2021年高中数学《. 等差数列()》学案 新人教A版必修5
《等差数列》学案2(新人教A版必修5)
等差数列与等比数列性质的综合应用一、学习目标:等差数列与等比数列性质的综合应用 二、自主学习: 【课前检测】1.x=ab 是a 、x 、b 成等比数列的( D )条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要 2.等比数列}{n a 中,233,9a a ==,若243=k a ,则k 等于( C )(A )4 (B )5 (C )6 (D )42直面考点:1)等比数列的定义;2)等比数列的通项公式。
略解:6k 22433q a a 3a a q 51-k 2-k 2k 23=⇒====⇒==3.若数列{}n a (N n ∈*)是等差数列,则有数列12nn a a a b n+++=(N n ∈*)也为等差数列,类比上述性质,相应地:若数列n {c }是等比数列,且n c >0(N n ∈*),则有n d=N n ∈*)也是等比数列.4.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n n S n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是43. 说明:2121n n n n a S b T --=. 【考点梳理】1.基本量的思想:常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。
转化为“基本量”是解决问题的基本方法。
解读:“知三求二”。
2.等差数列与等比数列的联系1)若数列{}n a 是等差数列,则数列}{n aa 是等比数列,公比为da ,其中a 是常数,d 是{}n a 的公差。
(a>0且a ≠1);2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且0,1a a >≠,q 是{}n a 的公比。
3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。
三、合作探究:例1 (2010陕西文16)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.解:(Ⅰ)由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列得121d+=1812dd++,解得d=1,d=0(舍去),故{a n}的通项a n=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得S m =2+22+23+ (2)=2(12)12n --=2n+1-2.变式训练1 (2010北京文16)已知{a n }为等差数列,且36a =-,60a =。
2021年高中数学 2.2.1等差数列的概念与通项公式练习 新人教A版必修5
2021年高中数学 2.2.1等差数列的概念与通项公式练习新人教A版必修5►基础梳理1.(1)等差数列的定义:____________________.定义的数学式表示为__________________________.(2)判断下列数列是不是等差数列.①2,4,6,8,10;②1,3,5,8,9,10.2.(1)首项为a1公差为d的等差数列{a n}的通项公式为____________.(2)写出下列数列的通项公式:①2,4,6,8,10;②0,5,10,15,20,….3.(1)等差中项的定义:______________________.(2)求下列各组数的等差中项:①2,4;②-3,9.4.(1)等差数列当公差______时,为递增数列;当公差______时,为递减数列.(2)判断下列数列是递增还是递减数列.①等差数列3,0,-3,…;②数列{a n}的通项公式为:a n=2n-100(n∈N*).5.等差数列的图象的特点是________________.基础梳理1.(1)从第二项起,每一项与它前一项的差等于同一个常数a n-a n-1=d (与n无关的常数),n≥2,n∈N*(2)①是②不是2.(1)a n=a1+(n-1)d,n∈N*(2)①a n=2n,n=1,2,3,4,5②a n=5n-5,n∈N*3.(1)如果a,A,b成等差数列,则A叫a与b的等差中项(2)①所求等差中项为3 ②所求等差中项为34.(1)d>0 d<0(2)①递减数列②递增数列5.一条直线上的一群孤立点►自测自评1.下列数列不是等差数列的是( )A.a-d,a,a+dB.2,4,6,…,2(n-1),2nC.m,m+n,m+2n,2m+n(m≠2n)D.数列{a n}满足a n-1=a n-12(n∈N*,n>1)2.等差数列a-2d,a,a+2d,…的通项公式是( )A.a n=a+(n-1)d B.a n=a+(n-3)dC.a n=a+2(n-2)d D.a n=a+2nd3.已知数列{a n}对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上,则{a n}为( ) A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列自测自评1.解析:利用定义判断,知A,B,D是等差数列;对于C,m+n-m=n,(2m+n)-(m+2n)=m-n,且n≠m-n,∴该数列不是等差数列.故选C.答案:C2.解析:数列的首项为a-2d,公差为2d,∴a n=(a-2d)+(n-1)·2d=a+2(n-2)d.答案:C3.A►基础达标1.有穷等差数列5,8,11,…,3n+11(n∈N*)的项数是( )A.n B.3n+11C.n+4 D.n+31.解析:在3n+11中令n=1,结果为14,它是这个数列的第4项,前面还有5,8,11三项,故这个数列的项数为n+3.故选D.答案:D2.若{a n }是等差数列,则由下列关系确定的数列{b n }也一定是等差数列的是( )A .b n =a 2nB .b n =a n +n 2C .b n =a n +a n +1D .b n =na n2.解析:{a n }是等差数列,设a n +1-a n =d ,则数列b n =a n +a n +1满足:b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d .故选C.答案:C3.已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A. 3 B. 2 C.13 D.123.解析:a ,b 的等差中项为12×⎝ ⎛⎭⎪⎫13+2+13-2=12×(3-2+3+2)= 3. 答案:A4.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个4.C5.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( )A .49B .50C .5D .525.解析:由2a n +1=2a n +1得a n +1-a n =12, ∴{a n }是等差数列,且公差为d =12,又a 1=2, ∴a 101=a 1+(101-1)d =2+100×12=52.故选D. 答案:D►巩固提高6.若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 2-a 1b 2-b 1=( )A.34B.43C.23D .不能确定 6.解析:a 2-a 1=13(y -x ),b 2-b 1=14(y -x ), ∴a 2-a 1b 2-b 1=43.故选B. 答案:B7.已知函数f (x )=2x ,等差数列{a n }的公差为 2.若f (a 2+a 4+a 6+a 8+a 10)=4,则log 2[f (a 1)·f (a 2)·f (a 3)·…·f (a 10)]=________.7.解析:∵f (a 2+a 4+a 6+a 8+a 10)=2a 2+a 4+a 6+a 8+a 10=4,∴a 2+a 4+a 6+a 8+a 10=2.又∵a 1+a 3+a 5+a 7+a 9=(a 2-d )+(a 4-d )+…+(a 10-d )=2-5d =-8,∴a 1+a 2+…+a 10=2+(-8)=-6.∴log 2[f (a 1)·f (a 2)·…·f (a 10)]=log 2(2a 1+a 2+…+a 10)=a 1+a 2+…+a 10=-6. 答案:-68.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.8.解析:利用等差数列的通项公式求解.设等差数列公差为d ,则由a 3=a 22-4,得1+2d =(1+d )2-4,∴d 2=4,∴d =±2.由于该数列为递增数列,∴d =2.∴a n =1+(n -1)×2=2n -1(n ∈N *).答案:2n -1(n ∈N *)9.有四个数成等差数列,它们的平方和等于276,第一个数与第四个数之积比第二个数与第三个数之积少32,求这四个数.9.解析:设四个数依次为a -3d ,a -d ,a +d ,a +3d ,∴⎩⎪⎨⎪⎧(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=276,(a -d )(a +d )-(a -3d )(a +3d )=32. ∴⎩⎪⎨⎪⎧a 2+5d 2=69,d 2=4.∴a =±7,d =±2. ∴所求的四个数依次为:1,5,9,13或13,9,5,1或-13,-9,-5,-1或-1,-5,-9,-13.10.已知函数f (x )=x ax +b(a ,b 为常数,a ≠0)满足f (2)=1,且f (x )=x 有唯一解. (1)求f (x )的表达式;(2)若数列{x n }由x n =f (x n -1)(n ≥2,n ∈N *)且x 1=1.①求证:数列⎩⎨⎧⎭⎬⎫1x n 是等差数列; ②求数列{x n }的通项公式.10.(1)解析:由f (2)=1,得22a +b=1,即2a +b =2. 由f (x )=x ,得x ax +b=x ,即ax 2+(b -1)x =0有唯一解, ∴Δ=(b -1)2=0,∴b =1.∴a =12. ∴f (x )=2x x +2. (2)①证明:当n ≥2时,x n =f (x n -1)=2x n -1x n -1+2. 又x 1=1>0,∴x n >0,即x n ≠0.∴1x n =x n -1+22x n -1=1x n -1+12,即1x n -1x n -1=12. 故数列⎩⎨⎧⎭⎬⎫1x n 是首项为1,公差为12的等差数列. ②解析:由①得1x n =1+12(n -1)=n +12, ∴x n =2n +1(n ∈N *).1.用好等差数列的定义与掌握好等差数列的通项公式是关键,写数列通项公式时注意n 的取值范围.2.注意等差数列与一次函数间的关系,如自测自评中第3题.3.题设中有三个数成等差数列时,一般设这三个数为a -d 、a 、a +d .若五个数成等差一般设为a -2d 、a -d 、a 、a +d 、a +2d .有时也直接设为等差数的通项形式,具体问题具体分析,设的目的是便于计算,要灵活选择设的方法.4.等差中项有广泛应用,要准确理解其含义.5.证明数列为等差数列的方法有:定义法、通项公式法、等差中项法.K29753 7439 琹35196 897C 襼.D27967 6D3F 洿40023 9C57 鱗34218 85AA 薪}l !I24395 5F4B 彋E。
2021年高中数学人教A版必修五第二章数列第二课时 等差数列的前n项和的最值及应用
5
课前预习
课堂互动
课堂小结
@《创新设计》
知识点2 裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求和.
常见的拆项方法:
(1)n(n1+k)=_1k__1n_-__n_+1__k__;
(2)
1 n+k+
=_1k___n_+___k_-___n__;
n
(3)(2n-1)1(2n+1)=_12_2_n__1-__1_-__2_n_1+__1__.
绕天心石砌9块扇面形石板构成第一环,向外每环依次
增加9块.下一层的第一环比上一层的最后一环多9块.向
外每环依次也增加9块.已知每层环数相同,且下层比中
层多729块,则三层共有扇面形石板(不含天心石)( )
A.3 699块
B.3 474块
C.3 402块
D.3 339块
@《创新设计》
18
课前预习
课堂互动
7
课前预习
课堂互动
@《创新设计》 课堂小结
@《创新设计》
2.数列{an}的通项公式 an=
1 n+
n+1,其前
n
项和
Sn=9,则
n=________.
解析
an=
1 n+
n+1=
n+1-
n,
∴Sn=( 2-1)+( 3- 2)+…+( n+1- n)
= n+1-1=9,∴n=99. 答案 99
8
课前预习
25
课前预习
课堂互动
课堂小结
(1)若{an}是等差数列,则ana1n+1=1da1n-an1+1,ana1n+2=21da1n-an1+2.
(2)n(n1+k)=1k1n-n+1 k.
2021学年高中数学第二章数列2.3.2等差数列前n项和的性质课时作业含解析新人教A版必修5
课时作业12 等差数列前n 项和的性质时间:45分钟——基础巩固类——一、选择题1.已知等差数列{a n }的前n 项和为S n ,且S 2=4,S 4=16,则a 5+a 6=( C ) A .11 B .16 C .20D .28解析:由等差数列的性质知S 2,S 4-S 2,S 6-S 4成等差数列,即4,12,a 5+a 6成等差数列,易知其公差为8,故a 5+a 6=20.2.已知等差数列{a n }中,d =2,S 3=-24,则其前n 项和S n 取最小值时n 的值为( D ) A .5 B .6 C .7D .5或6解析:由d =2,S 3=3a 1+3d =-24,得a 1=-10,令a n =-10+(n -1)×2=0,得n =6,所以a 6=0,S 5=S 6均为最小值.3.设数列{a n }是公差为-2的等差数列,如果a 1+a 4+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( D )A .-182B .-78C .-148D .-82解析:由a 1+a 4+a 7+…+a 97=50,① 令a 3+a 6+a 9+…+a 99=x ,②②-①,得2d ×33=x -50,∵d =-2, ∴x =-132+50=-82.故选D.4.在等差数列{a n }中,S n 为前n 项和,若S m =20,S 3m =210,则S 2m =( C ) A .115 B .100 C .90D .70 解析:因为{a n }为等差数列,所以S m ,S 2m -S m ,S 3m -S 2m 成等差数列,则有2(S 2m -S m )=S m +S 3m -S 2m ,即3S 2m =S 3m +3S m =210+60=270.所以S 2m =90.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=( A )A .1B .-1C .2D.12解析:S 9S 5=9(a 1+a 9)25(a 1+a 5)2=9×2a 55×2a 3=95×59=1.6.设等差数列{a n }的前n 项和为S n ,若S 12>0,S 13<0,则S n 中最大的是( C ) A .S 12 B .S 13 C .S 6D .S 7解析:∵在等差数列{a n }中, S 12=12(a 1+a 12)2=12(a 6+a 7)2>0,∴a 6+a 7>0. 又S 13=13(a 1+a 13)2=13·2a 72<0,∴a 7<0.∴a 6>0,a 7<0. ∴前6项和S 6最大. 二、填空题7.已知等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =10. 解析:∵S 9=S 4,∴a 5+a 6+a 7+a 8+a 9=0. ∴a 7=0,从而a 4+a 10=2a 7=0.∴k =10.8.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 3-a 4+a 5+a 6=15.解析:易知数列{a n }为等差数列,则a 2+a 3-a 4+a 5+a 6=3a 4,由S n =n 2-2n 知a 4=S 4-S 3=42-2×4-32+2×3=5,所以a 2+a 3-a 4+a 5+a 6=15.9.已知项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是11,项数是7.解析:设该等差数列的项数为2n +1, 由题意得⎩⎪⎨⎪⎧S 奇+S 偶=S 2n +1=77,S奇-S 偶=a n +1=11,S2n +1=(2n +1)a n +1,解得⎩⎪⎨⎪⎧a n +1=11,2n +1=7.故该数列的中间项为a n +1=a 4=11,项数为7. 三、解答题10.已知数列{a n }为等差数列,S n 为其前n 项和,若S 7=7,S 15=75,求数列{S nn }的前n 项和T n .解:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d .由S 7=7,S 15=75,得⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5, 解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1). ∵S n +1n +1-S n n=(-2+12n )-[-2+12(n -1)]=12,∴数列{S n n }是首项为-2,公差为12的等差数列.故T n =-2n +12n (n -1)×12=14n 2-94n .11.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解:设等差数列{a n }的公差为d , ∵a 1=20,S 10=S 15,∴10a 1+10×92d =15a 1+15×142d .解得d =-53.(方法一)由以上得a n =20-53(n -1)=-53n +653.由a n ≥0得-53n +653≥0,∴n ≤13.∴数列{a n }的前12项或前13项的和最大,其最大值为S 12=S 13=12a 1+12×112d =130.(方法二)由以上得S n =20n +n (n -1)2×⎝⎛⎭⎫-53 =-56n 2+56n +20n =-56n 2+1256n=-56(n 2-25n )=-56⎝⎛⎭⎫n -2522+3 12524. 故当n =12或n =13时,S n 最大,最大值为S 12=S 13=130.——能力提升类——12.等差数列{a n }的公差d <0,且a 21=a 213,则数列{a n }的前n 项和S n 取最大值时的项数n 是( D )A .5B .6C .5或6D .6或7解析:因为d <0,所以数列{a n }为递减数列,又a 21=a 213,所以a 1=-a 13,且a 1>0,a 13<0,即a 1+a 13=2a 7=0,所以数列{a n }的前n 项和S n 取最大值时的项数n 是6或7.13.{a n }为等差数列,公差为d ,S n 为其前n 项和,S 6>S 7>S 5,则下列结论中不正确的是( C )A .d <0B .S 11>0C .S 12<0D .S 13<0解析:S 6>S 7>S 5,则d <0,a 6>0且a 7<0, 所以S 11=11(a 1+a 11)2=11×2a 62>0,S 13=13(a 1+a 13)2=13×2a 72<0, 而S 12=12(a 1+a 12)2=6(a 6+a 7)无法判断大于0或小于0.14.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4=1941. 解析:由等差数列的性质得a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=2a 62b 6=a 6b 6,又S 11=11a 6,T 11=11b 6,所以a 6b 6=11a 611b 6=S 11T 11=2×11-34×11-3=1941.所以a 9b 5+b 7+a 3b 8+b 4=1941.15.若数列{a n }的前n 项和为S n ,点(n ,S n )均在函数y =32x 2-12x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解:(1)由题意知S n =32n 2-12n .当n ≥2时,a n =S n -S n -1=3n -2; 当n =1时,a 1=1,适合上式. ∴a n =3n -2.(2)由(1)得b n=3a n a n+1=3(3n-2)(3n+1)=13n-2-13n+1,∴T n=b1+b2+…+b n=1-14+14-17+…+13n-2-13n+1=1-13n+1<1,则要使T n<m20对所有n∈N*都成立,只需m20≥1,∴m≥20,∴满足条件的最小正整数m的值为20.。
高中数学_等差数列-数学-高中教学设计学情分析教材分析课后反思
《等差数列》教学设计一、教材分析《等差数列》是人教A 版新课标高中数学必修5的第二章第2节。
是前一节数列的概念引入后的对数列知识的进一步学习,也是对数列知识分类讨论的第一块重要内容。
这节课的主要内容有等差数列概念的引入,通项公式的推导过程,为下节课等差数列的求和以及等比数列的求和奠定基础,是第一章函数学习后对数集性质的延续性学习,在整个高中数学知识结构中占有重要的地位。
二、学生分析学生已具有一定程度的观察,类比,归纳的思想意识和思维能力,现阶段是他们理性化的思维模式向抽象性思维模式的过度阶段,所以他们接受和思考函数,数列等抽象知识还需借助数学模型和数字例题。
本节课是在他们刚学习过数列概念的基础上进一步对数列的分类学习,能使他们对数列知识有更具体深入的了解。
三、教学目标(1)知识与技能:理解等差数列的概念,会熟练地辨别等差数列和准确写出公差和通项公式。
(2)过程与方法:理解并掌握等差数列的推导过程和思维方法,对观察,类比,归纳总结等思维方法有进一步的锻炼和提高。
(3)情感态度和价值观:锻炼学生的分类归纳,抽象思考的思维模式,和培养善于思考学习,合作交流的良好学习方式。
重点:理解等差数列的概念,会熟练地辨别等差数列。
难点:准确写出公差和通项公式,理解并掌握等差数列的推导过程和思维方法。
四、教学过程(一)、创设情境,以生活实例引入,让学生观察日历表。
设计意图:激发学生学习兴趣。
学生自主完成① 0,5,10,15,20,25,…② 48,53,58,63 ,…③ 18,15.5,13,10.5,8,5.5…④ 10072,10144,10216,10288,10360…以上数列,从第2项起,每一项与前一项的差分别都等于 .观察:请同学们仔细观察,看看四个数列有什么共同特点?设计意图:培养学生观察、归纳能力。
(二)、引入概念1、定义:一般地,如果一个数列从第2项起,每一项与前一项的差都等于同一常数,那么这个数列就叫做等差数列。
新人教A版必修5高中数学2.3等差数列的前n项和(2)学案(二)
高中数学 2.3等差数列的前n 项和(2)学案新人教A 版必修5学习目标1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.学习重难点1.重点:数列前n 项和公式的研究应用2.难点:前 n 项和的公式n S 的最值.一、课前预习习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .习2:等差数列{n a }中,已知31a =,511a =,求和8S .二、新课探究 ※ 学习探究问题:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?※ 试一试例1已知数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式.小结:数列通项n a 和前n 项和n S 关系为: n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .例2 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.小结:等差数列前项和的最大(小)值的求法.(1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值; 当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.※ 模仿练习练1. 已知232n S n n =+,求数列的通项n a .练2. 有两个等差数列2,6,10,…,190及2,8,14,…200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,求这个新数列的各项之和.三、总结提升 ※ 学习小结1. 数列通项n a 和前n 项和n S 关系;2. 等差数列前项和最大(小)值的两种求法. ※ 知识拓展等差数列奇数项与偶数项的性质如下:1°若项数为偶数2n ,则: S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=;2°若项数为奇数2n +1,则: 1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=. 当堂检测1. 下列数列是等差数列的是( ).A. 2n a n =B. 21n S n =+C. 221n S n =+D. 22n S n n =-2. 等差数列{n a }中,已知1590S =,那么8a =( ). A. 3 B. 4 C. 6 D. 123. 等差数列{n a }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A. 70 B. 130 C. 170 D. 2104. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d =12,100145S =,则13599...a a a a ++++= .课后作业1. 在项数为2n +1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n 的值.2. 等差数列{n a },10a <,912S S =,该数列前多少项的和最小?课后反思。
新人教A版必修5高中数学2.2等差数列(1)学案(二)
高中数学 2.2等差数列(1)学案新人教A 版必修5学习目标1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定项.学习重难点1.重点: 等差数列的通项公式2.难点: 灵活运用通项公式求等差数列的首项、公差、项数、指定项一、课前准备 (预习教材P 36 ~ P 39 ,找出疑惑之处)复习1:什么是数列? 复习2:数列有几种表示方法?分别是哪几种方法?二、试一试问题一:等差数列的概念1:请同学们仔细观察,看看以下四个数列有什么共同特征?① 0,5,10,15,20,25,… ② 48,53,58,63③ 18,15.5,13,10.5,8,5.5 ④ 10072,10144,10216,10288,10366 新知:1.等差数列:一般地,如果一个数列从第 项起,每一项与它 一项的 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示.2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A =问题二:等差数列的通项公式2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+ ……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .※ 学习探究探究1 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?变式:(1)求等差数列3,7,11,……的第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数. 探究 2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数. ※ 模仿练习练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.三、总结提升 ※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).※ 知识拓展1. 等差数列通项公式为1(1)n a a n d =+-或()n m a a n m d =+-. 分析等差数列的通项公式,可知其为一次函数,图象上表现为直线1(1)y a x d =+-上的一些间隔均匀的孤立点.2. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++.当堂检测1. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ). A. 2 B. 3 C. 4 D. 64. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .课后作业1. 在等差数列{}n a 中,⑴已知12a =,d =3,n =10,求n a ; ⑵已知13a =,21n a =,d =2,求n ;⑶已知112a=,627a=,求d;⑷已知d=-13,78a=,求1a.2. 一个木制梯形架的上下底边分别为33cm,75cm,把梯形的两腰各6等分,用平行木条连接各分点,构成梯形架的各级,试计算梯形架中间各级的宽度.课后反思。
【创新设计】2022-2021学年高二数学人教A必修5学案:2.2 等差数列(一) Word版含答案
2.2 等差数列(一)[学习目标] 1.理解等差数列的定义,把握等差数列的通项公式.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简洁的问题.3.把握等差中项的概念,深化生疏并能运用.[学问链接]第一届现代奥运会于1896年在希腊雅典进行,此后每4年进行一次,奥运会如因故不能进行,届数照算.这样进行奥运会的年份数构成一个数列,这个数列有什么特征呢?这个数列叫什么数列呢? [预习导引] 1.等差数列的概念假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 2.等差中项的概念若三个数a ,A ,b 构成等差数列,则A 叫做a 与b 的等差中项,并且A =a +b2.3.等差数列的通项公式若等差数列的首项为a 1,公差为d ,则其通项a n =a 1+(n -1)d . 4.等差数列的单调性等差数列{a n }中,若公差d >0,则数列{a n }为递增数列;若公差d <0,则数列{a n }为递减数列.要点一 等差数列的概念例1 若数列{a n }的通项公式为a n =10+lg 2n ,试说明数列{a n }为等差数列.解 由于a n =10+lg 2n =10+n lg 2,所以a n +1-a n =[10+(n +1)lg 2]-(10+n lg 2)=lg 2(n ∈N *). 所以数列{a n }为等差数列.规律方法 推断一个数列是不是等差数列,就是推断a n +1-a n (n >1)是不是一个与n 无关的常数. 跟踪演练1 数列{a n }的通项公式a n =2n +5,则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2,∴{a n }是公差为2的等差数列.要点二 等差中项及其应用例2 (1)在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列.(2)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1、x 4、x 5成等差数列.求:p ,q 的值.解 ∵-1,a ,b ,c,7成等差数列,∴b 是-1与7的等差中项.∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7. (2)由x 1=3,得2p +q =3,①又x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4, 得3+25p +5q =25p +8q ,即q =1,② 将②代入①,得p =1.故p =1,q =1.规律方法 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N *),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项.跟踪演练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得m +n =6. ∴m 和n 的等差中项为m +n2=3.要点三 等差数列的通项公式及应用例3 (1)若{a n }是等差数列,a 15=8,a 60=20,求a 75.(2)已知递减等差数列{a n }的前三项和为18,前三项的乘积为66.求数列的通项公式,并推断-34是该数列的项吗?解 (1)设{a n }的公差为d .由题意知⎩⎪⎨⎪⎧a 15=a 1+14d =8,a 60=a 1+59d =20,解得⎩⎨⎧a 1=6415,d =415.所以a 75=a 1+74d =6415+74×415=24.(2)依题意得⎩⎪⎨⎪⎧a 1+a 2+a 3=18,a 1·a 2·a 3=66,∴⎩⎪⎨⎪⎧ 3a 1+3d =18,a 1·(a 1+d )·(a 1+2d )=66,解得⎩⎪⎨⎪⎧a 1=11,d =-5,或⎩⎪⎨⎪⎧a 1=1,d =5.∵数列{a n }是递减等差数列,∴d <0.故取a 1=11,d =-5.∴a n =11+(n -1)·(-5)=-5n +16. 即等差数列{a n }的通项公式为a n =-5n +16. 令a n =-34,即-5n +16=-34,得n =10. ∴-34是数列{a n }的第10项.规律方法 在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素,有关等差数列的问题,假如条件与结论间的联系不明显,则均可化成有关a 1,d 的关系列方程组求解,但是要留意公式的变形及整体计算,以削减计算量.跟踪演练3 已知{a n }为等差数列,分别依据下列条件写出它的通项公式: (1)a 3=5,a 7=13; (2)前三项为a,2a -1,3-a .解 (1) 设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧ a 3=a 1+2d =5,a 7=a 1+6d =13,解得⎩⎪⎨⎪⎧a 1=1,d =2. ∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1.(2)由等差中项公式得2×(2a -1)=a +(3-a ),a =54,∴首项为a =54,公差为2a -1-a =a -1=54-1=14,∴a n =54+(n -1)×14=n 4+1.1.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( ) A .2 B .3 C .-2 D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2. 2.△ABC 中,三内角A 、B 、C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120°答案 B解析 由于A 、B 、C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B ,又因A +B +C =180°,所以3B =180°,从而B =60°.3.下列数列是等差数列的有________. (1)9, 7, 5, 3, …,-2n +11, …; (2)-1, 11, 23, 35, …, 12n -13, …; (3)1, 2, 1, 2, …; (4)1, 2, 4, 6, 8, 10, …; (5)a ,a ,a ,a ,…,a …. 答案 (1)(2)(5)解析 由等差数列的定义,得(1),(2),(5)为等差数列,(3),(4)不是等差数列. 4.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值.解 ∵a 2+a 5=(a 1+d )+(a 1+4d )=2a 1+5d =4, ∴d =23.∴a n =a 1+(n -1)×23=23n -13.由a n =23n -13=33,解得n =50.1.推断一个数列是否是等差数列的常用方法有(1)a n+1-a n=d(d为常数,n∈N*)⇔{a n}是等差数列;(2)2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列;(3)a n=kn+b(k,b为常数,n∈N*)⇔{a n}是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n=a1+(n-1)d可以看出,只要知道首项a1和公差d,就可以求出通项公式,反过来,在a1、d、n、a n四个量中,只要知道其中任意三个量,就可以求出另一个量.一、基础达标1.若a ≠b ,则等差数列a ,x 1,x 2,b 的公差是( ) A .b -a B.b -a 2 C.b -a 3 D.b -a4答案 C解析 由等差数列的通项公式,得b =a +(4-1)d ,所以d =b -a3.2.已知数列{a n }满足a 1=2,a n +1-a n +1=0,则数列的通项a n 等于( ) A .n 2+1 B .n +1 C .1-n D .3-n答案 D解析 ∵a n +1-a n =-1,∴数列{a n }是等差数列,公差为-1,∴a n =a 1+(n -1)d =2+(n -1)×(-1)=3-n . 3.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项 答案 B解析 a 1=20,d =-3,∴a n =20+(n -1)×(-3)=23-3n ,∴a 7=2>0,a 8=-1<0. 4.若5,x ,y ,z,21成等差数列,则x +y +z 的值为( ) A .26 B .29 C .39 D .52 答案 C解析 ∵5,x ,y ,z,21成等差数列,∴y 是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26. ∴x +y +z =39.5.等差数列的前三项依次是x -1,x +1,2x +3,则其通项公式为________. 答案 a n =2n -3解析 ∵x -1,x +1,2x +3是等差数列的前三项, ∴2(x +1)=x -1+2x +3,解得x =0. ∴a 1=x -1=-1,a 2=1,a 3=3,∴d =2,∴a n =-1+2(n -1)=2n -3.6.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.答案 4n -3解析 由已知a 2n +1-a 2n =4,∴{a 2n }是等差数列,且首项a 21=1,公差d =4,∴a 2n =1+(n -1)·4=4n -3. 又a n >0,∴a n =4n -3.7.若关于x 的方程x 2-x +m =0和x 2-x +n =0(m ,n ∈R ,且m ≠n )的四个根组成首项为14的等差数列,求m+n 的值.解 设x 2-x +m =0,x 2-x +n =0的根分别为x 1,x 2,x 3,x 4,则x 1+x 2=x 3+x 4=1. 设数列的首项为x 1,则依据等差数列的性质,数列的第4项为x 2.由题意知x 1=14,∴x 2=34,数列的公差d =34-144-1=16,∴数列的中间两项分别为 14+16=512,512+16=712. ∴x 1·x 2=316.x 3·x 4=512×712=35144.∴m +n =316+35144=3172.8.甲虫是行动较快的昆虫之一,下表记录了某种类型的甲虫的爬行速度:时间t (s) 1 2 3 … ? … 60 距离s (cm)9.819.629.4…49…?(1)(2)利用建立的模型计算,甲虫1 min 能爬多远?它爬行49 cm 需要多长时间?解 (1)由题目表中数据可知,该数列从第2项起,每一项与前一项的差都是常数9.8,所以是一个等差数列模型.由于a 1=9.8,d =9.8,所以甲虫的爬行距离s 与时间t 的关系是s =9.8t . (2)当t =1 min =60 s 时, s =9.8t =9.8×60=588 cm.当s =49 cm 时,t =s 9.8=499.8=5 s.二、力量提升9.设函数f (x )=(x -1)2+n (x ∈[-1,3],n ∈N *)的最小值为a n ,最大值为b n ,记c n =b 2n -a n ·b n ,则{c n}是( ) A .常数列 B .摇摆数列C .公差不为0的等差数列D .递减数列 答案 C解析 ∵f (x )=(x -1)2+n (x ∈[-1,3]), ∴a n =n ,b n =n +4,∴c n =b 2n -a n ·b n =b n (b n -a n )=4(n +4)=4n +16. 10.若数列{a n }满足3a n +1=3a n +1,则数列是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1, 即a n +1-a n =13.所以数列{a n }为公差为13的等差数列.11.首项为-24的等差数列,从第10项起开头为正数,则公差d 的取值范围是________. 答案 83<d ≤3解析 设a n =-24+(n -1)d ,由⎩⎪⎨⎪⎧a 9=-24+8d ≤0a 10=-24+9d >0,解不等式得:83<d ≤3.12.若等差数列{a n }的公差d ≠0且a 1,a 2是关于x 的方程x 2-a 3x +a 4=0的两根,求数列{a n }的通项公式.解 由题意知,⎩⎪⎨⎪⎧ a 1+a 2=a 3,a 1a 2=a 4,∴⎩⎪⎨⎪⎧2a 1+d =a 1+2d ,a 1(a 1+d )=a 1+3d .解得⎩⎪⎨⎪⎧a 1=2,d =2,∴a n =2+(n -1)×2=2n .故数列{a n }的通项公式为a n =2n . 三、探究与创新13.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由.(2)若a p ,a q (p ,q ∈N *)是数列{a n }中的项,则2a p +3a q 是数列{a n }中的项吗?并说明你的理由. 解 a 1=3,d =4,a n =a 1+(n -1)d =4n -1. (1)令a n =4n -1=135,∴n =34, ∴135是数列{a n }中的第34项.令a n =4n -1=4m +19,则n =m +5∈N *. ∴4m +19是{a n }中的第m +5项. (2)∵a p ,a q 是{a n }中的项, ∴a p =4p -1,a q =4q -1. ∴2a p +3a q =2(4p -1)+3(4q -1) =8p +12q -5=4(2p +3q -1)-1∈N *,∴2a p +3a q 是{a n }中的第2p +3q -1项.。
人教A版高中数学必修五等差数列学案新(1)
高中数学必修五《2.2 等差数列(3)》学案一、新课标要求: 掌握等差数列性质。
二、重点与难点:等差数列性质及其应用,并能熟练应用。
三、教学过程:(一)复习:(二)新知探究:已知等差数列{},,n a d 1中,首项为a 公差为各项依次为:123,,m s t n a a a a a a a ,观察数列各项结合等差数列的定义归纳总结等差数列性质: 性质(1):通项的另一种表示:n m a a =+ d , 变形:d= 。
作用:性质(2):若项数m ,n ,s ,t 满足m+n=s+t ,则m a +n a = 。
证明:性质(3):若项数s ,t ,r ,…成等差,则对应项,,s t r a a a 成 。
例:已知数列{}n a 成等差数列,公差为d 首项为1a ,取出该数列中的所有奇数项组成一个新的数列,这个数列是否成等差数列:公差是多少?偶数项呢?取出数列中序号为7的倍数的项呢?性质(4),m n a n a m ==若,则m n a += 。
(二)应用实例:例1:已知等差数列{}n a 中,公差为正数,且37463712,4,,a a a a a a ∙=-+=-求及通项。
例2:等差数列{}n a 中,已知2583579,21a a a a a a ++=∙∙=-,求数列的通项。
课后作业:1. 等差数列{}n a 中,2315,,610a a x x --=为方程的二根,求:7891011a a a a a ++++。
2.已知方程()()22220x x m x x n -+-+=的四个根组成一个首项为14的等差数列,则m n -的值为 。
(三)课后反思小结:。
高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学
2.3 等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n a1+a n2S n=na1+n n-12d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和( )(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式( )(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1( )解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.预习课本P42~45,思考并完成以下问题答案:(1)√ (2)× (3)×2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n n +12解析:选 D 因为a 1=1,d =1,所以S n =n +n n -12×1=2n +n 2-n 2=n 2+n 2=n n +12,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20,即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n n -12d =-5,解得n =15或n =-4(舍). (2)由已知,得S 8=8a 1+a 82=84+a 82=172, 解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,这五个量可以“知三求二”.一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[活学活用]设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 8=11,则S 9等于( ) A .13 B .35 C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8, ∴S 9=9a 2+a 82=9×142=63.已知S n 求a n 问题[典例] 已知数列{a n }的前n 项和S n =-2n 2+n +2.(1)求{a n }的通项公式; (2)判断{a n }是否为等差数列? [解] (1)∵S n =-2n 2+n +2, ∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4,但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2;(2)S n =3n-1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n-1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1; ②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2, [法一 公式法]S n =25n +n n -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n2=-32n 2+n2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选 C 由等差数列的性质及求和公式得,S 13=13a 1+a 132=13a 7>0,S 15=15a 1+a 152=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92a 1+a 952a 1+a 5=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________. 解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +1a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3, 当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C. 3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a n b n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -122n -1b 1+b 2n -122n -1=A 2n -1B 2n -1=72n -1+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴a 1+a 4×42=28,a 1+a 4=14,a 2+a 3=14,又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c . 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧ a 1=50,d =-3,∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -12d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝ ⎛⎭⎪⎫-32×172+1032×17-⎝ ⎛⎭⎪⎫-32n 2+1032n =32n 2-1032n +884. ∴S n =⎩⎪⎨⎪⎧ -32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
2022-2021学年高二数学人教A必修5学案:2.2 等差数列(二)
明目标、知重点 1.能依据等差数列的定义推出等差数列的重要性质.2.能运用等差数列的性质解决有关问题.1.等差数列的图象等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是一固定常数;当d ≠0时,a n 的相应函数是一次函数;点(n ,a n )分布在以d 为斜率的直线上,是这条直线上的一列孤立的点. 2.等差数列的项与序号的关系(1)等差数列通项公式的推广:在等差数列{a n }中,已知a 1,d, a m, a n (m ≠n ),则d =a n -a 1n -1=a n -a m n -m ,从而有a n=a m +(n -m )d .(2)项的运算性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . 3.等差数列的性质 (1)等差数列的项的对称性在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和. 即a 1+a n =a 2+a n -1=a 3+a n -2=….(2)若{a n }、{b n }分别是公差为d ,d ′的等差数列,则有数列 结论{c +a n } 公差为d 的等差数列(c 为任一常数) {c ·a n } 公差为cd 的等差数列(c 为任一常数) {a n +a n +k } 公差为2d 的等差数列(k 为常数,k ∈N *) {pa n +qb n }公差为pd +qd ′的等差数列(p ,q 为常数)(3){a n }的公差为d ,则d >0⇔{a n }为递增数列;d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.[情境导学]在等差数列{a n }中,若已知首项a 1和公差d 的值,由通项公式a n =a 1+(n -1)d 可求出任意一项的值,假如已知a m 和公差d 的值,有没有一个公式也能求任意一项的值?由等差数列的通项公式能得到等差数列的哪些性质?本节我们连续探讨.探究点一 等差数列通项公式的推广思考1 等差数列的通项公式a n =a 1+(n -1)d 是由等差数列的前几项归纳得出的,公式只是一个猜想,那么,如何证明公式对全部正整数n 都成立?答 (1)叠加法:由等差数列的定义知: a n -a n -1=d (n ≥2,n ∈N *),⎭⎪⎬⎪⎫a 2-a 1=da 3-a 2=da 4-a 3=d …a n-a n -1=d (n -1)个 将以上(n -1)个等式两边分别相加,可得a n -a 1=(n -1)d ,即a n =a 1+(n -1)d . (2)迭代法:{a n }是等差数列,则:a n =a n -1+d =a n -2+2d =a n -3+3d =…=a 1+(n -1)d . 所以a n =a 1+(n -1)d .思考2 已知等差数列{a n }的首项a 1和公差d 能表示出通项a n =a 1+(n -1)d ,假如已知第m 项a m 和公差d ,又如何表示通项a n?答 设等差数列的首项为a 1,则a m =a 1+(m -1)d , 变形得a 1=a m -(m -1)d ,则a n =a 1+(n -1)d =a m -(m -1)d +(n -1)d =a m +(n -m )d .思考3 对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间有怎样的关系?为什么?答 a m +a n =a p +a q .由于a m +a n =a 1+(m -1)d +a 1+(n -1)d =2a 1+(n +m -2)d ,而a p +a q =a 1+(p -1)d +a 1+(q -1)d =2a 1+(p +q -2)d ,又因m +n =p +q ,所以a m +a n =a p +a q .小结 (1)等差数列的其次通项公式:a n =a m +(n -m )d ;(2)对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间的关系为a m +a n =a p +a q . 例1 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式.解 由于a 8=a 2+(8-2)d ,所以17=5+6d ,解得d =2. 又因a n =a 2+(n -2)d ,所以a n =5+(n -2)×2=2n +1.反思与感悟 利用等差数列的其次通项公式及等差数列的性质,不难得出等差数列另外一些性质:(1){a n }为有穷等差数列,则与首末两项“等距离”的两项之和都相等,且等于首末两项之和. (2)下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N *)组成公差为md 的等差数列. (3)若数列{a n }和{b n }均为等差数列,则{a n ±b n },{pa n +qb n }(p 、q 为常数)也为等差数列.跟踪训练1 已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______.答案 12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d .则14+⎝⎛⎭⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74,∴n =14×74=716,m =34×54=1516或n =1516,m =716,∴|m -n |=12.探究点二 等差数列与一次函数的关系思考 等差数列{a n }的通项公式a n =a 1+(n -1)d 整理成a n 关于n 的函数后,其相应的一次函数图象的斜率及在y 轴上的截距各是什么?答 等差数列{a n }的通项公式变形为a n =dn +a 1-d ,其图象为一条直线上孤立的一系列点,d 为直线的斜率,在y 轴上的截距为a 1-d .例2 已知数列{a n }的通项公式a n =pn +q ,其中p 、q 为常数,那么这个数列确定是等差数列吗?若是,首项和公差分别是多少?解 取数列{a n }中任意相邻两项a n 和a n -1(n >1),求差得a n -a n -1=(pn +q )-[p (n -1)+q ]=pn +q -(pn -p +q )=p . 它是一个与n 无关的常数,所以{a n }是等差数列. 首项a 1=p +q ,公差d =p .反思与感悟 推断数列{a n }是不是等差数列,可以利用等差数列的定义,即a n -a n -1(n >1)是不是一个与n 无关的常数;也可以利用等差中项,即若a n +1=a n +a n +22成立,则说明{a n }是等差数列.跟踪训练2 已知a ,b ,c 成等差数列,证明a 2(b +c ),b 2(c +a ),c 2(a +b )也能构成等差数列. 证明 ∵a ,b ,c 成等差数列,∴a +c =2b . ∴a 2(b +c )+c 2(a +b ) =a 2b +a 2c +c 2a +c 2b =(a 2b +c 2b )+(a 2c +c 2a ) =b (a 2+c 2)+ac (a +c ) =b (a 2+c 2)+2abc =b (a 2+c 2+2ac )=b (a +c )2=b ·(a +c )·(a +c ) =2·b 2(a +c ).∴a 2(b +c ),b 2(c +a ),c 2(a +b )能构成等差数列. 探究点三 等差数列性质的应用例3 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式. 解 由于a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15, 所以a 4=5.又由于a 2a 4a 6=45,所以a 2a 6=9,即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9, 解得d =±2.若d =2,a n =a 4+(n -4)d =2n -3; 若d =-2,a n =a 4+(n -4)d =13-2n .反思与感悟 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想.跟踪训练3 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值. 解 方法一 ∵a 1+a 4+a 7=(a 1+a 7)+a 4=3a 4=39, ∴a 4=13,∵a 2+a 5+a 8=(a 2+a 8)+a 5=3a 5=33.∴a 5=11,∴d =a 5-a 4=-2. ∵a 3+a 6+a 9=(a 3+a 9)+a 6 =2a 6+a 6=3a 6=3(a 5+d )=3(11-2)=27.方法二 ∵a 1+a 4+a 7=a 1+(a 1+3d )+(a 1+6d ) =3a 1+9d =39, ∴a 1+3d =13,①∵a 2+a 5+a 8=(a 1+d )+(a 1+4d )+(a 1+7d ) =3a 1+12d =33. ∴a 1+4d =11,②由①②联立⎩⎪⎨⎪⎧ a 1+3d =13,a 1+4d =11,得⎩⎪⎨⎪⎧d =-2,a 1=19.∴a 3+a 6+a 9=(a 1+2d )+(a 1+5d )+(a 1+8d ) =3a 1+15d =3×19+15×(-2)=27.例4 三个数成等差数列,和为6,积为-24,求这三个数.解 方法一 设等差数列的中间一项为a ,公差为d ,则这三个数分别为a -d ,a ,a +d , 依题意得,3a =6且a (a -d )(a +d )=-24, 所以a =2,代入a (a -d )(a +d )=-24, 化简得d 2=16,于是d =±4, 故三个数为-2,2,6或6,2,-2.方法二 设首项为a ,公差为d ,这三个数分别为a ,a +d ,a +2d , 依题意得,3a +3d =6且a (a +d )(a +2d )=-24, 所以a =2-d ,代入a (a +d )(a +2d )=-24, 得2(2-d )(2+d )=-24,4-d 2=-12,即d 2=16,于是d =±4,三个数为-2,2,6或6,2,-2.反思与感悟 当等差数列{a n }的项数n 为奇数时,可设中间一项为a ,再用公差为d 向两边分别设项:…,a-2d ,a -d ,a ,a +d ,a +2d ,…;当项数为偶数项时,可设中间两项为a -d ,a +d ,再以公差为2d 向两边分别设项:…,a -3d ,a -d ,a +d ,a +3d ,…,这样可削减计算量.跟踪训练4 四个数成递增等差数列,中间两数的和为2,首末两数的积为-8,求这四个数. 解 方法一 设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 依题意得,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.方法二 设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意得,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得(1-32d )(1+32d )=-8,即1-94d 2=-8,化简得d 2=4,所以d =2或-2. 又四个数成递增等差数列,所以d >0, 所以d =2,a =-2. 故所求的四个数为-2,0,2,4.1.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( ) A .3 B .-6 C .4 D .-3 答案 B解析 由等差数列的性质,得a 8-a 3=(8-3)d =5d ,所以d =-20-105=-6.2.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( ) A .32 B .-32 C .35 D .-35 答案 C解析 由a 8-a 4=(8-4)d =4d ,得d =3,所以a 15=a 8+(15-8)d =14+7×3=35.3.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( ) A .3 B .-3 C.32 D .-32答案 A解析 由数列的性质,得a 4+a 5=a 2+a 7,所以a 2=15-12=3.4.已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,求这三个数. 解 设这三个数为a -d ,a ,a +d ,由已知得⎩⎪⎨⎪⎧(a -d )+a +(a +d )=18 ①(a -d )2+a 2+(a +d )2=116 ②由①得a =6,代入②得d =±2. ∵该数列是递增数列, ∴d >0,即d =2. ∴这三个数依次为4,6,8. [呈重点、现规律]1.在等差数列{a n }中,当m ≠n 时,d =a m -a n m -n 为公差公式,利用这个公式很简洁求出公差,还可变形为a m =a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项依据原来的挨次排列,构成的新数列照旧是等差数列. 3.等差数列{a n }中,若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *),特殊地,若m +n =2p ,则a n +a m =2a p .4.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,假如条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要留意公式的变形及整体计算,以削减计算量.一、基础过关1.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6 D .4 答案 B解析 由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8,又d ≠0,∴m =8.2.设公差为-2的等差数列{a n },假如a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( ) A .-182 B .-78 C .-148 D .-82 答案 D解析 a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33 =50+2×(-2)×33=-82.3.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4答案 D解析 a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题p 1正确. na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小关系和a 1的取值状况有关. 故数列{na n }不愿定递增,命题p 2不正确. 对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+dn (n -1), 当d -a 1>0,即d >a 1时,数列{a nn}递增,但d >a 1不愿定成立,则p 3不正确. 对于p 4:设b n =a n +3nd , 则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,p 4正确. 综上,正确的命题为p 1,p 4.4.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .10 答案 C解析 由a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8.5.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为( ) A .0 B .1 C .2 D .1或2 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 6.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10, ∴3a 5+a 7=4a 1+18d =2(2a 1+9d )=20.7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值. 解 方法一 设公差为d , 则d =a m -a n m -n =n -mm -n=-1,从而a m +n =a m +(m +n -m )d =n +n ·(-1)=0.方法二 设等差数列的通项公式为a n =an +b (a ,b 为常数),则⎩⎪⎨⎪⎧a m =am +b =n ,a n =an +b =m ,得a =-1,b =m +n .所以a m +n =a (m +n )+b =0. 二、力气提升8.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180 D .300答案 C解 ∵a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5 =5a 5=450,∴a 5=90. ∴a 2+a 8=2a 5=180.9.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .± 3 C .-33D .-3 答案 D解析 由等差数列的性质得a 1+a 7+a 13=3a 7=4π, ∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan8π3=tan 2π3=- 3. 10.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________. 答案 105解析 ∵a 1+a 2+a 3=3a 2=15,∴a 2=5. ∵a 1a 2a 3=(a 2-d )a 2(a 2+d )=5(25-d 2)=80, 又d 为正数,∴d =3.∴a 11+a 12+a 13=3a 12=3(a 2+10d )=3(5+30)=105.11.成等差数列的四个数之和为26,其次个数与第三个数之积为40,求这四个数. 解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, ∴⎩⎪⎨⎪⎧4a =26,a 2-d 2=40.解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.12.正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n .(1)数列{a n }是否为等差数列?说明理由. (2)求a n . 解 (1)∵a n +1-a n +1=a n +a n ,∴a n +1-a n =a n +1+a n ,∴(a n +1+a n )·(a n +1-a n )=a n +1+a n ,∴a n +1-a n =1,∴{a n }是等差数列,公差为1. (2)由(1)知{a n }是等差数列,且d =1, ∴a n =a 1+(n -1)×d =1+(n -1)×1=n , ∴a n =n 2. 三、探究与拓展13.已知数列{a n },满足a 1=2,a n +1=2a na n +2.(1)数列{1a n }是否为等差数列?说明理由.(2)求a n .解 (1)数列{1a n }是等差数列,理由如下:∵a 1=2,a n +1=2a na n +2,∴1a n +1=a n +22a n=12+1a n ,∴1a n +1-1a n =12,即{1a n }是首项为1a 1=12,公差为d =12的等差数列.(2)由上述可知1a n =1a 1+(n -1)d =n2,∴a n =2n .。
高中数学 2.3《等差数列的前n项和》三维目标教案(第1课时) 新人教A版必修5
高中数学 2.3《等差数列的前n 项和》三维目标教案(第1课时) 新人教A 版必修5授课类型:新授课(第1课时)●三维目标知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.情感态度与价值观:通过公式的推导过程,展现数学中的对称美。
●教学重点等差数列n 项和公式的理解、推导及应●教学难点灵活应用等差数列前n 项公式解决一些简单的有关问题●教学过程Ⅰ.课题导入“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。
教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050”这个故事告诉我们:(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西。
(2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。
Ⅱ.讲授新课1.等差数列的前n 项和公式1:2)(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ①1221a a a a a S n n n n +++++=-- ②①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=--∵ =+=+=+--23121n n n a a a a a a ∴)(21n n a a n S += 由此得:2)(1n n a a n S +=从而我们可以验证高斯十岁时计算上述问题的正确性2. 等差数列的前n 项和公式2:2)1(1dn n na S n -+=用上述公式要求n S 必须具备三个条件:n a a n ,,1 但d n a a n )1(1-+= 代入公式1即得: 2)1(1dn n na S n -+= 此公式要求n S 必须已知三个条件:d a n ,,1 (有时比较有用)[范例讲解]课本P49-50的例1、例2、例3由例3得与n a 之间的关系:由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S , 即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n .Ⅲ.课堂练习课本P52练习1、2、3、4Ⅳ.课时小结本节课学习了以下内容:1.等差数列的前n 项和公式1:2)(1n n a a n S +=2.等差数列的前n 项和公式2:2)1(1dn n na S n -+=Ⅴ.课后作业●板书设计●授后记。
【学优推荐】高中数学新人教A版必修5学案《2.2等差数列(一)》.doc
高中数学必修五《2.2等差数列(1)》学案教学目标:记住等差数列的概念及通项公式并且能够熟练应用。
一、自主学习:研读教材36-38页,回到下列问题•问题(1):观察下列数列的特点,归纳规律:①0, 5, 10, 15,…②奥运会女子举重级别48, 53, 58, 63.③3, 0, —3, —6,…④10072, 10144, 10216, 10288, 10306.⑤丄上上上…10 10 10 10规律是:_________________________________________________问题(2):总结等差数列的定义:问题(3):等差数列的通项公式:一般的,如果等差数列仏”}的首项为坷,公差为d,根据等差数列的定义推出其•通项公式:问题(4)已知数列{%}的通项公式pn + q,其中p,q为常数,那么这个数列一定为等差数列吗?是等差数列时,和一次函数图像之间有什么关系?问题(5)如何证明一个数列是等差数列:(等差数列的通项公式的作用及变形应用)问题(6):写出等差中项概念:二、合作探究:例1: (1)求等差数列8, 5, 2…的第20项;(2)—401是不是等差数列一5, —9, —13…的项?如果是,是第儿项?例2.在数列血}中,也=3,细=21,己知该数列的通项公式是序号的一次函数,求知门三、课堂练习:P39I题,2题,3题.(2)在等差数列{%}中,己知a5=10,a I2=31,求数列的首项a】和公差d・(四)课后反思小结:(五)作业:几J题亀妥厂个存訓牖-年级使用时间年月日组编校对审核2.2等差数列(2)教学目标:1、记住等差数列性质。
2、能熟练运用等差数列性质。
一、自主学习1、请独立完成以下问题:(1)等差数列定义: _________________________________ : _____________________ O(2)等差数列通项公式:__________________________________________________________(3)等差数列的公差d二_______________________ 。
人教A版高中数学必修五等差数列导学案新
2.2 等差数列【学习目标】1. 通过实例,理解等差数列的概念;2. 探索并掌握等差数列的通项公式;3. 能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
【研讨互动 问题生成】1.等差数列的概念2.等差数列的通项公式【合作探究 问题解决】⑴在直角坐标系中,画出通项公式为53-=n a n 的数列的图象。
这个图象有什么特点? ⑵在同一个直角坐标系中,画出函数y=3x-5的图象,你发现了什么?据此说一说等差数列q pn a n +=与一次函数y=px+q 的图象之间有什么关系。
【点睛师例 巩固提高】例1.⑴求等差数列8,5,2,…的第20项.⑵-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?例2.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4km (不含4千米)计费10元。
如果某人乘坐该市的出租车去往14km 处的目的地,且一路畅通,等候时间为0,需要支付多少车费?例3. 已知数列}{n a 的通项公式为,q pn a n +=其中p 、q 为常数,且p ≠0,那么这个数列一定是等差数列吗?【要点归纳 反思总结】①等差数列定义:即d a a n n =--1(n ≥2)②等差数列通项公式:=n a d n a )1(1-+(n ≥1)推导出公式:d m n a a m n )(-+=【多元评价】自我评价: 小组成员评价: 小组长评价:学科长评价: 学术助理评价:【课后训练】1.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( )A.40B.42C.43D.452.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .753.已知等差数列2,5,8,……,该数列的第3k (k ∈N *)项组成的新数列{b n }的前4项是 。
人教a版必修5学案:2.2等差数列(含答案)
2.2 等差数列自主学习知识梳理1.等差数列的定义一般地,如果一个数列从第________项起,每一项与它的前一项的差都等于________常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的________,通常用字母________表示.2.等差中项如果A =a +b 2,那么A 叫做a 与b 的____________. 3.等差数列的单调性等差数列的公差________时,数列为递增数列;________时,数列为递减数列;________时,数列为常数列.4.等差数列的通项公式a n =________________,当d =0时,a n =________,a n 是关于n 的________函数;当d ≠0时,a n =____________,a n 是关于n 的________函数,点(n ,a n )分布在一条以______为斜率的直线上,是这条直线上的一列________的点.5.等差数列的性质(1)若{a n }是等差数列,且k +l =m +n (k 、l 、m 、n ∈N *),则____________.(2)若{a n }是等差数列且公差为d ,则{a 2n }也是________,公差为________.(3)若{a n }是等差数列且公差为d ,则{a 2n -1+a 2n }也是____________,公差为________.自主探究如果等差数列{a n }的首项是a 1,公差是d ,你能用两种方法求其通项吗?对点讲练知识点一 等差数列的通项公式例1 若{a n }是等差数列,a 15=8,a 60=20,求a 75.总结方法一:先求出a1,d,然后求a75;方法二:应用通项公式的变形公式a n=a m +(n-m)d求解.变式训练1在等差数列{a n}中,已知a m=n,a n=m,求a m+n的值.知识点二等差数列的性质例2已知等差数列{a n}中,a1+a4+a7=15,a2a4a6=45,求此数列的通项公式.总结要求通项公式,需要求出首项a1和公差d,由a1+a4+a7=15,a2a4a6=45直接求解很困难,我们可以换个思路,利用等差数列的性质,注意到a1+a7=a2+a6=2a4问题就简单了.变式训练2成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.知识点三等差数列的判断例3 已知数列{a n }满足a 1=4,a n =4-4a n -1 (n ≥2),令b n =1a n -2. (1)求证:数列{b n }是等差数列;(2)求数列{a n }的通项公式.总结 判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数.变式训练3 若1b +c ,1c +a ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列.1.证明数列{a n }为等差数列的方法(1)定义法:a n +1-a n =d (d 为常数,n ≥1)⇔{a n }为等差数列或a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列.(2)等差中项法:2a n +1=a n +a n +2⇔{a n }是等差数列.(3)通项法:a n =pn +q (p 、q ∈R )⇔{a n }是等差数列,只要说明a n 为n 的一次函数,就可下结论说{a n }是等差数列.2.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d .课时作业一、选择题1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( )A .24B .22C .20D .-82.已知等差数列{a n }中,a 2=-9,a 3a 2=-23,则a n 为( ) A .14n +3 B .16n -4 C .15n -39 D .15n +83.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2 (n ∈N *)B .a n =2n +4 (n ∈N *)C .a n =-2n +12 (n ∈N *)D .a n =-2n +10 (n ∈N *)4.等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8等于( )A .45B .75C .180D .3005.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值为( )A .49B .50C .51D .52题 号 1 2 3 4 5 答 案 二、填空题 6.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差分别为d 1和d 2,则d 1d 2的值为______. 7.已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 4=6,a 6=4,则a 10=______. 8.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______.三、解答题9.等差数列{a n }的公差d ≠0,试比较a 4a 9与a 6a 7的大小.10.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?请说明理由.(2)若a m 、a t (m 、t ∈N *)是数列{a n }中的项,则2a m +3a t 是数列{a n }中的项吗?并说明你的理由.§2.2 等差数列知识梳理1.2 同一个 公差 d2.等差中项3.d>0 d<0 d =04.a 1+(n -1)d a 1 常数 dn +(a 1-d) 一次 d 孤立5.(1)a k +a l =a m +a n (2)等差数列 2d(3)等差数列 4d自主探究解 第一种方法:根据等差数列的定义,可以得到a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,….所以a 2=a 1+d ,a 3=a 2+d =(a 1+d)+d =a 1+2d ,a 4=a 3+d =(a 1+2d)+d =a 1+3d ,…由此得出:a n =a 1+(n -1)d.第二种方法:由等差数列的定义知,a n -a n -1=d(n ≥2),所以 ⎭⎪⎬⎪⎫a 2-a 1=d a 3-a 2=d a 4-a 3=d ⋮a n -a n -1=d (n -1)个 将以上(n -1)个等式两边分别相加,可得a n -a 1=(n -1)d ,即a n =a 1+(n -1)d.对点讲练例1 解 设{a n }的公差为d.方法一 由题意知⎩⎪⎨⎪⎧a 15=a 1+14d =8,a 60=a 1+59d =20, 解得⎩⎨⎧ a 1=6415,d =415.所以a 75=a 1+74d =6415+74×415=24. 方法二 因为a 60=a 15+(60-15)d ,所以d =a 60-a 1560-15=20-860-15=415, 所以a 75=a 60+(75-60)d =20+15×415=24. 变式训练1 解 方法一 设公差为d ,则d =a m -a n m -n =n -m m -n=-1, 从而a m +n =a m +(m +n -m)d =n +n·(-1)=0.方法二 设等差数列的通项公式为a n =an +b(a ,b 为常数),则⎩⎪⎨⎪⎧ a m =am +b =n ,a n=an +b =m , 得a =-1,b =m +n.所以a m +n =a(m +n)+b =0.例2 解 因为a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15,所以a 4=5.又因为a 2a 4a 6=45,所以a 2a 6=9,即(a 4-2d)(a 4+2d)=9,(5-2d)(5+2d)=9,解得d =±2.若d =2,a n =a 4+(n -4)d =2n -3;若d =-2,a n =a 4+(n -4)d =13-2n.变式训练2 解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得 ⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40∴⎩⎪⎨⎪⎧ 4a =26,a 2-d 2=40. 解得⎩⎨⎧ a =132,d =32或⎩⎨⎧ a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.例3 (1)证明 ∵a n =4-4a n -1(n ≥2), ∴a n +1=4-4a n (n ∈N *). ∴b n +1-b n =1a n +1-2-1a n -2=12-4a n-1a n -2 =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12. ∴b n +1-b n =12,n ∈N *. ∴{b n }是首项为12,公差为12的等差数列. (2)解 b 1=1a 1-2=12,d =12. ∴b n =b 1+(n -1)d =12+12(n -1)=n 2. ∴1a n -2=n 2,∴a n =2+2n . 变式训练3 证明 ∵1b +c ,1c +a ,1a +b是等差数列, ∴1b +c +1a +b =2c +a. ∴(a +b )(c +a )+(b +c )(c +a )=2(a +b )(b +c )∴(c +a )(a +c +2b )=2(a +b )(b +c )∴2ac +2ab +2bc +a 2+c 2=2ab +2ac +2bc +2b 2∴a 2+c 2=2b 2,∴a 2,b 2,c 2成等差数列.课时作业1.A [设等差数列{a n }公差为d .∵a 1+3a 8+a 15=120,∴5a 8=120,∴a 8=24,∴2a 9-a 10=2(a 8+d )-(a 8+2d )=a 8=24.]2.C [∵a 2=-9,a 3a 2=-23, ∴a 3=-23×(-9)=6,∴d =a 3-a 2=15, ∴a n =a 2+(n -2)d =-9+(n -2)×15=15n -39.]3.D [由⎩⎪⎨⎪⎧ a 2·a 4=12,a 2+a 4=8,d <0⇒⎩⎪⎨⎪⎧ a 2=6,a 4=2⇒⎩⎪⎨⎪⎧a 1=8,d =-2, 所以a n =a 1+(n -1)d ,即a n =8+(n -1)(-2),得a n =-2n +10.]4.C [方法一 设{a n }首项为a 1,公差为d ,则a 3+a 4+a 5+a 6+a 7=a 1+2d +a 1+3d +a 1+4d +a 1+5d +a 1+6d =5a 1+20d , 即5a 1+20d =450,a 1+4d =90,∴a 2+a 8=a 1+d +a 1+7d =2a 1+8d =180.方法二 ∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,∴a 3+a 4+a 5+a 6+a 7=52(a 2+a 8)=450, ∴a 2+a 8=180.]5.D [∵2a n +1=2a n +1,∴a n +1-a n =12. 故数列{a n }是首项为2,公差为12的等差数列. ∴a 101=a 1+100d =2+100×12=52.] 6.43解析 ∵n -m =3d 1,∴d 1=13(n -m ). 又∵n -m =4d 2,∴d 2=14(n -m ). ∴d 1d 2=13(n -m )14(n -m )=43. 7.125解析 1a 6-1a 4=14-16=2d ,即d =124. 所以1a 10=1a 6+4d =14+16=512,所以a 10=125. 8.12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d . 则14+⎝⎛⎭⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74, ∴n =14×74=716,m =34×54=1516或n =1516,m =716, ∴|m -n |=12. 9.解 设a n =a 1+(n -1)d ,则a 4a 9-a 6a 7=(a 1+3d )(a 1+8d )-(a 1+5d )(a 1+6d )=(a 21+11a 1d +24d 2)-(a 21+11da 1+30d 2)=-6d 2<0,所以a 4a 9<a 6a 7.10.解 (1)依题意有a 1=3,d =7-3=4,∴a n =3+4(n -1)=4n -1.设a n =4n -1=135,得n =34,∴135是数列{a n }的第34项.由于4m +19=4(m +5)-1,且m ∈N *,∴4m +19是数列{a n }的第m +5项.(2)∵a m 、a t 是数列{a n }中的项,∴a m =4m -1,a t =4t -1.∴2a m +3a t =2(4m -1)+3(4t -1)=4(2m +3t -1)-1.∵2m +3t -1∈N *,∴2a m +3a t 是数列{a n }中的第2m +3t -1项.。
高二数学人教A版必修5教学教案2-2等差数列(3)
普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。
人教A版高中数学必修五第二章第2节《等差数列》(第2课时)教案
2.2.2等差数列的性质
一、教学目标:
1.明确等差中项的概念;进一步熟练掌握等差数列的通项公式及推导公式,
2.能通过通项公式与图像认识等差数列的性质,能运用等差数列的性质解决某些问题。
二、教学重点难点:
教学重点:等差数列的定义及性质的理解与应用
教学难点:灵活应用等差数列的定义及性质解决一些相关问题
三、教学策略及设计
“数学教学是数学活动的教学”,“数学活动是思维的活动”,新课标也在倡导独立自主,合作交流,积极主动,勇于探索的学习方式。
基于这种理念的指导,在教法上采用探究发现式课堂教学模式,在学法上以学生独立自主和合作交流为前提,重视学生在学习过程中,能否运用等差数列的定义发现和推导等差数列的性质。
设计流程如下:
四、教学过程:。
人教A版高中数学必修五等差数列学案
即:
则: =
即等差数列的第二通项公式 ∴d=
[范例讲解]
例1⑴求等差数列8,5,2…的第20项
⑵-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:⑴由 n=20,得
⑵由 得数列通项公式为:
由题意可知,本题是要回答是否存在正整数n,使得 成立解之得n=100,即-401是这个数列的第100项
例3已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。
解:当n≥2时,(取数列 中的任意相邻两项 与 (n≥2))
为常数
∴{ }是等差数列,首项 ,公差为p。
1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。
⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;
⑵.对于数列{ },若列是等差数列,d为公差。
令- n+ =-20,解得n= 因为- n+ =-20没有正整数解,所以-20不是这个数列的项.
教学后记:
教学过程:
Ⅰ.课题导入
[创设情境]
上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。下面我们看这样一些例子。
课本P41页的4个例子:
①0,5,10,15,20,25,…
②48,53,58,63
③18,15.5,13,10.5,8,5.5
④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高中数学《2.2 等差数列(2)》学案新人教A版必修5
一、新课标要求:掌握等差数列性质。
二、重点与难点:等差数列性质及其应用,并能熟练应用。
三、教学过程:
(一)复习:
(1)等差数列定义:。
(2)等差数列通项公式:。
(3)等差数列的公差d= 。
(4)若a,A,b成等差数列,则:。
中,三内角A,B,C成等差数列,则= 。
(5)ABC
(6)方程与函数思想的应用:
(7)如何证明一个数列为等差数列:
(二)新知探究:
例1:已知等差数列
(1)求?(2)从第几项开始为负?
练习:首项为—24的等差数列从第10项开始为非负数,则公差的取值范围
为 。
例2:三个数成等差,其和为15,首尾两项之积为9,求此数列。
问题(3)三个数成等差,应如何设?
课堂练习:第40页4,5
课后作业:
1. 若
222111,,,,a b c b c c a a b
+++成等差数列,证明成等差数列。
2.数列中,求:
(1)数列的通项;(2)从第几项开始为正?
(三)课后小结反思:。