∥C1B.
D1
A1
C1
B1
D
A
C
B
又∵ D1A ⊄平面 BC1D, C1B ⊂平面BC1D,
∴ D1A ∥平面 BC1D. 同理 D1 B1 ∥平面 BC1D.
平面与平面的位置关 系有两个儿子,大儿 子很重要,我们这节 课是如何判断你是不 是它大儿子。
体验探究 探究一 : 平面与平面平行的判定
两个平面平行可以通过定义来判断,即通过两个平面没有公共点而得到两个平面平行,由于 平面的无限延展,很难去判断平面与平面是否有公共点,因此很难直接利用定义判断。
问题1:能否简化平面与平面平行的判定方法呢?
线//面
符号表示:
a
b
b
体验探究
思考3、线线平行是一种重要的关系,分别位于两个平行平面 的直线中,什么情况下这两条直线平行呢?
D1 A1
D
A
C1 B1
C
B
发现新知
两个平面平行的性质定理 :
两个平面平行,如果另一个平面与这两个平面相交, 那么两条交线平行.
符号表示:
α∥β, α ∩γ=a, β ∩γ=b
同学们有没有发现西方人没事找事做,吃饱了撑着?正因 为西方人的这种刨根究底的精神造就了西方发达的科学。在中 国这些是经验,没有证明的迹象。
又∵ D1A ∩ D1 B1 =D1,
∴平面AB1D1∥平面BC1D.
3.如图,设E,F,E1,F1分别是长方体
ABCD-A1B1C1D1的棱AB,CD,A1B1,
C1D1的中点.
D1
求证:
平面A1EFD1∥平面BCF1E1 A1
E1 D
F1 C1
F B1 C
A
E
B
分析:在其中一个平面内找两条 相交直线平行另一个平面即可.
证明: 因为∥ , 所以 与 没有公共点,
a∥b
a
因而交线a,b也没有公共点,
又因为a , b都在平面 内,
所以 a∥b.
性质定理剖析: 面//面
b
线//线
拓展深化
例5、求证:夹在两个平行
C
平面间的平行线段相等.
A
已知: ∥ , AB ∥CD, A,
C , B , D.
求证: AB CD
体验探究
如果一个平面内的任意一条 直线都平行于另一个平面, 那么这两个平面一定平行。
体验探究 因为平面内有无数条直线,我们难以对所有直线逐一检验
问题2 :能否将一个平面内任意直线都平 行于另一个平面中的任意直线减少,得到 更简便的方法呢?
体验探究
思考1:减少到一条直线可以吗?为什么?
a
a
探 究:
相关文档
最新文档