七年级三角形综合练习题

合集下载

2020-2021学年七年级数学北师大版下册综合练习——第4章三角形【含答案】

2020-2021学年七年级数学北师大版下册综合练习——第4章三角形【含答案】

第4章三角形一、选择题1.下列说法正确的是( )A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形2.如图,∠1=140°,∠2=100°,则∠3=( )A.100°B.120°C.130°D.140°3.如图,点A,D在线段BC的同一侧,AC与BD相交于点E,连接AB,CD,已知∠1=∠2,现添加以下哪个条件仍不能判定△ABC≌△DCB的是( )A.∠A=∠D B.AC=DB C.∠ABC=∠DCB D.AB=DC4.下列各组长度的三条线段能组成三角形的是( )A.1,2,3B.1,1,2C.1,2,2D.1,5,75.如果三角形的两条边长分别是8厘米、6厘米,那么第三边的长不可能是( )A.9厘米B.4厘米C.3厘米D.2厘米6.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能( )A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形7.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,DH⊥BC于H,交BE于G,有下列结论:①BH=DH;②BD=CD;③AD+CF=BD;④CE=BF.其中正确的是( )A.①②B.①③C.①②③D.①②③④8.如图,△ABC的高CD、BE相交于点O,如果∠A=60°,那么∠BOC的大小为( )A.60°B.100°C.120°D.130°9.如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A=45°),BC交DE于点F,则∠DFC的度数是( )A.75°B.105°C.135°D.125°10.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是( )A.AF=FC B.GF=BG C.AG=2GD D.EG=CE11.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二、填空题12.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是 .13.如图,矩形的一个顶点落在边长为3的正方形中心(正方形对角线交点),则图中重合部分(阴影部分)的面积为 平方单位.14.在△ABC中,∠A:∠B:∠C=4:5:9,若按角分类,△ABC是 三角形.15.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.16.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为1、3,则正方形的边长为 .17.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加 根木条才能固定.18.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC=140°,∠BGC=110°,则∠A= .19.如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E= .20.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是 .三、解答题21.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).22.已知:如图,在△ABC中,∠DAE=10°,AD⊥BC于点D,AE平分∠BAC,∠B=60°,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.24.如图,点A,B,C,D在同一条直线上,AB=CD,∠A=∠D,AE=DF.(1)求证:△ACE≌△DBF.(2)若BF⊥CE于点H,求∠HBC的度数.25.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,E是对角线AC上一点,连接BE,DE.(1)求证:BE=DE.(2)当BE∥CD,∠BAD=78°时,求∠BED的度数.26.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.27.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是 ;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?答案一、选择题1.D2.B3.D4.C5.D6.A7.D8.C9.B10.B11.B二、填空题12.三角形的稳定性.13..14.直角.15.35.16..17.3.18.80°.19.30°.20.ASA.三、解答题21.解:如图所示:.22.解:∵AD⊥BC,∠B=60°,∴在△ABD中,∠BAD=90°﹣60°=30°,又∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=30°+10°=40°,又∵AE平分∠BAC,∴∠BAC=2∠BAE=80°,∴在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°.答:∠C的度数是40°.23.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.24.(1)证明:∵AB=CD,∴AB+BC=CD+BC.∴AC=BD.在△ABC和△EDF中,,∴△ACE≌△DBF(SAS);(2)解:由(1)知△ACE≌△DBF,∴∠ACE=∠DBF.∵BF⊥CE,∴∠BHC=90°,∴∠HBC+∠HCB=90°,∴∠HBC=∠HCB=45°.25.(1)证明:∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中,,∴△BAE≌△DAE(SAS),∴BE=DE;(2)解:由(1)得:△BAE≌△DAE,∴∠BEA=∠DEA,∴∠BEC=∠DEC,∵AC平分∠BAD,∠BAD=78°,∴∠BAC=∠DAC=∠BAD=×78°=39°,∵AC=AD,∴∠ACD=∠ADC=×(180°﹣39°)=70.5°,∵BE∥CD,∴∠BEC=∠ACD=70.5°,∴∠BEC=∠DEC=70.5°,∴∠BED=2×70.5°=141°.26.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.27.解:(1)PC=3﹣t.(2)△CPQ≌△BDP,理由如下:∵P、Q的运动速度相等,∴1秒后,CQ=BP=1,CP=BC﹣BP=3﹣1=2,∵D为AB的中点,∴BD=,∴CP=BD,在△CPQ和△BDP中,,∴△CPQ≌△BDP(SAS).(3)解:由(1)知,PC=3﹣t,BP=t,CQ=at,BD=2,∵∠C=∠B∵△BPD与△CQP全等,①当△CPQ≌△BDP时,BP=CQ,t=at,∵t≠0,∴a=1与P、Q的运动速度不相等矛盾,故舍去.②当△CPQ≌△BPD时,BP=CP,CQ=BD,∴t=3﹣t,at=2,t=a=.即点P、Q的运动速度不相等时,点Q的运动速度a为时,能够使△BPD与△CQP全等.。

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。

鲁教版七年级直角三角形练习50题及参考答案(难度系数0.62)

鲁教版七年级直角三角形练习50题及参考答案(难度系数0.62)

七年级直角三角形(难度系数0.62)一、单选题(共20题;共40分)1.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A. 5B.C. 5或D. 不确定【答案】C【考点】勾股定理2.图中字母所代表的正方形的面积为144的选项为()A. B. C. D.【答案】 D【考点】勾股定理的应用3.如图所示,在△ABC中,D为AB的中点,BE⊥AC,垂足为点E,若DE=4,AE=6,则BE的长度是()A. 10B. 2C. 8D. 2【答案】 D【考点】直角三角形斜边上的中线,勾股定理4.如图所示,A是斜边长为m的等腰直角三角形,B,C,D都是正方形。

则A,B,C,D的面积的和等于( )A. 94m2 B. 52m2 C. 114m2 D. 3m2【答案】A【考点】勾股定理,等腰直角三角形5.将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是()A. 12cm≤h≤19cmB. 12cm≤h≤13cmC. 11cm≤h≤12cmD. 5cm≤h≤12cm【答案】C【考点】勾股定理6.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A. 7B. 5C. 3D. 2【答案】B【考点】直角三角形全等的判定7.如图,小正方形边长为1,连接小正方形的三个顶点得△ABC,则AC边上的高是().A. 310√5 B. 32√2 C. 45√5 D. 35√5【答案】 D【考点】勾股定理8.以a.b.c为边的三角形是直角三角的为()A. a=2,b=3,c=4B. a=1,b= ,c=2C. a=4,b=5,c=6D. a=2,b=2,c=【答案】B【考点】勾股定理的逆定理9.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A. 3,4,5B. √3,√4,√5C. 6,8,10D. 9,12,15 【答案】B【考点】勾股定理的逆定理10.下列各组长度的线段能构成直角三角形的一组是( )A. 30,40,50B. 7,12,13C. 5,9,12D. 3,4,6【答案】A【考点】勾股定理的逆定理11.如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( )A. 1B. 2C. 3D. 4【答案】 D【考点】勾股定理,勾股定理的应用12.如图,△ABC中,∠ACB=90°,∠A=25°,点D为斜边AB上的中点,DE⊥CD交AC于点E,则∠AED的度数为()A. 105°B. 110°C. 115°D. 125°【答案】C【考点】直角三角形斜边上的中线13.如图,一根长5米的竹竿AB斜靠在一竖直的墙AO上,这时AO为4米,如果竹竿的顶端A沿墙下滑1米,竹竿底端B外移的距离BD()A. 等于1米B. 大于1米C. 小于1米D. 以上都不对【答案】A【考点】勾股定理的应用14.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6。

华师大版数学七年级下册9.1《三角形》综合练习2

华师大版数学七年级下册9.1《三角形》综合练习2

9.1 三角形A 组一、相信你的选择!(每小题3分,共24分)1. 下列说法正确的是( )A.三角形的高是过顶点的垂线B.按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C.三角形的外角大于任何一个内角D.一个三角形中至少有一个内角不大于︒602. 下列说法错误..的个数是( ) (1)钝角三角形三边上的高都在三角形的外部(2)三角形中,至少有两个锐角,最多有一个直角或钝角(3)三角形的一个外角等于它的两个内角的和(4)三角形的一个外角大于它的任何一个内角(5)三角形的三个外角(每个顶点只取一个外角)中,钝角个数至少有2个A.1个B.2个C.3个D.4个3. 具备下列条件的三角形中,不是直角三角形的是( )A.C B A ∠=∠+∠B.C B A ∠=∠=∠21 C.B A ∠-︒=∠90 D.︒=∠-∠90B A4. 一个三角形的两边分别为5和11,要使周长是最小的整数,则第三边的长是( )A.4B.6C.7D.125. 如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分面积为( )A.πB.2πC.3πD.4π6. 用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同形状的三角形的个数是( )A.1B.2C.3D.47. 若三角形中最大内角是60°,则这个三角形是( )A.不等边三角B.等腰三角形C.等边三角形D.不能确定8.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、试试你的身手!(每小题3分,共24分)9. 在ABC ∆中,BC 边不动,点A 竖直向上运动,A ∠越来越小,B ∠、C ∠越来越大,若A ∠减少α度,B ∠增加β度,C ∠增加γ度,则三者α、β、γ之间的等量关系是 .10. 若等腰三角形的两边长分别是cm 3和cm 7;则这个三角形的周长是._____cm11. 如图所示,直线EG BD //,︒=∠28ACB ,︒=∠50AFE 则∠A = .12. 如图,DC 平分ADB ∠,EC 平分AEB ∠.若︒=∠60DAE ,︒=∠140DBE ,则=∠D CE .13. 小华从点A 出发向前走10米,向右转36°然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,当他走回到点A 时共走 米.14. 将一个宽度相等的纸条如图所示折叠一下, 如果︒=∠1401,那么=∠2__ .15. 已知在等腰三角形ABC 中,AB =AC ,周长为cm 27,AC 边上的中线BD 把ABC ∆分成周长差为3cm 的两个三角形,则ABC ∆的底边长为 .16. 如图,把一个等边三角形进行分割,第一步从图(1)到图(2),一个三角。

2022年初中数学《三角形》单元综合练习

2022年初中数学《三角形》单元综合练习

第三章 三角形【稳固根底训练】题型发散1,选择题,把正确答案的代号填入题中括号内.(1)以下各条件中,不能作出惟一三角形的是( )(A)两角和夹边(B)两边和夹角(C)两边和其中一边的对角(D)三边(2)一个三角形的周长为15cm ,且其中两边都等于第三边的2倍,那么这个三角形的最短边为( )(A)1cm (B)2cm (C)3cm (D)4cm(3)如果角形的一个内角等于其余两个内角的和,那么这个三角形是(A)锐角三角形 (B)直角三角形(C)钝角三角形 (D)锐角三角形或钝角三角形(4)线段AB ,用规尺作AB 的垂直平分线CD ,垂足为E ,在CD 上取—点F ,使EF=21AB ,连结AF ,BF ,那么∠AFB 的度数是 ( ) (A)︒60 (B)︒75 (C)︒90 (D)︒120(5)在Rt △ABC 中,∠ACB=︒90,CD ⊥AB ,E 为AB 的中点,AC=3cm ,AB=6cm ,那么∠DCE 的度数是 ( )(A)︒15 (B)︒30 (C)︒45 (D)︒602.填空题.(1)假设两个三角形全等,那么它们对应高、对应中线、对应的角平分线分别______________.(2)在△ABC 中,∠B=2∠C ,AD ⊥AC ,交BC 于D ,假设AB=a ,那么CD=______________.(3)在△ABC 中,∠A 是∠B 的2倍,∠C 比∠A+∠B 还大︒12,那么这个三角形是__________角三角形.(4)在△ABC 中,∠ACB=︒90,CD ⊥AB ,垂足是D ,E 是AB 的中点,如果AB=10,BC=5,那么CE=___________,∠A=___________,∠B=_______,∠DCE______,DE=___________(5)在△ABC 中,假设∠A=︒60,∠B<∠C ,那么三边的大小关系________ 解法发散1.如图5—61,在直角三角形ABC 中,∠C=︒90,AD=AC ,BE=BC .求∠DCE 的度数.(用四种解法)2.如图5—62,D 、E 在BC 上,∠BAD=∠CAE ,∠B=∠C .求证:AD=AE .(用两种方法证明)3.如图5—63,AB=AC ,DE=DF ,求证:BE=CF .(用两种方法证明) 变更命题发散1.在△ABC 中,AB>AC ,AM 是BC 边上的中线.求证:∠CAM>∠BAM .2.如图5-64,AB>AC ,延长BC 到E ,使CE=CA ,延长CB 到D ,使BD=AB .求证:AD>AE.3.如图5-65,在△ABC 中,AB>AC ,且∠BAC>︒90,AB 、AC 边上垂直平分线分别交BC 边于D 、E 两点,求证:AD>AE .变换发散1.如图5—66,在△ABC 中,∠1=∠2,AB+BP=AC .求证:∠B=2∠C.2.如图5-67,△ABC 为正三角形,P 是任意一点.求证:PA≤PB+PC . 逆向发散1.如图5—68,AD ∥EC ,CE>CB .求证:∠B>∠A .2.如图5—69,在△ABC 中,AB=AC ,D 为AC 上一点.求证:∠ADB>∠ABD . 构造发散1.如图5—70,在△ABC 中,AB=AC .E 是AB 上任意一点,延长AC 到F ,使BE=CF .连接EF 交BC 于M ,求证:EM=FM .2.如图5—71,AE ∥BC ,AD 、BD 分别平分∠EAB 、∠CBA ,EC 过点D .求证:AB=AE+BC .纵横发散1.如图5—72,△ABC 为等边三角形,D 、E 分别是BC 、AC 上的一点,且BD=EC ,AD 和BE 相交于F ,BG ⊥AD 于G .求FGBF 的值.2.斜边和一锐角,作直角三角形.:线段c 及锐角α.求作Rt △ABC ,使斜边等于c ,其中—个锐角等于α. 综合发散1.如图5—73所示,△ABC 中,AB=AC ,EF ∥BC ,分别交AB 、AC 于E 、F ,分别以AE 、AF 为边在△ABC 的外部作等边△AEG 和△AFH ,连结BH 与CG 交于O .求证:(1)BH=CG ;(2)AO 平分∠BAC .2.设AD 是△ABC 中∠A 的平分线,过A 引直线MN ⊥AD ,过B 作BE ⊥MN 于E .求证:△EBC 的周长大于△ABC 的周长.3.如图5—74,△ABC 是等边三角形.∠ABE=∠BCF=∠CAD ,求证:△DEF 是等边三角形.4.AD 是△ABC 中BC 边上的中线,F 是DC 上—点,DE=EC ,AC=21BC ,求证:AD 平分∠BAE .5.在△ABC 中,AD 是∠A 的平分线且AB=AC+CD .求证:∠C=2∠B【提高能力测试】题型发散1.选择题,把正确答案的代号填入题中括号内.(1)以下各条件中,不能作出惟一直角三角形的是 ( )(A)两直角边(B)两锐角(C)一直角边和一锐角(D)斜边和一直角边(2)AM 、AH 、AD 分别是△ABC 的BC 边上的中线、高线和∠A 的平分线,AB≠AC ,那么AM 、AH 、AD 的位置关系为 ( )(A)AD 在AM 和AH 之间(B)AM 在AD 和AH 之间(C)AH 在AD 和AM 之间(D)不能确定(3)三角形的两边长为2和7,第三边的数值是奇数,那么这个三角形的周长是 ( )(A)14 (B)15 (C)16 (D)17(4)在△ABC 中,假设∠A=21∠B=31∠C ,那么这个三角形是 ( ) (A)锐角三角形 (B)直角三角形(C)钝角三角形 (D)以上都不对(5)线段m ,n(m>n),用直尺和圆规作等腰△ABC ,使AB=AC=m ,BC=n ,再分别以AB 、AC 为边向三角形外作等边△ABD 和等边△ACE ,连结BE 、CD ,那么 ( )(A)BE>CD (U)BE=CD (C)BE<CD (D)BE≤CD(6)在△ABC 中,AB>AC ,AD 为BC 边上的中线,那么∠DAB 与∠DAC 的大小关系是 ( )(A)∠DAB>∠DAC (B)∠DAB<∠DAC(C)∠DAB=∠DAC (D)不能确定2.填空题.(1)在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于D ,DE 垂直平分AB ,垂足为E ,那么∠C=______________(2)在锐角△ABC 中,高AD 和BE 交于H 点,且BH=AC ,那么∠ABC=________度.(3)△ABC ,D 在AC 上,∠A=︒36,∠DBC=︒36,∠C=︒72,那么∠BDC=_________度,∠ABD=_________度,其中等腰三角形有__________(4)边长为2,x-4,5的三根木条首尾相接组成三角形,那么x 的取值范围是______________.(5)在△ABC 中,如果()242>-=n n a ,b=4n ,那么c=_______时,∠C=︒90.(6)在Rt △ABC 中,AB=2AC ,CD 、CE 分别是斜边上的中线和高,那么∠DCE=____________.解法发散1.如图5—75,在△ABC 中,AB=AC ,延长AB 到D ,使 BD=AB ,E 为AB 的中点,求证:CD=2CE .(按原图与如下四个图(见图5-76(a)~(d))所作辅助线用五种方法证明)2.如图5—77,在△ABC 中,∠A=︒90,∠C 的平分线交对边AB 于点E ,交斜边上的高AD 于O ,过点O 作OF ∥CB 交AB 于F ,求证:AE=BF .(用两种方法证明)3.如图5—78,△ABC 中,∠B 是锐角,且∠B=2∠C ,AD 是BC 边上的高.求证:AB+BD=DC(用两种方法证明)变换发散1.如图5—79,在△ABC 中,AB=AC ,P 是三角形内一点且有∠APB>∠APC .求证:PB<PC .2. 如图5—80,△ABC 按逆时针旋转至△C B A ''的位置,使AC 平分B B '.求证:B A '也平分C C '.逆向发散发散题 如图5—81,在△ABC 中,AB=AC ,BD=DC ,DE ⊥AB ,DF ⊥AC .求证:DE=DF .构造发散1.如图5—82,在△ABC 中,AD 为∠A 的平分线,E 为BC 的中点,过E 作EF ∥AD 交AB 于G ,交CA 的延长线于F ,求证:BG=CF .2.如图5—83,在△ABC 中,∠A=2∠B ,CD 是∠C 的平分线.求证:BC=AC+AD .3.如图5—84,在等边三角形ABC 中,延长BC 到D ,延长BA 到E ,使AE=BD ,连CE 、DE .求证:CE=DE .变更命题发散1.如图5—85,在△ABC 中,CF 是AB 边上的高,BE 是AC 边上的高,假设AB>AC .求证:BE>CF .2.如图5—86,AB=AE ,∠B=∠E .BC=ED .F 是CD 的中点.求证:AF ⊥CD .3.如图5—87,AB=AE ,BC=ED ,∠B=∠E ,求证:∠C=∠D.迁移发散1.△ABC 的周长是12cm ,假设c+a=2b,c-a=2cm ,求a 、b 、c 的长度.2.如图5—88,△ABC 中,AB=2CA ,且CA 为最小边.求证:61(AB+BC+CA)<CA<41(AB+BC+CA). 综合发散1.如图5—89,自Rt △ABC 的直角顶点A 作BC 上的高AD .求证:AD+BC>AB+AC2.如图5—90,C 是线段AB 上一点,分别以AC 、CB 为一边作等边三角形ACD 和CBE ,AE 交CD 于M ,BD 交CE 于N .求证:(1)△CMN 是等边三角形;(2)MN ∥AB .3.D 是△ABC 中∠BAC 平分线AE 上一点,AB>AC .求证:AB-AC>BD-DC .4.在△ABC 中,∠C= 90,AC=BC ,过C 在△ABC 外作直线MN ,使AM ⊥MN 于M ,BN ⊥MN 于N .(1)求证:MN=AM+BN ;(2)假设过C 在△ABC 内作直线MN ,当MN 位于何位置时,AM 、BN 和MN 之间满足关系式AM-BN=MN .并证明之.5.如图5—91,:O 是△ABC 内一点.求证:(1)∠BOC>∠A ; (2)21(BC+CA+AB)<OA+OB+OC . 6.如图5—92,在等腰直角三角形ABC 中,P 为斜边BC 的中点,D 为BC 上任一点,DE ⊥AB ,DF ⊥AC .求证:PE=PF ,PE ⊥PF .参考答案【稳固根底知识】1.(1)(C) (2)(C) (3)(B) (4)(C) (5)(B)2.(1)相等. (2)2a . (3)钝. (4)5,︒30,︒60,︒30,. (5)b<a<c . 解法发散1.解法1∵AD=AC ,∴∠5=∠2+∠1.∴BE=BC ,∴∠4=∠2+∠3.∴∠A=︒180-(∠5+∠1+∠2)=︒180-2(∠1+∠2)①同理∠B=︒180-2(∠2+∠3).②①+②得:2(∠1+∠2+∠3)+2∠2=︒360-(∠A+∠B),即︒180+2∠2=︒360-(∠A+∠B),故∠2=∠DCE=︒45.解法2∵∠4=︒90-21∠B ,∠5=︒90-21∠A ,∴∠4+∠5=︒180-()︒=︒-︒=∠+∠1354518021B A .又∠2=︒180-(∠4+∠5),∴∠2=︒45.解法3∵∠4=∠1+∠A ,∠4=︒90-∠1,∴∠1+∠A=︒90-∠1.2∠1=︒90-∠A 即∠1=21∠B .同理∠3=21∠A .∠2=︒90-(∠1+∠3)=︒=︒-︒454590.解法 4 ︒360-2∠4-2∠5=∠A+∠B ,︒360-2(∠4+∠5)=︒90,2(∠4+∠5)=︒270,∠4+∠5=︒135;∴∠2=︒45.2.证法1在△ABC 中,∵∠B=∠C ,∴AC=AB .在△ABD 和△ACE 中,∵∠BAD=∠CAE ,AB=AC ,∠B=∠C ,∴△ABD ≌△ACE .AD=AE .证法2 在△ABD 和△ACE 中,∵∠B=∠C ,∠BAD=∠CAE ,∴∠ADB=∠AEC ,∴∠ADE=∠AED .AD=AE .3.证法1如图15'-,过E 、F 分别作BC 的垂线,交BC 和BC 的延长线于M 、N .∵∠EMD=∠FND=︒90,∠1=∠2,DE=DF ,∴△MDE ≌△NDF ,EM=FN .∵AB=AC ,∴∠ABC=∠ACB=∠NCF .又∠EMB=∠ENC=︒90,∴Rt △EMB ≌Rt △FNC .BE=CF .证法2如图25'-,在BC 上取点G ,使DG=DC ,连结EG ,那么△EDG ≌△FDC .∴EG=CF ,∠DEG=∠DFC .∴EG ∥AF ,∠3=∠4.又AB=AC ,∴∠B=∠4.∴∠B=∠3.∴BE=EG .BE=CF .变更命题发散1.分析:如图35'-,延长AM 至D ,使AM=MD ,通过证明△CMD ≌△AMB ,将∠BAM=∠CDM 和∠CAM 集中到同一个三角形ACD 中,进行证明.证明:延长AM 到D ,使MD=AM ,连结CD ,那么△AMB ≌△DMC . ∴∠1=∠D ,AB=DC ,∵AB>AC ,∴CD>AC .∠DAC>∠D .故∠CAM>∠BAM .2.∵AB>AC ,∴∠ACB>∠ABC.∴∠ABD>∠ACE .又∵AB=BD .∴∠D=∠DAB=21(︒180-∠ABD), 同理得:∠E=21(︒180-∠ACE), ∴∠E>∠D .在△ADE 中,∵∠E>∠D ,∴AD>AE .3.在△ABC 中,∵AB>AC ,∴∠C>∠B ,∴DF 垂直平分AB , ∴AD=BD .∴∠B=∠1.同理∠C=∠2.∵∠ADE=∠B+∠1=2∠B ,∠AED=∠C+∠2=2∠C ,∴∠AED>∠ADE .AD>AE .变换发散1.分析:用对称法.此题利用角平分线是角的对称轴,在AC 上截取AB B A =',得到P B ',从而构造P B A '∆与△ABP 两个轴对称图形.证明:在AC 上截取AB B A ='连结P B '.∵AB=B A ',∠1=∠2,AP=AP ,∴△ABP ≌△P B A '(SAS).∴∠B=∠3,BP=P B '.AB+BP=AC ,AC C B B A ='+',∴AB+BP=C B B A '+'.又∵P B BP B A AB '='=,∴,C B P B '='∠4=∠C .∠B=∠3=2∠C .2.分析:考虑此题是等边三角形,如图45'-,以B 为旋转中心,将△PBC 旋转︒60,那么BC 和BA 重合,△BPC 落到A P B '∆的位置,连P P '.∵︒='∠='60,BP P BP P B ,∴P BP '∆为等边三角形.∴BP P B P P ='=',而P 、P P A ''与AP 构成一个三角形,∴AP<P A 'P P '+,即AP<BP+PC .假设∠BCP=∠BAP ,那么P 为△ABC 的外接圆上的一点,P '落在AP 上. ∴BP+PC=AP .证明:以B 为顶点、BA 为边作PBC P AB ∠='∠,以A 为顶点、AB 为边作P BA '∠=∠PCB ,P A '与P B '交于P ',那么CBP P AB ∆≅'∆.∴BP P B =',PC P A ='.∵∠ABC=︒60,P AB '=∠PBC ,∴︒='∠60BP P .∴P P B '∆为等边三角形.∴BP P B P P ='='.假设∠BAP≠∠BCP ,那么P '不落在AP 上, 那么在P P A '∆中,PA P P P A >'+',∴BP+PC>PA .假设BCP P BA ∠='∠,那么P '落在AP 上,这时PA P P P A ='+',∴PA≤BP+PC .逆向发散1.∵AD ∥EC ,∴∠A=∠CEB .在△CEB 中,∵CE>CB ,∴∠B>∠CEB .∴∠B>∠A .2.在△CBD 中,∠ADB>∠C .∵AB=AC ,∴∠ABC=∠C .∴∠ADB>∠BAC ,又∵∠ABC>∠ABD ,∴∠ADB>∠ABD.构造发散1.分析:此题通过作辅助线来构造全等三角形,过E 作ED ∥AC ,那么∠1=∠2=∠B ,BE=ED=CF ,不难证得△EDM ≌△FCM ,于是EM=FM .证明:过E 作ED ∥AC 交BC 于D .∵ED ∥AC(作法),∴∠1=∠2(两直线平行,同位角相等),∠EDM=∠FCM(两直线平行,内错角相等).∵AB=AC(),∴∠B=∠2(等边对等角).∴∠B=∠1(等量代换),EB=ED(等角对等边).又∵EB=CF().∴ED=CF .在△EDM 与△FCM 中,∵ED=CF ,∠EDM=∠FCM ,∠EMD=∠EMC(对顶角相等),∴△EDM ≌△FCM(AAS).∴EM=FM .2.分析:此题在BA 上截取BF=BC ,构造新△AFD ,通过证明△ADF ≌△ADE 到达将线段AE 的位置转移到AF ,使得AB=AF+FB 转化为AB=AE+BC .证明在BA 上截取BF=BC ,连结DF .在△BCD 和△BFD 中,∵BD=BD ,∠CBD=∠FBD ,CB=FB , ∴△BCD ≌△BFD .∴∠BCD=∠BFD .∵BC ∥AE ,∠C+∠E=︒180.又∠BFD+∠AFD=︒180,∴∠AFD=∠E .在△AFD 和△AED 中, ∵∠AFD=∠E ,∠FAD=∠EAD ,AD=AD , ∴△AFD ≌△AED .∴AF=AE . ∵AB=AF+FB .AB=AE+BC . 纵横发散1.解△ABC 是等边三角形,∴AB=BC ,∠ABD=∠BCE=︒60. 又BD=CE .∴△ABD ≌△BCE ,∴∠BAD=∠CBE , 从而∠BFG=∠BAD+∠ABE=∠CBE+∠ABE=︒60, ∠FBG=︒30.∴BF=2FG ,即FGBF的值为2. 2.作法图55'-, (1)作∠DBE=α. (2)在BD 上截取BA=c .(3)过A 作AC 上BE 交BE 于C . 那么△ABC 为所求作的三角形.证明:由作法得,∠DBE=α,BA=c ,AC ⊥BE ,∠ACB=Rt ∠. ∴△ABC 即为所作的三角形. 综合发散1.(1)证△AGC ≌△AHB ; (2)证△AOB ≌△AOC .2.延长BE 到B ',使E B '=BE ,连结B A '.3.∵△ABC 是等边三角形,∴∠ABC=∠ABC=∠ACB=︒60① 又∵∠ABE=∠BCF=∠CAD ,② ①-②得:∠BAE=∠CBF=∠ACD .∵∠EDF=∠CAD+∠DCA ,∠DEF=∠ABE+∠BAE ,∠DFE=∠FBC+∠BCF . ∴∠EDF=∠DEF=∠DFE . ∴△DEF 是等边三角形.4.如图65'-,延长AE 到F ,使EF=AE ,连接DF ,那么△DEF ≌△CEA(SAS). ∴DF=AC ,∠1=∠C ,∵BD=DC ,AC=21BC , ∴AC=CD=BD .∴∠CAD=∠2,DF=BD=AC . ∵∠ADB=∠C+∠CAD , ∴∠ADB=∠1+∠2. ∴△ADB ≌△ADF(SAS).∴∠BAD=∠FAD ,即AD 平分∠BAE .5.如图75'-,在AB 上截取AE=AC ,连接DE , ∵AD 平分∠A , ∴△ACD ≌△AED . ∴CD=DE ,∠ACD=∠AED . ∵AB=AC+CD ,∴DE=BE ,∠EDB=∠EBD . ∴∠AED=2∠B ,即∠ACB=2∠B . 【提高能力测试】 题型发散1.(1)(B) (2)(A) (3)(C) (4)(B) (5)(B) (6)(B)2.(1)︒70 (2)︒45 (3)︒︒,3672,△ABC,△ABD,△BCD.(4)7<x<11.(5)42+n .(6)︒30.解法发散1.证法1如图5—75,取CD 的中点F ,连结BF . ∵AB=BD ,∴BF ∥AC ,且BF=21AC . ∴∠2=∠ACB.∵AB=AC , ∴∠1=∠ACB .∴∠1=∠2 ∵BE=21AB ,∴BE=BF .又∵BC=BC , ∴△BCE ≌△BCF .∴CE=CF .∴CD=2CE . 以下四种证法省略.2.证法1如图5—77,过点E 作EK ⊥BC ,垂足为K .∵E 是∠C 平分线,∠BAC=︒90,∴EK=EA .又∠1和∠2同是21∠ACB 的余角,∴∠1=∠2,∠2=∠3,∠1=∠3. ∴AE=AO=EK ,又FO ∥BC ,∴∠AFO=∠EBK,∠AOF=∠EKB=︒90, ∴Rt △AOF ≌△EKB . ∴AF=EB .故AE=BF .证法2如图85'-过点O 作OG ∥AB 交BC 于G ,那么BGOF 是平行四边形. ∴BF=GO .∵∠AOE=∠1+∠3,∠AEO=∠B+∠2, 又∠BAC=︒90,AD ⊥BC ,∴∠B=∠1.∵CE 是∠ACB 的平分线, ∴∠2=∠3.∴∠AOE=∠AEO . ∴AE=AO .在△AOC 和△GOC 中,∵∠CGO=∠B=∠1,∠2=∠3,OC 为公共边, ∴△AOC ≌△GOC ,AO=GO=AE=BF ,故AE=BF . 3.证法1在DC 上截取DE=DB ,连结AE . ∵AD ⊥DE ,BD=DE .AB=AE .∴∠B=∠AEB . ∵∠B=2∠C .∴∠AEB=2∠C . ∴∠C=∠EAC .∴AE=EC=AB . ∵DC=DE+EC ,∴AB+BD=DC .证法2如图95'-,延长CB 到F ,使BF=AB ,连AF . 在△AFB 中,∵AB=BF.∴∠F=∠BAF .∵∠ABC=∠F+∠BAF ,即∠ABC=2∠F , 又∠ABC=2∠C ,∠F=∠C . ∴AC=AF .又AD ⊥FC ,FD=DC .∵FD=FB+BD ,FD=AB+BD ,即AB+BD=DC .变换发散1.分析:∵AB=AC ,此题以等腰三角形ABC 的顶点A 为旋转中心,顶角(∠BAC)为旋转角,旋转到P AC ',的位置.欲证P C PC '>,连P P ',只须证PC P C P P '∠>'∠. ∵C P A APC '∠<∠,又P P A P AP '∠='∠ ∴PC P C P P '∠>'∠.∴C P PC '>. 问题得证.证明:以A 为顶点,以AC 为边,在△ABC 外作PAB AC P ∠='∠,在P A '上取AP P A =',连C P '.∵AB=AC .∴P AC ABP '∆≅∆. ∴APB C P A ∠='∠,连P P ' ∵P A AP '=,∴P P A P AP '∠='∠ ∴PC P C P P '∠>'∠.∴C P PC '> ∵PB C P ='.∴PC>PB. 2.证法1在△B AB '中,∵B A AB '=,AC 平分B B ',∴AC 是等腰B AB '∆的顶角平分线, 即C A B BAC AC B BAC ''∠=∠'∠=∠.,C MA MAC '∠=∠. 又在△AMC 和C AM '∆中,∵C A AC '=,C MA MAC '∠=∠,AM=AM , ∴C AM AMC '∆≅∆.∴C M MC '=.故B A '平分C C '.证法2可通过证明C A B BAC AC B BAC ''∠=∠'∠=∠,,从而得C A B AC B ''∠='∠,可证得B A ',平分C C '.逆向发散提示连结AD ,AD 是等腰三角形的顶角平分线,此题应用角平分线的两个互逆定理证明.构造发散1.分析:因有∠BGE=∠F ,欲证BG=CF 可考虑证明其所在的三角形全等,而△GBE 和△CFE 明显不全等,故须构造含角和欲证线段为边的直角三角形,或使夹角的另一对边相等,又注意到条件中有BE=CE ,假设作BP ⊥EF ,CQ ⊥EF ,须证BP=CQ ,然此易由Rt △BPE ≌Rt △CQE 得到.证明:过B 、C 分别作BP ⊥EF ,CO ⊥FE. 垂足分别为P 、Q ,那么BP ∥CQ 阅. ∴∠PBE=∠QCE ,而BE=CE , ∴Rt △QPE ≌Rt △CAE .BP=CQ . 又EF ∥DA ,AD 平分∠A ,∠BGE=∠F . ∴Rt △BPG ≌Rt △CQF .故BC=CF .2.证明:在CB 上截取CE=CA ,连DE ,构造新三角形△CDE . 在△ACD 和△ECD 中, ∵AC=EC ,∠1=∠2,CD=CD ,∴△ACD ≌△ECD .∴AD=DE ,∠CED=∠A . ∵∠A=2∠B ,∴∠CED=2∠B . ∴∠B=∠EDB.∴DE=EB=AD . ∵BC=CE+EB ,∴BC=AC+AD .3.分析:延长BD 到F ,使DF=BC 连结EF ,那么BE=BF ,构造△DEF ,欲证△BCE ≌△FDE .证明:∵∠B=︒60,BE=BF ,∴△EFB 是等边三角形. ∴∠B=∠F .∵BC=DF ,BE=FE , ∴△BCE ≌△FDE .∴CE=DE . 变更命题发散 1.∵CF AB S BE AC S ABC ABC ⋅=⋅=∆∆21,21, ∴CF AB BE AC ⋅=⋅. ∵AB>AC ,∴BE>CF .2.连结AC 、AD .在△ABC 和△AED 中,∵AB=AE ,∠B=∠E ,BC=ED ,∴△ABC ≌△AED . ∴AC=AD .在△ACF 和△ADF 中,∵AC=AD ,AF=AF ,CF=DF ,∴△ACF ≌△ADF . ∴∠AFC=∠AFD .∵∠CFD=︒180,∴∠AFC=︒=︒⋅9018021.∴AF ⊥CD .3.连结AC 、AD .∵AB=AE ,∠B=∠E ,BC=ED ,∴△ABC ≌△AED(SAS). ∴∠1=∠2,AC=AD(全等三角形的对应角、对应边相等). ∴在△ACD 中,∠3=∠4.∴∠1+∠3=∠2+∠4,即∠BCD=∠EDC . 迁移发散1.解:依题意,得方程组:⎪⎩⎪⎨⎧=-=+=++2212a c ba c cb a 解方程组,得:a=3(cm),b=4(cm),c=5(cm). 2.设AC=a ,AB=2a ,周长AB+BC+CA=l ,那么: AB+BC+CA=2a+a+BC .∵BC>a ,∴AB+BC+CA>2a+a+a=4a .∴4l a < 又BC<AB+CA=2a+a=3a , 那么l=AB+BC+CA<2a+3a+a=6a . ∴6l a >.综上46l a l <<. ∴即61(AB+BC+CA)<CA<41(AB+BC+CA). 综合发散1.分析:在BC 上截取BE=AB ,作EF ⊥AC 于F ,连结AE ,构造Rt △AEF 和Rt △ADE ,证明这两个直角三角形全等.证明:如图015'-,在BC 上截取BE=AB ,作EF ⊥AC 于F ,连结AE . ∵BA ⊥AC ,EF ⊥AC , ∴AB ∥EF .∴∠BAE=∠2. 又∠BAE=∠1,∴∠1=∠2. 在Rt △ADE 和Rt △AEF 中, ∵AE=AE ,∠1=∠2, ∴Rt △ADE ≌Rt △AEF .∴AD=AF.∵BE=AB,EC>FC,∴AD+BE+FC>AF+AB+FC,即AD+BC>AB+AC.2.(1)∵△ACD和△CBE是等边三角形,∴AC=CD,CE=CB.∵∠ACD=∠ECB=︒60.60,∴∠BCE=︒∴∠ACE=∠DCB.∴△ACE≌△DCB.(SAS).∴∠AEC=∠DBC.在△MCE和△NCB中,∵∠AEC=∠DBC,CE=CB,∠MCE=∠NCB=︒60,∴△MCE≌△NCB.∴MC=NC.又∠MCN=︒60,∴△CMN是等边三角形.(2)∵∠NMC=∠ACM=︒60,∴MN∥AB.3.∵AB>AC,在AB上截取AF=AC,连结DF,那么△ADF≌△ADC,∴DF=DC.在△DBF中,BF>DB-DF,∴BF>DB-DC.∵BF=AB-AC.即有AB-AC>DB-DC.4.(1)如图11-,5'∵AM⊥MN,BN⊥MN,∴∠AMC=∠BNC=︒90.∵∠ACB=︒90.∴∠MCA+∠NCB=︒90.∴∠ACM=∠CBN.又AC=CB,∴△ACM≌△CBN,MC=BN,AM=CN.∴MN=AM+BN.(2)假设过C在△ABC内作直线MN,当MN经过等腰直角△ABC的底边AB 的中点时,MN 、AM 、BN 之间满足关系式MN=AM-BN .证明略.5.(1)如图215'-延长BO 交AC 于点D . ∵∠BOC 是△OCD 的外角, ∴∠BOC>∠1. 同理可证∠1>∠A , ∴∠BOC>∠A .(2)连结OA .在△ABO 中, ∵AB<OA+OB ,同理BC<OB+OC ,AC<OA+OC . ∴BC+CA+AB<2(OA+OB+OC) 即21(BC+CA+AB)<OA+OB+OC . 6.连结AP .∵AP=BP=PC ,AF=ED=BE ,∠PAF=∠PBE=︒45, ∴△PAF ≌△PBE.∴∠APF=∠BPE .∴PE=PF . ∠APF+∠APE=∠BPE+∠APE.又∠APF+∠APE+∠BPE+∠APE=︒180, ∴∠EPA+∠APF=︒90.即PE ⊥PF .附 图形的平移一、选择题:〔3×6=18〕1、以下运动过程属于平移的是〔 〕A 、荡秋千勒B 、摇动水井上的轱辘C 、小火车在笔直的铁轨上行进D 、宇宙中的行星运轨2、将字母 “E〞 沿垂直方向向下平移3㎝的作图中,第一步应在字母“E〞上找出的关键点的个数为〔 〕A 、4个B 、5个C 、6个D 、7个3、将长度为3㎝的线段向下平移2㎝,那么平移后的线段长度是〔 〕A 、3㎝B 、2㎝C 、5㎝D 、1㎝4、有以下说法:①△ABC 在平移的过程中,对应线段一定相等.②△ABC 在平移的过程中,对应线段一定平行.③△ABC 在平移的过程中,周长不变.④△ABC 在平移的过程中,面积不变.其中正确的有〔 〕A 、①②③B 、①②④C 、①③④D 、②③④5、以下各组图形,可经平移变换,由一个图形得到另一个图形的是〔 〕A 、B 、C 、D 、6、如图:O 是正六边形ABCDEF 的中心,以以以下图形中可由△O BC 平移得到的是〔 〕A 、△OCD B、△OAB C、△OAF D 、以上都不对 二、填空题:〔3×6=18〕7、决定平移的根本要素是____和 ____.8、如上图:△DEF 是由△ABC 沿BC 方向平移3 个单位得到的,那么点A 与点D 的距离等于____个单位.9、如图:把∠AOB 沿着MN 的方向平移一定距离后得到∠CPO,∠AOM=30°,∠DPN=45°,那么∠AOB=___第10题第11题10、如图:可由△ABC 平移得到的三角形有___个.〔△ABC 本身除外〕11、如图:正方形ABCD 的边长为2,以对角线AC 上任一这对角线作正方形,那么所有小正方形的周长之和为___12、在汉字中,有很多字可由一个汉字平移后组成新的汉字,如将“月〞向右平移一个单位后,可组成汉字“朋〞,你能再举三个类似的汉字吗?___ 三、简答题〔64分〕AB CDEFODAB E F CMOPN DBCAA B C CAD13、如图:把△ABC 平移得到△DEF,使点A 移动到点D ,画出平移后的△DEF .〔6分〕 14、如图:将△ABC 沿着从B 到D 的方向平移后得到△EDF,假设AB=4㎝,AE=3㎝,E=1㎝〔14分〕 〔1〕指出平移的距离是多少〔2〕求线段BD ,DE 的长.15、△ABC 沿着BC 方向平移,如图:B 与C 重合,C 与D 重合,A 与E 重合,△AB 的面积为3.求△ABC 平移过程中扫过的面积?〔12分〕16、如图:是一块从一个边长为50㎝的正方形材料中裁出的垫片,〔BC ,DC 为正方形的边〕现测量FG=8㎝,求这个垫片的周长.〔12分〕17、如图:把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG=24㎝,WG=8㎝,WC=6㎝,求阴影局部的面积.〔10分〕 18、一宾馆准备在大厅的主楼梯上铺设一种红地毯,地毯40元/米2,主楼梯的宽为2米,其侧面如以以下图,那么地毯至少需要多少元?〔10分〕HFE A B GCDBCDB ACEFDABCDEB CDEGWFAH参考答案一、选择题1、C2、C3、A4、C5、A6、C二、填空题7、平移方向,平移距离 8、3 个 9、105° 10、2 个 11、812、答案不惟一,如:双、林、从 13、略 14、3㎝,BD=3㎝ DE=4㎝三、解答题15、∵AE∥CD AC∥DE ∴四边形ACDE为平行四边形∴S△ACE= S△ECD= S△ABC=3∴△ABC扫过的面积为S△ACE=316、将线段AB、GH、EF 平移到正方形的边CD上,那么AB+GH+EF=CD=50㎝将线段AH、FG、ED平移到边BC上,那么AH+FG+ED =BC+2FG=50+2×8=66㎝因此垫片的周长为:AB+GH+EF+ AH+FG+ED+BC+CD=50+66+50+50=216㎝17、168米 218、672元。

全等三角形综合练习题含答案

全等三角形综合练习题含答案

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )°°°°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBA =OC D.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。

鲁教版七年级直角三角形练习50题及参考答案(难度系数0.6)

鲁教版七年级直角三角形练习50题及参考答案(难度系数0.6)

七年级直角三角形(难度系数0.6)一、单选题(共15题;共30分)1.如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有()①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周长等于BC的长.A. 0个;B. 1个;C. 2个;D. 3个.【答案】C【考点】翻折变换(折叠问题),等腰直角三角形2.下列命题中,正确个数是()①若三条线段的比为1:1:√2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。

A. 2个B. 3个C. 4个D. 5个【答案】A【考点】菱形的判定,矩形的判定,等腰直角三角形3.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A. 4B. 5C. 6D. 7【答案】D【考点】直角三角形全等的判定,角平分线的性质4.如图3,AD是△ABC的高,AD=BD,DE=DC,∠BAC=75°,则∠ABE的度数是()A. 10°B. 15°C. 30°D. 45°【答案】B【考点】垂线,全等三角形的判定与性质,等腰直角三角形5.如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB’C’则∠BAC’ 等于()A. 60°B. 105°C. 120°D. 135°【答案】B【考点】旋转的性质,等腰直角三角形6.如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()A. 6.5cmB. 5cmC. 9.5cmD. 11cm【答案】B【考点】全等三角形的判定与性质,等腰直角三角形7.如图,已知AB=AD,∠BAD=∠CAE,则增加以下哪个条件仍不能判断△BAC≅△DAE的是()A. AC=AEB. BC=DEC. ∠B=∠DD. ∠C=∠E【答案】B【考点】直角三角形全等的判定8.如图:有一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°【答案】B【考点】平行线的性质,等腰直角三角形9.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A. 3,4,5B. 7,24,25C. 1,√2,√3D. 2,3,4【答案】 D【考点】勾股定理的逆定理10.△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC 交CF的延长线于点D,BD=2cm,则△ABE的面积为()A. 2cm2B. 4cm2C. 6cm2D. 8cm2【答案】B【考点】全等三角形的判定与性质,等腰直角三角形11.下列说法:①两边和其中一边的对角对应相等的两个三角形全等.②角的对称轴是角平分线③两边对应相等的两直角三角形全等④成轴对称的两图形一定全等⑤到线段两端距离相等的点在线段的垂直平分线上,正确的有()个.A. 2B. 3C. 4D. 5【答案】A【考点】直角三角形全等的判定,线段垂直平分线的性质,轴对称的性质,轴对称图形12.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2015条棱分别停止在所到的正方体顶点处时,它们之间的距离是().A. 0B. 1C. √2D. √3【答案】C【考点】勾股定理,探索数与式的规律,有理数的除法13.如图,在5×5的方格中,有一个正方形ABCD,假设每一个小方格的边长为1个单位长度,则正方形的边长为()A. √12B. √13C. √14D. √15【答案】B【考点】勾股定理14.下列几组数能作为直角三角形的三边长的是()A. 2,2,√8B. √3,2,√5C. 9,12,18D. 12,15,20【答案】A【考点】勾股定理的逆定理15.如图为正方形网格,则∠1+∠2+∠3=()A. 105°B. 120°C. 115°D. 135°【答案】 D【考点】全等三角形的判定与性质,等腰直角三角形二、填空题(共16题;共20分)16.RtΔABC中,∠C=900,AC=3,BC=2,将此三角形绕点A旋转,当点B落在直线BC 上的点D处时,点C落在点E处,此时点E到直线BC的距离为________.【答案】2413【考点】三角形的面积,勾股定理,相似三角形的判定与性质,旋转的性质17.如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC的长为 ________【答案】12【考点】三角形的角平分线、中线和高,直角三角形斜边上的中线18.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为__.【答案】√262【考点】直角三角形斜边上的中线,勾股定理的逆定理19.小强想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高度是________米.【答案】12【考点】勾股定理的应用20.如图所示的方格中,∠1+∠2+∠3=________度.【答案】135°.【考点】全等三角形的判定与性质,等腰直角三角形21.如图,将一副三角板和一张对边平行的纸条按下列方式摆放:含30°角的直角三角板的斜边与含45°角的直角三角板一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________.【答案】135°【考点】平行线的性质,等腰直角三角形22.如图∠C=∠D=900,要使△ABC≌△BAD需要添加的一个条件是________.【答案】∠CAB=∠DBA(答案不唯一)【考点】直角三角形全等的判定23.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=________.【答案】1【考点】角平分线的性质,勾股定理的逆定理24.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=________度.【答案】45【考点】全等三角形的性质,直角三角形全等的判定25.如图,在等边△ABC中,AD平分∠BAC交BC与点D,点E为AC边的中点,BC=8;在AD上有一动点Q,则QC+QE的最小值为________.【答案】4 √3【考点】等边三角形的性质,勾股定理,轴对称的应用-最短距离问题26.已知⊙O的直径CD为4,AC⌢的度数为80°,点B是AC⌢的中点,点P在直径CD上移动,则BP+AP 的最小值为________.【答案】2 √3【考点】勾股定理,垂径定理,轴对称-最短路线问题27.如图,四边形BCDE是正方形,数轴上点A表示的实数是________.【答案】1﹣√2【考点】实数在数轴上的表示,勾股定理28.如图,数轴上点A所对应的数是________.【答案】﹣√5【考点】实数在数轴上的表示,勾股定理29.如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=6cm,BC=4cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为________.【答案】14cm【考点】全等三角形的性质,勾股定理,矩形的性质,平移的性质30.已知一个直角三角形的两条直角边的差为2,两条直角边的平方和为8,则这个直角三角形的面积是________【答案】1【考点】勾股定理31.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan∠FBC的值为________【答案】13【考点】勾股定理三、解答题(共8题;共40分)32.如图所示,有两个长度相等的滑梯(即BC=EF)左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求∠ABC+∠DFE的度数。

七年级下册数学第七章 三角形复习练习题(含答案)

七年级下册数学第七章 三角形复习练习题(含答案)

A BEC D 2005年春季期七年级数学第七章三角形复习训练题一、填空题1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。

5、三角形有两条边的长度分别是5和7,则第三条边a 的取值范围是___________。

6、△ABC 中,∠A =50°,∠B =60°,则∠C = 。

7、将一个三角形截去一个角后,所形成的一个新的多边形的内角和___________。

8、等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为_____________________.9、古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 .10、在∆ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。

11、一个多边形的内角和是1980°,则它的边数是____,共有条对角线____,它的外角和是____。

12、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。

二、选择题1、小芳画一个有两边长分别为5和6的等腰三角形,则它的周长是( )A 、16B 、17C 、11D 、16或172、如图,已知直线AB ∥CD ,当点E 直线AB 与CD 之间时,有∠BED =∠ABE +∠CDE 成立;而当点E 在直线AB 与CD 之外时,下列关系式成立的是( )A ∠BED =∠ABE +∠CDE 或∠BED =∠ABE -∠CDEB ∠BED =∠ABE -∠CDEC ∠BED =∠CDE -∠ABE 或∠BED =∠ABE -∠CDED ∠BED =∠CDE -∠ABE3、 以长为3cm ,5cm ,7cm ,10cm 的四根木棍中的三根木棍为边,可以构成三角形的个数是( )A .1个B .2个C .3个D .4个4、已知一多边形的每一个内角都等于150°,则这个多边形是正( )(A) 十二边形 (B) 十边形 (C) 八边形 (D) 六边形 5、边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A.正方形与正三角形 B.正五边形与正三角形 C.正六边形与正三角形 D.正八边形与正方形6、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高, 且相交于一点P ,若∠A=50°,则∠BPC 的度数是( )A .150°B .130°C .120°D .100°7、中华人民共和国国旗上的五角星,它的五个锐角的度数和是( )A 、500B 、100 0C 、180 0D 、 2008、在∆ABC 中,三个内角满足∠B -∠A=∠C -∠B ,则∠B 等于( ) A 、70° B 、60° C 、90° D 、120° 9、在锐角三角形中,最大内角的取值范围是( )A 、0°<<90°B 、60°<<180°C 、60°<<90°D 、60°≤<90°10、下面说法正确的是个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。

七年级数学下册《认识三角形》练习题及答案

七年级数学下册《认识三角形》练习题及答案

七年级数学下册《认识三角形》练习题及答案一、单选题1.如果一个三角形的两边长分别为1和6,则第三边长可能是()A.5B.6C.7D.82.以下列各组数据为边长,能构成三角形的是()A.4,5,9 B.2,4,7 C.4,9,9 D.3,3,73.下列生活实例中,利用了“三角形稳定性”的是()A.B.C.D.4.如图所示的图形中,三角形的个数是()A.3个B.4个C.5个D.6个5.一位同学用三根木棒两两相交拼成如下图形,则其中符合三角形概念的是()A.B.C.D.6.下列图形中是平面图形的是()A.B.C.D.7.若三角形三个角的度数比为2:5:7,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8.如图1是由8个同样大小的正方形组成的纸片,我们只需要剪两刀,将它分成三块,就可以拼成一个大正方形(如图2、图3).由5个同样大小的正方形组成的纸片(如图4),现要剪拼成一个大正方形,则需要在图4的纸片中最少剪( )A .1刀B .2刀C .3刀D .4刀9.如图,在ABC 中,AD 、AE 分别是边BC 上的中线和高,2AE =,3ABD S ∆=,则BC =( )A .2B .3C .4D .610.边长都是1~9中的正整数(可以相同)的不同的三角形个数有( )个.A .85B .89C .92D .95二、填空题11.如图,AB BD ⊥于点B ,AC CD ⊥于点C ,AC 与BD 交于点E ,若5AE =,3DE =,95CD =,则AB =_____________.12.若a 、b 、c 表示ABC 的三边长,则||||||a b c b c a c b a --+--+--=____________.13.三角形三边长为6、8、x ,则x 的取值范围是_____.14.在ABC 中,::1:3:2A B C ∠∠∠=,则ABC 是__________三角形.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有___________对.三、解答题16.某市木材市场上的木棒规格与价格如下表: 规格 1m 2m 3m 4m 5m 6m 7m 8m价格/(元/根) 10 15 20 25 3035 40 45小明的爷爷要做一个三角形的支架用来养兔子,在木材市场上已经购买了两根长度分别为2m 和7m 的木棒,还需要购买一根.(1)有几根规格的木棒可供小明的爷爷选择?(2)在能做成三角形支架的情况下,要求做成的三角形支架的周长为偶数,则小明的爷爷做三角形支架,买木棒一共花了多少元?17.(1)说出图中所有的三角形,以及每一个三角形的三条边和三个内角.(2)若40,60A C ∠=︒∠=︒,求ABC ∠的度数.18.如图1,点P 是ABC 内部一点,连接BP ,并延长交AC 于点D .(1)试探究AB BC CA ++与2BD 的大小关系;(2)试探究+AB AC 与PB PC +的大小关系;(3)如图2,点D ,E 是ABC 内部两点,试探究+AB AC 与BD DE CE ++的大小关系.19.如图,在ABC 中,8AC =,4BC =,高3BD =.(1)作出BC 边上的高AE ;(2)求AE 的长。

北师大版七年级数学下学期《第4章三角形》单元练习题含答案

北师大版七年级数学下学期《第4章三角形》单元练习题含答案

第 4 章三角形一.选择题(共10 小题)1.在△ ABC 中作 AB 边上的高,以下图中不正确的选项是)(A .B.C.D.F,且AB= 6,BC= 5,2.如图,△ ABC 的中线 BD 、 CE 订交于点O,OF ⊥ BC,垂足为AC= 3, OF =2,则四边形ADOE 的面积是()A .9B .6C. 5D. 33.以下各组线段中,能构成三角形的是()A .2, 4, 6B .2, 3, 6C. 2, 5, 6D. 2, 2, 64.如下图, l1∥ l 2,则以下式子中值为180°的是()A .α+β+γB .α+β﹣γC.β+γ﹣αD.α﹣β+γ5.以下条件中不可以判断三角形全等的是()A.两角和此中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等6.如图, C 为线段 AE 上一动点(不与点A、 E 重合),在 AE 同侧分别作正三角形ABC 和正三角形 CDE ,AD 与 BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点 Q,连结 PQ,以下七个结论:①AD = BE;② PQ∥AE ;③ AP =BQ;④ DE= DP;⑤∠AOB= 60°;⑥ △ PCQ 是等边三角形;⑦ 点C在∠ AOE的均分线上,此中正确的有()A .3 个B .4 个C. 5 个D. 6 个7.如图,已知点A、D、C、F 在同向来线上,AB= DE ,AD=CF ,且∠ B=∠ E= 90°,判定△ ABC≌△ DEF 的依照是()A .SASB .ASA C. AAS D. HL8.如图,在△ OAB 和△ OCD 中, OA=OB,OC= OD ,OA> OC,∠ AOB=∠ COD =40°,连结 AC, BD 交于点 M,连结 OM.以下结论:① AC= BD ;②∠ AMB= 40°;③ OM 均分∠ BOC ;④ MO 均分∠ BMC .此中正确的个数为()A .4B .3C. 2D. 19.如图, AB ∥ FC ,E 是 DF 的中点,若AB= 20, CF= 12,则 BD 等于()A .12B .8C. 6D. 1010.如图,工人师傅常用“卡钳”这类工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′构成, O 为 AA′、 BB′的中点.只需量出A′B′的长度,由三角形全等就能够知道工件内槽 AB 的长度.那么判断△OAB≌△ OA′ B′的原因是()A .SASB .ASA C. SSS D. AAS二.填空题(共 5 小题)11.一个三角形的三边长分别为x,4, 6,那么 x 的取值范围.12.如图,自行车的主框架采纳了三角形构造,这样设计的依照是三角形拥有.13.如图,在△ ABC 中, AD⊥ BC,AE 均分∠ BAC,若∠ BAE= 30°,∠ CAD = 20°,则∠B=.14.如图, AB= 6cm, AC= BD = 4cm.∠ CAB=∠ DBA,点 P 在线段 AB 上以 2cm/s 的速度由点 A 向点 B 运动,同时,点Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t ( s).设点 Q 的运动速度为xcm/s,若使得△ ACP 与△ BPQ 全等,则 x 的值为.15.如图,已知A D 和 BC 订交于点O 且 AD =BC,分别连结AC,AB,BD,已知 AC= BD,∠ ABC=20°,则∠ AOB 的度数为.三.解答题(共 5 小题)16.如图,∠ BAD =∠ CAE= 90°, AB= AD , AE= AC, AF⊥ CB,垂足为F.(1)求证:△ ABC≌△ ADE;(2)求∠ FAE 的度数;(3)求证: CD =2BF+DE .17.把下边的推理过程增补完好,并在括号内注明原因.如图,点B、D 在线段 AE 上, BC∥EF, AD = BE, BC=EF ,试说明:( 1)∠ C=∠ F;( 2) AC∥DF .解:( 1)∵ AD= BE(已知)∴ AD+DB =DB +BE()即 AB= DE∵ BC∥ EF(已知)∴∠ ABC=∠()又∵ BC= EF(已知)∴△ ABC≌△ DEF ()∴∠ C=∠ F,∠ A=∠ FDE ()∴ AC∥ DF ()18.已知:如图,点A, F,C,D 在同向来线上,AF =DC,AB∥ DE ,AB= DE ,求证: BC∥EF.19.如图,在△A BC 中,∠ ACB= 45°,过点A 作 AD ⊥ BC 于点 D ,点 E 为 AD 上一点,且ED = BD.(1)求证:△ ABD ≌△ CED;(2)若 CE 为∠ ACD 的角均分线,求∠ BAC 的度数.20.如图,△ ABC 和△ EBD 中,∠ ABC =∠ DBE = 90°, AB= CB,BE= BD ,连结 AE,CD , AE 与 CD 交于点 M, AE 与 BC 交于点 N.(1)求证: AE= CD;(2)求证: AE⊥ CD;( 3)连结 BM ,有以下两个结论:① BM均分∠ CBE;② MB均分∠ AMD.此中正确的有(请写序号,少选、错选均不得分).参照答案一.选择题(共10 小题)1.C.2.C.3.C.4. B.5.D.6.D.7.D.8.:B.9.B.10.A.二.填空题(共 5 小题)11.:2< x< 1012.稳固性.13.50°.14.2 或.15.140°三.解答题(共 5 小题)16.证明:( 1)∵∠ BAD =∠ CAE= 90°,∴∠ BAC+∠ CAD =90°,∠ CAD +∠DAE = 90°,∴∠ BAC=∠ DAE ,在△ BAC 和△ DAE 中,,∴△ BAC≌△ DAE (SAS);(2)∵∠ CAE= 90°, AC= AE,∴∠ E= 45°,由( 1)知△ BAC≌△ DAE ,∴∠ BCA=∠ E= 45°,∵AF⊥ BC,∴∠CFA=90°,∴∠ CAF= 45°,∴∠ FAE=∠ FAC+∠CAE= 45°+90 °= 135°;(3)延伸 BF 到 G,使得 FG= FB,∵ AF⊥ BG,∴∠ AFG=∠ AFB = 90°,在△ AFB 和△ AFG 中,,∴△ AFB ≌△ AFG ( SAS),∴AB=AG,∠ABF =∠G,∵△ BAC≌△ DAE ,∴AB= AD ,∠ CBA=∠ EDA, CB= ED,∴AG= AD,∠ ABF =∠ CDA,∴∠ G=∠ CDA ,∵∠ GCA=∠ DCA= 45°,在△ CGA 和△ CDA 中,,∴△ CGA≌△ CDA( AAS),∴CG= CD,∵CG=CB+BF+FG=CB+2BF =DE+2BF ,∴ CD = 2BF +DE .17.解:( 1)∵ AD = BE(已知)∴AD+DB =DB +BE(等式的性质)即 AB= DE∵ BC∥ EF(已知)∴∠ ABC=∠ E(两直线平行,同位角相等)又∵ BC= EF(已知)∴△ ABC≌△ DEF ( SAS)∴∠ C=∠ F,∠ A=∠ FDE (全等三角形的对应角相等);故答案为:等式的性质; E;两直线平行,同位角相等; SAS;全等三角形的对应角相等;( 2)∵∠ A=∠ FDE ,∴ AC∥ DF (同位角相等,两直线平行).故答案为:同位角相等,两直线平行.18.证明:∵ AB∥ DE,∴∠ A=∠ D,∵AF= CD ,∴ AC= DF ,在△ ABC 和△ DEF 中,∴△ ABC≌△ DEF (SAS),∴∠ BCA=∠ EFD ,∴BC∥ EF.19.( 1)证明:∵ AD⊥BC,∠ ACB= 45°,∴∠ ADB=∠ CDE= 90°,△ ADC 是等腰直角三角形,∴AD= CD,∠ CAD =∠ ACD = 45°,在△ ABD 与△ CED 中,,∴△ ABD≌△ CED( SAS);(2)解:∵ CE 为∠ ACD 的角均分线,∴∠ ECD=∠ ACD = 22.5°,由( 1)得:△ ABD ≌△ CED,∴∠ BAD=∠ ECD= 22.5°,∴∠ BAC=∠ BAD +∠ CAD =22.5° +45°= 67.5°.20.( 1)证明:∵∠ ABC=∠ DBE,∴∠ ABC+∠ CBE=∠ DBE +∠ CBE,即∠ ABE=∠ CBD ,在△ ABE 和△ CBD 中,,∴△ ABE≌△ CBD ,∴AE= CD .(2)∵△ ABE≌△ CBD ,∴∠ BAE=∠ BCD ,∵∠ NMC = 180°﹣∠ BCD ﹣∠ CNM ,∠ ABC= 180°﹣∠ BAE﹣∠ ANB,又∠ CNM =∠ ABC,∵∠ABC=90°,∴∠ NMC = 90°,∴ AE⊥ CD .(3)结论:②原因:作BK⊥ AE 于 K, BJ⊥ CD 于 J.∵△ ABE≌△ CBD ,∴AE= CD , S△ABE= S△CDB,∴?AE?BK = ?CD?BJ,∴BK= BJ,∵作 BK⊥AE 于 K , BJ⊥ CD 于 J,∴BM 均分∠ AMD .不如设①建立,则△ ABM ≌△ DBM ,则 AB= BD ,明显可不可以,故① 错误.故答案为② .。

《三角形全等的判定和性质综合应用》练习题

《三角形全等的判定和性质综合应用》练习题

(第3题) A BC D 活动1 基础练习(3分钟).一、基础练习1、如图1,已知△ABC ≌△DEF ,AC=2cm ,AB=1.5cm ,∠A=110°∠B=4O °,那么DF= cm ,∠D= 度。

2、如图2,△ABC ≌△A ′B ′C ′,AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC ,B ′C ′边上的高,如果AD=5cm ,那么A ′D ′=_______cm3.如图3, 已知∠A =∠C ,∠B =∠D ,要使△ABO ≌△CDO ,需要补充的一个条件是4.如图4,已知AB AD ,要使ABC ADC △≌△,需要补充一个条件是图4活动2 反思回顾,(2分钟).请同学们对本章学过的基础知识进行梳理:. 图1 1. 概念 2. 性质 3.判定定理 1. 全等三角形的对应边_____对应角____ 2. 全等三角形对应边上的中线____对应边的高_____对应角的平分线_______ 全等三角形的面积_____周长______全等 三角形A B C E D F 活动3 变式深化(6分钟).1.选择题。

(1).如图5,ΔABC ≌ΔADE ,∠B = 70º,∠C = 40º,∠DAC = 30º,则∠EAC = ( )A .27ºB .54ºC .40ºD .55º(2).如图6,△ACE ≌△DBF ,若∠E =∠F ,AD = 8,BC = 2,则AB 等于( )A .6B .5C .3D .不能确定(3).如图7所示,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件不能是( )A .∠B =∠C B. AD = AE C .∠ADC =∠AEB D. DC = BE2.解答题如图,在平行四边形ABCD 中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F . 求证:FA AB3、如图,AB 是⊙O 的直径,BE 是⊙O 切线,OE ∥AC,AC=OA,求证:BC=BE.图7图5 图6A B C D E F活动4 典例探究(7分钟).1、如图:在△ABC 中,∠ACB=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。

七年级数学下册直角三角形的边长关系综合练习题

七年级数学下册直角三角形的边长关系综合练习题

七年级数学下册直角三角形的边长关系综合练习题直角三角形是一种特殊的三角形,其中一个角是直角(即为90度)。

在直角三角形中,边长之间存在着一些特殊的关系,我们可以通过运用一些定理和公式来求解直角三角形的边长。

本文将综合练习一些直角三角形的边长关系题目,帮助七年级学生加深对这些概念的理解和应用。

题目一:已知直角三角形ABC中,∠B = 90°,BC = 5cm,AC = 12cm,求AB的长度。

解析一:根据勾股定理,直角三角形中的两个直角边的平方和等于斜边的平方。

即AB² + BC² = AC²。

带入已知条件:AB² + 5² = 12²AB² + 25 = 144AB² = 144 - 25AB² = 119AB = √119因此,直角三角形ABC中,AB ≈ 10.92cm。

题目二:已知直角三角形XYZ中,∠Z = 90°,YZ = 9cm,XZ = 15cm,求XY的长度。

解析二:同样利用勾股定理,我们可以得到XY² + YZ² = XZ²。

带入已知条件:XY² + 9² = 15²XY² + 81 = 225XY² = 225 - 81XY² = 144XY = √144因此,直角三角形XYZ中,XY = 12cm。

题目三:已知直角三角形PQR中,∠R = 90°,PQ = 8cm,RP = 10cm,求RQ的长度。

解析三:应用勾股定理,我们有RQ² + PQ² = RP²。

带入已知条件:RQ² + 8² = 10²RQ² + 64 = 100RQ² = 100 - 64RQ² = 36RQ = √36因此,直角三角形PQR中,RQ = 6cm。

七年级下全等三角形练习题经典综合拔高题

七年级下全等三角形练习题经典综合拔高题

1. 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .2. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .3. 如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC于D , BC=DF .求证:AC=EF .4. 如图,在ΔABC 中,AC=AB ,AD 是BC 边上的中线,则AD ⊥BC ,请说明理由。

5. 如图,已知AB=DE ,BC=EF ,AF=DC ,则∠EFD=∠BCA ,请说明理由。

FGEDCBAA BC D E F A B C DF E DCBA6. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。

7. 如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由。

(1)∠DBH=∠DAC ;(2)ΔBDH ≌ΔADC 。

8. 如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.9,已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

A B C DE A BCDE H10.如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的延长线于G ,DE ⊥AG 于E ,且DE =DC ,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。

11已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.12如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.13如图,∠ABC=90°,AB=BC ,BP 为一条射线,AD ⊥BP ,CE ⊥PB ,若AD=4,EC=2.求DE 的长。

2022年精品解析沪教版七年级数学第二学期第十四章三角形综合练习试卷(含答案详解)

2022年精品解析沪教版七年级数学第二学期第十四章三角形综合练习试卷(含答案详解)

沪教版七年级数学第二学期第十四章三角形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,钝角ABC 中,2∠为钝角,AD 为BC 边上的高,AE 为BAC ∠的平分线,则DAE ∠与1∠、2∠之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A .21DAE ∠=∠-∠B .212DAE ∠-∠∠=C .212DAE ∠∠=-∠D .122DAE ∠+∠∠=2、如图,AC =BC ,∠C =α,DE ⊥AC 于E ,FD ⊥AB 于D ,则∠EDF 等于( ).A .αB .90°-12α C .90°-α D .180°-2α3、如图,90A D ∠=∠=︒,AC ,BD 相交于点O .添加一个条件,不一定能使ABC ≌DCB 的是( )A .AB DC = B .OB OC =C .ABO DCO ∠=∠D .ABC DCB ∠=∠4、已知三条线段的长分别是4,4,m ,若它们能构成三角形,则整数m 的最大值是( )A .10B .8C .7D .45、有两边相等的三角形的两边长为4cm ,5cm ,则它的周长为( )A .8cmB .14cmC .13cmD .14cm 或13cm6、如图,在ABC 中,AB =AC ,D 是BC 的中点,∠B =35°,则∠BAD =( )A .110°B .70°C .55°D .35°7、在下列长度的四根木棒中,能与3cm ,9cm 的两根木棒首尾顺次相接钉成一个三角形的是() A .3cm B .6cm C .10cm D .12cm8、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理9、下列三角形与下图全等的三角形是()A.B.C.D.10、三角形的外角和是()A.60°B.90°C.180°D.360°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为_____.'',∠A=30°,∠1=70°,则旋转角2、如图,把△ABC绕点C顺时针旋转某个角度α得到A B Cα的度数为_____.3、如图,在等边△ABC 中,E 为AC 边的中点,AD 垂直平分BC ,P 是AD 上的动点.若AD =6,则EP +CP 的最小值为_______________.4、如图,在△ABC 中,点D 为BC 边的中点,点E 为AC 上一点,将∠C 沿DE 翻折,使点C 落在AB 上的点F 处,若∠AEF =50°,则∠A 的度数为__.5、如图,ABC ADC ∠=∠,AB CD ∥,BE 平分ABC ∠交AD 于点E ,连接CE ,AF 交CD 的延长线于点F ,180BCD AEB DAF ∠+∠+∠=︒,若3ECD F ∠=∠,80BEC ∠=︒,则CED ∠的度数为______.三、解答题(10小题,每小题5分,共计50分)1、直线l 经过点A ,ABC 在直线l 上方,AB AC =.(1)如图1,90BAC ∠=︒,过点B ,C 作直线l 的垂线,垂足分别为D 、E .求证:ABD CAE ≌(2)如图2,D ,A ,E 三点在直线l 上,若BAC BDA AEC α∠=∠=∠=(α为任意锐角或钝角),猜想线段DE 、BD 、CE 有何数量关系?并给出证明.(3)如图3,90BAC ∠=︒过点B 作直线l 上的垂线,垂足为F ,点D 是BF 延长线上的一个动点,连结AD ,作90DAE ∠=︒,使得AE AD =,连结DE ,CE .直线l 与CE 交于点G .求证:G 是CE 的中点.2、如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.3、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角AOB ∠.求作:射线OC ,使AOC BOC ∠=∠.作法:如图,①在射线OA 上任取一点D ;②以点О为圆心,OD 长为半径作弧,交OB 于点E ;③分别以点D ,E 为圆心,大于12DE 长为半径作弧,在AOB ∠内,两弧相交于点C ;④作射线OC .则OC 为所求作的射线.完成下面的证明.证明:连接CD ,CE由作图步骤②可知OD =______.由作图步骤③可知CD =______.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(________)(填推理的依据).4、如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O .求证:OB =OC .5、如图,ABC 为等边三角形,D 是BC 中点,60ADE ∠=︒,CE 是ABC 的外角ACF ∠的平分线. 求证:AD DE =.6、如图,在ABC 中,AD 是角平分线,54B ∠=︒,76C ∠=︒.(1)求BAD ∠的度数;(2)若DE AC ⊥,求EDC ∠的度数.7、已知:如图,∠ABC =∠DCB ,∠1=∠2.求证AB =DC .8、在等边ABC 中,D 、E 是BC 边上两动点(不与B ,C 重合)(1)如图1,,25AD AE BAD =∠=︒,求AEB ∠的度数;(2)点D 在点E 的左侧,且AD =AE ,点E 关于直线AC 的对称点为F ,连接AF ,DF .①依题意将图2补全;②求证:AD DF =.9、如图,已知点B ,F ,C ,E 在同一直线上,AB ∥DE ,BF =CE ,AB =ED ,求证:∠A =∠D .10、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.(1)求证:AB//CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.-参考答案-一、单选题1、B【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC =180°-∠2-∠1,∵AE 为∠BAC 的平分线,∴∠BAE =12∠BAC =12(180°-∠2-∠1).∵AD 为BC 边上的高,∴∠ADC =90°=∠DAB +∠ABD .又∵∠ABD =180°-∠2,∴∠DAB =90°-(180°-∠2)=∠2-90°,∴∠EAD =∠DAB +∠BAE =∠2-90°+12(180°-∠2-∠1)=12(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.2、B【分析】 AC =BC ,∠C =α,DE ⊥AC 于E ,FD ⊥AB 于D ,有1802B A α︒-∠=∠=,90ADE A ∠=︒-∠,90EDF ADE ∠=︒-∠,即可求得角度. 【详解】 解:由题意知:1802B A α︒-∠=∠=,90ADF ∠=︒ 180909022ADE A αα︒-∠=︒-∠=︒-= 90902EDF ADE α∠=︒-∠=︒-故选B .本题考查了等腰三角形的性质,几何图形中角度的计算.解题的关键在于确定各角度之间的数量关系.3、C【分析】直接利用直角三角形全等的判定定理(HL 定理)即可判断选项A ;先根据等腰三角形的性质可得ACB DBC ∠=∠,再根据三角形全等的判定定理(AAS 定理)即可判断选项B ;直接利用三角形全等的判定定理(AAS 定理)即可判断选项D ,由此即可得出答案.【详解】解:当添加条件是AB DC =时,在Rt ABC 和Rt DCB △中,AB DC BC CB =⎧⎨=⎩, ()Rt ABC Rt DCB HL ∴≅,则选项A 不符题意;当添加条件是OB OC =时,ACB DBC ∴∠=∠,在ABC 和DCB 中,90A D ACB DBC BC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()DCB A AA BC S ∴≅,则选项B 不符题意;当添加条件是ABC DCB ∠=∠时,在ABC 和DCB 中,90A D ABC DCB BC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()DCB A AA BC S ∴≅,则选项D 不符题意;当添加条件是ABO DCO ∠=∠时,不一定能使ABC DCB ≅,则选项C 符合题意;【点睛】本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键.4、C【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则<<mm4444-<<+,即08又m为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.5、D【分析】有两边相等的三角形,是等腰三角形,两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.综上所述,该等腰三角形的周长是13cm或14cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.6、C【分析】根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.【详解】解:∵AB=AC,D是BC的中点,∴AD⊥BC,∵∠B=35°,∴∠BAD=90°−35°=55°.故选:C.【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.7、C【分析】设第三根木棒的长度为x cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm,则x9393,x612,所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.8、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.9、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.【详解】由题可知,第三个内角的度数为180514980︒-︒-︒=︒,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.故选:C.【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.10、D【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】∠+∠=∠+∠=∠+∠=︒,解:如图,142536180142536540∴∠+∠+∠+∠+∠+∠=︒,又123180∠+∠+∠=︒,∴∠+∠+∠=︒-︒=︒,456540180360即三角形的外角和是360︒,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.二、填空题1、4【分析】根据题意过点P 作PM ⊥BC 于M ,PN ⊥AC 于N ,PK ⊥AB 于K ,在EB 上取一点J ,使得MJ =FN ,连接PJ ,进而利用全等三角形的性质证明EF =EM +EN ,即可得出结论.【详解】解:如图,过点P 作PM ⊥BC 于M ,PN ⊥AC 于N ,PK ⊥AB 于K ,在EB 上取一点J ,使得MJ =FN ,连接PJ .∵BP 平分∠BC ,PA 平分∠CAB ,PM ⊥BC ,PN ⊥AC ,PK ⊥AB ,∴PM =PK ,PK =PN ,∴PM =PN ,∵∠C =∠PMC =∠PNC =90°,∴四边形PMCN 是矩形,∴四边形PMCN 是正方形,∴CM =PM ,∴∠MPN =90°,在△PMJ 和△PNF 中,90PM PN PMJ PNF MJ NF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△PMJ ≌△PNF (SAS ),∴∠MPJ =∠FPN ,PJ =PF ,∴∠JPF =∠MPN =90°,∵∠EPF =45°,∴∠EPF =∠EPJ =45°,在△PEF 和△PEJ 中,PE PE EPF EPJ PF PJ =⎧⎪∠=∠⎨⎪=⎩, ∴△PEF ≌△PEJ (SAS ),∴EF =EJ ,∴EF =EM +FN ,∴△CEF 的周长=CE +EF +CF =CE +EM +CF +FN =2EM =2PM ,∵S △ABC =12•BC •AC =12(AC +BC +AB )•PM ,∴PM =2,∴△ECF 的周长为4,故答案为:4.【点睛】本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问.2、40︒##【分析】由旋转的性质可得30,A A 再利用三角形的外角的性质求解140,A CA A 从而可得答案.【详解】 解: 把△ABC 绕点C 顺时针旋转某个角度α得到A B C '',∠A =30°,30,A A∠1=70°,140,A CA A40.故答案为:40︒【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解30A A '∠=∠=︒是解本题的关键.3、6【分析】要求EP +CP 的最小值,需考虑通过作辅助线转化EP ,CP 的值,从而找出其最小值求解.【详解】解:作点E 关于AD 的对称点F ,连接CF ,∵△ABC 是等边三角形,AD 是BC 边上的中垂线,∴点E 关于AD 的对应点为点F ,∴CF 就是EP +CP 的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF=AD=6,即EP+CP的最小值为6,故答案为6.【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.4、65°度【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【详解】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A=12(180°-50°)=65°.故答案为:65°.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.5、80°【分析】先根据AB CD ∥,ABC ADC ∠=∠,得出180ADC BCD ABC BCD ∠+∠=∠+∠=︒,可证AD∥BC ,再证∠BAD =∠BCD ,得出∠AEB =∠F ,然后证∠ABC =2∠CBE =2∠F ,得出∠ADC =2∠F ,利用三角形内角和得出∠CED =180°-∠EDC -∠ECD =180°-2∠F -3∠F =180°-5∠F ,根据平角得出∠AEB +∠CED =180°-∠BEC =180°-80°=100°,列方程∠F +180°-5∠F =100°求出∠F =20°即可.【详解】解:∵AB CD ∥,∴∠ABC +∠BCD =180°,∵ABC ADC ∠=∠∴180ADC BCD ABC BCD ∠+∠=∠+∠=︒,∴AD∥BC ,∵AB CD ∥,∴∠BAD +∠ADC =180°,∠BAF +∠F =180°,∵∠ADC +∠BCD =180°,∴∠BAD =∠BCD ,∵180BCD AEB DAF ∠+∠+∠=︒,∴180BAD AEB DAF ∠+∠+∠=︒,∵∠BAF =∠BAD +∠DAF ,∴∠BAF +∠AEB =180°,∴∠AEB =∠F ,∵AD∥BC ,∴∠CBE =∠AEB ,∵BE 平分ABC ∠,∴∠ABC =2∠CBE =2∠F ,∴∠ADC =2∠F ,∵3ECD F ∠=∠,在△CED 中,∠CED =180°-∠EDC -∠ECD =180°-2∠F -3∠F =180°-5∠F ,∵80BEC ∠=︒,∴∠AEB +∠CED =180°-∠BEC =180°-80°=100°,∴∠F +180°-5∠F =100°,解得∠F =20°,∴18052018010080CED ∠=︒-⨯︒=︒-︒=︒,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC =2∠F .三、解答题1、(1)见解析;(2)猜想:DE BD CE =+,见解析;(3)见解析【分析】(1)先证明BDA AEC ∠=∠和ABD CAE ∠=∠,再根据AAS 证明ABD CAE ≌即可;(2)根据AAS 证明ABD CAE ≌得BD AE =,DA EC =,进一步可得出结论;(3)分别过点C 、E 作CM l ⊥,EN l ⊥,同(1)可证ABF CAM ≌,ADF EAN ≌,得出CM =EN ,证明CMG ENG ≌得CG EG =,从而可得结论.【详解】解:(1)证明:∵BD l ⊥,CE l ⊥,∴90BDA AEC ∠=∠=︒,∴90ABD DAB ∠+∠=︒∵90BAC ∠=︒,∴90CAE DAB ∠+∠=︒∴ABD CAE ∠=∠,在ABD 与CAE 中BDA AEC ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABD CAE AAS ≌(2)猜想:DE BD CE =+,∵BDA BAC α∠=∠=∴180180ABD DAB BDA α∠+∠=︒-∠=︒-,180180CAE DAB BAC α∠+∠=︒-∠=︒-∴ABD CAE ∠=∠,在ABD 与CAE 中BDA AEC ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ABD CAE AAS ≌,∴BD AE =,DA EC =,∴DE AE DA BD CE =+=+(3)分别过点C 、E 作CM l ⊥,EN l ⊥,同(1)可证ABF CAM ≌,ADF EAN ≌,∴AF CM =,AF EN =∴CM EN =,∵CM l ⊥,EN l ⊥,∴90CMG ENG ∠=∠=︒在CMG 与ENG 中CMG ENG CGM EGN CM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMG ENG AAS ≌,∴CG EG =,∴G 为CE 的中点.【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD ≌△CAE 是解决问题的关键.2、85°【分析】由高的定义可得出∠ADB =∠ADC =90,在△ACD 中利用三角形内角和定理可求出∠ACB 的度数,结合CE 平分∠ACB 可求出∠ECB 的度数.由三角形外角的性质可求出∠AEC 的度数,【详解】解:∵AD 是BC 边上的高,∴∠ADB =∠ADC =90.在△ACD 中,∠ACB =180°﹣∠ADC ﹣∠CAD =180°﹣90°﹣20°=70°.∵CE 平分∠ACB ,∴∠ECB =12∠ACB =35°.∵∠AEC 是△BEC 的外角,50B ∠=︒,∴∠AEC =∠B +∠ECB =50°+35°=85°.答:∠AEC 的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB 的度数是解题的关键.3、OE ; CE ;全等三角形的对应角相等【分析】根据圆的半径相等可得OD =OE ,CD =CE ,再利用SSS 可证明OCD OCE ≌△△,从而根据全等三角形的性质可得结论.【详解】证明:连接CD ,CE由作图步骤②可知OD =___OE ___.由作图步骤③可知CD =__CE ___.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(__全等三角形对应角相等__)故答案为:OE ; CE ;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.4、见解析【分析】根据SAS 证明△AEC 与△ADB 全等,进而利用全等三角形的性质解答即可.【详解】证明:在△AEC 与△ADB 中,AB AC A A AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△ADB (SAS ),∴∠ACE =∠ABD ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠OBC =∠OCB ,∴OB=OC.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.5、证明见解析.【分析】过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.【详解】证明:过D作DG∥AC交AB于G,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠BAC=60°,又∵DG∥AC,∴∠BDG=∠BGD=60°,∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,∴DG=BD,∵点D为BC的中点,∴BD=CD,∴DG=CD,∵EC是△ABC外角的平分线,∴∠ACE =12(180°−∠ACB )=60°,∴∠BCE =∠ACB +∠ACE =120°=∠AGD ,∵AB =AC ,点D 为BC 的中点,∴∠ADB =∠ADC =90°,又∵∠BDG =60°,∠ADE =60°,∴∠ADG =∠EDC =30°,在△AGD 和△ECD 中,AGD ECD GD CDADG EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGD ≌△ECD (ASA ).∴AD =DE .【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.6、(1)25BAD ∠=︒;(2)14EDC ∠=︒.【分析】(1)根据三角形内角和定理可求出50BAC ∠=︒,然后利用角平分线进行计算即可得;(2)根据垂直得出90AED ∠=︒,然后根据三角形内角和定理即可得.(1)解:∵54B ∠︒=,76C ∠︒=,∴180180547650BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是角平分线, ∴1252BAD BAC ∠=∠=︒,∴25BAD ∠=︒;(2)∵DE AC ⊥,∴90AED ∠=︒,∴180180907614EDC AED C ∠=︒-∠-∠=︒-︒-︒=︒,∴14EDC ∠=︒.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.7、见解析【分析】由“ASA ”可证△ABO ≌△DCO ,可得结论.【详解】证明:如图,记,AC BD 的交点为,O∵∠ABC =∠DCB ,∠1=∠2,又∵∠OBC =∠ABC −∠1,∠OCB =∠DCB −∠2,∴∠OBC =∠OCB ,∴OB =OC ,在△ABO 和△DCO 中,12OB OC AOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA ),∴AB =DC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.8、(1)85︒;(2)①作图见解析;②证明见解析【分析】(1)等边三角形ABC 中60BAC B C ∠=∠=∠=︒,由AD AE =知ADC AEB ∠=∠,ADC B BAD ∠=∠+∠,进而求出AEB ∠的值;(2)①作图见详解;②ADE B BAD ∠=∠+∠ ,AED C EAC ∠=∠+∠,BAD EAC ∠=∠,点E ,F 关于直线AC 对称,EAC FAC ∠=∠,AE AF AD ==,60FAC DAC BAD DAC ∠+∠=∠+∠=︒,ADF 为等边三角形,进而可得到AD DF =.【详解】解:(1)ABC 为等边三角形85ADC BAD B ∴∠=∠+∠=︒AD AE =85AEB ADC ∴∠=∠=︒.(2)①补全图形如图所示,②证明:ABC 为等边三角形60B C BAC ∴∠=∠=∠=︒AD AE =ADE AED ∴∠=∠ADE B BAD ∠=∠+∠ ,AED C EAC ∠=∠+∠BAD EAC ∴∠=∠点E ,F 关于直线AC 对称EAC FAC ∠=∠∴,AE AF =60FAC DAC BAD DAC ∴∠+∠=∠+∠=︒即60DAF=∠︒AD AF =ADF ∴为等边三角形AD AF ∴=.【点睛】本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质.解题的关键在于角度的转化.9、见解析【分析】根据平行线的性质得出∠B =∠E ,进而利用SAS 证明ABC DEF ≅,利用全等三角形的性质解答即可.【详解】证明:FB CE =,FB CF CE CF ∴+=+,即BC EF =.//AB DE ,B E ∴∠=∠.在ABC 和DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ()ABC DEF SAS ∴≅△△A D ∴∠=∠.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ABC DEF ≅是解题的关键.10、(1)见解析;(2)见解析;(3)108°【分析】(1)根据对顶角相等结合已知条件得出∠AEG =∠C ,根据内错角相等两直线平行即可证得结论;(2)由∠AGE +∠AHF =180°等量代换得∠DGC +∠AHF =180°可判断EC //BF ,两直线平行同位角相等得出∠B =∠AEG ,结合(1)得出结论;(3)由(2)证得EC //BF ,得∠BFC +∠C =180°,求得∠C 的度数,由三角形内角和定理求得∠D 的度数.【详解】证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C∴AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°∴EC//BF∴∠B=∠AEG由(1)得∠AEG=∠C∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C∴∠C=36°∴∠DGC=36°∵∠C+∠DGC+∠D=180°∴∠D=108°【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.。

初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习一、单选题1.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A. CB CD =B. BAC DAC ∠=∠C. BCA DCA ∠=∠D. 90B D ∠=∠=︒2.如图,已知ABC DCB ∠=∠,添加下列所给的条件不能证明ABC DCB △≌△的是( )A. A D ∠=∠B. AB DC =C. ACB DBC ∠=∠D. AC BD =3.如图,点,D E 分别在线段,AB AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =4.某同学把一块三角形的玻璃打碎成了三块(如图所示),现在要到玻璃店去配一块与原来完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.带①②③去5.如图,BF EC B E =∠=∠请问添加下面哪个条件不能判断ABC DEF ≅△△( )A.A D ∠=∠B.AB ED =C.//DF ACD.AC DF =6.如图,点B E C F 、、、在同一条直线上,//AB DE ,AB DE =,要用SAS 证明ABC DEF ≅△△,可以添加的条件是( )A .A D ∠=∠B .//AC DF C .BE CF =D .AC DF =7.下列各图中a b c ,,为三角形的边长,则甲、乙、丙三个三角形和左侧ABC △全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙8.如图,点D E ,分别在线段AB AC ,上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△?( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =9.如图所示的是用直尺和圆规作一个角等于已知角 的示意图,则说明'''A O B AOB ∠=∠的依据 是( )A.S.A.SB.S.S.S.C.A.A.S.D.A.S.A.10.如图,AOB ∠是一个任意角,在边OA OB ,上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与M N ,重合,过角尺顶点C 的射线OC 便是AOB ∠的平分线这种方法所用的三角形全等的判定方法是( )A.S.A.S.B.S.S.S.C.A.S.A.D.A.A.S.11.如图,AB AD =,BC CD =,点E 在AC 上,则全等三角形共有( )A.1对B.2对C.3对D.4对12.如图,在ABC △和DEF △中,,B E C F ,,在同一直线上,AB DE =,AC DF =,要使ABC DEF ≅△△,还需要添加的一个条件是( )A.EC CF =B.BE CF =C.B DEF ∠=∠D.//AC DF13.如图,ABC △中,AB AC =,EB EC =,则由“S.S.S.”可以判定( )A.ABD ACD ≅△△B.ABE ACE ≅△△C.BDE CDE ≅△△D.以上答案都不对14.如图,点E 在ABC △的外部,点D 在边BC 上,DE 交AC 于点F .若12∠=∠,E C ∠=∠,AE AC =,则( )A.ABC AFE ≅△△B.AFE ADC ≅△△C.AFE DFC ≅△△D.ABC ADE ≅△△15.下列条件能判 断两个三角形全等的是( )A.有两边对应相等B.有两角对应相等C.有一边一角对应相等D.能够完全重合16.如图,全等的两个三角形是( )A.③④B.②③C.①②D.①④17.如图,点,,,B E C F 在同一条直线上,//,AB DE AB DE = ,要用“边角边”证明ABC DEF ≅△△,可以添加的条件是( ).A.A D ∠=∠B.//AC DFC.BE CF =D.AC DF =18.如图,点P 是AB 上任一点,ABC ABD ∠=∠,从下列各条件中补充一个条件,不一定能推出APC APD ≅△△.的是( )A.BC BD =B.ACB ADB ∠=∠C.AC AD =D. CAB DAB ∠=∠二、证明题19.如图:点C D 、在AB 上,且//AC BD AE FB AE BF ==,,.求证://DE CF .20.如图,已知CA CB =,AD BD =,M N ,分别是CB CA ,的中点,求证:DN DM =.21.如图,已知AB AE =,12∠=∠,B E ∠=∠.求证:BC ED =.22.如图,90A D ∠=∠=︒,AC DB =,AC DB ,相交于点O .求证:OB OC =.23.如图(1)在ABC △中,90ACB AC BC ∠=︒=,,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E 。

精品解析2022年北师大版七年级数学下册第四章三角形综合练习试题(含答案解析)

精品解析2022年北师大版七年级数学下册第四章三角形综合练习试题(含答案解析)

北师大版七年级数学下册第四章三角形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC中,若AB=3,BC=4,且周长为奇数,则第三边AC的长可以是()A.1 B.3 C.4 D.52、以下列各组线段为边,能组成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm3、已知:如图,∠BAD=∠CAE,AB=AD,∠B=∠D,则下列结论正确的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE4、下列各组图形中,是全等形的是()A.两个含30°角的直角三角形B .一个钝角相等的两个等腰三角形C .边长为5和6的两个等腰三角形D .腰对应相等的两个等腰直角三角形5、如图,已知AB AC =,要使AEB ADC △≌△,添加的条件不正确...的是( )A .BD CE =B .AEB ADC ∠=∠ C .B C ∠=∠D .BE CD =6、如图,AC =DC ,∠BCE =∠DCA ,要使△ABC ≌△DEC ,不能添加下列选项中的( )A .∠A =∠DB .BC =EC C .AB =DED .∠B =∠E7、以下列各组长度的线段为边,能构成三角形的是( )A .1cm ,1cm ,8cmB .3cm ,3cm ,6cmC .3cm ,4cm ,5cmD .3cm ,2cm ,1cm8、如图,D 为∠BAC 的外角平分线上一点,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,且满足∠FDE =∠BDC ,则下列结论:①△CDE ≌△BDF ;②CE =AB +AE ;③∠BDC =∠BAC ;④∠DAF =∠CBD .其中正确的结论有( )A.1个B.2个C.3个D.4个9、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()A.4 B.5 C.6 D.810、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC中,∠B=20°,D是BC延长线上一点,且∠ACD=60°,则∠A的度数是____________ 度.2、如图,点F,A,D,C在同一条直线上,ABC DEF△≌△,3AD=,CF10=,则AC等于_____.3、已知a ,b ,c 是ABC 的三条边长,化简a b c a b c +-+--的结果为_______.4、如图,在△ABC 中,D 是AC 延长线上一点,∠A =50°,∠B =70°,则∠BCD =__________°.5、如图,直线ED 把ABC 分成一个AED 和四边形BDEC ,ABC 的周长一定大于四边形BDEC 的周长,依据的原理是____________________________________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,AC BD =,AD BC =,求证:ABC BAD ≌2、在ABC 中,AC BC =,90ACB ∠=︒,点D 是直线AC 上一动点,连接BD 并延长至点E ,使ED BD =.过点E 作EF AC ⊥于点F .(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:2AD AF EF=+.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.3、如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.4、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.5、李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD(∠ABC=90°,AB=BC),点B在EF上,点A和C分别与木墙的顶端重合,求两堵木墙之间的距离EF.-参考答案-一、单选题1、C【分析】先求解AC的取值范围,再利用周长为奇数,可得AC为偶数,从而可得答案.【详解】解:AB=3,BC=4,ACAC即17,4343,△ABC周长为奇数,而3+4=7,为偶数,AC1AC ∴=或3AC =或5AC =不符合题意,4AC =符合题意;故选C【点睛】本题考查的是三角形三边的关系,掌握“三角形的任意两边之和大于第三边,任意两边之差小于第三边”是解本题的关键.2、C【分析】根据三角形三边关系求解即可.【详解】解:A 、∵336+=,∴3cm,3cm ,6cm 不能组成三角形,故选项错误,不符合题意;B 、∵257<8+=,∴2cm,5cm ,8cm 不能组成三角形,故选项错误,不符合题意;C 、∵24-7<25<24+7,∴25cm,24cm ,7cm 能组成三角形,故选项正确,符合题意;D 、∵123+=,∴1cm,2cm ,3cm 不能组成三角形,故选项错误,不符合题意.故选:C .【点睛】此题考查了三角形三边关系,解题的关键是熟练掌握三角形三边关系.三角形两边之和大于第三边,两边之差小于第三边.3、D【分析】根据已知条件利用ASA 证明ABC ADE △≌△可得AC =AE ,BC =DE ,进而逐一进行判断.【详解】解:∵∠BAD =∠CAE ,∴∠BAD -∠CAD =∠CAE -∠CAD ,即∠BAC =∠DAE ,所以B 、C 选项错误;在ABC 和ADE 中,BAC DAE AB ADB D ∠∠⎧⎪⎨⎪∠∠⎩===, ∴ABC ADE △≌△(ASA ),∴AC =AE ,BC =DE .所以A 选项错误;D 选项正确.故选:D .【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.4、D【分析】根据两个三角形全等的条件依据三角形全等判定方法SSS,SAS,AAS,SAS,HL逐个判断得结论.【详解】解:A、两个含30°角的直角三角形,缺少对应边相等,故选项A不全等;B、一个钝角相等的两个等腰三角形.缺少对应边相等,故选项B不全等;C、腰为5底为6的三角形和腰为6底为5的三角形不全等,故选项C不全等;D、腰对应相等,顶角是直角的两个三角形满足“边角边”,故选项D是全等形.故选:D.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.5、D【分析】已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【详解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.6、C【分析】根据全等三角形的判定定理进行分析即可;【详解】根据已知条件可得∠+∠=∠+∠BCA ECA DCA ECA,即BCA ECD∠=∠,∵AC=DC,∴已知三角形一角和角的一边,根据全等条件可得:A. ∠A=∠D,可根据ASA证明,A正确;B. BC=EC,可根据SAS证明,B正确;C. AB=DE,不能证明,C故错误;D. ∠B=∠E,根据AAS证明,D正确;故选:C.【点睛】本题主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解题的关键.7、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+1=2<8,不能组成三角形,故此选项不合题意;B、3+3=6,不能组成三角形,故此选项不符合题意;C、3+4=7>5,能组成三角形,故此选项符合题意;D、1+2=3,不能组成三角形,故此选项不合题意;【点睛】本题考查了构成三角形的条件,掌握“任意两边之和大于第三边,任意两边之差小于第三边”是解题的关键.8、D【分析】利用AAS 证明△CDE ≌△BDF ,可判断①④正确;再利用HL 证明Rt△ADE ≌Rt△ADF ,可判断②正确;由∠BAC =∠EDF ,∠FDE =∠BDC ,可判断③正确.【详解】解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE =DF ,∠DFB =∠DEC =90°,∵∠FDE =∠BDC ,∴∠FDB =∠EDC ,在△CDE 与△BDF 中,FDB CDEDFB DECDF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△BDF (AAS ),故①正确;∴CE =BF ,在Rt△ADE 与Rt△ADF 中,AD ADDE BF =⎧⎨=⎩,∴Rt△ADE ≌Rt△ADF (HL ),∴CE=AB+AF=AB+AE,故②正确;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正确;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正确故选:D.【点睛】本题主要考查了全等三角形的判定及性质,外角的性质等,熟悉掌握全等三角形的判定方法,灵活寻找条件是解题的关键.9、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出ABC的面积.【详解】∵AD是BC上的中线,∴12ABD ACD ABCS S S==△△△,∵CE是ACD△中AD边上的中线,∴12ACE CDE ACDS S S==,∴14CDE ABCS S=,即4ABC CDES S=,∵CDE△的面积是2,∴428ABCS=⨯=.故选:D.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.10、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.二、填空题1、40【分析】直接根据三角形外角的性质可得结果.【详解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴602040∠=∠-∠=︒-︒=︒,A ACD B故答案为:40.【点睛】本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键2、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由10AD=,求出=++=,3CF AF AD CDAC AD CD=+=.==,则 6.5AF CD3.5【详解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵10AD=,=++=,3CF AF AD CD∴7+=,AF CD∴ 3.5AF CD==,∴ 6.5=+=,AC AD CD故答案为:6.5.【点睛】本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质.3、2b【分析】由题意根据三角形三边关系得到a+b-c>0,b-a-c<0,再去绝对值,合并同类项即可求解.【详解】解:∵a,b,c是ABC的三条边长,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案为:2b.【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4、120【分析】根据三角形的外角性质,可得BCD A B∠=∠+∠,即可求解.【详解】解:∵BCD∠是ABC的外角,∴BCD A B∠=∠+∠,∵∠A=50°,∠B=70°,∴120∠=︒.BCD故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、三角形两边之和大于第三边【分析】表示出ABC和四边形BDEC的周长,再结合ADE中的三边关系比较即可.【详解】解:ABC的周长=AC AB BC AE AD CE CB BD++=++++四边形BDEC的周长=DE CE CB BD+++∵在ADE中AE AD DE+>∴AE AD CE CB BD+++++++>DE CE CB BD即ABC 的周长一定大于四边形BDEC 的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.三、解答题1、证明见解析【分析】由AC BD =,AD BC =,结合公共边,AB BA 从而可得结论.【详解】证明:在ABC 与BAD 中,ACBD ADBC AB BAABC BAD ≌∴【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.2、(1)DF DC =(2)见解析(3)2AF EF AD -=【分析】(1)利用边相等和角相等,直接证明EDF BDC ∆∆≌,即可得到结论.(2)利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.(3)要证明2AF EF AD -=,先利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.【详解】(1)解:DF DC =90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=.(2)解:当点D 在线段AC 的延长线上时,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,=2AF EF AD DF AC AD CD AD ∴+=++=+.(3)解:2AF EF AD -=,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,()2AF EF AF AC AF DF AD AF DF AD AD ∴-=-=--=-+=.【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.3、证明见解析【分析】由CE DF ∥证明,ACE BDF 再结合已知条件证明,AEC FBD ≌从而可得答案.【详解】证明:CE DF ∥,,ACE BDFEC =BD ,AC =FD ,,AEC FBD ≌AE FB ∴=【点睛】本题考查的是全等三角形的判定与性质,掌握“利用SAS 证明三角形全等 ”是解本题的关键.4、见解析【分析】先由BF =CE 说明BC= EF .然后运用SAS 证明△ABC ≌△DEF ,最后运用全等三角形的性质即可证明.【详解】证明:∵BF= CE ,∴BC= EF .在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS ).∴AC =DF .【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC ≌△DEF 是解答本题的关键. 5、11cm【分析】根据∠ABE 的余角相等求出∠EAB =∠CBF ,然后利用“角角边”证明△ABE 和△BCF 全等,根据全等三角形对应边相等可得AE =BF ,BE =CF ,于是得到结论.【详解】解:∵AE ⊥EF ,CF ⊥EF ,∴∠AEB =∠BFC =90°,∴∠EAB +∠ABE =90°,∵∠ABC =90°,∴∠ABE +∠CBF =90°,∴∠EAB =∠CBF ,在△ABE 和△BCF 中,90EAB CBF AEB BFC AB BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△ABE ≌△BCF (AAS ),∴AE =BF =5cm ,BE =CF =6cm ,∴EF =5+6=11(cm ).【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.。

全等三角形综合练习 初一几何 压轴题

全等三角形综合练习 初一几何 压轴题

全等三角形综合练习1姓名:____________一.解答题(共26小题)1.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的解题思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O 三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.2.已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD 之间的数量关系,不必写理由.3.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).4.阅读下面的材料,并完成后面提出的问题.(1)如图1中,AC∥DB,请你探究一下∠M,∠A与∠B的数量有何关系,并说明理由(2)如图2中,当点M向左移动到图2所示的位置时,∠M、∠A与∠B又有怎样的数量关系呢?(3)如图3中,当点M向上移动到图2所示的位置时,∠M、∠A与∠B又有怎样的数量关系呢?(4)如图4中,当点M向下移动到图2所示的位置时,∠M、∠A与∠B又有怎样的数量关系呢?写出对应图形的数量关系,并选其中的一个图形加以证明5.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用(1)的结论,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B 之间存在着怎样的数量关系?并说明理由.6.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.7.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.8.已知△ABC中,∠A=30°.(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC=°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1(内部有nC(用n的代数式表示).﹣1个点),求∠BO n﹣1(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1,若∠BO n﹣1C=60°,求n的值.9.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON 上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.10.如图,已△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明;②点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以②的运动速度从点C出发点P以原来运动速度从点B同时出发,都逆时针沿ABC的三边运动,求多长时间点P与点Q第一次在△ABC的哪条边上相遇?11.已知:如图,AB⊥AC,且AB=AC,AD=AE,BD=CE.求证:AD⊥AE.12.如图,已知△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM⊥AE于点M,连结BE.(1)请判断线段AD、BE之间的数量关系,并说明理由;(2)求证:AM=CM+BE.13.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.14.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.15.如图①,AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由A向B运动.同时点Q在线段BD上由点B向点D运动.它们运动的时间为t s.(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?请说明理由,并判断此时线段PC和线段PQ的位置关系.(2)如图②,将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变,设点Q运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应x,t的值;若不存在,说明理由.16.如图,已知AB⊥AD,AC⊥AE,AB=AD,AC=AE,BC分别交AD、DE于点G、F,AC与DE交于点H.求证:(1)△ABC≌△ADE;(2)BC⊥DE.17.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.=2S△DGC.(1)求证:在运动过程中,不管t取何值,都有S△AED(2)当t取何值时,△DFE与△DMG全等.18.如图所示,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD与AC交于点N,试猜想BD与CE有何关系?说明理由.19.如图,长方形ABCD中,AB=10cm,BC=8cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x为何值时,△APE的面积等于32cm2?(提醒:同学们,要分类讨论哦!)20.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从点B出发以2cm/s的速度向点A运动,点Q从点A出发以1cm/s的速度向点C运动,设P、Q分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AP、AQ的长;(2)当t为何值时,△APQ是以PQ为底边的等腰三角形?(3)当t为何值时,PQ∥BC?21.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.22.如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D 不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.23.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF 对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN=°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.24.如图,△ABC中,AB=AC=18cm,BC=16cm,点D是AB的中点.有一点E在BC上从点B向点C运动,速度为2cm/s,同时有一点F在AC上从点C向点A运动,其中一点停止运动另一点也随之停止运动.问当点F的运动速度是多少时,△DBE和△EFC全等?25.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s).(1)当动点P、Q同时运动2s时,则BP=cm,BQ=cm.(2)当动点P、Q同时运动t(s)时,分别用含有t的式子表示;BP=cm,BQ=cm.(3)当t为何值时,△PBQ是直角三角形?26.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.全等三角形综合练习1答案一.解答题(共26小题)1.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的解题思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O 三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【解答】解:(1)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在AB延长线时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.2.已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD 之间的数量关系,不必写理由.【解答】解:(1)∠APB=∠PAC+∠PBD,如图1,过点P作PE∥l1,∴∠APE=∠PAC,∵l1∥l2,∴PE∥l2,∴∠BPE=∠PBD,∴∠APE+∠BPE=∠PAC+∠PBD,∴∠APB=∠PAC+∠PBD;(2)不成立,如图2:∠PAC=∠APB+∠PBD,理由:过点P作PE∥l1,∴∠APE=∠PAC,∵l1∥l2,∴PE∥l2,∴∠BPE=∠PBD,∵∠APB=∠APE﹣∠BPE=∠PAC﹣∠PBD,∴∠PAC=∠APB+∠PBD;如图3:∠PBD=∠PAC+∠APB,理由:过点P作PE∥l1,∴∠APE=∠PAC,∵l1∥l2,∴PE∥l2,∴∠BPE=∠PBD,∵APB=∠BPE﹣∠APE=∠PBD﹣∠PAC,∴∠PBD=∠PAC+∠APB.3.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)如图2,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC,∴当∠E n=α度时,∠BEC等于2nα度.4.阅读下面的材料,并完成后面提出的问题.(1)如图1中,AC∥DB,请你探究一下∠M,∠A与∠B的数量有何关系,并说明理由(2)如图2中,当点M向左移动到图2所示的位置时,∠M、∠A与∠B又有怎样的数量关系呢?(3)如图3中,当点M向上移动到图2所示的位置时,∠M、∠A与∠B又有怎样的数量关系呢?(4)如图4中,当点M向下移动到图2所示的位置时,∠M、∠A与∠B又有怎样的数量关系呢?写出对应图形的数量关系,并选其中的一个图形加以证明【解答】解:(1)∠AMB=∠A+∠B.理由:如图1,过点M作ME∥AC,∵AC∥DB,∴AC∥ME∥DB,∴∠A=∠AME,∠B=∠BME,∴∠A+∠B=∠AME+∠BME=∠AMB;(2)∠AMB+∠A+∠B=360°.理由:如图2,过点M作MF∥AC,∵AC∥DB,∴AC∥MF∥DB,∴∠A+∠AMF=180°,∠B+∠BMF=180°,∴∠AMB+∠A+∠B=∠A+∠AMF+∠B+∠BMF=360°;(3)∠A﹣∠B=∠AMB.理由:如图3,过点M作MG∥AC,∵AC∥DB,∴AC∥MG∥DB,∴∠A=∠AMG,∠B=∠BMG,∴∠A﹣∠B=∠AMG﹣∠BMG=∠AMB;(4)∠B﹣∠A=∠AMB.理由:如图4,过点M作MH∥AC,∵AC∥DB,∴AC∥MH∥DB,∴∠A=∠AMH,∠B=∠BMH,∴∠B﹣∠A=∠BMH﹣∠AMH=∠AMB.5.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系∠A+∠D=∠C+∠B;;(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用(1)的结论,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B 之间存在着怎样的数量关系?并说明理由.【解答】解:(1)根据三角形内角和定理以及对顶角相等,可得结论:∠A+∠D=∠C+∠B;故答案为:∠A+∠D=∠C+∠B;(2)由(1)可知,∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B,又∵∠D=40°,∠B=36°,∴2∠P=40°+36°=76°,∴∠P=38°;(3)∠P与∠D、∠B之间存在的关系为2∠P=∠D+∠B.∵∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B.6.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【解答】(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴△BCF≌△BEF(HL),∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.7.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD (或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.8.已知△ABC中,∠A=30°.(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC=°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1(内部有n ﹣1个点),求∠BO nC(用n的代数式表示).﹣1(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1,若∠BO n﹣1C=60°,求n的值.【解答】解:∵∠BAC=30°,∴∠ABC+∠ACB=150°,(1)∵点O是∠ABC与∠ACB的角平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=75°,∴∠BOC=105°;(2)∵点O2是∠ABC与∠ACB的三等分线的交点,∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=100°,∴∠BO2C=80°;是∠ABC与∠ACB的n等分线的交点,(3)∵点O n﹣1BC+∠O n﹣1CB=(∠ABC+∠ACB)=×150°,∴∠O n﹣1C=180°﹣×150°∴∠BO n﹣1(4)由(3)得:180°﹣×150°=60°,解得:n=5.9.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是20°;②当∠BAD=∠ABD时,x=120°;当∠BAD=∠BDA时,x=60°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.【解答】解:(1)①∵∠MON=40°,OE平分∠MON∴∠AOB=∠BON=20°∵AB∥ON∴∠ABO=20°②∵∠BAD=∠ABD∴∠BAD=20°∵∠AOB+∠ABO+∠OAB=180°∴∠OAC=120°∵∠BAD=∠BDA,∠ABO=20°∴∠BAD=80°∵∠AOB+∠ABO+∠OAB=180°∴∠OAC=60°故答案为:①20 ②120,60(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20若∠BAD=∠BDA,则x=35若∠ADB=∠ABD,则x=50②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20、35、50、125.10.如图,已△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明;②点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以②的运动速度从点C出发点P以原来运动速度从点B同时出发,都逆时针沿ABC的三边运动,求多长时间点P与点Q第一次在△ABC的哪条边上相遇?【解答】解:(1)①∵t=1(秒),∴BP=CQ=3(厘米)∵AB=12,D为AB中点,∴BD=6(厘米)又∵PC=BC﹣BP=9﹣3=6(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t===1.5(秒),此时V Q===4(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程设经过x秒后P与Q第一次相遇,依题意得4x=3x+2×12,解得x=24(秒)此时P运动了24×3=72(厘米)又∵△ABC的周长为33厘米,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.11.已知:如图,AB⊥AC,且AB=AC,AD=AE,BD=CE.求证:AD⊥AE.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SSS),∴∠EAC=∠DAB,∴∠DAE=∠BAC,∵AB⊥AC,∴∠BAC=90°,∴∠DAE=90°,即AD⊥AE.12.如图,已知△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM⊥AE于点M,连结BE.(1)请判断线段AD、BE之间的数量关系,并说明理由;(2)求证:AM=CM+BE.【解答】(1)解:结论:AD=BE,理由如下:∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE.(2)证明:∵△DCE为等腰直角三角形,∠DCE=90°,∴∠CDM=45°,∵CM⊥AE,∴∠DCM=45°,∴∠CDM=∠DCM=45°,∴CM=DM,∵AM=AD+DM,AD=BE,∴AM=CM+BE.13.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.【解答】解:(1)AD=BC.理由:∵GF垂直平分DC,∴GD=GC同理,GA=GB,在△ADG和△BCG中,,∴△ADG≌△BCG(SAS),∴AD=BC;(2)AD⊥BC.理由:延长AD,与CG相交于点O、与BC的延长线相交于点Q.∵△ADG≌△BCG,∴∠ADG=∠BCG,则∠GDO=∠QCO,∴∠QDC+∠QCD=∠DQC+∠DCG+∠QCG=∠QDC+∠GDQ+∠DCG=∠CDG+∠DCG,∵DG⊥GC,∴∠QDC+∠QCD=∠CDG+∠DCG=90°,∴∠Q=90°,∴AD⊥BC.14.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.【解答】解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2)△BPD和△CQP全等理由:∵t=1秒,∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴BD=4厘米.∴PC=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).15.如图①,AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由A向B运动.同时点Q在线段BD上由点B向点D运动.它们运动的时间为t s.(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?请说明理由,并判断此时线段PC和线段PQ的位置关系.(2)如图②,将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变,设点Q运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应x,t的值;若不存在,说明理由.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.16.如图,已知AB⊥AD,AC⊥AE,AB=AD,AC=AE,BC分别交AD、DE于点G、F,AC与DE交于点H.求证:(1)△ABC≌△ADE;(2)BC⊥DE.【解答】证明:(1)∵AB⊥AD,AC⊥AE,∴∠DAB=∠CAE=90°,∴∠DAB+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS).(2)∵△ABC≌△ADE,∴∠E=∠C,∵∠E+∠AHE=90°,∠AHE=∠DHC,∴∠C+∠DHC=90°,∴BC⊥DE.17.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.=2S△DGC.(1)求证:在运动过程中,不管t取何值,都有S△AED(2)当t取何值时,△DFE与△DMG全等.【解答】(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,=AE•DF,S△DGC=CG•DM,∵S△AED∴=,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A 点运动,∴=2,即=2,∴在运动过程中,不管取何值,都有S=2S△DGC.△AED(2)解:设时间为t时,△DFE与△DMG全等,则EF=MG,①当M在线段CG的延长线上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A 点运动,∴EF=AF﹣AE=10﹣2t,MG=AC﹣CG﹣AM=4﹣t,即10﹣2t=4﹣t,解得:t=6,当t=6时,MG=﹣2,所以舍去;②当M在线段CG上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A 点运动,∴EF=AF﹣AE=10﹣2t,MG=AM﹣(AC﹣CG)=t﹣4,即10﹣2t=t﹣4,解得:t=,综上所述当t=时,△DFE与△DMG全等.18.如图所示,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD与AC交于点N,试猜想BD与CE有何关系?说明理由.【解答】解:结论:BD=CE且BD⊥CE.理由:∵△ABC和△ADE是直角三角形,∴∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ABD+∠ANB+∠BAC=180°,∠ACE+∠CNM+∠NMC=180°,∠ANB=∠CNM,∴∠NMC=∠BAC=90°,∴BD⊥CE,即BD=CE且BD⊥CE.19.如图,长方形ABCD中,AB=10cm,BC=8cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x为何值时,△APE的面积等于32cm2?(提醒:同学们,要分类讨论哦!)【解答】解:①如图1,当P在AB上时,∵△APE的面积等于32,∴×2x•8=32,解得:x=4;②当P在BC上时,∵△APE 的面积等于32,∴S 矩形ABCD ﹣S △CPE ﹣S △ADE ﹣S △ABP =32,∴10×8﹣(10+8﹣2x )×5﹣×8×5﹣×10×(2x ﹣10)=32,解得:x=6.6;③当P 在CE 上时,∴(10+8+5﹣2x )×8=32,解得:x=7.5<(10+8+5),此时不符合;答:4或6.6.20.如图,在Rt △ABC 中,∠C=90°,∠A=60°,AB=12cm ,若点P 从点B 出发以2cm/s 的速度向点A 运动,点Q 从点A 出发以1cm/s 的速度向点C 运动,设P 、Q 分别从点B 、A 同时出发,运动的时间为ts .(1)用含t 的式子表示线段AP 、AQ 的长;(2)当t 为何值时,△APQ 是以PQ 为底边的等腰三角形?(3)当t 为何值时,PQ ∥BC ?【解答】解:(1)∵Rt △ABC 中,∠C=90°,∠A=60°,∴∠B=30°.又∵AB=12cm,∴AC=6cm,BP=2t,AP=AB﹣BP=12﹣2t,AQ=t;(2)∵△APQ是以PQ为底的等腰三角形,∴AP=AQ,即12﹣2t=t,∴当t=4时,△APQ是以PQ为底边的等腰三角形;(3)当PQ⊥AC时,PQ∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵PQ∥BC,∴∠QPA=30°∴AQ=AP,∴t=(12﹣2t),解得t=3,∴当t=3时,PQ∥BC.21.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=25°,∠DEC=115°;点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.【解答】解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.22.如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.【解答】解:(1)∵∠B=∠C=50°,∠ADE=50°,∴∠BDA+∠EDC=∠CED+∠EDC=130°,∴∠BDA=∠CED,∵点D在线段BC上运动(点D不与B、C重合),∴AD≠AE,ⅰ)如图所示,当EA=ED时,∠EAD=∠ADE=50°,∴∠BDA=∠CED=50°+50°=100°;ⅱ)如图所示,当DA=DE时,∠EAD=∠AED=65°,∴∠BDA=∠CED=65°+50°=115°;(2)由(1)可得∠BDA=∠CED,又∵∠B=∠C=50°,AB=DC=2,∴在△ABD和△DCE中,,∴△ABD≌△DCE(AAS).23.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF 对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=55°,∠AEN=35°,∠BEC+∠AEN=90°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=110°,∴∠AEA'=180°﹣110°=70°,∴∠BEC=∠B'EC=∠BEB′=55°,∠AEN=∠A'EN=∠AEA'=35°.∴∠BEC+∠AEN=55°+35°=90°;(2)不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC=∠BEB′=m°,∠AEN=∠A'EN=∠AEA'=(180°﹣m°),∴∠BEC+∠AEN=m°+(180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE=×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN=∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°,∴∠DNA'=180°﹣∠ANE﹣∠A'NE=180°﹣60°﹣60°=60°.故答案为:55,35,90.24.如图,△ABC中,AB=AC=18cm,BC=16cm,点D是AB的中点.有一点E在BC上从点B向点C运动,速度为2cm/s,同时有一点F在AC上从点C向点A运动,其中一点停止运动另一点也随之停止运动.问当点F的运动速度是多少时,△DBE和△EFC全等?【解答】解:设点F运动的时间为ts,点F运动的速度为xcm/s,则BE=2t,EC=16﹣2t,CF=tx,∵点D为AB的中点,∴BD=AB=9,∵∠B=∠C,∴当CE=BD,CF=BE时,可根据“SAS”判断△DBE≌△ECF,即16﹣2t=9,tx=2t,解得t=3.5,x=2;当CE=BE,CF=BD时,可根据“SAS”判断△DBE≌△EFC,即16﹣2t=2t,tx=9,解得t=4,x=2.25,综上所述,当点F的运动速度是2厘米/秒或2.25厘米/秒时,△DBE和△EFC全等.25.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s).(1)当动点P、Q同时运动2s时,则BP=1cm,BQ=2cm.(2)当动点P、Q同时运动t(s)时,分别用含有t的式子表示;BP=(3﹣t)cm,BQ=t cm.(3)当t为何值时,△PBQ是直角三角形?【解答】解:(1)BQ=1×2=2(cm),BP=3﹣2=1(cm),故答案为1,2;(2)BP=(3﹣t)cm,BQ=tcm,故答案为(3﹣t),t;(3)根据题意,得AP=t cm,BQ=t cm.在△ABC中,AB=BC=3 cm,∠B=60°,∴BP=(3﹣t)cm.在△PBQ中,BP=(3﹣t)cm.,BQ=tcm,若△PBQ是直角三角形,则只有∠BQP=90°或∠BPQ=90°①当∠BQP=90°时,BQ=BP,即t=(3﹣t),解得t=1;②当∠BPQ=90°时,BP=BQ,即3﹣t=t.解得t=2.答:当t=1s或t=2s时,△PBQ是直角三角形.26.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何三角形综合提高复习题1、如下左图,△ABC 纸片中,AB=BC>AC ,点D 是AB 边的中点,点E 在边AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( ) ①△BDF 是等腰直角三角形;②∠DFE=∠CFE ;③DE 是△ABC 的中位线;④BF+CE=DF+DE.A.1个B.2个C.3个D.4个2、如上右图,将△ABC 沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF ∥AB ,且EF=21AB ;②∠BAF=∠CAF ;③DE AF 21S ADFE •=四边形;④∠BDF+∠FEC=2∠BAC ,正确的个数是( )A.1B.2C.3D.43、如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE+DC=DE ;④222DE DC BE =+,其中正确的是( )A.②④B.①④C.②③D.①③4、如图,分别以Rt △ABC 的斜边AB ,直角边AC 为边向外作等边△ABD 和△ACE ,F 为AB 的中点,DE ,AB 相交于点G ,若∠BAC=30°,下列结论:①EF ⊥AC ;②四边形ADFE 为菱形;③AD=4AG ;④△DBF ≌△EFA.其中正确结论的序号是( )A.②④B.①③C.②③④D.①③④5、如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC=EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC.则以下四个结论中:①OH ∥BF ;②∠CHF=45°;③GH=41BC ;④FH 2=HE ·HB ,正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个6、如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM 的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②AB⊥CM;③∠BMC=90°;④EF=EG;⑤△EFG是等腰直角三角形.上述结论中始终正确的序号有______7、如上右图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A 与点C重合,折痕为EF.连接CE、CF、BD,AC、BD的交点为O,若CE⊥AB,AB=7,CD=3下列结论中:①AC=BD;②EF∥BD;③EFACS AECF•=四边形;④EF=7225,⑤连接F0;则F0∥AB.正确的序号是___________8、如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③DHGECDGSS四边形=∆;④图中有8个等腰三角形。

其中正确的是( )A.①③B.②④C.①④D.②③9、如图,在菱形ABCD中,∠B=60°,点E,F分别从点B,D出发以同样的速度沿边BC,DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,EF=3BE;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有_______.(把你认为正确的序号填在横线)10、如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3B.3:5C.4:3D.3:4A DEM11、如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③OGDAGDSS∆∆=;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有( )A.①④⑤B.①②④C.③④⑤D.②③④12、在△ABC中,已知AB=2a,∠A=30°,CD是AB边的中线,•若将△ABC沿CD对折起来,折叠后两个小△ACD与△BCD重叠部分的面积恰好等于折叠前△ABC的面积的14,有如下结论:①AC边的长可以等于a;②折叠前的△ABC的面积可以等于32a2;•③折叠后,以AB为端点的线段AB与中线CD平行且相等,其中正确结论的个数是()A.0个B.1个C.2个D.3个13、如图,在等腰Rt ABC△中,908C AC∠==°,,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD CE=.连接DE、DF、EF.在此运动变化的过程中,下列结论:①DFE△是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤14、动手操作:在矩形纸片ABCD中,35AB AD==,.如图所示,折叠纸片,使点A落在BC边上的A'处,折痕为PQ.当点A'在BC边上移动时,折痕的端点P Q、也随之移动.若限定点P Q、分别在AB AD、边上移动,则点A'在BC边上可CEBAFDB CPA'AD FC BOE移动的最大距离为 .15、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ; ② PQ ∥AE ; ③ AP =BQ ; ④ DE =DP ; ⑤ ∠AOB =60°.恒成立的有______________(把你认为正确的序号都填上).16、如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 .17、如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F 过点O 作OD ⊥AC于D .下列四个结论:①∠BOC =90º+ 12∠A ;②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切;③设OD =m ,AE +AF =n ,则S △AEF =mn ;④EF 不能成为△ABC 的中位线.其中正确的结论是_____________.18、Rt △ABC 中,∠BAC =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB,PF ⊥AC,M 为EF 中点,则AM 的最小值_________________.19、如图,已知ABC ∆的边长为1的正三角形,BDC ∆是顶角︒=∠120BDC 的等腰三角形,以D 为顶点作一个︒60角,角的两边分别交AB 于M ,交AC 于N ,连MN 形成AMN ∆,ABCE DO PQABC P E F MABCDM N20、如图已知ABC ∆中,︒=∠60B ,A ∠、C ∠的平分线AD 、CE 交于F ,求证:AC=AE+CD 。

BD E CAF21、等腰ABC ∆中,顶角︒=∠100A ,作B ∠的平分线交AC 于E ,求证:BC=AE+EB 。

ABCE22、如图9,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(4分)(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.(6分)23、已知:如图,AF 平分∠BAC ,BC ⊥AF , 垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF ,AF 相交于P ,M .(1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.图9 图10 图1124、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小; ②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;FMPE D CBAE。

相关文档
最新文档