《行程问题解析》.(DOC)

合集下载

小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度x时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差x时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。

(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。

数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

(二)追及问题追及问题也是行程问题中的一种情况。

这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。

数学应用之行程问题详解

数学应用之行程问题详解

数学应用之行程问题详解行程问题包含相遇问题、追及问题、相离问题和流水问题。

1、相遇问题两个运动物体做相向运动或在环形跑道上做背向运动,随着时间的发展,必然面对面地相遇,这类问的特点是两个运动物体共同走完整个路程。

甲从A地到B地,乙从B地到A 地,实质上是甲和乙一起走了AB之问这段路程,如果两人同时出发,那么:AB之间的路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间可见,“相遇问题”的核心是速度和问题。

相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。

它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度= 甲乙速度和—已知的一个速度2.追及问题追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。

由于速度不同,就发生快的追及慢的问题。

有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他。

这就产生了“追及问题”。

实质上,要算走得快的人在某一段时间内比走得慢的人多走的路程,也就是要计算两人走的速度之差。

如果设甲走得快,乙走得慢,在相同时间(追及时间)内:距离差=追及路程=甲走的路程—乙走的路程=甲的速度×追及时间—乙的速度×追及时间=(甲的速度—乙的速度)×追及时间=速度差×追及时间可见“追及问题”的核心是速度差的问根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速—慢速解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

3.相离问题相离问题就是两个人或物体向相反方向运动的应用题,也叫做相背运动问题。

(word完整版)六年级奥数--行程问题

(word完整版)六年级奥数--行程问题

六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

练习1:1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

完整版)初中行程问题专题讲解

完整版)初中行程问题专题讲解

完整版)初中行程问题专题讲解初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。

我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。

行程问题是一个非常庞大的类型,在考试中经常出现。

下面我们将行程问题归类,由易到难,逐步剖析。

1.单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从80km/h提高到100km/h,运行时间缩短了3h。

甲,乙两城市间的路程是多少?分析】设甲,乙两城市间的路程为x km,那么列车在两城市间提速前的运行时间为x/80 h,提速后的运行时间为x/100 h。

等量关系式】提速前的运行时间减去提速后的运行时间等于缩短的时间3 h。

列出方程】x/80 - x/100 = 3.例2:某铁路桥长1000 m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 ___,整列火车完全在桥上的时间共40 s。

求火车的速度和长度。

分析】设火车的速度为x m/s,火车的长度为y m,用线段表示大桥和火车的长度,根据题意可画出如下示意图:100060x1000y40x等量关系式】火车1 ___行驶的路程等于桥长加火车长;火车40 s行驶的路程等于桥长减火车长。

列出方程组】60x = 1000 + y40x = 1000 - y举一反三:1.___家和学校相距15 km。

___从家出发到学校,___先步行到公共汽车站,步行的速度为60 m/min,再乘公共汽车到学校,发现比步行的时间缩短了20 ___。

已知公共汽车的速度为40 km/h,求___从家到学校用了多长时间。

2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260 km。

求提速后的火车速度。

(精确到1 km/h)3.徐州至上海的铁路里程为650 km,从徐州乘“C”字头列车A,“D”字头列车B都可直达上海,已知A车的速度为B车的2倍,且行驶的时间比B车少2.5 h。

行程问题解析

行程问题解析

,行程问题从运动形式上分可以分为五大类:五大题型、四大方法相互交织,就构成了整个小学行程问题的知识架构。

这其中的交织与综合不仅仅是题型与方法之间的交织,也有题型之间的重叠,比如环形问题就可以有环形路线上的流水行船,而火车问题也可以有多辆火车之间的错车问题……至于解题方法的重叠那更是比比皆是,一道稍有分量的行程问题就需要运用至少两种解题方法……诸如此类的综合,既是行程问题变化多端的原因,也是行程问题难学的原因。

想要将上述题型与方法融会贯通、运用自如,首先得分门别类的把各类问题学好,并穿插以各类解题方法的训练,然后在此基础之上再进行综合。

下面我们就以五大题型为主线,以典型例题的形式对行程问题的整个知识架构做一个系统性梳理,并在例题的讲解中穿插解题方法的总结,让大家对小学阶段行程问题的题型与方法有一个总体把握。

每道例题的关键思路都已给出,大家顺着这些思路可以自行求得答案。

每道例题的标准答案都附在手册的最后,大家可以对照参考。

1. 直线上的相遇与追及上述两个公式大家都很熟悉,对于相遇、追及问题的理解,就是从它们开始的。

一般情况下,我们会把速度和、路程和与相遇问题联系在一起,而把速度差、路程差与追及问题联系在一起。

这样的理解过于表面化,真正体现这两个公式本质的字眼儿是"和"与"差":只要涉及到速度和、路程和的问题就应该用第一个公式,即使题目的背景是追及;而只要涉及到速度差、路程差的问题就应该用第二个公式,即使题目的背景是相遇。

例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?(某重点中学2007年小升初考题)「思路解析」本题表面上看是一个典型的相遇问题,其实里面暗藏了路程差的关系。

那路程差的关系究竟藏在哪个条件中呢?就在条件"两车在离两地中点32千米处相遇"这句话中。

行程问题带解析

行程问题带解析

行程问题☞题型1“行程问题单线型”例1. A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.答案: 解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.巩固1. 甲,乙两车分别从A,B两地同时相向匀速行驶,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车到达B地后修整了1个小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数图象如图所示,则A,C两地相距420千米.答案: 解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100﹣60=40千米/小时,设甲、乙两车出发后经过t小时同时到达C地,依题意可得:60(t﹣1)﹣40t=300,解得t=18,∴B,C两地的距离=40×18=720千米,则A,C两地相距:720﹣300=420千米,故答案为:420.巩固2. 小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距1740米.答案: 解:观察图象可知小兵爸爸的速度为=90米/分,设小兵的速度为x米/分,由图象可知10(90+x)=1500,解得x=60米/分,60×4=240,1500+240=1740米.故答案为1740.巩固3. 5月13日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y与x的函数图象如图所示,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是米.答案: 解:由图象可得2号巡逻员的速度为1000÷12.5=80m/min,1号巡逻员的速度为(1000﹣800)÷1﹣80=200﹣80=120m/min,设两车相遇时的时间为xmin,可得方程:80x+120(x﹣2)=800+200,解得:x=6.2,∴a=6.2,∴2号巡逻员的路程为6,.2×80=496m,1号巡逻员到达看台时,还需要=min,∴2号巡逻员离舞台的距离是1000﹣80×(6.2+)=m,故答案为:m.巩固4. .甲、乙两人相约从A地到B地,甲骑自行车先行,乙开汽车,两人均在同一路线上匀速行驶,乙到B地后即停车等甲,甲、乙两人之间的距离y(千米)与甲行驶的时间x(小时)之间的函数关系如图所示,则乙从A地到B地所用的时间为小时.答案: 解:20÷1=20(千米/小时),20÷(﹣1)+20=20÷+20=80+20=100(千米/小时),30÷(100﹣20)+(﹣1)=30÷80+=+=(小时).答:乙从A地到B地所用的时间为小时.故答案为:.巩固5. .小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要 2.5分钟才能到家.答案: 解:设爸爸从家到与小明相遇的过程中的速度为a米/分钟,由题意和图象可得,,解得,a=120,∴当小鹏回到学校时,爸爸还需要:=2.5(分钟),故答案为:2.5.巩固6. .快车和慢车同时从甲地出发以不同的速度匀速前往乙地,当快车到达乙地后停留了一段时间,立即从原路以另一速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y(千米)与慢车行驶的时间t(小时)之间的函数图象如图所示,则甲乙两地的距离是390千米.答案: 解:由题意慢车为60km/h,设快车是速度为xkm/h,由题意4x﹣4×60=150,解得x=km/h,所以甲乙两地的距离4×=390km,故答案为390.巩固7. .甲、乙两车分别从A、B两地同时出发匀速相向而行,大楼C位于AB 之间,甲与乙相遇在AC中点处,然后两车立即掉头,以原速原路返回,直到各自回到出发点.设甲、乙两车距大楼C的距离之和为y(千米),甲车离开A地的时间为t(小时),y与t的函数图象所示,则第21小时时,甲乙两车之间的距离为1350千米.答案: 解:设AC中点为E.观察函数图象可知:乙车从B到C需用4小时,从C到E需用=8小时,甲从A到E需要12小时,∵点E为AC的中点,乙的速度不变,∴AE=CE=2BC(如图所示).∵2CE=1440,∴AE=720,BE=1080,∴甲的速度为720÷12=60(千米/小时),乙的速度为1080÷12=90(千米/小时).第21小时时,甲乙两车之间的距离为(60+90)×(21﹣12)=1350(千米).故答案为:1350.巩固8. .甲、乙两辆汽车从A地出发前往相距250千米的B地,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到B地,如图是甲、乙两车之间的距离s(km2),乙车出发时间t(h)之间的函数关系图象,则甲车比乙车早到11.5分钟.答案: 解:由题意可得,乙车的速度为:40÷0.5=80km/h,甲车开始时的速度为:(2×80﹣10)÷(2﹣0.5)=100km/h,甲车后来的速度为:=120km/h,∴乙车动A地到B地用的时间为:250÷80=h,甲车从A地到B地的时间为:=2h,∴==11.5分钟,故答案为:11.5.巩固9. .一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系.当两车之间的距离首次为300千米时,经过3小时后,它们之间的距离再次为300千米.答案: 解:(480﹣440)÷0.5=80km/h,440÷(2.7﹣0.5)﹣80=120km/h,所以,慢车速度为80km/h,快车速度为120km/h;由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即相遇前:(80+120)×(x﹣0.5)=440﹣300,解得x=1.2(h),相遇后:(80+120)×(x﹣2.7)=300,解得x=4.2(h),4.2﹣1.2=3(h)所以当两车之间的距离首次为300千米时,经过3小时后,它们之间的距离再次为300千米故答案为:3.巩固10. .“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y(千米)与小刚跑步所用时间x(分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了分钟.答案: 解:小刚比赛前的速度v1=(540﹣440)=100(米/分),设小强比赛前的速度为v2(米/分),根据题意得2×(v1+v2)=440,解得v2=120米/分,小刚的速度始终是180米/分,小强的速度开始为220米/分,他们的速度之差是40米/分,10分钟相差400米,设再经过t分钟两人相遇,则180t+120t=400,解得t=(分)所以小刚从家出发到他们再次相遇时5+10+=(分).故答案为.巩固11. .欢欢和乐乐骑自行车从滨江路上相距10600米的A、B两地同时出发,先相向而行,行驶一段时间后欢欢的自行车坏了,她立刻停车并马上打电话通知乐乐,乐乐接到电话后立刻提速至原来的倍,碰到欢欢后用了5分钟修好了欢欢的自行车,修好车后乐乐立刻骑车以提速后的速度继续向终点A地前行,欢欢则留在原地整理工具,2分钟以后欢欢再以原速返回A地,在整个行驶过程中,欢欢和乐乐均保持匀速行驶(乐乐停车和打电话的时间忽略不计),两人相距的路程s(米)与欢欢出发的时间t(分钟)之间的关系如图所示,则乐乐到达A 地时,欢欢与A地的距离为2000米.答案: 解:欢欢和乐乐初始速度和为(10600﹣1800)÷16=550(米/分钟),乐乐提速后的速度为(1800﹣1000)÷(18﹣16)=400(米/分钟),乐乐的初始速度为400÷=300(米/分钟),欢欢的速度为550﹣300=250(米/分钟),欢欢坏车的地方离A地的距离为250×16=4000(米),修好车后乐乐到达A地所需时间为4000÷400=10(分钟),乐乐到达A地时,欢欢与A地的距离为4000﹣250×(10﹣2)=2000(米).故答案为:2000.巩固11. .甲、乙两人同时从各自家里出发,沿同一条笔直的公路向公园进行跑步训练.乙的家比甲的家离公园近100米,5分钟后甲追上乙,此时乙将速度提高到原来的2倍,又经过15分钟,乙先到达公园并立即返回,但因体力不支,乙返回时的速度又降低到原来的速度.甲跑到公园后也立即掉头回家,整个过程中,甲的速度始终保持不变,甲、乙两人相距的路程y(米)与甲出发的时间x (分钟)之间的部分函数关系如图所示,则当乙回到自己家时,甲离自己的家还有﹣300米.答案: 解:设乙的速度为v米/分钟,则甲的速度为(v+20)米/分钟,根据题意得:5v+15×2v+100=23(v+20)+(23﹣5﹣15)v,解得:v=40,v+20=60.乙的家离公园的距离5v+15×2v=35v=1400.乙回到家的时间为5+15+1400÷40=55(分钟),此时甲离自己的家的距离为2×(1400+100)﹣55×60=﹣300(米).故答案为:﹣300巩固12. .如图,小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中.如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图.则小明的家和小亮的家相距2975米.答案: 解:由图象可知,设FG段两人之间的距离为x米,则有=,解得x=2100米,∵小明回到家的时间比小亮到达学校的时间多用了10分钟,由OE段可知10分钟小明正好从家步行到学校,∴FG段两人之间的距离正好是家到学校的距离,∴小明家与学校相距2100米,因为十分钟内两人走的距离之和是1400米,G点代表小明正好到达学校,小亮正好同时到家.从追上之后到学校这段路程,小明用了15分钟,小亮用了25分钟,得出速度比为5:3,小明家到学校距离为1400×=875米.所以两家相距2100+875=2975米故答案为2975.巩固13.(中).如图所示的图象反映的过程是:甲乙两人同时从A地出发,以各自的速度匀速向B地行驶,甲先到B地停留半小时后,按原路以另一速度匀速返回,直至与乙相遇.乙的速度为60km/h,y(km)表示甲乙两人相距的距离,x (h)表示乙行驶的时间.现有以下4个结论:①A、B两地相距305km;②点D的坐标为(2.5,155);③甲去时的速度为152.5km/h;④甲返回的速度是95km/h.以上4个结论中正确的是①②③④.答案: 解:设甲去时的速度为xkm/h,根据题意得2(x﹣60)=185,解得:x=152.5,由于152.5×2=305,故A、B两地相距305千米;所以选项①③正确;∵甲车先到达B地,停留半小时后按原路以另一速度匀速返回,∴D的横轴应为2.5;∵乙车的速度为每小时60千米,∴半小时后行驶距离为30km,故纵轴应为185﹣30=155;∴点D的坐标(2.5,155);所以选项②正确;∵甲车去时的速度为152千米/时;设甲车返回时行驶速度v千米/时,∴(v+60)×1=155,解得v=95.故甲返回的速度是95千米/时.所以选项④正确,故答案为:①②③④.☞题型2“行程问题双线型”例1. .在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地.在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是②③④(填写所有正确结论的序号).答案: 解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;③∵(240+200﹣60)÷(60+80)=2(h),∴乙车出发2h时,两车相遇,结论③正确;④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.巩固1. 快、慢两车分别从相距480km的甲,乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到达甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调头时间忽略不计).如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图象,则当两车第一次相遇时,快车距离甲地的路程是320千米.答案: 解:由题意,得慢车的速度为:480÷(9﹣1)=60千米/时,∴a=60×(7﹣1)=360.则5×60=300,∴D(5,300),设y OD=k1x,由题意,得300=5k1,∴k1=60,∴y OD=60x.∵快车的速度为:(480+360)÷7=120千米/时.∴480÷120=4小时.∴B(4,0),C(8,480).设y AB=k2x+b,由题意,得,解得:,∴y AB=﹣120x+480∴,解得:.∴480﹣160=320千米.答:快车与慢车第一次相遇时,距离甲地的路程是320千米;故答案为:320.巩固2. 周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发0.7小时后与小明相遇.答案: 解:爸爸的速度为36÷(1﹣0.1)=40(千米/小时),小明的速度为36÷(1.2+0.3)=24(千米/小时).设爸爸出发t小时后与小明相遇,此时,小明出发了(t+0.3)小时,根据题意得:40(t﹣0.1)=24(t+0.3),解得:t=0.7.答:爸爸出发0.7小时后与小明相遇.故答案为:0.7.巩固3. .某天早晨,小刚从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,小刚跑到体育场后发现要下雨,立即以另一速度按原路返回,遇到妈妈后,妈妈立即以小刚返回的速度和小刚一起回家(妈妈与小刚行进的路线相同).如图是两人离家的距离y(米)与小刚出发的时间x(分)之间的函数图象,则小刚第一次和妈妈相遇时,妈妈离家的距离为2000米.答案: 解:3000÷30=100(米/分),3000÷(50﹣30)=150(米/分),150×(50﹣45)=750(米),(3000﹣750)÷45=50(米/分),3000÷(100+50)=20(分),3000﹣50×20=2000(米).答:小刚第一次和妈妈相遇时,妈妈离家的距离为2000 米.故答案为:2000.巩固4. .某周末,小明到彩云湖公园画画写生,小明家到彩云湖公园的路程为3.5千米,步行20分钟后,在家的小明妈妈发现小明画画的某工具没拿,立即通知小明等着自己把工具送过去,小明妈追上小明把工具给了小明后立即返回,同时小明以原来1.5倍的速度前往目的地,如图是小明与小明妈距家的路程(千米)与小明所用时间(分钟)之间的函数图象,则小明到达目的地比小明妈返回家晚5分钟.答案: 解:由图象可知,小明开始的速度为=70m/min,小明原地休息15min后,以105m/min的速度前往目的地,需要的时间==20min,20+15+20﹣50=5min,所以小明到达目的地比小明妈返回家晚5min,故答案为5巩固5. .甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B 地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地,中途与甲车相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A 地的路程为y(千米),甲车行驶的时间为x(时).y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为150千米.答案: 解:180÷1.5=120(千米/时),300÷120=2.5(小时),300÷(5.5﹣2.5)=100(千米/时),(300﹣180)÷1.5=80(千米/时),300÷80+(1.75﹣1.5)=3.75+0.25=4(小时),(4﹣2.5)×100=1.5×100=150(千米).答:乙车到达A地时甲车距B地的路程为150千米.故答案为:150.巩固6. .已知A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,则当甲车到达B市时乙车已返回A市的时间为小时.答案: 解:甲车没坏前的速度为80÷2=40(千米/小时),甲车修好后的速度为40×1.5=60(千米/小时),修好车时甲车出发的时间为4﹣(4﹣2﹣)÷2=(小时),甲车到达B市时甲车出发的时间为+(260﹣80)÷60=(小时),当甲车到达B市时乙车已返回A市的时间为﹣4=(小时).故答案为:巩固7. .一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以v1的速度匀速跑至点B,原地休息半小时后,再以v2的速度匀速跑至终点C;乙以v3的速度匀速跑至终点C,甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象如图所示,则AB长为15千米,v1﹣v2=5千米/小时.答案: 解:由题意AB=15千米,V1==15千米/小时,V2==10千米/小时,∴v1﹣v2=15﹣10=5千米/小时,故答案为15,5千米/小时.巩固8. .在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图所示.在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图中的虚线所示,在行驶的过程中,经过 1.2或4.8小时时邮政车与客车和货车的距离相等.答案: 解:v客=360÷6=60千米/时,v邮=360×2÷8=90千米/时,设当邮政车去甲地的途中时,经过t小时邮政车与客车和货车的距离相等,120+(90﹣40)t=360﹣(60+90)tt=1.2(小时);设当邮政车从甲地返回乙地时,经过t小时邮政车与客车和货车的距离相等,90t﹣360﹣(480﹣40t)=60t﹣(90t﹣360)解得t=7.5,当客车和货车相遇时,邮政车与客车和货车的距离相等满足条件,即60t+40t=480,解得t=4.8综上所述,经过1.2或4.8小时或7.5小时邮政车与客车和货车的距离相等,故答案为:1.2或4.8。

(完整word版)火车行程问题

(完整word版)火车行程问题

一:火车过桥、过隧道问题公式:路程=速度×时间基本数量关系是:火车长+桥长=火车速度×过桥时间火车速度=(火车长+桥长)÷过桥时间过桥时间=(火车长+桥长)÷火车速度一般的火车过桥所求的分为:求过桥时间;求桥长;求火车长;求火车的速度。

下面我们分别研究这些问题。

经典例题:例1:一列火车长180米,每秒行25米。

全车通过一条120米的大桥,需要多长时间?解:如图过桥时间=(火车长+桥长)÷火车速度(180+120)÷25=300÷25=12(秒)答:需要12秒。

课堂训练:(1)一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?(2)一列火车长250米,每秒行驶50米,全车通过一座长2750米的隧道,一共需要多少时间?(3)一列火车长150米,每秒行驶16米,全车通过一座长330米的大桥。

一共需要多少时间?(4)一列火车长210米,每秒钟行驶25米,全车通过一个190米的山洞需要多少时间?例2:一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.解:由公式:火车长+桥长=火车速度×过桥时间变形可得:桥长=火车速度×过桥时间-火车长20×30-160=600-160=440(米)答:这座桥长440米。

课堂训练:(5)一列350米长的火车以每秒25米的速度穿过一座桥花了20秒,问:大桥的长度是多少?(6)一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?(7)一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?(8)一座大桥长590米,一列火车以每秒15米的速度通过大桥,从车头上桥到车尾离开桥共用时间50秒,求这列火车长多少米?(9)一座大桥长2100米.一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开共用3。

行程问题答案及详解

行程问题答案及详解

关于行程问题一、为什么小学生行程问题普遍学不好?1、行程问题的题型多,综合变化多。

行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及多个物体的运动。

涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。

行程问题每一类型题的考察重点都不一样,往往将多种题型综合起来考察。

比如遇到相遇问题关键要抓住速度和,追击问题则要抓住速度差,流水行船中的相遇追及问题要注意跟水速无关等等。

2、行程问题要求学生对动态过程进行演绎和推理。

奥数中静态的知识学生很容易学会。

打个比方,比如数线段问题,学生掌握了方法,依葫芦画瓢就行。

一般情况,静态的奥数知识,学生只要理解了,就能容易做出来。

行程问题难就难在过程分析是动态的,甲乙两个人从开始就在运动,整个过程来回跑。

学生对文字题描述的过程很难还原成对应的数学模型,不画图,习惯性的在脑海里分析运动过程。

还有的学生会用手指,用橡皮模拟,转来转去往往把自己都兜晕了还是没有搞明白这个过程,更别说找出解题所需要的数量关系了。

二、行程问题“九大题型”与“五大方法”很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。

1、九大题型:⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。

2、五大方法:⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。

⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。

示意图包括线段图、折线图,还包括列表。

图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。

另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。

行程问题解析

行程问题解析

,行程问题从运动形式上分可以分为五大类:五大题型、四大方法相互交织,就构成了整个小学行程问题的知识架构。

这其中的交织与综合不仅仅是题型与方法之间的交织,也有题型之间的重叠,比如环形问题就可以有环形路线上的流水行船,而火车问题也可以有多辆火车之间的错车问题……至于解题方法的重叠那更是比比皆是,一道稍有分量的行程问题就需要运用至少两种解题方法……诸如此类的综合,既是行程问题变化多端的原因,也是行程问题难学的原因。

想要将上述题型与方法融会贯通、运用自如,首先得分门别类的把各类问题学好,并穿插以各类解题方法的训练,然后在此基础之上再进行综合。

下面我们就以五大题型为主线,以典型例题的形式对行程问题的整个知识架构做一个系统性梳理,并在例题的讲解中穿插解题方法的总结,让大家对小学阶段行程问题的题型与方法有一个总体把握。

每道例题的关键思路都已给出,大家顺着这些思路可以自行求得答案。

每道例题的标准答案都附在手册的最后,大家可以对照参考。

1. 直线上的相遇与追及上述两个公式大家都很熟悉,对于相遇、追及问题的理解,就是从它们开始的。

一般情况下,我们会把速度和、路程和与相遇问题联系在一起,而把速度差、路程差与追及问题联系在一起。

这样的理解过于表面化,真正体现这两个公式本质的字眼儿是"和"与"差":只要涉及到速度和、路程和的问题就应该用第一个公式,即使题目的背景是追及;而只要涉及到速度差、路程差的问题就应该用第二个公式,即使题目的背景是相遇。

例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?(某重点中学2007年小升初考题)「思路解析」本题表面上看是一个典型的相遇问题,其实里面暗藏了路程差的关系。

那路程差的关系究竟藏在哪个条件中呢?就在条件"两车在离两地中点32千米处相遇"这句话中。

行程问题之相遇问题例题解析

行程问题之相遇问题例题解析

行程问题之相遇问题例题解析一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

它的特点是两个运动物体共同走完整个路程。

小学数学教材中的行程问题,一般是指相遇问题。

相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。

它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程(1)求两地间的距离例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。

甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。

一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。

两车行驶路程之和,就是两地距离。

56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。

例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。

5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。

480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。

例4 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。

两车相遇时,第一列火车比第二列火车多行了20千米。

求甲、乙两地间的距离。

(适于五年级程度)解:两车相遇时,两车的路程差是20千米。

行程问题应用题解析

行程问题应用题解析

第十八讲:行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。

行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。

练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。

有了路程差和速度差就可以求出相遇时间了为8小时。

其他计算就容易了。

2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。

慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。

因此慢车的速度为21千米/小时。

2、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

小学行程问题专项火车过桥问题讲义解析版

小学行程问题专项火车过桥问题讲义解析版

小学行程问题专项火车过桥问题讲义解析版火车过桥问题练题总结:1.一列火车长245米,以每秒25米的速度通过一座长405米的铁桥。

求火车过这座桥需要多少秒?解析:过桥时间=(桥长+车长)÷车速。

已知路程和速度,求时间。

所以,(245+405)÷25=26(秒)。

答:火车过这座桥需要26秒。

2.一座大桥长2400米,一列火车以每分钟864米的速度通过这座桥,从车头上桥到车尾离开桥用了3分钟。

这列火车有多长?解析:路程=速度x时间,路程=桥长+车长。

已知速度和时间,求路程。

所以,864x3-2400=192(米)。

答:这列火车长192米。

3.___站在铁路旁边用两个秒表侧一列火车速度。

他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒。

请你根据___提供的数据算出火车的车身长是多少米。

解析:路程=速度x时间,速度=路程差÷时间差。

已知路程差和时间,求路程。

所以,火车速度:660÷(40-10)=22(米/秒);火车长度:22x10=220(米)。

答:这列火车的长度是220米。

4.一列火车穿过一个长1150米的隧道需要52秒,以同样的速度通过一座长650米的铁桥需要32秒。

这列火车的速度和车长各是多少?解析:速度=路程÷时间,速度=路程差÷时间差。

已知路程和时间,求速度。

所以,火车速度:(1150-650)÷(52-32)=500÷20=25(米/秒);车长:25x32-650=150(米)或者25x52-1150=150(米)。

答:火车的速度是25米每秒,车长150米。

5.一列火车经过一根有信号灯的电线杆用了9秒,通过一座520米的铁桥用了35秒。

这列火车长多少米?解析:速度=路程÷时间,速度=路程差÷时间差。

已知路程和时间,求速度。

所以,火车速度:520÷(35-9)=520÷26=20(米/秒);车长:20x9=180(米)。

七年级数学上册应用题行程问题详细解析

七年级数学上册应用题行程问题详细解析

七年级数学上册应用题行程问题详细解析行程问题是反映物体匀速运动的应用题,有"相向运动"(相遇问题)、"同向运动"(追及问题)和"相背运动"(相离问题)三种情况。

但它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。

【典型例题1】:甲、乙两车同时从相距960千米的两地相对而行,甲车每小时行90千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。

乙车每小时行多少千米?【思路分析】:途中因汽车故障甲车停了1小时,5小时后两车相遇,则甲车实际行了5-1=4小时,行驶的路程为:90×4=360千米.已知全程为960千米,根据路程÷时间=速度可知乙的速度为:(960-360)÷5.综合算式为:[960-90×(5-1)]÷5。

解答::[960-90×(5-1)]÷5=[960-360]÷5=600÷5=120(千米);答:乙车每小时行120千米.【方法总结】:解决此类问题首先要弄清楚数量关系:乙车行驶的路程=两地的距离-甲车行驶的路程;还要明白由于故障,甲车停了1小时,实际上甲车少行驶了1小时,也就是说两车行驶的时间是不相等的,这是解决问题的关键;可以先根据“路程=速度×时间”计算出甲车行驶的路程,再根据“乙车行驶的路程=两地的距离-甲车行驶的路程”计算出乙车行驶的路程,最后利用“速度=路程÷实际”就可以计算出乙车的速度。

【典型例题2】:甲、乙两车分别从A、B两地同时开出,相向而行,经过6小时,甲车行了全程的75%,乙车超过中点16千米。

已知甲车比乙车每小时多行4千米。

求A、B两地相距多少千米?【思路分析】:甲车行了全程的75%,乙车超过中点16千米,即乙车行了全程的50%加上16千米,而6小时内,甲比乙多行6×4=24(千米),根据上述分析,全程的75%减去全程的50%,就等于(16+24)千米,或者:全程的50%加上16千米,再加上24千米,等于全程的75%。

行程问题解析之--化曲为直

行程问题解析之--化曲为直

(1)姐弟俩出游,弟弟先走一步,每分钟走40米,走了80米之后,姐姐去追他。

姐姐每分钟走60米,姐姐带的小狗每分钟跑150米。

小狗追上弟弟又转去找姐姐,碰上姐姐又转去追弟弟,跑来跑去直到姐弟相遇小狗才停下来,则小狗跑了()米A.600B.800C.1200D.1600这是奥数题目中经典的追击、相遇问题。

最直接的考虑就是计算出狗第一次追上弟弟跑的路程,然后再回来遇到姐姐跑的路程,扭头再追上弟弟跑的路程,返回跟姐姐相遇跑的路程……把这一系列数相加得到结果。

只是这么一分析就会发现,这“一系列”竟然有无穷多项,而且每次计算小狗跑的路程都相当麻烦。

怕是考试都已经结束了,这一道题连一半还没有做完。

显然不能这么求解。

注意到一个事实,小狗跑的时候速度是不变的,要想知道小狗跑的路程关键就是能够求出小狗跑的时间。

只要姐姐还没追上弟弟,小狗就一步不停的在跑。

换句话说——小狗跑的总时间正好是姐姐追上弟弟所用的时间。

由此可得,小狗跑的路成为,,选A。

这道题中,小狗跑的路线就是来回了很多次,然而我们把它跑的路线看成在一条平直的路上跑就轻而易举的求解了。

下面让“化曲为直”发挥更大的作用。

(2)甲、乙、丙三人沿着400米环形跑道进行800米跑比赛,甲跑1圈时,乙比甲多跑1/7圈,丙比甲少跑1/7圈。

如果他们各自跑步速度不变,那么当乙到达终点时,甲在丙前面()米A.85B.90C.100D.105这道题我们把整个800米跑看成是沿着一条直线跑,画一张图来帮助求解。

根据题意,当甲跑到400米处时,三个人距离0点的距离比为(用角标1、2、3分别代表甲、乙、丙),甲、乙、丙三个人在相同时间内所跑路程之比为上式,因此他们的速度也为,当乙跑到800米处时,由于三个人跑步的时间相同,因此他们所跑的路程比值还是即,甲此时跑到了700米处,丙此时跑到了600米处,所以甲在丙前面100米。

“化曲为直”之后,利用简单的比例关系,难题变得异常容易。

不是圆圈的题目还能变成直线!(3)某单位围墙外公路围成了边长为300米的正方形,甲、乙两个人分别从两个对角逆时针同时出发,如果甲每分钟走90米,乙每分钟走70米,那么经过()甲就能看到乙A.16分40秒B.16分C.15分D.14分40秒此题以上手觉得还算容易——无非是甲、乙两人之间距离小于300米,甲就能看到乙了。

小升初数学行程问题计算公式及例题解析

小升初数学行程问题计算公式及例题解析

小升初数学行程问题计算公式及例题解析1、行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。

2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。

3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。

4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。

3)静水速度=(顺水速度+逆水速度)/2 4)水流速度=(顺水速度¬¬–逆水速度)/25、基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例9:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。

分析:本题关键在求得火车行驶120秒和80秒所对应的距离。

解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,则:由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。

评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。

例10:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?分析:速度比可以通过路程比和时间比直接求得。

有关火车的行程问题解析

有关火车的行程问题解析

有关火车的行程问题解析
火车车长问题:
1)基本题型:这类问题需要注意两点:火车车长记入总路程;重点是车尾:火车与人擦肩而过,即车尾离人而去。

【例1】火车通过一条长_40米的桥梁用了50秒,火车穿过_80米的隧道用了80秒,求这列火车的速度和车长。

(过桥问题)
【例2】一列火车通过8_米的桥需55秒,通过5_米的隧道需40秒。

问该列车与另一列长384、每秒钟行_米的列车迎面错车需要多少秒钟?(火车相遇)
2)错车或者超车:看哪辆车经过,路程和或差就是哪辆车的车长
【例3】快、慢两列火车相向而行,快车的车长是50米,慢车的车长是80米,快车的速度是慢车的2倍,如果坐在慢车的人见快车驶过窗口的时间是5秒,那么,坐在快车的人见慢车驶过窗口的时间是多少?
3)综合题:用车长求出速度;虽然不知道总路程,但是可以求出某两个时刻间两人或车之间的路程关系
【例4】铁路旁有一条小路,一列长为1_米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,_秒后离他而去,8点6分迎面遇到一个向北走的农民,_秒后离开这个农民。

问军人与农民何时相遇?
有关火车的行程问题解析.到电脑,方便收藏和打印:。

行程问题的真题及答案解析

行程问题的真题及答案解析

行程问题的真题及答案解析行程问题是数学问题中的一类经典题型,考察学生的逻辑思维和计算能力。

它常常出现在高中数学和数学竞赛中,是学生备考的重点之一。

本文将针对行程问题进行详细的解析,通过提供一些真题的例子和解答,帮助读者了解行程问题的解题思路。

一、问题形式行程问题是以时间、速度、距离之间的关系为背景,通过给定的条件计算出未知量的题型。

问题通常会提供行程的速度、时间、距离中的两个已知量,然后要求计算出另外一个未知量。

例如,有一辆车以60km/h的速度行驶了3小时,求它所行驶的距离是多少?二、基本公式在解答行程问题时,我们可以利用以下的基本公式来计算未知量。

距离 = 速度× 时间速度 = 距离÷ 时间时间 = 距离÷ 速度根据问题所给的已知量,选择适当的公式求解即可。

三、解题步骤解答行程问题的基本思路可以总结为以下几个步骤:1. 确定问题的已知量和未知量。

2. 根据问题所给的已知量,选择适当的公式。

3. 将已知量代入公式进行计算,求得未知量。

4. 验证答案是否合理。

下面,我们来通过几个例题进行详细的解析。

例题一:一辆列车以每小时80公里的速度行驶,经过4小时后行驶了多远?解析:根据已知量,我们已知速度为80公里/小时,时间为4小时,距离为未知。

根据基本公式“距离 = 速度× 时间”,代入已知量进行计算:距离 = 80公里/小时× 4小时 = 320公里。

因此,这辆列车在4小时后行驶了320公里。

例题二:一辆汽车以60公里/小时的速度行驶,行驶了5小时,问它行驶了多远?解析:根据已知量,我们已知速度为60公里/小时,时间为5小时,距离为未知。

根据基本公式“距离 = 速度× 时间”,代入已知量进行计算:距离 = 60公里/小时× 5小时 = 300公里。

因此,这辆汽车行驶了300公里。

四、进阶问题除了基本的行程问题外,还有一些进阶问题需要更复杂的计算和思考。

小五行程问题专项解析五份

小五行程问题专项解析五份

小学数学应用题分类解题-行程应用题在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,规定第三个量,这类应用题,叫做行程应用题。

也叫行程问题。

行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度X时间速度=距离^时间时间=距离避度按运动方向,行程问题可以提成三类:1、相向运动问题(相遇问题)2、同向运动问题(追及问题)3、背向运动问题(相离问题)一、相向运动问题相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。

两个运动物体由于相向运动而相遇。

解答相遇问题的关键,是求出两个运动物体的速度之和。

基本公式有:两地距离=速度和财目遇时间相遇时间=两地距离避度和速度和=两地距离林相遇时间例1、两列火车同时从相距540千米的甲乙两地相向而行,通过3.6小时相遇。

已知客车每小时行80千米,货车每小时行多少千米?例2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。

甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。

求从出发到相遇通过几小时?二、同向运动问题(追及问题)两个运动物体同向而行,一快一慢,慢在前快在后,通过一定期间快的追上慢的,称为追及。

解答追及问题的关键,是求出两个运动物体的速度之差。

基本公式有:追及距离=速度差巽及时间追及时间=追及距离遴度差速度差=追及距离涎及时间例1、甲乙两人在相距12千米的AB两地同时出发,同向而行。

甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。

几小时后乙能追上甲?例2、一个通讯员骑摩托车追赶前面部队乘的汽车。

汽车每小时行48千米,摩托车每小时行60千米。

通讯员出发后2小时追上汽车。

通讯员出发的时候和部队乘的汽车相距多少千米?例3、一个人从甲村步行去乙村,每分钟行80米。

他出发以后25分钟,另一个人骑自行车追他,10分钟追上。

骑自行车的人每分钟行多少米?三、背向运动问题(相离问题)背向运动问题(相离问题),是指地点相同或不同,方向相反的一种行程问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,行程问题从运动形式上分可以分为五大类:五大题型、四大方法相互交织,就构成了整个小学行程问题的知识架构。

这其中的交织与综合不仅仅是题型与方法之间的交织,也有题型之间的重叠,比如环形问题就可以有环形路线上的流水行船,而火车问题也可以有多辆火车之间的错车问题……至于解题方法的重叠那更是比比皆是,一道稍有分量的行程问题就需要运用至少两种解题方法……诸如此类的综合,既是行程问题变化多端的原因,也是行程问题难学的原因。

想要将上述题型与方法融会贯通、运用自如,首先得分门别类的把各类问题学好,并穿插以各类解题方法的训练,然后在此基础之上再进行综合。

下面我们就以五大题型为主线,以典型例题的形式对行程问题的整个知识架构做一个系统性梳理,并在例题的讲解中穿插解题方法的总结,让大家对小学阶段行程问题的题型与方法有一个总体把握。

每道例题的关键思路都已给出,大家顺着这些思路可以自行求得答案。

每道例题的标准答案都附在手册的最后,大家可以对照参考。

1. 直线上的相遇与追及上述两个公式大家都很熟悉,对于相遇、追及问题的理解,就是从它们开始的。

一般情况下,我们会把速度和、路程和与相遇问题联系在一起,而把速度差、路程差与追及问题联系在一起。

这样的理解过于表面化,真正体现这两个公式本质的字眼儿是"和"与"差":只要涉及到速度和、路程和的问题就应该用第一个公式,即使题目的背景是追及;而只要涉及到速度差、路程差的问题就应该用第二个公式,即使题目的背景是相遇。

例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?(某重点中学2007年小升初考题)「思路解析」本题表面上看是一个典型的相遇问题,其实里面暗藏了路程差的关系。

那路程差的关系究竟藏在哪个条件中呢?就在条件"两车在离两地中点32千米处相遇"这句话中。

大家不妨自己动手试着做一做。

除了像刚才例题1那样一次性的追及与相遇过程外,还有很多相遇与追及问题是在往返过程中多次发生的。

下面就是一道这样的例题:例题2. 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?(某重点中学2006年小升初考题)「思路解析」相遇次数与两人的路程和有关.如下图所示直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基石.只要是两个物体在同时运动,它们之间的关系一般都可以表示为相遇或追及.而众多丰富多彩、妙趣横生的行程过程,均是以此为蓝本而展开的.2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关。

就拿火车过桥来说,如果题目考察的是火车过桥的整个过程,那么就应该从"车头上桥"开始到"车尾下桥"结束,对应的路程就等于"车长桥长";如果题目考察的是火车停留在桥上的过程,那就应该从"车尾上桥"到"车头下桥"结束。

对应的路程就应该是"火车车长桥长".具体如下所示:例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

(仁华学校2005年五年级上学期期末考试试题)「思路解析」本题包含了两个基本类型的火车问题,一是火车过隧道问题,二是火车错车问题。

而这两者之间最关键的是第一个过程的分析,分析方法就是前面所说的四大方法中的第三点——"利用和差倍分关系进行对比分析":250米的隧道比210米的隧道多40米,从而使得客车通过前者的时间比后者多了秒,由此即可得出客车的速度。

有了客车速度,再求客车长度以及错车时间就非常容易了。

大家不妨自己动手算算。

当然,火车问题并非只有火车,一个有长度的队列也是这类问题的常客。

下面这道题目就是一个队列问题,有兴趣的同学不妨自己动手尝试一下。

在必要时,还可以借助于方程进行求解。

例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?(某重点中学2008年小升初考题)3. 多个对象间的行程问题虽然这类问题涉及的对象至少有三个,但在实际分析时不会同时分析三、四个对象,而是把这些对象两两进行对比。

因此,求解这类行程问题的关键,就在于能否将某两个对象之间的关系,转化为与其它对象有关的结论。

例题5. 有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。

现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

那么,东、西两村之间的距离是多少米?(2008"港澳数学奥林匹克公开赛"试题)「思路解析」本题最关键的一段路程,就是甲、乙相遇之后6分钟内,甲、乙两人的路程和。

这段路程既是甲、乙的路程和,又是乙、丙的路程差。

只要明白了这一路程的双重身份,就能很快求出此题。

大家不妨画出图来,自己分析一下。

4. 环形问题与时钟问题环形问题与其它行程问题相比,最大的特点就在于"周期性"与"对称性".这是由环形跑道本身的特点决定的。

大家再分析环形问题时,一定要留意"周期性"与"对称性"在题目中的体现。

例题6. 甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?(第十六届"全国小学数学奥林匹克"竞赛初赛试题)「思路解析」本题从头到尾都只有时间:给的条件是时间,问的问题也是时间。

像这种只给时间、求时间的问题,通常的做法就是——设数。

把路程或速度这两个未知量中的某一个量随便设个数,然后再进行求解。

本题就可以设环形公路的全程为6300米,接着便可求甲、乙两人的速度了。

接下来的过程,大家不妨自己动手试一试。

例题7. 有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?(北京市第十一届"迎春杯"决赛试题)「思路解析」时钟问题本质上说就是一个环形问题,只要给出合适的速度、路程、时间的表示,求解过程与一般环形问题没什么两样。

大家不妨自己动手做一做。

5. 流水行船问题流水行船问题与其它行程问题相比,特殊的地方在于速度。

由于有水流的因素,船的速度有顺流、逆流的区别,因此在流水行船问题中,船的速度有三种:逆水速度、静水速度、顺水速度。

在分析流水行船问题时,一定要把水流的因素考虑到位,很多题目分析的关键本身就在水流上!例题8. 甲、乙两船分别在一条河的A,B两地同时相向而行,甲顺流而下,乙逆流而上。

相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B地、乙到达A地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米。

如果从第一次相遇到第二次相遇时间相隔1小时20分,那么河水的流速为每小时多少千米?(某重点中学2003年小升初考题)「思路解析」甲、乙两船刚出发时行驶速度相同,但一个顺流、另一个逆流,说明两船静水速度差了两倍的水速(甲慢乙快)。

调头之后,甲变为逆流,乙变为顺流,此时两船行驶速度应该差几倍的水速?考虑清楚这点,你就知道如何利用甲、乙的速度差来求水速了。

「思路解析」本题是一道环形跑道上的流水行船问题,是一道综合性很强的行程问题。

本题的分析关键也在于速度,如果甲、乙两人的速度已知,那本题的求解就没有任何悬念了。

因此,分析求解的重点就落在了甲、乙两人的速度上。

大家只要注意到甲、乙的速度差恰好等于水速这一点,就不难进行分析了。

大家不妨动手试试。

上述9道例题可以说只是小升初行程问题的一个掠影,虽然每一道都是其所在类别里最为典型的例题,但稍加变化都会变出来很多新的模样。

而且,题目除了会在每一类中发生变化外,还会发生类与类之间的交叉与综合,不仅在运动形式上变化多端,而且在分析方法上也是花样迭出。

但是,我们需要关心的绝对不是变化,而是在千变万化中不变的东西。

行程问题固然变化多端,但无论怎么变,也逃不出本文一开始提到的那"五大题型"与"四大方法",只是在题型上会更加综合,在题解上用到的方法会更多一些。

但只要这"五大题型"和"四大方法"掌握好,题目再怎么综合、方法再怎么多,也一样是小菜一碟。

1、甲乙两人在相距120米的直路上来回跑步,甲的速度为4米/秒,乙的速度为5米/秒。

如果他们同时分别从两端出发,且每人跑10分钟,问他们相遇了多少次?解法1(4年级的解法):甲每30秒跑一个单程,乙每2 4秒跑一个单程,240秒后,甲跑了8个单程,乙跑了10个单程,这时两人共相遇了9次(当120秒时,在端点相遇,看做2个单程相遇一次,共相遇 10-1=9次),并且各自回到出发点,我们可以看做每240秒一个周期。

10×60÷240=2个周期...120秒所以共相遇2×9+5=23次。

解法2(用比例的知识来解答):甲乙的速度比=4:5,路程比等于速度比,当甲行8个单程时,乙行了10个单程,两人共相遇(10-1=9次)。

10分钟内甲共行了10×6×5÷120=25个单程,25÷10=2(个周期)...5个单程所以共相遇2×9+5=23次解法3:此题的相遇次数分为迎面相遇和追击相遇。

迎面相遇:第一次相遇两人合走一个单程,用时120÷(5+4)=40/3秒,以后每两个单程迎面相遇一次,用时40 /3×2=80/3秒。

10分钟内迎面相遇(10×6-40/3)÷80/3+1=23次追击相遇:第一次追击相遇乙比甲多走一个单程,用时120÷(5-4)=120秒,以后乙比甲多走2个单程,就追击相遇一次。

10分钟内追击相遇(10×6-120)÷240+1=3次。

但需要注意的是,如果在端点相遇,那么这次相遇在迎面相遇和追击相遇里都被计算了一次,应去掉重复(经计算,共有3次端点相遇,时间分别是120秒后,360秒后,600秒后)。

相关文档
最新文档