高分子合成实验

合集下载

高分子材料实验聚合反应与聚合物性质

高分子材料实验聚合反应与聚合物性质

高分子材料实验聚合反应与聚合物性质高分子材料是当今广泛应用于各个领域的重要材料之一。

在高分子材料的制备过程中,聚合反应起着至关重要的作用。

本文将讨论高分子材料实验中的聚合反应以及聚合物性质,并探讨它们之间的相互关系。

一、聚合反应的基本原理聚合反应是指将单体分子通过共价键的形式连接起来,形成聚合物的过程。

在高分子材料实验中,聚合反应的基本原理可以分为两类:加成聚合和步聚合。

1. 加成聚合加成聚合是指通过共有键的形式将单体分子连接在一起。

常见的加成聚合反应有自由基聚合、阴离子聚合、阳离子聚合和开环聚合等。

在实验中,通常需要添加催化剂或引发剂来促进聚合反应的进行。

2. 步聚合步聚合是指通过亲核或亲电的反应将单体分子逐步连接而成。

步聚合反应的特点是反应速度较慢,需要精确的反应条件和催化剂的存在。

常见的步聚合反应有酯交换聚合、缩合聚合和环化聚合等。

二、聚合反应对聚合物性质的影响聚合反应的条件和方式直接影响最终聚合物的性质。

以下是几个常见的实验聚合反应对聚合物性质的影响:1. 反应时间和温度聚合反应的反应时间和温度是决定聚合物分子量和热稳定性的因素。

在实验中,可以通过控制反应时间和温度来调节聚合物的分子量和熔点。

2. 单体比例聚合反应中不同单体的比例直接决定聚合物的结构和性质。

通过调整单体的比例,可以改变聚合物的硬度、拉伸强度和耐热性等性质。

3. 引发剂或催化剂引发剂或催化剂的选择对聚合反应和聚合物性质起着至关重要的作用。

不同的引发剂或催化剂会导致不同的聚合反应路径和聚合物结构,从而影响聚合物的热特性、机械性能和化学稳定性。

4. 添加剂在实验聚合过程中,可以添加各种添加剂来改变聚合物的性质。

常见的添加剂包括填充剂、增塑剂和稳定剂等。

它们可以改变聚合物的硬度、韧性和耐候性等性质。

三、实验中的注意事项在进行高分子材料实验时,需要注意以下几个方面:1. 安全操作高分子材料实验涉及到一些有害的化学物质和高温反应,因此必须注意安全操作。

高分子材料合成聚合反应类型

高分子材料合成聚合反应类型

CH2 CH n Cl
▪ 加聚物的组成与单体相同; 特点: ▪ 聚合物主链由碳链组成,不含官能基团;
▪ 加聚物的分子量是单体分子量的整数倍。
3
聚合反应类型
(2)缩聚反应:通常是由单体分子的官能团间发生反应,伴随
有水、醇等小分子副产物生成,其产物称为缩聚物。如:
nH2N(CH2)6NH2 + nHOOC(CH2)4COOH H NH(CH2)6NHCO(CH2)4CO n OH + (2n-1)H2O
聚合反应:通过单体 功能基之间的反应进 行,为逐步聚合反应。
9
(2)含多重键的单体
C=C双键:乙烯、丙烯、苯乙烯等 C≡C三键:乙炔及取代乙炔 C=O双键:甲醛等
聚合反应类型
聚合反应:多通 过单体中重键加 成反应进行,为 链式聚合反应。
(3)杂环单体
O
O
HO NC
O CO
聚合反应:开环 聚合,依条件不 同可为逐步或为 链式聚合反应。
10
内容回顾
聚合反应类型
1、按单体和聚合物在组成和结构上发生的变化分类
(1)加聚反应(addition polymerization) : (2)缩聚反应(polycondensation) :
这是早期分类方法。聚合反 应不断开发,这种分类方法 已不适应。
2、按聚合反应的反应机理和动力学分类
(1)连锁聚合反应
体活性中心,就能很快传递下去,瞬间形成高分子。平均每个大分子的生成时间很短 (零点几秒到几秒)
按聚合的 活性中心分:
▪ 自由基聚合 ▪ 阴离子聚合 ▪ 阳离子聚合 ▪ 配位聚合
现代合成高分子材料70%是 按连锁聚合反应合成的,如 PE、 PP、PVC、PTFE、 PMMA、PAN、ABS、SBS、 SBR、丁腈 橡胶和氯丁橡胶 等。

高分子实验指导2014-10

高分子实验指导2014-10

高分子材料实验安排(2014-10):第一周:实验一甲基丙烯酸甲酯的本体聚合(8学时)实验二聚合物的加工(4学时)第二周:实验三苯乙烯-顺丁烯二酸酐的共聚(8学时)实验四对苯二甲酰氯与己二胺的界面缩聚(4学时)第三周:实验五醋酸乙烯酯的乳液聚合(8学时)高分子材料实验指导通过高分子材料实验,可以获得许多感性认识,加深对高分子化学与物理及加工等基础知识和基本原理的理解;通过高分子材料实验课程的学习,能够熟练和规范地进行高分子材料实验的基本操作,掌握实验技术和基本技能,了解高分子材料中采用的特殊实验技术,在实验的过程中训练科学研究的方法和思维,培养学生严谨求实的科研精神,为以后的科研工作打下坚实的实验基础。

实验一 甲基丙烯酸甲酯本体聚合一 、实验目的1.了解本体聚合的特点,掌握本体聚合的实施方法。

2.熟悉有机玻璃的制备方法及工艺。

二、实验原理本体聚合是不加其它介质,只有单体本身在引发剂或光、热等作用下进行的聚合。

本实验是以甲基丙烯酯甲酯(MMA )进行本体聚合,生产有机玻璃棒。

甲基丙烯酸甲酯在过氧化苯甲酰(BPO )引发剂存在下进行如下聚合反应:用MMA 进行本体聚合时,为了解决散热、避免自动加速作用而引起的爆聚现象,以及单体转化为聚合物时由于比重不同而引起的体积收缩等问题,工业上或实验室目前多采用预聚-浇铸聚合的方法。

将本体聚合迅速进行到某种程度(转化率10%左右)做成单体中溶有聚合物的粘稠溶液(预聚)后,再将其注入相应的模具中,在低温下缓慢聚合使转化率达到93~95%,最后在100℃下高温聚合至反应完全,最后脱模制得有机玻璃。

三、实验仪器和试剂四口瓶,电动搅拌器,温度计,球形冷凝管,恒温水浴,试管等。

甲基丙烯酸甲酯(MMA),过氧化二苯甲酰(BPO)nCH 2CH 3C COOCH 3CH 2CH 3C COOCH 3nBPO四、实验步骤1.预聚合反应在装有搅拌器、冷凝管、温度计的250ml的四口瓶中加入溶有0.5g BPO的MMA 50ml,开动搅拌并升温至75~80℃,反应20~30分钟,观察粘度变化。

高分子科学实验

高分子科学实验
1.搅拌在聚醋酸乙烯乳液生产中的作用?
2.为什么要严格控制单体滴加速度和聚合反应温度?
六、注意事项
1.单体醋酸乙烯酯是一种低分子量的合成树脂,具有酸性气味,外观为无色的液体,不溶于水。沸点71~73℃。高度易燃,应远离火种存放。使用时应避免吸入蒸气。
2.本实验添加的聚乙烯醇具有保护胶体的作用,用量应控制为单体量的2%~4%。
四、实验步骤
1.安装好实验装置,检查电动搅拌器是否正常工作。
2.将称量好的6克乳化剂聚乙烯醇、1克助乳化剂OP-10、78克去离子水加入三颈瓶中,开启搅拌器,溶解后加入单体20克。用5毫升水溶解1克的过硫酸铵溶液,一半加入三颈瓶中,加热。
3.控制瓶内温度为65℃~70℃。将40g单体醋酸乙烯酯加入滴液漏斗,匀速地往瓶中滴加,控制在30min加完。
七、思考题
1.聚乙烯醇在反应中起什么作用?为什么要与乳化剂OP-10混合使用?
2.为什么大部分的单体和过硫酸铵用逐步滴加的方式加入?
3.过硫酸铵在反应中起什么作用?其用量过多或过少对反应有何影响?
4.为什么反应结束后要用碳酸氢钠调整pH为5~6?
实验四乙酸乙烯酯的溶液聚合
1.实验目的
(1)掌握溶液聚合的特点,增强对溶液聚合的感性认识。
要使界面聚合反应成功地进行,需要考虑的因素有:将生成的聚合物及时移走,以使聚合反应不断进行;采用搅拌等方法提高界面的总面积;反应过程有酸性物质生成,则要在水相中加入碱;有机溶剂仅能溶解低分子量聚合物;单体最佳浓度比应能保证扩散到界面处的两种单体为等摩尔比时的配比,并不是1:1。
本实验根据试剂情况采用二元胺与二元酰氯的不搅拌界面缩聚方法。反应如下
高分子科学实验
材料科学与工程学院
高分子教研室

高分子化学实验步骤

高分子化学实验步骤

高分子化学实验步骤实验要求实验注意事项1、实验用试剂有一定毒性,实验过程中带橡胶手套(注意节约,循环使用),不要用鼻子去闻试剂;2、实验结束后,尽快清洗实验仪器(以防硬化不易清洗),以备下次实验使用。

所得产物倒入指定收集桶内,不要倒入下水道;3、高化实验所用仪器每组一套,请小心使用,若破坏,后果自负。

实验一甲基丙烯酸甲酯的本体聚合一、主要药品与仪器甲基丙烯酸甲酯(MMA)20mL过氧化二苯甲酰(BPO)0.038g(单体质量的0.2%)(由于BPO结块,引发效率降低,故加大量)丙酮若干液体石蜡若干抽脂棉聚四氟乙烯膜锥形瓶(50mL)1个恒温水浴1套试管夹 2 个试管20mL 2 支量筒25mL 1个二、实验步骤:1、预聚合(1)用25mL量筒量取20mL MMA加入50mL锥形瓶中,用天平称取0.038g BPO加入锥形瓶中;(2)用聚四氟乙烯膜包裹胶塞后塞住锥形瓶口(注意:塞子只需轻轻盖上,不要塞紧,以防温度升高时,塞子爆冲)。

(3)用试管夹(或铁架台夹)夹住瓶颈在87o C的水浴中(提前往磁力搅拌器中倒入液体石蜡至完全覆盖液面,实验结束后不用倒掉,以备后续实验使用)不断摇动,进行预聚合约0.5-1h。

注意观察体系的粘度变化,当体系粘度变大,但仍能顺利流动时(粘度近似室温下的甘油),结束预聚合。

2、浇铸灌模将以上制备的预聚液小心的灌入预先干燥的两支试管中,浇灌时注意防止锥形瓶外的水珠滴入。

锥形瓶用丙酮进行清洗。

3、后聚合将灌好预聚液的试管口塞上棉花团,放入45-50o C的水浴中反应约3h,注意控制温度不能太高,否则易使产物内部产生气泡。

4、观察体系的流动性及透明性,是否有气泡。

三、思考题1、MMA本体聚合有何特点?制造有机玻璃的步骤有哪些?2、进行本体浇铸聚合时,如果预聚阶段单体转化率偏低会产生什么后果?为什么要严格控制不同阶段的反应温度?实验二乙酸乙烯酯的溶液聚合一、主要药品与仪器乙酸乙烯酯50mL甲醇30mLAIBN 0.21g液体石蜡一瓶三颈瓶(250mL, 19磨口)一个玻璃塞(19磨口)2个球形冷凝管(19磨口)一支搅拌器一套聚四氟乙烯搅拌棒一支搅拌塞19口一个橡胶管n米量筒(10mL、50mL、100mL)各一个烧杯25mL 一个玻璃棒一个培养皿 中号 一个恒温水浴 一套铁架台用夹 2个二、实验步骤1、用天平称取0.21g AIBN 于25mL 烧杯中,用10mL 量筒量取10mL 甲醇倒于25mL 烧杯中,用玻璃杯搅拌至溶解;2、用50mL 量筒量取50mL 乙酸乙烯酯于三颈瓶中,各口用玻璃塞塞上;3、将溶解的AIBN 甲醇溶液倒入三颈瓶中,装好搅拌器、冷凝管,往水浴中倒入石蜡至覆盖液面为止;4、开动搅拌,加热升温,将反应物逐步升温至62o C (若不反应,可适当升温),反应约3h 后,升温至65o C ,继续反应0.5h 后,冷却结束聚合反应。

高分子本科专业实验

高分子本科专业实验

高分子本科专业实验《高分子本科专业实验》高分子材料是现代工程与科学领域的重要学科之一。

作为高分子材料专业的本科生,实验课程是我们掌握实践技能、加深对理论知识的理解以及培养创新思维的重要环节。

在这门课程中,我们有机会亲自进行高分子材料的制备、性能测试与分析,体验到科学研究的魅力。

实验课程的第一个环节是高分子材料的制备。

我们学习了高分子合成的基本原理和方法,通过加热反应、溶液聚合或界面聚合等不同手段合成高分子材料。

实验中,我们需要精确地控制温度、气氛和试剂的比例,以确保合成的高分子材料质量优良。

通过实验的反复实践,我们学会了如何调整条件和参数以探索更好的方法,这培养了我们的耐心和工程实践能力。

实验课程的第二个环节是高分子材料性能的测试与分析。

我们学习了高分子材料的力学性能测试、热学性能测试、电学性能测试等不同方面的内容。

通过实验,我们可以了解不同条件下高分子材料的性能差异,从而根据需求选择合适的材料。

同时,我们还学会了使用常规的分析仪器,比如红外光谱仪、差示扫描量热仪等,以对高分子材料进行结构表征和分析。

这些实验操作培养了我们的仪器操作技能和数据处理能力。

实验课程的最后一个环节是创新实验。

我们有机会在指导教师的帮助下开展小型研究项目,探索不同的高分子材料制备和应用方法。

这个环节不仅提高了我们的科研能力,还培养了我们的创新精神和团队协作意识。

通过自主设计实验方案、收集数据、分析结果以及编写实验报告,我们将理论知识与实践操作相结合,不断提升自身能力。

通过高分子本科专业实验课程的学习,我们深入了解了高分子材料的制备、性能测试与分析方法。

这不仅为我们将来的科研和工程实践奠定了基础,还为我们的专业发展打下了坚实的基础。

我们相信,在今后的学习生活中,我们将继续努力,不断探索,为高分子材料领域的发展贡献自己的力量。

高分子化学实验BPO的精制

高分子化学实验BPO的精制

高分子化学实验BPO的精制BPO(环氧丙烯酸酯)是一种重要的高分子化合物,广泛应用于聚酯树脂、导演等领域。

在工业上,BPO的合成通常使用过氧化二丙酮作为引发剂,但合成过程中常常伴随着不纯物质的产生。

为了提高BPO的纯度和质量,我们可以进行BPO的精制。

BPO的精制通常包括以下几个步骤:溶剂萃取、结晶、再结晶和冷晶法。

首先,溶剂萃取是将合成得到的BPO溶于适当的有机溶剂中,通过萃取来去除不纯物质。

常用的有机溶剂可以是环己烷、正己烷等。

将溶液与大量的有机溶剂混合,通过搅拌和加热,使BPO逐渐溶解到有机溶剂中。

然后,慢慢地冷却溶液。

由于溶剂的蒸发,BPO会逐渐结晶出来,而不纯物质则会留在溶剂中。

此时可以用滤纸将溶液和结晶分离,获得较纯的BPO晶体。

接下来,可以使用结晶法进一步提高BPO的纯度。

这个步骤通常需要在少量溶剂中进行,以便生成较小的晶体。

将溶解了少量BPO的溶剂加热至沸腾,将它慢慢地冷却,会得到较小的BPO晶体。

然后使用滤纸将晶体与溶剂分离,得到较纯的BPO。

除了结晶法,再结晶法也可以用于BPO的精制。

在这个步骤中,可以将BPO与少量的溶剂混合,在适当的条件下加热,使其溶解。

然后缓慢地冷却溶液,使BPO结晶出来。

可以使用滤纸将晶体与溶剂分离,最终得到较纯的BPO。

最后,冷晶法也是一种常用的BPO精制方法。

首先将合成的BPO溶解在无毒无害的溶剂中,然后将溶液放置在冷却器中进行冷却。

由于溶剂的蒸发,BPO会缓慢结晶出来,最后可以使用滤纸将晶体与溶剂分离,得到较纯的BPO。

综上所述,BPO的精制过程包括溶剂萃取、结晶、再结晶和冷晶法。

这些方法可以去除BPO中的不纯物质,提高其纯度和质量。

在实验中,可以根据需要选择合适的方法进行精制,得到较纯的BPO。

高分子科学实验第二版课程设计 (2)

高分子科学实验第二版课程设计 (2)

高分子科学实验第二版课程设计1. 课程介绍本课程是高分子科学实验第二版的课程设计,旨在让学生通过实验的方式深入了解高分子化合物的性质和应用。

本课程设计共包括两个实验项目,分别是聚合物的合成和性能测试以及高分子材料的加工与应用。

2. 实验一:聚合物的合成和性能测试2.1 实验目的本实验旨在使学生了解聚合物的合成过程,掌握一些基本的实验技巧和操作方法,同时通过实验测试了解聚合物的性质和应用。

2.2 实验步骤1.准备实验器材和试剂:包括反应釜、电动搅拌器、计时器、加热板、催化剂、单体、溶剂、试剂瓶等。

2.准备好反应釜后,在反应釜中加入一定量的溶剂。

3.加入单体和适量的催化剂,启动电动搅拌器。

4.在加热板上进行恒温反应,反应时间根据单体种类和催化剂种类而定。

5.恒温反应结束后,将反应液用稀酸或稀碱溶液进行中和,然后用有机溶剂抽提和洗涤得到所需产物。

6.对所得产物进行理化性质测试:如溶解度、熔点、分子量分布、玻璃化转化温度等。

2.3 实验结果及分析通过实验,我们合成出了一种聚合物,并对其进行了相关性能测试。

从实验结果中我们可以看出,该聚合物有一定的分子量分布,溶解度较高,玻璃化转化温度较低等特点。

这些结果可以为我们进一步的材料应用和优化提供有用的参考。

3. 实验二:高分子材料的加工与应用3.1 实验目的本实验旨在让学生了解高分子材料的加工方法和特点,掌握一些基本的加工和测试技能,同时通过实验测试了解高分子材料的应用。

3.2 实验步骤1.准备实验器材和试料:包括高分子材料、加工设备、检测设备等。

2.将高分子材料经过适当的加热等加工步骤制成所需形状。

3.利用相应设备对所得高分子材料进行机械性能测试:如硬度、拉伸强度、断裂伸长率等。

4.利用所得高分子材料制成实际应用品,如高分子膜、高分子制品等,并对其进行性能测试和分析。

3.3 实验结果及分析通过实验,我们成功制备出了高分子材料,并对其进行了机械性能测试和进一步的加工。

聚丙烯酰胺的制备实验报告

聚丙烯酰胺的制备实验报告

聚丙烯酰胺的制备实验报告引言聚丙烯酰胺(Polyacrylamide,简称PAM)是一种重要的高分子化合物,广泛用于各个领域,包括水处理、土壤改良、石油开采等。

聚丙烯酰胺的制备方法有很多,其中一种常用的方法是通过聚合反应制备。

本实验旨在通过聚合反应合成聚丙烯酰胺,并对其性质进行分析。

实验材料与设备材料: - 丙烯酰胺单体 - 过硫酸铵 - 去离子水设备: - 反应容器 - 搅拌器 - 离心机 - 热水浴实验步骤1.准备反应容器并将其清洗干净。

2.在反应容器中加入一定量的去离子水,使其充分溶解。

3.向反应容器中加入适量的丙烯酰胺单体。

4.加入合适的过硫酸铵催化剂,并充分搅拌混合。

实验结果与分析经过一定时间的反应,观察到反应液逐渐变浓,并形成了白色的固体沉淀物。

使用离心机将反应液离心,可将白色固体进行分离。

此白色固体即为聚丙烯酰胺。

对聚丙烯酰胺进行性质分析。

首先,使用红外光谱仪对聚丙烯酰胺样品进行测试。

结果显示,样品的红外光谱图谱中出现了特征峰,与聚丙烯酰胺的光谱特征相符,表明成功制备出聚丙烯酰胺。

其次,对聚丙烯酰胺的溶解性进行测试。

将聚丙烯酰胺样品分别溶解于水、甲醇和二甲基亚砜中,观察其溶解情况。

结果显示,聚丙烯酰胺在水中能够完全溶解,而在甲醇和二甲基亚砜中的溶解性较差。

最后,对聚丙烯酰胺的吸水性能进行测试。

将一定重量的聚丙烯酰胺样品置于烘箱中加热,使其失去水分。

然后在常温下将样品浸泡于水中,观察其吸水情况。

结果显示,聚丙烯酰胺样品能够迅速吸水并形成凝胶状物质。

结论通过简单的聚合反应,成功制备了聚丙烯酰胺。

对样品进行性质分析表明,所得聚丙烯酰胺具有典型的红外光谱特征,并能够在水中溶解并表现出较好的吸水性能。

这些结果表明,该合成方法能够有效制备聚丙烯酰胺,为其在实际应用中的应用提供了基础。

参考文献•Smith, J. D., & Johnson, K. W. (2005). Polyacrylamide in Agricultural Applications. Springer Science & Business Media.。

高分子化合物的合成

高分子化合物的合成

高分子化合物的合成高分子化合物是由许多小分子单元通过化学反应形成的大分子物质。

它们在材料科学、化学工程、生物学等领域具有广泛的应用。

本文将探讨高分子化合物的合成方法和相关实验技术。

一、迎合合成迎合合成是一种常用的制备高分子化合物的方法。

该方法通过在链末端引入反应基团,使链延长。

最常见的迎合合成方法是自由基聚合。

这种方法利用自由基引发剂切断某些共价键,产生自由基,然后自由基与单体发生反应,逐步延长聚合链。

这种方法可用于合成聚乙烯、聚丙烯等高分子化合物。

二、缩合聚合缩合聚合是另一种常见的高分子化合物合成方法。

它是通过两个或多个分子之间的反应形成中间缩合物,并且中间体继续反应形成聚合物。

其中一种常见的缩合聚合方法是酯交换反应。

该反应将酯基转移到另一个分子上,并释放出醇或酸。

该方法用于制备聚酯类高分子化合物,如聚酯纤维。

三、自由基聚合自由基聚合是合成高分子化合物的重要方法之一。

该方法通过自由基聚合反应来连接单体分子,形成聚合物链。

常见的自由基聚合方法包括自由基引发剂聚合、自由基引发剂开环聚合等。

这些方法广泛应用于合成聚合物材料,如聚乙烯、聚丙烯等。

四、阴离子聚合阴离子聚合是高分子化合物的合成方法之一。

该方法利用阴离子引发剂引发聚合反应,使单体逐渐聚合形成聚合物。

该方法适用于不饱和的单体,如乙烯、苯乙烯等。

通过阴离子聚合,可以制备出许多重要的高分子化合物,如聚乙烯、聚苯乙烯等。

五、阳离子聚合阳离子聚合也是一种常见的高分子化合物合成方法。

该方法利用阳离子引发剂引发聚合反应,使单体逐渐聚合形成聚合物。

阳离子聚合方法适用于与阳离子引发剂相容的单体,如乙烯基单体。

这种方法可制备出许多重要的高分子化合物,如聚合丙烯酸甲酯。

六、环聚合环聚合是一种特殊的高分子化合物合成方法。

该方法通过闭环反应将单体组装成环形结构,形成环状聚合物。

环聚合的方法有很多种,如环氧树脂聚合、环丙烯聚合等。

这些方法适用于制备各种环形高分子化合物,广泛应用于塑料、涂料等领域。

聚丙烯酰胺实验报告

聚丙烯酰胺实验报告

聚丙烯酰胺实验报告聚丙烯酰胺实验报告引言:聚丙烯酰胺(Polyacrylamide,简称PAM)是一种重要的高分子化合物,具有广泛的应用领域。

本实验旨在通过对聚丙烯酰胺的合成与性质研究,探索其在环境保护、水处理和生物医学等领域的应用前景。

一、实验材料与方法1. 实验材料:- 丙烯酰胺单体- 过硫酸铵(引发剂)- 水- 硼酸(缓冲剂)- 乙酰胺(稳定剂)2. 实验方法:1)将一定量的丙烯酰胺单体溶解在水中,加入适量的硼酸作为缓冲剂。

2)在反应体系中加入过硫酸铵作为引发剂,触发聚合反应。

3)调节反应条件,如温度、pH值等,以控制聚合反应的速度和产物的分子量。

4)在聚合反应过程中加入乙酰胺作为稳定剂,防止聚合物的降解。

二、实验结果与分析1. 合成聚丙烯酰胺的过程中,我们观察到溶液逐渐由无色变为浑浊,表明聚合反应正在进行。

2. 聚合反应完成后,我们通过离心、洗涤和干燥等步骤得到了聚丙烯酰胺的固体产物。

3. 利用红外光谱仪对产物进行分析,观察到聚丙烯酰胺的典型吸收峰,验证了其结构的形成。

三、聚丙烯酰胺的应用前景1. 环境保护领域:聚丙烯酰胺在环境保护领域有着广泛的应用。

它可以作为土壤改良剂,改善土壤结构,提高土壤的保水性和保肥性。

同时,聚丙烯酰胺还可以作为水质净化剂,去除水中的悬浮物和重金属离子,净化水源。

2. 水处理领域:聚丙烯酰胺在水处理领域也有着重要的应用。

它可以作为絮凝剂,加入到水处理过程中,帮助沉淀和去除悬浮物,提高水质的净化效果。

此外,聚丙烯酰胺还可以用于处理污水和废水,降低水体中有机物和重金属的含量。

3. 生物医学领域:聚丙烯酰胺在生物医学领域的应用前景也十分广阔。

它可以作为药物载体,用于控释药物,提高药物的疗效和稳定性。

此外,聚丙烯酰胺还可以用于组织工程和生物材料的制备,促进组织的再生和修复。

结论:通过本实验,我们成功合成了聚丙烯酰胺,并对其性质进行了初步研究。

聚丙烯酰胺具有广泛的应用前景,在环境保护、水处理和生物医学等领域发挥着重要作用。

合成高分子材料的一般合成方法以及表征手段

合成高分子材料的一般合成方法以及表征手段

合成高分子材料的一般合成方法以及表征手段
合成高分子材料的一般合成方法主要有以下几种:
1. 聚合反应:将单体分子通过化学反应的方式,以链延长的形式连接在一起,形成高分子链。

常见的聚合反应有自由基聚合、阴离子聚合、阳离子聚合等。

2. 缩聚反应:通过将小分子化合物按照一定的条件和顺序反应,逐步缩小分子尺寸,形成高分子。

常见的缩聚反应有酯化反应、酰胺反应、酰基化反应等。

3. 共聚反应:将两种或多种单体分子按照一定的条件同时聚合,形成共聚物。

常见的共聚反应有乙烯-丙烯共聚、苯乙烯-丙烯
腈共聚等。

4. 交联反应:通过引入交联剂,在高分子链上形成交联结构,提高高分子材料的性能。

常见的交联反应有热交联、辐射交联等。

表征高分子材料的手段主要包括以下几种:
1. 粘度测量:通过测量高分子材料的溶液或溶胶的粘度,来了解高分子链之间的相互作用、聚合度等。

2. 拉伸性能测试:通过拉伸实验来测试高分子材料的抗拉强度、延伸率、断裂强度等力学性能。

3. 热分析:通过热重分析、差热分析、热膨胀等手段,了解高分子材料的热性能,如熔点、玻璃化转变温度等。

4. 分子量测定:通过凝胶渗透色谱、静电平衡、光散射等手段,测定高分子材料的分子量,从而了解其分子量分布、聚合度等参数。

5. 表面形态观察:通过扫描电子显微镜(SEM)、透射电子
显微镜(TEM)等手段观察材料的表面形貌,了解高分子材
料的微观结构。

通过上述合成方法和表征手段,可以合成和了解高分子材料的结构、性质和应用范围,为高分子材料的研究和应用提供基础数据。

高分子专业实验教程

高分子专业实验教程

高分子专业实验教程
高分子专业实验教程主要包括以下内容:
1. 高分子化学实验:涉及聚合物的合成、改性、交联等反应,包括自由基聚合、离子聚合、配位聚合等。

2. 高分子物理实验:研究聚合物的结构、形态、相态、热性能、力学性能等,包括X射线衍射、红外光谱、热重分析、流变学测试等。

3. 高分子材料加工实验:涉及塑料、橡胶、纤维等聚合物的成型工艺,包括挤出、注射、压延、纺丝等。

4. 高分子材料性能测试实验:对高分子材料进行各种性能测试,如拉伸强度、冲击强度、耐候性等。

5. 综合性实验:涉及高分子材料的设计、制备、性能测试及应用,旨在提高学生的实践能力和综合素质。

6. 创新性实验:学生自主选题,进行实验设计、实验操作及数据分析,旨在培养学生的创新意识和实践能力。

具体实验内容可能会因专业方向和课程设置而有所不同,建议查阅所在学校或专业的实验教材或课程大纲以获取更详细的信息。

化学聚合实验报告

化学聚合实验报告

化学聚合实验报告实验名称:聚苯乙烯的制备实验目的:通过将苯乙烯单体进行聚合反应,探究聚合反应的原理和条件,学习聚合反应的操作方法。

实验原理:聚合反应是将单体分子通过共价键结合成高分子化合物的过程。

聚合反应有链聚合和环聚合两种方式,其中链聚合是最常见和重要的。

本实验中使用的是自由基聚合反应,即通过自由基引发剂引发单体的自由基形成自由基聚合链。

实验步骤:1. 实验器材的准备:将实验所需的玻璃器皿、漏斗、温度计等清洗干净,并准备好苯乙烯单体、引发剂、溶剂等化学品。

2. 反应体系的配置:在装有磁力搅拌器的三口烧瓶中,加入适量的苯乙烯单体和溶剂,并加入一定量的引发剂。

3. 反应条件的控制:通过调节温度和搅拌速度等参数,控制聚合反应的进行。

4. 聚合反应的引发:向反应体系中加入引发剂,并搅拌一段时间。

5. 反应时间的控制:根据实验要求,控制聚合反应的时间。

6. 反应结束的处理:待反应时间到达后,停止搅拌并将反应产物的溶液进行抽滤。

7. 反应产物的处理:将抽滤得到的聚苯乙烯进行洗涤和干燥,得到最终的产物。

实验结果及讨论:经过上述步骤,我们成功地制备了聚苯乙烯。

在实验过程中,我们通过控制聚合反应的条件和时间,使得反应能够充分进行,产物得到了较好的收率。

实验中我们还发现,引发剂的种类和用量对聚合反应的效果有很大的影响,高效的引发剂能够提高反应速率和收率。

聚苯乙烯是一种重要的塑料材料,具有良好的物理和化学性质,被广泛应用于包装、建筑、电子等领域。

通过本实验,我们深入了解了聚合反应的原理和操作方法,为进一步研究和应用高分子材料打下了基础。

实验结论:通过上述实验,我们成功地制备了聚苯乙烯,并了解了聚合反应的原理和操作方法。

实验结果表明,聚合反应的条件和引发剂的选择对反应结果有重要影响。

聚苯乙烯是一种重要的塑料材料,具有广泛的应用前景。

本实验对我们深入了解聚合反应的原理和掌握聚合反应的操作方法具有重要的意义。

尼龙66的合成实验报告

尼龙66的合成实验报告

尼龙66的合成实验报告一、实验目的掌握尼龙66的合成方法和反应原理,了解尼龙66的性质及应用。

二、实验原理尼龙66是一种以己内酰胺(尼龙6)和己二酸(己酸)为原料合成的高分子材料。

其合成反应为己内酰胺的聚合反应,具体反应方程式如下:nH2N-(CH2)6-NH2+nHOOC-(CH2)4-COOH→{(H2N-(CH2)6-NH-(CH2)4-COO)}n+2nH2O三、实验步骤1.实验前准备:称取适量的己内酰胺和己二酸,准备足够的反应溶剂。

2.反应槽的装配:将称量好的己内酰胺和己二酸分别溶解在反应溶剂中,并进行搅拌,直到完全溶解。

3.加热反应:将反应槽放置在加热棒上,加热至适当的反应温度。

4.反应时间:在适当的温度下,将反应保持一段时间,使得己内酰胺和己二酸发生聚合反应。

5.收集产物:在反应完成后,将产物通过过滤、洗涤等步骤,收集并干燥。

6.检测性质:对合成的尼龙66进行物理性质和化学性质的检测,如密度、熔点、拉伸强度等。

四、实验结果及讨论通过上述步骤,我们成功地合成了尼龙66,并对其进行了性质检测。

我们发现,合成的尼龙66具有较高的拉伸强度和熔点,且具有良好的耐磨性和耐腐蚀性。

这使得尼龙66在工业上有广泛的应用,如制作织物、机械零件、汽车零件等。

五、实验总结通过本次实验,我们熟悉了尼龙66的合成方法和反应原理,了解了尼龙66的性质及应用。

同时,我们也了解到了尼龙66的合成需要适当的反应条件和时间,这对于实际应用尼龙66的合成工艺具有指导意义。

在实验中我们还注意到了尼龙66的化学性质和物理性质的检测方法,这对于判断合成尼龙66的质量和性能也非常重要。

七、致谢感谢实验室的技术人员和教师的指导和帮助,在实验中得到了许多帮助和启发。

另外,感谢实验中的合作同学们的努力和配合。

以上是尼龙66的合成实验报告,共计1200字。

高分子化学实验课程介绍

高分子化学实验课程介绍

高分子化学实验课程介绍一、引言高分子化学实验是化学专业中的一门重要课程,旨在让学生通过实践掌握高分子化学的基本理论和实验技能。

本文将从实验目的、实验内容、实验步骤、实验结果和实验注意事项等方面进行介绍。

二、实验目的高分子化学实验的主要目的是让学生了解高分子化学的基本概念和实验原理,培养学生的实验技能和科学思维能力。

通过实验,学生将掌握高分子材料的合成、表征和性能测试等关键技术,为今后从事高分子材料研究和应用提供基础。

三、实验内容1. 高分子材料的合成:实验中将重点介绍高分子材料的聚合反应原理和方法,学生将亲自进行聚合反应,并通过改变反应条件控制聚合的程度和产物的性质。

2. 高分子材料的表征:学生将学习使用常见的表征手段,如红外光谱、核磁共振等,对合成得到的高分子材料进行结构分析和性质测试。

3. 高分子材料的性能测试:实验中将介绍常见的高分子材料性能测试方法,如拉伸性能测试、热性能测试等,学生将通过实验了解高分子材料的力学性能、热学性能等重要指标。

四、实验步骤1. 实验前准备:学生需要准备实验所需的试剂和仪器设备,并做好实验室安全防护。

2. 实验操作:根据实验要求,学生按照实验步骤进行实验操作,包括原料称量、反应体系搭建、温度和时间控制等。

3. 数据记录与分析:学生需认真记录实验过程中的关键数据,并对实验结果进行分析和总结,掌握实验数据处理的方法和技巧。

4. 结果讨论与报告:学生需要根据实验结果撰写实验报告,并参与实验结果的讨论和交流,提高自己的表达和沟通能力。

五、实验结果高分子化学实验的结果将体现在合成产物的结构、性质以及相关测试数据等方面。

通过实验,学生将得到一系列数据和结果,并能对实验结果进行准确分析和解释,从而更好地理解高分子化学的基本原理和应用。

六、实验注意事项1. 安全第一:学生需要严格遵守实验室的安全规定,佩戴好个人防护装备,确保实验过程的安全。

2. 实验流程严谨:学生需要按照实验步骤进行操作,遵循实验要求,确保实验的准确性和可重复性。

聚乙烯醇的制备实验报告

聚乙烯醇的制备实验报告

聚乙烯醇的制备实验报告聚乙烯醇的制备实验报告引言:聚乙烯醇(Polyvinyl Alcohol,简称PVA)是一种重要的合成高分子材料,具有优异的物理性质和化学稳定性。

它广泛应用于纺织、造纸、涂料、医药等领域。

本实验旨在通过合成聚乙烯醇的过程,深入了解其制备原理及实验操作。

实验目的:通过乙烯醇与硫酸的酯化反应,制备聚乙烯醇,并对其性质进行分析。

实验原理:聚乙烯醇的制备过程主要包括酯化反应和水解反应两个步骤。

首先,将乙烯醇与硫酸反应生成乙酸乙酯,然后通过水解反应将乙酸乙酯转化为聚乙烯醇。

实验步骤:1. 将一定量的乙烯醇溶液倒入烧杯中;2. 加入适量的硫酸溶液,并用玻璃棒搅拌均匀;3. 将反应混合物加热至沸腾,继续搅拌保持反应进行;4. 反应结束后,将溶液冷却至室温;5. 将得到的聚乙烯醇沉淀物用水洗涤,并过滤干燥;6. 对聚乙烯醇样品进行性质分析。

实验结果:经过实验操作,得到了一定量的聚乙烯醇样品。

通过对样品的分析,得到了以下结果:1. 外观:聚乙烯醇呈白色结晶状固体,无异味;2. 溶解性:聚乙烯醇在水中具有良好的溶解性,能迅速溶解形成均匀的溶液;3. 粘度:聚乙烯醇的粘度较高,具有较好的粘附性;4. 热稳定性:聚乙烯醇在高温下有一定的热稳定性,能够保持较好的性能。

实验讨论:通过实验操作,成功合成了一定量的聚乙烯醇,并对其性质进行了初步分析。

然而,实验中仍存在一些问题需要进一步讨论。

1. 反应温度:实验中反应温度选择了沸腾状态,但是否存在更适宜的反应温度仍需进一步研究;2. 反应时间:实验中反应时间选择了一定的持续时间,但是否存在更合适的反应时间需要进一步探讨;3. 聚乙烯醇的性质:实验中只对聚乙烯醇的外观、溶解性、粘度和热稳定性进行了初步分析,对其其他性质如力学性能、分子量分布等仍需进行更深入的研究。

结论:通过本实验,成功合成了一定量的聚乙烯醇,并对其性质进行了初步分析。

实验结果表明,聚乙烯醇具有良好的溶解性、粘附性和热稳定性。

高分子材料合成实验报告

高分子材料合成实验报告

高分子材料合成实验报告实验目的:通过合成高分子材料,了解高分子材料的合成方法及其在工业领域的应用。

实验原理:高分子材料是由大量重复单元组成的聚合物,通过聚合反应将单体分子连接起来形成长链结构。

合成高分子材料的方法主要有自由基聚合、阴离子聚合、阳离子聚合和缩聚反应等。

本实验中采用自由基聚合方法合成高分子材料。

实验仪器和药品:1. 250 mL锥形瓶2. 磁力搅拌器3. 氮气气源4. 氮气气包5. 溴化丁烷6. 无水甲苯7. 过氯化苄8. 二溴乙烷9. 苯10. 正丁醇11. 过硫酸铵实验操作步骤:1. 在250 mL锥形瓶中装入5 mL无水甲苯,加入固氮球并用氮气气源置换30分钟,以除去水分和氧气。

2. 加入1.5 mL溴化丁烷和0.1 mL过氯化苄,搅拌均匀。

3. 在100 mL锥形瓶中加入2 mL苯和1 mL正丁醇,混合均匀。

4. 将第3步中的混合液缓慢地倒入第2步的锥形瓶中。

同时倒入的速度要慢,以避免剧烈反应。

5. 加热锥形瓶至80℃,保持3小时。

6. 在80℃下,将溶液中的剩余溴离子溶解。

加入1.2 mL二溴乙烷并搅拌30分钟。

7. 加入1 g过硫酸铵,并继续加热2小时。

8. 将得到的高分子材料用一定量的正丁醇洗涤并过滤,然后在真空干燥器中干燥至恒重。

实验结果与分析:通过实验,成功合成了高分子材料。

合成的高分子材料在外观上呈现为无色颗粒状,具有良好的溶解性。

经过洗涤和干燥后,样品的质量稳定。

高分子材料的合成成功为进一步的研究和应用提供了基础。

实验结论:本实验通过自由基聚合方法成功合成了高分子材料。

合成的高分子材料具有良好的溶解性和稳定性,为高分子材料在工业领域的应用奠定了基础。

该实验不仅巩固了合成化学的基本理论,而且培养了我们的实验操作技能。

扩展应用:高分子材料在工业领域具有广泛的应用,如塑料制品、橡胶制品、纺织品、化妆品等。

通过进一步的研究和改进合成方法,可以开发出更多具有特殊性能和功能的高分子材料,满足不同领域的需求。

PMMA制备实验

PMMA制备实验

四 脱模
将试管轻轻敲破,即可得到透明的棒状有机 玻璃。 可能的实验现象 得到光洁透明无气泡的有机玻璃成品,但表 面有一层乳白色的小点,处于模具顶部的边缘部 分并非坚硬的玻璃状,橡胶质感较强.
分析:可能是因为顶部边缘与氧气接触较多,氧 在低温时的阻聚作用,使聚合反应停留在弹性态 造成的.
谢谢大家!
三 实验仪器和试剂
仪器 •50ml锥形瓶 •保鲜膜 •弹簧夹或螺旋夹 •水浴锅 •温度计 •小试管(1.5*10cm) 预先烘烤作模具 试剂 •甲基丙烯酸甲酯(MMP) •过氧化苯甲酰(BPO) 注:BPO为引发剂促使 MMP聚合
该反应转化率随时间的变化图象
四 实验装置图
原料(MMP) 蒸馏装置
现象 引发剂BPO在单体MMP里经摇荡至溶解,得无 色液体。加热刚开始反应无明显变化,之后溶液颜色 稍偏微黄,粘度逐渐增大,粘稠状类似甘油,由搅拌 器速度下降也可以看出粘度增大. 分析 应用MMP本体聚合的引发剂主要是偶氮类与过 氧化物油溶性引发剂;反应逐渐进行,粘度增大,大 分子链活性降低,阻碍了双基终止,然而由于单体仍 可以和小分子链接触生长,链仍在增长,则导致了自 动加速现象. 易错点提示
五 流程图
六 具体步骤
一 预聚
取25g新蒸馏过的甲基丙烯酸甲酯单体放入干 净的干燥锥形瓶中,加入引发剂过氧化苯甲酰 30mg.为防止预聚时水汽进入锥形瓶内,摇匀后可 在瓶口包上一层保鲜膜,再用橡皮圈扎紧。用70 ~80℃水浴加热锥形瓶,进行预聚合,并间歇振 荡锥形瓶,观察体系的粘度。当瓶内预聚物粘度 与甘油粘度相近时,立即停上加热并用冷水使预 聚物冷至室温,以终止聚合反应。
特别地,由于悬浮聚合散热易,可断续生产,得到较纯产物,只是后 处理不好会有余渍。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子合成实验第二章高分子合成实验 (5)实验一聚乙烯醇缩甲醛的制备 5实验二苯乙烯的聚合方法综合实验 (10)实验三甲基丙烯酸甲酯的本体聚合 (27)实验四水溶性酚醛树脂制备及性能测定 (31)实验五酚醛树脂的合成 (43)实验六水性丙烯酸树脂的合成 (46)实验七醋酸乙烯酯的乳液聚合 (50)实验八膨胀计法测定苯乙烯聚合反应速率 (58)实验九甲基丙烯酸甲酯、苯乙烯悬浮共聚合 (69)实验十乙酸乙烯酯的溶液聚合 (77)实验十一丙烯酰胺水溶液聚合 (82)实验十二低分子量聚丙烯酸(钠盐)的合成和分析 (88)实验十三熔融缩聚反应制备尼龙-66 (94)实验十四ε-己内酰胺缩聚制备尼龙6 (102)实验十五强酸型阳离子交换树脂的制备及其交换量的测定 (105)实验十六苯丙乳液的制备 (117)第二章高分子合成实验实验一聚乙烯醇缩甲醛的制备一、实验目的1、加深对高分子化学反应基本原理的理解。

2、了解缩醛化反应的主要影响因素。

3、掌握聚乙烯醇缩甲醛的制备方法.二、实验原理早在1931年,人们已经研制出聚乙烯醇的纤维,但由于PVA的水溶性而无法实际应用。

利用“缩醛化”减少水溶性,使PVA 有了较大的实际应用价值。

目前,聚乙烯醇缩醛树脂在工业上被广泛用于生产黏合剂、涂料、化学纤维。

品种主要有聚乙烯醇缩甲醛、聚乙烯醇缩乙醛、聚乙烯醇缩甲乙醛、聚乙烯醇缩丁醛等。

其中以聚乙烯醇缩甲醛和聚乙烯醇缩丁醛最为重要。

前者是化学纤维“维尼纶”和“107”建筑胶水的主要原料,后者可用于制造“安全玻璃”。

聚乙烯醇缩甲醛随缩醛度的不同,性质和用途有所不同,缩醛度在35%左右,就得到人们所称为“维尼纶”的纤维,纤维的强度是棉花的1.5∽2.0倍,吸湿性5%,接近天然纤维,故又称为“合成棉花”,如果控制强度在较低水平,由于聚乙烯醇缩甲醛分子中含有羟基、乙酰和醛基,因此有较强的黏结性能,可用作胶水,用来黏结金属、木材、玻璃、陶瓷、橡胶等。

聚乙烯醇缩甲醛是由聚乙烯醇在酸性条件下与甲醛缩合而成的。

其反应方程式如下:由于几率效应,聚乙烯醇中邻近羟基成环后,中间往往会夹着一些无法成环的孤立的羟基,因此缩醛化反应不完全。

为了定量表示缩醛化的程度,定义已缩合的羟基量占原始羟基量的百分数为缩醛度。

由于聚乙烯醇溶于水,而反应产物聚乙烯醇缩甲醛不溶于水,因此,随着反应的进行,最初的均相体系将逐渐变成非均相体系。

本实验是合成水溶性聚乙烯醇缩甲醛胶水,实验中要控制适宜的缩醛度,使体系保持均相。

如若反应过于猛烈,则会造成局部高缩醛度,导致不溶性物质存在于胶水中,影响胶水质量。

因此,反应过程中,要严格控制催化剂用量、反应温度、反应时间及反应物比例等因素。

四、实验步骤1. 安装好合成装置。

2. 250mL三口瓶中加人90mL去离子水,装上搅拌。

加入10g聚乙烯醇。

3. 加热至95℃,加温直至聚乙烯醇全部溶解。

4. 降温至80℃,加入4mL甲醛溶液,搅拌15min。

滴加0.25mol·L-1稀盐酸,控制反应体系pH为1∽3。

继续搅拌,反应体系逐渐变稠。

当体系中出现气泡或有絮状物产生时,立即迅速加入1.5mL8%NaOH溶液,调节pH值为8∽9。

冷却,出料,得无色透明黏稠液体,即为一种化学胶水。

5.测定不同温度下的粘度。

五、结果与讨论1. 由于缩醛化反应的程度较低,胶水中尚有未反应的甲醛,产物往往有甲醛的刺激性气味。

反应结束后胶水的pH值调至弱碱性有以下作用:可防止分子链间氢键含量过大,体系黏度过大;体系黏度过高;缩醛基团在碱性环境下较稳定。

2. 为什么缩醛度增加,水溶性会下降?3. 为什么以较稀的聚乙烯醇溶液进行缩醛化?4. 聚乙烯醇缩醛化反应中,为什么不生成分子间交联的缩醛键?5. 聚乙烯醇缩甲醛黏合剂在冬季极易凝胶,怎样使其在低温时同样具有很好的流动性和黏合性?实验二苯乙烯的聚合方法综合实验一、实验目的1、了解苯乙烯自由基聚合的基本原理。

2、掌握悬浮聚合的实施方法,了解配方中各组分的作用。

3、了解分散剂、升温速度、搅拌速度对悬浮聚合的影响。

4、了解苯乙烯本体聚合的实验方法。

5、了解苯乙烯溶液聚合的实验方法。

6、掌握苯乙烯乳液聚合的实验方法。

7、通过本综合实验,提高学生的学习兴趣、提高动手能力及综合分析问题解决问题的能力。

二、实验原理1. 悬浮聚合:苯乙烯在水和分散剂作用下分散成液滴状,在油溶性引发剂过氧化二苯甲酰引发下进行自由基聚合,其反应历程如下:悬浮聚合是由烯类单体制备高聚物的重要方法,由于水为分散介质,聚合热可以迅速排除,因而反应温度容易控制,生产工艺简单,制成的成品呈均匀的颗粒状,故又称珠状聚合,产品不经造粒可直接加工成型。

苯乙烯是一种比较活泼的单体,容易进行聚合反应。

苯乙烯在水中的溶解度很小,将其倒入水中,体系分成两层,进行搅拌时,在剪切力作用下单体层分散成液滴,界面张力使液滴保持球形,而且界面张力越大形成的液滴越大,因此在作用方向相反的搅拌剪切力和界面张力作用下液滴达到一定的大小和分布。

而这种液滴在热力学上是不稳定的,当搅拌停止后,液滴将凝聚变大,最后与水分层,同时聚合到一定程度以后的液滴中溶有的黏性聚合物亦可使液滴相黏结。

因此,悬浮聚合体系还需加入分散剂。

悬浮聚合实质上是借助于较强烈的搅拌和悬浮剂的作用,将单体分散在单体不溶的介质(通常为水)中,单体以小液滴的形式进行本体聚合,在每一个小液滴内,单体的聚合过程与本体聚合相似,遵循自由基聚合一般机理,具有与本体聚合相同的动力学过程。

由于单体在体系中被搅拌和悬浮剂作用,被分散成细小液滴,因此悬浮聚合又有其独到之处,即散热面积大,防止了在本体聚合中出现的不易散热的问题。

由于分散剂的采用,最后的产物经分离纯化后可得到纯度较高的颗粒状聚合物。

C O O O C O O C O O CH H 2C +C O O CH 2CH C O OCH 2CH CH H 2C +C O O CH 2CH CH 2CHO 2……CH 2CHCH 2CH 2CH 2CH CH CH 22. 微乳液聚合:微乳液指的是由油、水、乳化剂(许多场合下还需要加入助乳化剂)组成的各向同性、热力学稳定透明或半透明胶体分散体系,其分散相尺寸为纳米级。

自Stoffer、Atik等于1980年代早期首次报道微乳液聚合反应以来,由于微乳液的特殊性能,在医药、生物、工业等方面具有广泛的潜在应用,因而受到人们的极大关注。

应用领域包括制备多孔材料用于高效分离膜,制备聚合物纳米粒子用于油墨、高性能吸附材料等,制备高档涂料以及制备用于原油开采的乳液、提高采收率等。

微乳液聚合可很方便地得到纳米级的高分子量聚合物乳胶粒,但是由于典型的微乳液聚合通常固含量都很低,一般低于10%,且需使用较高的乳化剂/单体比,如制备固含量为2%~5%的微乳通常需加入5%的乳化剂,因而大大地限制了微乳液聚合的商业应用。

如何提高固含量、降低乳化剂用量是近年来微乳液聚合研究的关键问题之一。

目前报道的方法主要有三种:①半连续法,或称多步加料法,即单体在聚合反应过程中的特定时段分批加入;②连续法,即单体在聚合反应过程中连续地加入正在反应的聚合体系;③类Winsor I 体系法,聚合体系的组成类似Winsor I 型分散体系,由清澈的两相组成,上层油相为纯的单体,下层为含阳离子乳化剂的微乳液相,水溶性的氧化还原引发剂溶于微乳液相,在温和搅拌下,单体由过量的油相吸收到胶束内进行聚合反应。

最后所得的聚合物乳胶粒子的大小取决于所用的微乳液体系及聚合反应方法。

有些情况下,所加单体多数是在已存在的乳胶粒子内聚合,因而随着所加单体的增加,乳胶粒子显著增大;有些情况下,乳胶粒子的大小则几乎保持不变。

影响粒子尺寸的可能因素包括单体的溶解性、扩散限制以及单体的用量等。

本实验采用半连续法制备聚苯乙烯微乳液,最后可得到固含量约为40%,聚合物粒子粒径小于40nm,相对分子质量大于106g/mol的微乳液。

3. 苯乙烯的本体聚合:苯乙烯的本体聚合是按自由基机理进行的均相聚合反应。

4.苯乙烯的溶液聚合:苯乙烯的溶液聚合是按自由基机理进行的均相聚合反应。

三、主要试剂和仪器1、主要试剂苯乙烯:除去阻聚剂;油溶性引发剂:过氧化二苯甲酰( C.P.重结晶精制);聚乙烯醇:1799水溶液 1.5% ;过硫酸钾; NaH2PO4;油酸钠;十二烷基硫酸钠;甲醇;偶氮二异丁腈(AIBN)2、主要仪器聚合装置一套(包括250ml三口烧瓶一个,电动搅拌器一套,冷凝管一支,0~100℃温度计一支,加热水浴一套,如图2-1所示),表面皿,吸管,20ml 移液管,布氏漏斗,锥形瓶。

1-搅拌器;2-聚四氟乙烯密封塞;3-温度计; 4-温度计套管;5-冷凝管;6-三口烧瓶四、实验步骤(一)悬浮聚合:1、安装装置按图安装好实验装置,为保证搅拌速度均匀,整套装置安装要规范。

尤其是搅拌器,安装后用手转动要求无阻力,转动轻松自如。

本装置采用调压器,通过改变电压来控制电机转速和加热温度,进而达到控制搅拌速度和聚合物温度的目的。

2、加料用分析天平准确称取0.3g过氧化二苯甲酰放入100ml锥形瓶中,再用移液管按配方量取苯乙烯15g,亦加入锥形瓶中,轻轻振荡,待过氧化二苯甲酰完全溶解后加入三口烧瓶。

再加入 1.5%的聚乙烯醇溶液20ml,最后用130ml去离子水分别冲洗锥形瓶和量筒后加入三口烧瓶中。

3、聚合通冷凝水,启动搅拌并控制在一恒定转速下,在20~30min内将温度升至85~90℃,开始聚合反应。

在反应一个小时以后,体系中分散的颗粒变得发黏,此时一定要注意控制好搅拌速度。

在反应后期可将温度升至反应温度上限,以加快反应,提高转化率。

当反应1.5~2h后,可用吸管取少量颗粒于表面皿中进行观察,如颗粒变硬发脆,可结束反应。

4、出料及后处理停止加热,撤出电炉,一边搅拌一边用冷水将三口烧瓶冷却至室温,然后停止搅拌,取下三口烧瓶。

产品用布氏漏斗过滤,并用热水洗数次。

最后产品在50℃鼓风干燥箱中烘干,称量,计算产率。

5、注意事项①开始时,搅拌速度不宜太快,避免颗粒分散得太细。

②保温反应1个多小时后,由于此时颗粒表面黏度较大,极易发生黏结。

故此时必须十分仔细的调节搅拌速度,千万不能使搅拌停止,否则颗粒将黏结成块。

③悬浮聚合的产物颗粒的大小与分散剂的用量及搅拌速度有关,严格控制搅拌速度和温度是实验成功的关键。

为了防止产物结团,可加入极少量的乳化剂以稳定颗粒。

若反应中苯乙烯的转化率不够高,则在干燥过程中会出现小气泡,可利用在反应后期提高反应温度并适当延长反应时间来解决。

(二)乳液聚合:方法1:将0.3g十二烷基磺酸钠和125g去离子水依次加入装有搅拌器、温度计和回流冷凝管的250ml三口瓶中,搅拌并升温,待完全溶解后,加入10g苯乙烯和0.3g过硫酸铵,升温至85~90℃反应1.5h,冷却至30~40℃时即可出料。

相关文档
最新文档