13 泛函分析

合集下载

泛函分析课件

泛函分析课件

泛函分析课件泛函分析是数学中的一门重要学科,它研究的是无限维空间中的函数和算子。

在实际应用中,泛函分析广泛应用于物理学、工程学、经济学等领域。

本文将介绍泛函分析的基本概念和主要内容,以及其在实际应用中的一些例子。

一、泛函分析的基本概念泛函分析的基本概念包括向量空间、线性映射、内积、范数等。

向量空间是泛函分析的基础,它是一组满足一定条件的向量的集合。

线性映射是指将一个向量空间映射到另一个向量空间的函数,它保持向量空间的加法和数乘运算。

内积是向量空间中的一种运算,它是一个函数,将两个向量映射到一个实数。

范数是向量空间中的一种度量,它衡量向量的大小。

二、泛函分析的主要内容泛函分析的主要内容包括线性算子、连续性、紧性、谱理论等。

线性算子是指将一个向量空间映射到另一个向量空间的线性映射,它在泛函分析中起到了重要的作用。

连续性是指在一个向量空间中,如果两个向量足够接近,它们的映射也应该足够接近。

紧性是指一个映射将有界集映射到有界集,且将紧集映射到紧集。

谱理论是研究线性算子谱性质的一门学科,它对于解析和估计线性算子的特征值和特征向量具有重要意义。

三、泛函分析在实际应用中的例子泛函分析在实际应用中有许多例子,下面将介绍其中的几个。

首先是量子力学中的波函数,它是一个复数函数,描述了量子系统的状态。

泛函分析提供了一种理论框架,可以对波函数进行分析和计算。

其次是信号处理中的傅里叶变换,它将一个信号分解成一系列正弦和余弦函数的叠加。

泛函分析提供了一种数学工具,可以对信号进行分析和处理。

再次是优化问题中的拉格朗日乘子法,它是一种求解约束优化问题的方法。

泛函分析提供了一种理论基础,可以对优化问题进行建模和求解。

最后是经济学中的效用函数,它描述了个体对不同商品或服务的偏好程度。

泛函分析提供了一种数学工具,可以对效用函数进行分析和计算。

综上所述,泛函分析是一门重要的数学学科,它研究的是无限维空间中的函数和算子。

泛函分析的基本概念包括向量空间、线性映射、内积、范数等。

泛函分析简介

泛函分析简介

泛函分析简介什么是泛函分析泛函分析是数学的一个分支,主要研究无限维空间的线性算子及其性质。

它源于传统的分析学,特别是微分方程、积分方程和最优化理论等领域的发展。

通过研究空间中的点和函数,以及这些点和函数之间的映射关系,泛函分析提供了一种强大的工具用于解决各种实际问题。

在物理学、工程学、经济学和其他科学领域中,泛函分析有着广泛的应用。

泛函分析的基本概念线性空间线性空间(或称向量空间)是泛函分析的基础。

它由一组元素组成,这些元素可以通过向量加法和标量乘法进行组合。

形式上,若 (V) 是一个集合,满足以下条件,则 (V) 是一个线性空间:对于任意 (u, v V),则 (u + v V)(封闭性)。

对于任意 (u V) 和标量 (c),则 (c u V)(封闭性)。

存在零向量 (0 V),使得对于任意 (u V),有 (u + 0 = u)。

对于每个向量 (u V),存在一个对应的负向量 (-u V),使得 (u + (-u) = 0)。

向量加法满足交换律和结合律。

标量乘法满足分配律以及结合律。

拓扑空间拓扑空间是讨论连续性和极限的重要工具。

在泛函分析中,通常会结合线性空间与拓扑结构。

例如,一个拓扑向量空间需要具备以下性质:每个点都有邻域;任意多个开集的并集仍为开集;有限多个开集的交集仍为开集。

此时,可以引入收敛、限制、开集、闭集等概念,从而更深入地研究函数的性质。

巴拿赫空间与希尔伯特空间巴拿赫空间(Banach Space)是一类重要的完备线性空间,其定义为一个带有范数的线性空间,使得它是完备的。

也就是说,在这个空间中,每个柯西序列都收敛于某个元素。

范数是一个度量,用来描述向量之间的“距离”。

希尔伯特空间(Hilbert Space)则是一个完备的内积空间,是巴拿赫空间的一种特殊情况。

内积允许我们定义角度、正交性等概念,对于研究四维空间中的物理现象尤为重要。

主要定理与结果超平面定理与 Hahn-Banach 定理超平面定理指出,在有限维欧几里德空间中,任何非空闭子集至少可以由一个超平面相切。

泛函分析复习与总结

泛函分析复习与总结

泛函分析复习与总结泛函分析是数学中的一个重要分支,是研究无限维空间上的函数和线性算子的学科。

它的研究对象不再是有限维线性空间上的向量,而是函数或者函数空间,包括无限维的函数空间。

泛函分析在数学中有着广泛的应用,例如在微分方程的理论研究中,泛函分析有助于研究解的连续性、唯一性和存在性等问题;在概率理论中,泛函分析有助于研究随机过程的性质等。

下面将对泛函分析的重要内容进行复习和总结。

1.线性空间与拓扑空间线性空间是指具有线性结构的集合,泛函分析研究的对象就是线性空间上的函数或者函数空间。

拓扑空间是指在集合中引入一个拓扑结构,使得可以定义连续性和收敛性等概念。

泛函分析的研究对象通常是拓扑线性空间,即同时具有线性结构和拓扑结构的空间。

2.赋范空间与完备空间赋范空间是指在线性空间上定义了一个范数(或称规范),从而使得该空间成为一个度量空间。

范数的引入使得我们可以定义距离,并且可以定义收敛性。

完备空间是指其中的Cauchy列总是收敛于该空间中的点。

泛函分析中,赋范空间和完备空间是重要的概念,在研究函数的连续性和收敛性时起到了关键的作用。

3.内积空间与希尔伯特空间内积空间是指在线性空间上定义了一个内积,从而可以定义长度和夹角。

希尔伯特空间是指满足内积空间中所有Cauchy列都收敛于该空间中的点的空间。

内积空间和希尔伯特空间在泛函分析中具有重要的作用,特别是在研究函数的正交性和投影等问题时。

4.线性算子与连续算子线性算子是指将一个线性空间映射到另一个线性空间的映射。

连续算子是指在拓扑空间上保持连续性的线性算子。

泛函分析中,线性算子和连续算子是重要的研究对象,它们可以用来描述函数之间的关系和映射。

5. Banach空间与可分空间Banach空间是指在完备的范数空间上定义了一个范数,从而构成一个完备空间。

可分空间是指线性空间中存在可数稠密子集的空间。

Banach空间和可分空间是泛函分析中重要的类别,它们在研究最优性,特别是最优解的存在性和表示性时起到了关键的作用。

泛函分析复习与总结

泛函分析复习与总结

《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。

以下几点是对第一部分内容的归纳和总结。

一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。

距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。

(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。

赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。

(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。

泛函分析,泛函分析简介

泛函分析,泛函分析简介

泛函分析,泛函分析简介泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。

它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。

它可以看作无限维向量空间的解析几何及数学分析。

泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

1概述泛函分析(FunctionalAnalysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。

泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。

使用泛函作为表述源自变分法,代表作用于函数的函数。

巴拿赫(StefanBanach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家维多·沃尔泰拉(VitoVolterra)对泛函分析的广泛应用有重要贡献。

2拓扑线性空间由于泛函分析源自研究各种函数空间,在函数空间里函数列的收敛有不同的类型(譬如逐点收敛,一致收敛,弱收敛等等),这说明函数空间里有不同的拓扑。

而函数空间一般是无穷维线性空间。

所以抽象的泛函分析研究的是一般的(无穷维的)带有一定拓扑的线性空间。

拓扑线性空间的定义就是一个带有拓扑结构的线性空间,使得线性空间的加法和数乘都是连续映射的空间。

巴拿赫空间这是最常见,应用最广的一类拓扑线性空间。

比如有限闭区间上的连续函数空间,有限闭区间上的k次可微函数空间。

或者对于每个实数p,如果p≥1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。

(参看Lp空间) 在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。

对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。

微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。

泛函分析概念总结

泛函分析概念总结

泛函分析概念总结泛函分析是数学的一个分支,研究无限维空间上的函数和函数空间。

它将数学分析的基本概念和方法推广到无限维空间上,通过引入拓扑空间和线性空间的概念,揭示了函数空间的结构和性质。

泛函分析在实际问题的建模和解决中有着广泛的应用,特别是在物理、工程、计算机等领域。

泛函分析的基本概念包括:线性空间、拓扑空间和连续线性泛函等。

线性空间是泛函分析的基础,它包括了向量空间的概念,并满足了一个加法封闭性和一个数乘封闭性的要求。

拓扑空间是泛函分析中用来描述空间结构的工具,它引入了开集和邻域的概念。

通过与度量空间的关系,拓扑空间可以定义连续性的概念,并研究拓扑结构和连续映射的性质。

连续线性泛函是泛函分析的核心概念,它是一个从一个线性空间到标量域的线性映射,并满足了一定的连续性条件。

连续线性泛函可以通过内积和范数的概念进行推广。

泛函分析的基本工具和技巧包括:度量、拓扑结构、收敛性、紧性、完备性、分离等。

度量可以用来度量空间中的两个元素之间的距离,进而衡量连续性、收敛性等性质。

拓扑结构定义了空间中的开集和闭集,通过拓扑性质,可以描述函数空间中的收敛性和连续性等性质。

紧性是指空间中任意无限多的序列必存在收敛子列,体现了空间的紧缩性。

完备性是指空间中任意柯西序列必存在极限元素,体现了空间的完备性。

分离是指通过函数来分离空间中的元素,体现了空间的分立性。

泛函分析的应用领域主要有:变分法、偏微分方程、函数逼近和最优化等。

变分法是通过求泛函的极值来解决实际问题的一种方法,它在物理学、力学、气象学等领域有着广泛的应用。

偏微分方程是描述自然界中的数学模型,通过泛函分析的方法可以研究偏微分方程的解的存在性和唯一性等性质。

函数逼近是将连续函数用离散的函数进行近似表示,通过泛函分析的方法可以计算逼近误差和逼近的收敛性等性质。

最优化是求一个泛函的最大或最小值,通过泛函分析的方法可以寻找最优解的条件和性质。

总之,泛函分析作为数学的一个重要分支,通过推广数学分析的基本概念和方法,研究了无限维空间上的函数和函数空间的结构和性质。

泛函分析---NPU13

泛函分析---NPU13

1§3 列紧集设),(ρX 是一个距离空间,A 是X 的一个子集,A 称为是有界的,如果X x ∈∃0及0r >,使得0(,)A B x r ⊂,其中00(,){|(,)}B x r x X x x r ρ∈< 。

在有穷维欧氏空间中,有界无穷集必含有一个收敛子列,但这个性质不能推广到任意的距离空间。

例 在[0,1]C 上,考察点列10,,()(1,2,)11,,n t nx t n nt t n ⎧≥⎪⎪==⎨⎪−≤⎪⎩…。

显然)1,(}{θB x n ⊂(因为[]1,0,1∈∀≤t x n ),其中θ表示恒等于0的函数,但是{}n x 不含有收敛子列。

事实上,若{}n x 有收敛子列{()}i n x t ,则{()}i n x t 收敛0,(0,1],()1,0,t x t t ∈⎧=⎨=⎩但()[0,1]x t C ∉,故)}({t x n 在[0,1]C 中无收敛子列。

定义 1.3.1 设),(ρX 是一个距离空间,A 为其一子集,称A 是列紧的,如果A 中的任意点列在X 中有一个收敛子列。

若这个子列还收敛到A 中的点,则称A 是自列紧的。

如果空间X 是列紧的,那么称X 为列紧空间。

命题 1.3.2 在n中任意有界集是列紧集,任意有界闭集是自列紧集。

命题 1.3.3 列紧空间内任意(闭)子集都是(自)列紧集。

2证明 设X A ⊂,X A x n ⊂⊂∀}{,由X 列紧知,}{n x 在X 中有收敛子列}{k n x ,所以A 是列紧集。

若A 还是闭的,由于x x A x k k n n →⊂,}{,由A 是闭,知A x ∈。

从而A 是自列紧集。

□命题1.3.4 列紧空间必是完备空间。

证明 设X 为列紧空间,{}n x 为X 中的基本列。

因为X 列紧,故{}k n x ∃在X 中收敛,极限记为0x ,且X x ∈0,则0x x n →,故X 完备。

(用到P 13 习题1.2.2)□补充性质 在度量空间),(ρX 上,基本列{}n x 是收敛列⇔{}n x 有收敛子列。

泛函分析答案

泛函分析答案

泛函分析题1_3列紧集p191.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对∀ε > 0,存在A的列紧的ε网.证明:(1) 若子集A是列紧的,由Hausdorff定理,∀ε > 0,存在A的有限ε网N.而有限集是列紧的,故存在A的列紧的ε网N.(2) 若∀ε > 0,存在A的列紧的ε/2网B.因B列紧,由Hausdorff定理,存在B的有限ε/2网C.因C ⊆B ⊆A,故C为A的有限ε网.因空间是完备的,再用Hausdorff定理,知A是列紧的.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数.(1) 若f无上界,则∀n∈ +,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则∀n∈ +,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则∀x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ∀k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:∃x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,∀n∈ +,∃x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =⎰[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =⎰[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得∀f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a, b] | F(x) | = max x∈[a, b] | ⎰[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.∀ε > 0,∀s, t∈[a, b],当| s-t| < ε/K时,∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(u) du.| F(s) -F(t) | = | ⎰[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K · (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0(n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的.1.3.7 求证S空间的子集A是列紧的充要条件是:∀n∈ +,∃C n> 0,使得∀x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n( n = 1, 2, ...).证明:(⇐) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(⇒) 我们只要证明,∀n∈ +,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 )(∀x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1), f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E⊆C(M),E中的函数一致有界并且满足下列的Hölder条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(∀x∈E,∀t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由Hölder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.[第3节完] 泛函分析题1_4线性赋范空间p391.4.1 在2维空间 2中,对每一点z = (x, y),令|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4;(1) 求证|| · ||i( i = 1, 2, 3, 4 )都是 2的范数.(2) 画出( 2, || · ||i )( i = 1, 2, 3, 4 )各空间中单位球面图形.(3) 在 2中取定三点O = (0, 0),A = (1, 0),B= (0, 1).试在上述四种不同的范数下求出∆OAB三边的长度.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.设z = (x, y), w = (u, v)∈ 2,s = z + w= (x + u, y + v ),|| z||1 + || w||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)≥ | x + u | + | y + v | = || z+ w||1.( || z||2 + || w||2 )2 = ( ( x 2 + y 2 )1/2 + ( u 2 + v 2 )1/2 )2= ( x 2 + y 2 ) + ( u 2 + v 2 ) + 2(( x 2 + y 2 )( u 2 + v 2 ))1/2≥ ( x 2 + u 2 ) + ( y 2 + v 2 ) + 2( x u+ y v )= ( x + u )2 + ( y + v)2 = ( || z+ w||2 )2.故|| z||2 + || w||2 ≥ || z+ w||2.|| z||3 + || w||3 = max(| x |, | y |) + max(| u |, | v |)≥ max(| x | + | u |, | y | + | v |) ≥ max(| x + u |, | y + v |) = || z+ w||3.|| ·||4我没辙了,没找到简单的办法验证,权且用我们以前学的Minkowski不等式(离散的情况,用Hölder不等式的离散情况来证明),可直接得到.(2) 不画图了,大家自己画吧.(3) OA = (1, 0),OB = (0, 1),AB = (- 1, 1),直接计算它们的范数:|| OA||1 = 1,|| OB||1 = 1,|| AB||1 = 2;|| OA||2 = 1,|| OB||2 = 1,|| AB||2 = 21/2;|| OA||3 = 1,|| OB||3 = 1,|| AB||3 = 1;|| OA||4 = 1,|| OB||4 = 1,|| AB||4 = 21/4.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.∀x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数}.容易验证X是c[0, 1]的子空间.定义ϕ : X →l∞,f #ϕ ( f ) = ( f (a1), f (a2), ...).则ϕ : X →l∞是线性双射,且|| ϕ ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,ϕ : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (⎰[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (∀f∈C1[a, b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),∀x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,∀x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (⎰[a, b] | f(x) |2dx )1/2,q( f ) = (⎰[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((⎰[a, b] | f(x) |2dx )1/2 + (⎰[a, b] | g(x) |2dx )1/2)2= ⎰[a, b] | f(x) |2dx + 2(⎰[a, b] | f(x) |2dx )1/2 · (⎰[a, b] | g(x)|2dx )1/2 + ⎰[a, b] | g(x) |2dx≥⎰[a, b] | f(x)|2dx + 2 ⎰[a, b] | f(x) | · | g(x)| dx + ⎰[a, b] | g(x)|2dx= ⎰[a, b] ( | f(x) | + | g(x)| )2dx ≥⎰[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’) + p( g’) ≥p( f’+ g’),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ∀x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故⎰[- 1, 1] | f n(x) -f m(x) |2 dx → 0(m, n→∞);⎰[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0(m, n→∞).故|| f n-f m ||1 = (⎰[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (⎰[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (⎰[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f∉C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2( ∀x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (⎰[0, 1] ( 1 + x) | g(x) |2dx )1/2= || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (⎰[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2= || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.∀f∈C[0, 1]|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2 ≤ (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (⎰[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.5 设BC[0, ∞)表示[0, ∞)上连续且有界的函数f(x)全体,对每个f ∈BC[0, ∞)及a > 0,定义|| f ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2.(1) 求证|| ·||a是BC[0, ∞)上的范数.(2) 若a, b > 0,a≠b,求证|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.证明:(1) 依然只验证三角不等式.|| f ||a + || g ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2 + (⎰[0, ∞) e-ax | g(x) |2dx )1/2= || e-ax/2f(x)||L2 + || e-ax/2g(x)||L2≤ || e-ax/2f(x)+ e-ax/2g(x)||L2= || e-ax/2 ( f(x)+ g(x))||L2= (⎰[0, ∞) e-ax | f(x)+ g(x) |2dx )1/2= || f + g ||a,所以|| ·||a是BC[0, ∞)上的范数.(2) 设f n(x)为[n, +∞)上的特征函数.则f n∈BC[0, ∞),且|| f n||a = (⎰[0, ∞) e-ax | f n(x) |2dx )1/2 = (⎰[n, ∞) e-ax dx )1/2 = ((1/a)e-an)1/2.同理,|| f n||b = ((1/b)e-bn)1/2.故若a < b,则|| f n||a/|| f n||b = (b/a)1/2e-(b -a)n/2→ +∞ (n→+∞).因此|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.1.4.6 设X1, X2是两个B*空间,x1∈X1和x2∈X2的序对(x1, x2)全体构成空间X = X1⨯X2,并赋予范数|| x || = max{ || x1 ||1, || x2 ||2 },其中x = (x1, x2),x1∈X1,x2∈X2,|| · ||1和|| ·||2分别是X1和X2的范数.求证:如果X1, X2是B空间,那么X也是B空间.证明:(1) 先验证|| · ||的三角不等式.设x = (x1, x2), y = (y1, y2)∈X1⨯X2,则|| x + y || = || (x1 + y1, x2 + y2) || = max{ || x1 + y1 ||1, || x2 + y2 ||2 }≤ max{ || x1 ||1 + || y1 ||1, || x2 ||2 + || y2 ||2 }≤ max{ || x1 ||1, || x2 ||2 } + max{ || y1 ||1, || y2 ||2 }= || (x1, x2) || + || (y1, y2) ||= || x || + || y ||,而|| · ||的正定性和齐次性是显然的,所以,|| · ||是X1⨯X2的范数.(2) 设X1, X2是B空间,我们来证明X也是B空间.设x(n) = (x1(n), x2(n))是X = X1⨯X2中的基本列,则|| x(n) -x(m) || = max{ || x1(n) -x1(m) ||1, || x2(n) -x2(m)||2 } ≥ || x1(n) -x1(m) ||1,故{x1(n)}是X1中的基本列,同理,{x2(n)}是X2中的基本列.因X1, X2是B空间,故{x1(n)}和{x2(n)}分别是X1, X2中的收敛列.设x1(n) →x1∈X1,x2(n) →x2∈X2,令x = (x1, x2).则|| x(n) -x || = max{ || x1(n) -x1 ||1, || x2(n) -x2 ||2 }≤ || x1(n) -x1 ||1 + || x2(n) -x2 ||2→ 0 (n→∞).所以,|| x(n) -x ||→ 0 (n→∞).即{ x(n) }为X = X1⨯X2中的收敛列.所以X = X1⨯X2也是B空间.1.4.7 设X是B*空间.求证:X是B空间,必须且只须对∀{x n}⊆X,∑n≥ 1 || x n || < +∞⇒∑n≥ 1x n 收敛.证明:(⇒) ∀{x n}⊆X,记S n = ∑1 ≤j≤n x j,B n = ∑1 ≤j≤n || x n ||,则|| S n + p-S n || = || ∑1 ≤j≤n + p x j -∑1 ≤j≤n x j ||= || ∑n +1 ≤j≤n + p x j ||≤∑n +1 ≤j≤n + p || x j ||= B n + p-B n → 0,(n→∞).故{ S n }为X中的Cauchy列.由X完备,故{ S n }为X中的收敛列,即∑n≥ 1x n 收敛.(⇐) 反证法.若(X, ρ)不完备,设(Y, d )为(X, ρ)的一个完备化.不妨设(X, ρ)是(Y, d )的子空间,则存在y∈Y \ X.因cl( X ) = Y,故∀n∈ +,存在x n∈X,使得d(x n, y) < 1/2n.则ρ(x n, x m) = d(x n, x m) ≤d(x n, y) + d(x m, y) ≤ 1/2n+ 1/2m → 0,因此{x n}是X中的Cauchy列,但不是收敛列.令z n = x n+1-x n,S n = ∑1 ≤j≤n z j;则z n, S n∈X.因|| z n || = || x n+1-x n || = ρ(x n+1, x n) ≤d(x n+1, y) + d(x n+1, y) ≤ 1/2n+1+ 1/2n < 1/2n - 1,故∑n≥ 1 || z n || < +∞.而S n = ∑1 ≤j≤n z j = ∑1 ≤j≤n ( x j+1-x j ) = x n+1-x1;故∑n≥ 1z n 在中不收敛.矛盾.1.4.8 记[a, b]上次数不超过n的多项式全体为 n.求证:∀f(x)∈C[a, b],存在P0(x)∈ n,使得max a ≤x≤b| f(x) –P0(x) | = min{ max a ≤x≤b| f(x) –P(x) | | P∈ n }.证明:注意到 n是B*空间C[a, b]中的n+1维子空间.{1, x, x2, ..., x n}是 n中的一个向量组,把它看成C[a, b]中的一个有限向量组.根据定理p35, 1.4.23,对任意∀f(x)∈C[a, b],存在最佳逼近系数{λ0, λ1, ..., λn},使得|| f(x) –∑0 ≤j≤n λj x j || = min{ || f(x) –∑0 ≤j≤n a j x j || | (a0, a1, ..., a n)∈ n+1}.令P0(x) = ∑0 ≤j≤n λj x j 就得到要证明的结论.1.4.9 在 2中,对∀x = (x1, x2)∈ 2,定义范数|| x || = max(| x1 |, | x2 |),并设|| x0–λ e1 ||.e1 = (1, 0),x0 = (0, 1).求a∈ 适合|| x0–a e1 || = minλ∈并问这样的a是否唯一?请对结果作出几何解释.解:g(λ) = || x0–λ e1 || = || (0, 1) –λ(1, 0)|| = || (–λ, 1)|| = max(| λ |, 1) ≥ 1,故g(λ) 当| λ| ≤ 1时取得最小值1.所以a = 0满足要求.显然满足要求的a不是唯一的.从几何上看就是某线段上的点到某定点的距离都是1.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ∀x≠θ, y≠θ) ⇒x = c y ( c > 0).证明:(⇒) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(⇐) 设∀x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数ϕ : X → 1称为凸的,如果不等式ϕ( λ x + (1 -λ) y ) ≤λϕ( x ) + (1 -λ)ϕ( y ) ( ∀ 0 ≤λ≤ 1)成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数ϕ的一个局部极小点.如果存在x∈X,使得ϕ( x ) < ϕ( x0),则∀ t ∈(0, 1),ϕ( t x + (1 -t ) x0) ≤t ϕ( x ) + (1 -t )ϕ( x0) < t ϕ( x0) + (1 -t )ϕ( x0) = ϕ( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此∀x∈X,都有ϕ( x0) ≤ϕ( x ),即x0是ϕ的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : n → 1.对∀c = (c1, c2, ..., c n)∈ n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c i e i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈ n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g ||= || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )||= || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈ n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.13 设X是B*空间,X0是X的线性子空间,假定∃c∈(0, 1)使得∀y∈X,有inf { || y–x || | x ∈X0 } ≤c || y ||.求证:X0在X中稠密.证明:设y∈X,∀ε > 0,∃x1∈X0,s.t. || y–x1 || < c || y || + ε /4.∃x2∈X0,s.t. || (y–x1) –x2 || < c || y–x1 || + ε /8.∃x3∈X0,s.t. || (y–x1 –x2 ) –x3 || < c || y–x1 –x2 || + ε /16.如此下去,可得到一个X0中的点列{ x n },满足|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2(∀n∈ +).那么,我们可以用数学归纳法证明|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).当n = 1时,|| y–x1 || < c || y || + ε /4.结论成立.当n = 2时,|| (y–x1) –x2 || < c || y–x1 || + ε /8< c (c || y || + ε /4) + ε /8 < c 2 || y || + ε (1/4 + 1/8),结论成立.当n≥ 3时,若|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1)成立,则|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2< c (c n || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n+ 11/2j + 1)),因此结论也成立.由数学归纳法原理,∀n∈ +,|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).因为c∈(0, 1),故存在N∈ +,使得c N || y || < ε /2.令x = ∑1 ≤j≤N x j,则x∈X0.且|| y–x || < ε /2 + ε (∑1 ≤j≤N 1/2j + 1) < ε.所以,X0在X中稠密.[张峰同学的证明] 反证法.若不然,则cl(X0)是X的真闭线性子空间.用Riesz引理,存在y∈X,使得|| y || = 1,且inf { || y–x || | x ∈ cl(X0)} > c.故对此y∈X,有inf { || y–x || | x ∈X0 } > c || y ||,矛盾.1.4.14 设C0表示以0为极限的实数全体,并在C0中赋以范数|| x || = max n≥1| ξn |,( ∀x = (ξ1, ξ2, ..., ξn, ...)∈C0 ).又设M = {x = (ξ1, ξ2, ..., ξn, ...)∈C0 | ∑n ≥1 ξn/2n = 0}.(1) 求证:M是C0的闭线性子空间.(2) 设x0= (2, 0, 0, ...),求证:inf z ∈M || x0–z || = 1,但∀y∈M,有|| x0–y || > 1.证明:(1) 显然M ≠∅,容易直接验证M是C0的线性子空间.若x k = (ξ1(k), ξ2(k), ..., ξn(k), ...)为M中的点列,且x k→x = (ξ1, ξ2, ..., ξn, ...)∈C0.则∀ε > 0,存在N∈ +,使得∀k > N,|| x k -x || < ε.此时,∀n∈ +,有|ξn -ξn(k)| ≤ max n≥1| ξn -ξn(k) | = || x k -x || < ε.| ∑n ≥1 ξn/2n | = | ∑n ≥1 ξn/2n-∑n ≥1 ξn(k)/2n | = | ∑n ≥1 (ξn -ξn(k))/2n |≤∑n ≥1 |ξn -ξn(k)|/2n≤∑n ≥1 ε/2n = ε.所以,∑n ≥1 ξn/2n = 0,即x = (ξ1, ξ2, ..., ξn, ...)∈M.所以M是C0的闭线性子空间.(2) x0= (2, 0, 0, ...),∀z = (ξ1, ξ2, ..., ξn, ...)∈M,|| x0–z || = max{| 2 -ξ1 |, | ξ2 |, | ξ3 |, ... }.如果| 2 -ξ1 | > 1,则|| x0–z || > 1.如果| 2 -ξ1 | ≤ 1,则| ξ1 | ≥ 1,我们断言{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.否则,假若它们都不超1,因为ξn → 0 (n→∞),故它们不能全为1.由∑n ≥1 ξn/2n = 0知| ξ1 |/2 = | ∑n ≥2 ξn/2n | ≤∑n ≥2 | ξn | /2n < ∑n ≥2 1/2n = 1/2,这样得到| ξ1 | < 1,矛盾.故{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.因此也有|| x0–z || > 1.综上所述,但∀y∈M,有|| x0–y || > 1.由此,立即知道inf z ∈M || x0–z || ≥ 1.下面证明inf z ∈M || x0–z || ≤ 1.∀n∈ +,令z n= (1 - 1/2n, -1, -1, ..., -1, 0, 0, ...).( z n从第2个坐标开始有连续的n个-1,后面全部是0 ),则(1 - 1/2n)/2 - 1/4 - 1/8 - ... - 1/2n + 1 = 0,因此z n∈M.此时,|| x0–z n || = max{| 1 + 1/2n|, | 1/4|, | 1/8|, ... } = 1 + 1/2n.故inf z ∈M || x0–z || ≥ inf n || x0–z n || = inf n (1 + 1/2n ) = 1.所以,inf z ∈M || x0–z || = 1.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:∃y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ∀x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,∀n∈ +,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ∀x ∈M ).1.4.16 若f是定义在区间[0, 1]上的复值函数,定义ωδ( f ) = sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}.如果0< α≤ 1对应的Lipschitz空间Lipα,由满足|| f || = | f(0) | + supδ > 0{δ–αωδ( f )} < +∞的一切f组成,并且以|| f ||为模.又设lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0}.求证Lipα是B空间,而且lipα是Lipα的闭子空间.证明:(1) 显然,C1[0, 1]⊆Lipα,因此Lipα不空.对区间[0, 1]上的复值函数f, g,∀λ∈ ,我们有ωδ( f + g ) = sup{| f (x) + g (x) – f (y) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ sup{| f (x) – f (y) | + | g (x) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ωδ( f ) + ωδ( g ).ωδ( λ f ) = sup{|λ f (x) –λ f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| ·ωδ( f ).若f, g∈Lipα,λ∈ ,则|| f + g || = | f(0) + g(0) | + supδ > 0{δ–αωδ( f + g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–α(ωδ( f ) + ωδ( g )) }= | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) + δ–αωδ( g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) }+ supδ > 0{ δ–αωδ( g ) }= || f || + || g || < +∞.|| λ f || = | λ f(0) | + supδ > 0{δ–αωδ( λ f )}= | λ| · | f(0) | + | λ| · supδ > 0{δ–αωδ( f )}= | λ| · || f || < +∞.因此,f + g, λ f∈Lipα,且上述两个不等式表明|| · ||有齐次性和三角不等式.显然,|| f || ≥ 0.当|| f || = 0时,| f(0) | + supδ > 0{δ–αωδ( f )} = 0,意味着f(0) = 0,且ωδ( f ) = 0(∀δ> 0).而ωδ( f ) = 0(∀δ> 0)则意味着f为常值.所以,f = 0.即|| · ||有正定性.综上所述,Lipα是B*空间.(2) 我们首先证明集合Lipα⊆C[0, 1].∀f∈Lipα,∀x, y∈[0, 1],x ≠y,记δ = | x -y |.则| f (x) – f (y) | ≤ωδ( f ).而δ–αωδ( f ) ≤ supδ > 0{δ–αωδ( f n-f m) } ≤ || f ||,所以,| f (x) – f (y) | ≤ || f || δα= || f || · | x -y |α,故f∈C[0, 1].我们再证明,∀f∈Lipα,|| f ||C≤ || f ||,其中|| ·||C是C[0, 1]范数.事实上,∀x∈[0, 1],| f (x) | ≤ | f (0) | + | f (x) – f (0) |,故|| f ||C = max x∈[0, 1] | f (x) | ≤ | f (0) | + max x∈[0, 1] | f (x) – f (0) |≤ | f (0) | + sup x∈(0, 1] | f (x) – f (0) |/| x |α≤ | f (0) | + sup x∈(0, 1] { δ–αωδ( f ) } ≤ || f ||.这说明,如果{ f n }是Lipα中的基本列,则它也必是C[0, 1]中的基本列.而C[0, 1]是完备的,故存在f∈C[0, 1],使得{ f n }一致收敛于f.而{ f n }作为Lipα中的基本列,有|| f n-f m || = | f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } → 0 (n, m→∞),因此∀ε > 0,∃N∈ +,使得∀n, m > N,有| f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } < ε.因此supδ > 0{δ–αωδ( f n-f m) } < ε.故∀δ > 0,ωδ( f n-f m) < εδα.即∀x, y∈[0, 1],| x -y | ≤δ,都有| ( f n(x) -f m(x)) - ( f n(y) -f m(y)) | < εδα.令m→∞,得到| ( f n(x) -f(x)) - ( f n(y) -f(y)) | ≤εδα.因此,sup {| ( f n(x) -f(x)) - ( f n(y) -f(y)) | | x, y∈[0, 1],| x -y | ≤δ}≤εδα.即∀δ > 0,ωδ( f n-f ) ≤εδα.故supδ > 0{δ–αωδ( f n-f ) } ≤ε.同样地,对不等式| f n(0) -f m(0) | < ε令m→∞,就得到| f n(0) -f(0) | ≤ε.所以,| f n(0) -f(0) | + supδ > 0{δ–αωδ( f n-f ) } ≤ 2ε.这说明f n-f∈Lipα.而f n∈Lipα,故f = ( f -f n ) + f n∈Lipα.而前面的式子也表明|| f -f n || ≤ 2ε.因此|| f n-f || → 0 (n→∞),即{ f n }为Lipα中的收敛列.所以,Lipα是Banach空间.(3) 记lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0 }.∀f, g∈lipα,∀λ∈ ,我们有δ–αωδ( f + g ) ≤δ–α(ωδ( f ) + ωδ( g ) ) = δ–αωδ( f ) + δ–αωδ( g ) → 0 (δ→ 0).δ–αωδ( λ f ) = | λ| ·δ–αωδ( f ) → 0 (δ→ 0).故f + g, λ f∈lipα,因此,lipα是Lipα的线性子空间.设{ f n }是lipα中的序列,且f n→f∈Lipα(n→∞).则{ f n }一致收敛于f.∀ε > 0,存在N∈ +,使得|| f N →f || < ε /2.故有supδ > 0{δ–αωδ( f N-f ) } < ε /2.因为lim δ→ 0 δ–αωδ( f N) = 0,所以,∃∆ > 0,使得∀δ∈(0, ∆),有δ–αωδ( f N) < ε /2.此时我们有δ–αωδ( f ) ≤δ–α(ωδ( f N) + ωδ( f -f N))= δ–αωδ( f N) + δ–αωδ( f -f N)< ε /2 + supδ > 0{δ–αωδ( f N-f ) } < ε.所以,lim δ→ 0 δ–αωδ( f ) = 0,即f∈lipα.所以lipα是Lipα的闭子空间.1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’-x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(⇒) 若x∈[ y ],则x~y.∀u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ⊆x + X0.反过来,∀u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ⊆ [ y ].所以[ y ] = x + X0.(⇐) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(∀[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(∀[ x ]∈X/X0 , ∀λ∈ )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ∀[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域 上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,∀[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.∀[ x ]∈X/X0,∀λ∈ ,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y ||= | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.∀[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} }≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || }= inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对∀y∈[ x ]有inf { || y -z || | z∈X0 } = || [ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射ϕ : X →X/X0为ϕ (x) = [ x ] = x + X0(∀x∈X ).求证ϕ是线性连续映射.证明:∀x, y∈X,∀α, β∈ ,ϕ( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = αϕ (x) + βϕ (y).|| ϕ (x) -ϕ (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = inf z∈[ x-y ] || z || ≤ || x-y ||.所以,ϕ是线性连续映射.(5) ∀[ x ]∈X/X0,求证∃y∈X,使得ϕ (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在∃y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有ϕ (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),∀k∈ +,∃y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中ϕ的连续性,在X/X0中,ϕ(s k) →ϕ(s) ( k→∞ ).而ϕ(s k) = ϕ( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ϕ( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ≅ ,其中记号“≅”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ⇔ f (0) = g (0).定义Φ : X/X0 → ,Φ([ f ]) = f (0).显然定义是合理的.∀f, g∈X,∀α, β∈ ,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而∀c∈ ,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 → 是线性同构.∀f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,∀f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 → 是等距同构.[第4节完] 泛函分析题1_5凸集与不动点p521.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski 泛函,求证:(1) x∈int(E) ⇔P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,∀ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设∀x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1 · || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k · || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ⊆C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.4 设C是B空间X中的一个有界闭凸集,映射T i : C→X (i = 1, 2)适合(1) ∀x, y∈C ⇒T1x + T2y∈C;(2) T1是一个压缩映射,T2是一个紧映射.。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析

泛函分析

泛函分析泛函分析作为数学领域中的一个重要分支,研究了无限维度的向量空间和函数空间上的问题。

其广泛应用于物理学、工程学和计算机科学等领域,为解决现实生活中的问题提供了有效的数学工具和方法。

泛函分析的起源可以追溯到19世纪,其发展得益于函数论和拓扑学的进展。

在20世纪初,泛函分析的理论框架和方法逐渐形成,并为很多数学家和科学家所接受和应用。

泛函分析的基本概念包括向量空间、线性算子、泛函以及拓扑结构等,这些概念构成了泛函分析的基础。

在泛函分析中,向量空间是一个非常重要的概念。

它是一种由向量组成的集合,具有加法和数乘运算,并满足一定的性质。

向量空间可以是有限维的,也可以是无限维的。

无限维空间是泛函分析的研究对象之一,其特点是空间中的向量可以是无限维的。

线性算子是泛函分析中另一个重要的概念。

它是将一个向量空间映射到另一个向量空间的函数,保持线性性质。

线性算子可以描述很多实际问题,例如变换、积分和微分等。

泛函是对向量空间中的向量进行映射的函数。

它可以将向量映射到实数域或复数域,并满足一定的性质。

泛函的概念是泛函分析的核心之一,使得我们可以研究函数的性质和行为。

拓扑结构是泛函分析中的一个重要概念,它描述了向量空间中元素之间的接近程度。

通过引入拓扑结构,可以定义连续性和收敛性等概念,为研究函数空间中的极限和连续性提供了数学基础。

泛函分析的应用广泛而且多样化。

在物理学中,泛函分析被用于描述量子力学和经典力学中的问题,例如量子力学算子、哈密顿力学和波动方程等。

在工程学中,泛函分析可以应用于控制论、信号处理和图像处理等领域。

在计算机科学中,泛函分析被用于定义距离度量和相似性度量,提供了计算机视觉和模式识别等方面的基本工具。

泛函分析的发展离不开众多优秀的数学家和科学家的努力。

知名的数学家如Hilbert、Banach和Frechet等对泛函分析的发展做出了重要贡献。

他们提出了许多重要的定理和概念,奠定了泛函分析的基础。

泛函分析知识点总结

泛函分析知识点总结

泛函分析知识点总结1.Baire定理定理(Baire纲定理)完备的距离空间是第⼆类型集。

解释:完备的距离空间(X,d),∀x∈X都是内点,因为X在X中是开集。

⼀个⽆处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个X,即X不是第⼀类型集,所以只能是第⼆类型集。

注:完备的距离空间是第⼆类型集,那么它的闭包⾄少存在⼀个内点。

这个经常被⽤来证明。

例如,开映射定理、闭图像定理等。

2. 闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。

导集是集合所有聚点组成的集合,不包含孤⽴点。

所以闭包是集合导集和孤⽴点组成的集合。

3.闭集在度量空间中,如果⼀个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。

4.不动点定理压缩映射:设(X,d)是距离空间,T是X到X的映射,如果存在⼀个常数θ(0≤θ<1),对于所有的x,y∈X,满⾜下述不等式:d(Tx,Ty)<θd(x,y)则称T是X上的⼀个压缩映射。

不动点定理:设X是完备的距离空间,T是X到X的压缩映射,则T在X上有唯⼀的不动点x∗.即Tx∗=x∗是⽅程Tx=x在X上的唯⼀解。

5.施密特正交化将⼀个线性⽆关的集合{x n}进⾏施密特正交化。

e1=x1 ||x1||e2=x2−<x2,e1>e1 ||x2−<x2,e1>e1||e j+1=x j+1−j∑k=1<x j+1,e k>e k ||x j+1−j∑k=1<x j+1,e k>e k||注:本质上说就是让x j+1减去其在e k,k=0,…,j上的分量,就正交化了。

然后再除以对应范数,进⾏单位化。

6.Hilbert空间的同构n为的实(复)Hilbert空间与R n(C n)同构。

(保距离,保线性,保范数,保内积)⽆限维可分Hilbert空间与l2空间(L2[0,1])等距同构。

7.算⼦的连续性和有界性连续性:对于X中的任何收敛于x0的点列{x n},恒有Tx n→Tx0,n→=∞有界性:存在正常数M,使得对⼀切x∈X,有||Tx||≤M||x||⼀点连续,则处处连续:设X和Y是数域\textbf{F}上的线性赋范空间,T:X→Y是⼀个线性算⼦。

泛函分析报告知识的总结

泛函分析报告知识的总结

泛函分析报告知识的总结泛函分析是数学中的一个重要分支领域,它研究的是无穷维空间上的函数及其性质。

泛函分析的应用广泛,包括函数空间、傅里叶分析、偏微分方程等等。

下面是我对泛函分析的一些知识进行总结。

首先,泛函分析的基础是线性代数和实分析。

线性代数研究的是向量空间及其线性关系,实分析则研究的是实数空间上的函数性质,例如收敛性、极限、连续性等等。

这两个基础学科为泛函分析的理论及应用打下了坚实的基础。

其次,泛函分析的核心是函数空间的研究。

函数空间是指一组函数的集合,其中的函数可以是有界函数、可积函数、连续函数等等。

泛函分析研究的是函数空间上的线性算子及其性质,例如范数、内积、完备性等等。

常见的函数空间有Lp空间、C(X)空间、Sobolev空间等等。

然后,泛函分析的重要工具是算子理论。

算子理论研究的是线性算子的性质和作用。

在泛函分析中,线性算子可以将一个函数映射到另一个函数,例如导数、积分等。

算子理论主要研究线性算子的性质,例如有界算子、紧算子、自伴算子等等。

算子理论在解析、几何等问题中有着广泛的应用。

此外,泛函分析也研究了拓扑结构及度量空间的性质。

拓扑结构是用来描述集合上点的邻域关系的概念,是泛函分析中重要的概念。

度量空间是带有度量函数的拓扑空间,度量函数可以度量空间中两个点之间的距离。

拓扑结构和度量空间的研究为泛函分析提供了一种统一的框架。

最后,泛函分析的应用广泛,特别是在数学的其他分支领域中。

在偏微分方程中,泛函分析可以用来研究问题的存在性、唯一性和稳定性;在概率论中,泛函分析可以用来研究随机过程的性质和收敛性;在图像处理中,泛函分析可以用来研究图像的压缩和恢复等等。

总之,泛函分析在数学及其应用领域中具有重要的地位和作用。

总结起来,泛函分析研究的是无穷维空间上的函数及其性质,它的基础是线性代数和实分析。

泛函分析的核心是函数空间的研究,它的重要工具是算子理论及拓扑结构和度量空间的性质。

泛函分析的应用非常广泛,涉及到数学的各个分支领域。

泛函分析ppt课件

泛函分析ppt课件
映照,如果存在数a (0<a<1),使得对所有的x,y
∈X都有ρ(Tx, Ty)<aρ(x, y),则称T是压缩映照
定理:完备距离空间 X 上的压缩映照T,必 存 唯一的不动点x*,使得Tx*=x*. (Banach压 缩映 照定理)
距离空间:不动点原理
应用:微分方程,代数方程,积分方程解的唯一存在 性
n
S f (i )xi
i 1
若其极限存在则称Riemann可积
b
n
(R) a f (x)dx lxim0 i1 f (i )xi
从Riemann积分到Lebesgue积分
Riemann积分的思想是,将曲边梯形分成若干个小 曲 边梯形,并用每一个小曲边梯形的面积用小矩形 来代 替,小矩形的面积之和就是积分值的近似。剖 分越精 细,近似程度越好。
距离空间:定义
设 X 是非空集合,对于X中的任意两元素x与y,按某一法则都
对 应唯一的实数ρ(x, y),并满足以下三条公理(距离公理)

1. 非负性: ρ(x, y) ≥0, ρ(x, y) =0当且仅当x=y; 2. 对称性: ρ(x, y) =ρ(y, x);
3. 三角不等式;对任意的x, y, z
例子:Fredholm第二类积分方程
b
x(s) f (s) a K (s,t)x(t)dt
对充分小的| λ |,可证
当f ∈ C[a, b], K(s, t)∈ C[a, b; a, b]时有唯一连续解 当f ∈ L2[a, b], K(s, t)∈ L2 [a, b; a, b]时有唯一平方可积解
(x, y) (a b )2 1/ 2 i i i
则 Rn是距离空 间
距离空间: Lp[a,b]

泛函分析ppt课件

泛函分析ppt课件

傅里叶变换与小波变换的应用
傅里叶变换的应用
傅里叶变换在信号处理、图像处理、语音处理等领域 有着广泛的应用。例如,在信号处理中,可以通过傅 里叶变换将信号从时域转换到频域,从而方便地进行 信号的分析和合成。在图像处理中,可以通过傅里叶 变换对图像进行频域滤波,从而实现图像的降噪和增 强。在语音处理中,可以通过傅里叶变换对语音信号 进行分析和处理,从而实现语音的识别、压缩和加密 等任务。
REPORTING
在物理学中的应用:量子力学与相对论
量子力学
泛函分析在量子力学中有着广泛的应用,如波函数的形式化 描述、薛定谔方程的推导等。
相对论
泛函分析也被用于相对论中的时空变换和场方程的构造,以 及在广义相对论中研究黑洞的性质等。
在工程学中的应用:控制理论、电气工程等
控制理论
泛函分析在控制理论中有着重要的应用 ,如研究系统的稳定性、时域响应等。
PART 05
泛函分析在信号处理中的 应用
REPORTING
信号处理的基本概念
信号的定义与分类
信号是传递或表达某些信息的数据或数据流。它可以分为 离散信号和连续信号,离散信号是离散时间点的数据,而 连续信号是连续时间点的数据。
信号处理的定义与目的
信号处理是对信号进行变换、分析和解释的过程,目的是 从原始信号中提取有用的信息,或者将原始信号变换为另 一种形式,使其更易于分析和理解。
其他应用
泛函分析还可以应用于滤波器设计、压缩感知等领域。例如,基于小波变换的压缩感知方 法可以在保持信号质量的同时,实现信号的压缩和存储。
实例分析:信号的傅里叶变换与小波变换
傅里叶变换的基本原理
傅里叶变换是一种将时域信号转换到频域的方法。它将一个时域信号表示为一系列不同频率的正弦和 余弦函数的线性组合。通过傅里叶变换,我们可以将信号从时域转换到频域,从而可以更好地分析信 号的频率特性。

《泛函分析》课程教学大纲

《泛函分析》课程教学大纲

《泛函分析》课程教学大纲《泛函分析》课程教学大纲一、课程基本信息课程代码:课程名称:泛函分析英文名称:Functional analysis课程类别:选修课学时:54学分:3适用对象: 数学类本科生考核方式:考察先修课程:数学分析,高等代数,实变函数二、课程简介《泛函分析》是现代教学中的一门较新的数学分支,是高等师范院校数学专业的一门重要专业课,它是在学生掌握了数学分析、高等代数的理论知识的基础上,继实变函数之后开设的。

本课程主要内容包括:⑴度量空间和赋范线性空间;⑵有界线性算子和连续线性泛函;⑶内积空间和希尔伯特(Hilbert)空间;(4)巴拿赫空间中的基本定理;(5) 线性算子的谱等。

通过该课程的学习,学生不仅能学到泛函分析的基本理论和方法,而且对学习其他数学分支以及把他应用到数理经济,现代控制论,量子场论,工程技术等领域有很大帮助。

三、课程性质与教学目的1、本课程是数学基础之一,授课对象为数学专业学生。

在讲授和学习时,应注重提高学生分析问题和解决问题的能力,培养学生良好的逻辑思维习惯,让学生掌握全面考虑问题的思维方法,这将有助于学生们顺利地学习其他现代专业数学理论课。

2、本课程主要内容包括:⑴度量空间和赋范线性空间;⑵有界线性算子和连续线性泛函;⑶内积空间和希尔伯特(Hilbert)空间;(4)巴拿赫空间中的基本定理;(5) 线性算子的谱等内容。

3、本大纲的教学总时数为54学时(含习题课),各章节教学时数的具体分配,请参考附表。

4、本课程以课堂讲授为主,讨论辅导为辅,课堂练习与课外作业相结合。

5、在制定本教学大纲时,为了明确对教学大纲中所列具体内容的要求程度,将本要求分为由低到高的三个等级,即对概念和理论性的知识,由低到高分别用“知道”、“了解”、“理解”三级区分,对运算、方法和应用方面的知识,由低到高分别用“会或能”、“掌握”、“熟练掌握”三级区分。

四、理论教学内容与教学基本要求1、第一章度量空间和赋范线性空间(14学时)(1) 度量空间的进一步例子(2) 度量空间中的极限,稠密集,可分空间(几类特殊的点集,稠密性与可分性)(3) 连续映射(度量空间上的连续映射)(4) 柯西(Cauchy)点列和完备度量空间(5) 度量空间的完备化(完备的距离空间,第一第二类型集,距离空间的完备化)(6) 压缩映射原理及其应用(7) 线性空间(8) 赋范线性空间和巴拿赫(Banach)空间教学目的及要求:要求学生掌握距离空间的一些基本概念,为后面学习打下基础。

13-14下泛函分析试题a---考查

13-14下泛函分析试题a---考查

13-14下泛函分析试题a---考查湖北文理学院2013-2014学年度下学期泛函分析试题A(考查)专业: 班级: 学号: 姓名:课程类别:专业课适用专业:数学与应用数学1111题目一二三总分满分 18 15 67 100得分得分评卷人一、判断题(每小题2分,共18分)1、任何空间中有界序列必有收敛子列. ( ),2、弱收敛与弱收敛是一致的. ( )3、任何共轭空间都是Banach空间. ( )Pab,4、空间是完备的度量空间. ( ) ,,5、内积空间一定为完备的赋范空间. ( )6、非零赋范线性空间上有非零有界线性泛函. ( )2227、设X是实内积空间,若,则. ( ) xy,||||||||||||xyxy,,,8、度量空间中的紧集合自列紧等价. ( )9、Hilbert空间一定为Banach空间. ( )得分评卷人二、填空题(每小题3分,共15分)1、设T是赋范线性空间X到赋范线性空间Y中的线性算子,则T为有界算子的充要条件是 (,M2、设X是内积空间,M是X的非空子集,则是X中的集(3、设X为内积空间,则内积是关于两个变元连续(4、柯西-施瓦兹不等式是 .5、赋范线性空间成为内积空间的条件是 (得分评卷人三、证明题(共67分)(,)XddXXR:,,1、(15分)设是一个完备的距离空间,定义为 1第1页,共4页dxy(,), dxyX,,,(,)11(,),dxy证明是的一个距离,且是一个完备的距离空间( Xd(,)Xd1101,,r2、(15分)设,对,定义 ,,xC[0,1]r1fxxtdtxtdt()()().,, ,,0rff证明是C[0,1]上的有界线性泛函,并求的范数.第2页,共4页3、(10分)试举例说明算子强收敛不一定有一致收敛.XXx,Xx,04、(15分)设是赋范线性空间,,,则必存在上的有界00 f(x),||x||线性泛函,使得,并且. f(x)||f||,100第3页,共4页5、(12分)证明:用闭图像定理证明逆算子定理(•••••••••••••••••• 【唯美句子】走累的时候,我就到升国旗哪里的一角台阶坐下,双手抚膝,再闭眼,让心灵受到阳光的洗涤。

泛函分析知识总结讲解

泛函分析知识总结讲解

泛函分析知识总结讲解泛函分析是数学的一个分支,研究无限维空间中的函数与函数序列的性质以及它们之间的关系。

它是实数分析和复数分析的推广与深化,是现代数学的基石之一,对于几乎所有分支的数学都具有极高的重要性。

以下是对泛函分析的知识总结和讲解。

1.范数空间与内积空间:泛函分析的基础概念是线性空间,进一步的,我们将线性空间中的向量赋予一定的范数或内积,得到范数空间和内积空间。

范数空间是指一个线性空间中存在一个范数,满足向量加法、标量乘法和范数运算的线性性质。

常见的范数空间有欧几里得空间、无穷范数空间和Lp空间等。

内积空间是指一个线性空间中存在一个内积,满足线性性质、对称性和正定性。

内积定义了向量之间的夹角和长度,并且可以衡量向量的相似度和正交性。

常见的内积空间有欧几里得空间和希尔伯特空间等。

2.完备性与紧性:完备性是指一个度量空间中的柯西序列在该空间中有一个极限点。

具有完备性的空间被称为“完备度量空间”或“巴拿赫空间”。

典型的完备度量空间包括实数集和复数集。

紧性是指一个度量空间中存在一个有限的覆盖,可以从中选取有限个开球覆盖整个空间。

紧性是度量空间的一个重要性质,表明空间的元素具有收敛性质。

3.可分性与连续性:可分性是指一个度量空间中存在一个可数的稠密子集。

可分性是度量空间的一个重要性质,表明空间的元素可以用可数个元素逼近。

连续性是指线性空间和范数空间中的映射保持了基本的运算和距离的一致性。

连续性是一个重要的概念,它描述了元素的连续变化和收敛性质。

4.泛函与算子:泛函是指一个线性空间到实数或复数的映射。

泛函可以是线性的,也可以是非线性的,常见的泛函有线性泛函和连续泛函等。

算子是指一个线性空间到另一个线性空间的映射。

算子可以是线性的,也可以是非线性的。

常见的算子有线性算子和连续算子等。

5.特征空间与对偶空间:特征空间是指一个线性算子的定义域,它是算子的作用空间的一种表达形式。

特征空间可以是有限维空间,也可以是无限维空间。

泛函分析简介

泛函分析简介

泛函分析简介泛函分析是数学中的一个重要分支,它研究的对象是函数的空间,而不仅仅是函数本身。

泛函分析在数学理论研究和实际问题求解中都有着广泛的应用。

本文将简要介绍泛函分析的基本概念、重要定理以及其在现代数学和物理学中的应用。

泛函分析的基本概念包括向量空间、内积空间、赋范空间和希尔伯特空间等。

在泛函分析中,向量空间是最基本的概念之一。

向量空间是指一个集合,其中的元素称为向量,满足一定的运算规则,比如加法和数乘。

内积空间是在向量空间的基础上引入了内积的概念,内积可以衡量向量之间的夹角和长度。

赋范空间是在向量空间的基础上引入了范数的概念,范数可以衡量向量的大小。

希尔伯特空间是一个完备的内积空间,其中的每一个柯西序列都收敛于空间中的一个元素。

泛函分析中的重要定理包括巴拿赫空间定理、霍尔德不等式、开映射定理、闭图像定理等。

巴拿赫空间定理是泛函分析中的一个基本定理,它指出了完备赋范空间的闭单位球是紧的。

霍尔德不等式是用来估计函数的导数和函数本身之间的关系的一个重要不等式。

开映射定理和闭图像定理则是关于线性算子的性质和映射的性质的重要定理。

泛函分析在现代数学和物理学中有着广泛的应用。

在数学中,泛函分析被广泛运用于偏微分方程、概率论、调和分析等领域。

在物理学中,泛函分析被广泛运用于量子力学、热力学、电磁学等领域。

泛函分析的理论不仅为这些领域提供了重要的数学工具,而且深刻影响了这些领域的发展。

总之,泛函分析作为数学中的一个重要分支,其基本概念和重要定理为研究者提供了丰富的数学工具和理论支持。

泛函分析在数学和物理学中有着广泛的应用,对于理解和解决实际问题具有重要意义。

希望本文的简要介绍能够帮助读者更好地理解泛函分析的基本概念和重要定理,以及其在现代数学和物理学中的应用。

关于泛函分析的初步介绍

关于泛函分析的初步介绍

关于泛函分析的初步介绍泛函分析是数学中的一个分支领域,研究的是函数空间上的向量和函数的性质。

它将线性代数和微积分的概念扩展到了无限维度的函数空间上,广泛应用于物理、工程、经济学以及其他领域的问题求解中。

泛函是一个将函数映射到实数或复数的映射。

简单来说,泛函是一个定义在一个函数空间上的函数。

泛函分析主要研究泛函的性质和在函数空间上的运算。

泛函分析中最基本的概念是向量空间。

向量空间是由一组向量组成的集合,满足一定的运算规则,例如,对于两个向量的加法和数乘运算都满足交换律和结合律。

与传统的线性代数不同,泛函分析中的向量可以是具有无限维度的函数。

泛函分析的另一个重要概念是内积空间。

内积空间是一个向量空间,其中定义了一个内积(标量积)的运算。

内积运算将两个向量映射成一个实数或复数,并满足线性性质、对称性和非负性。

通过内积运算,可以定义向量的长度(范数)和向量之间的夹角。

基于内积空间的概念,我们可以引入一个重要的概念,赋范空间。

赋范空间是一个向量空间,其中定义了一个范数的运算。

范数是一个将向量映射到非负实数的函数,满足非负性、齐次性和三角不等式。

范数可以用来度量向量的大小。

在赋范空间中,我们可以定义向量的收敛性,即当向量的范数趋于零时,向量序列收敛。

对于赋范空间而言,我们可以定义一个度量,即距离函数。

距离函数将两个向量映射到一个非负实数,并满足非负性、对称性和三角不等式。

通过距离函数,我们可以定义向量空间中的连续性和收敛性。

泛函分析的核心概念之一是线性算子。

线性算子是一个将一个向量空间映射到另一个向量空间的映射。

线性算子将向量的线性组合映射到另一个向量的线性组合,并保持运算规则不变。

在线性代数中,线性算子可以用矩阵表示,而在泛函分析中,线性算子可以用无穷维的矩阵(即无穷维的函数)表示。

另一个重要的概念是连续性和收敛性。

在泛函分析中,我们可以定义向量空间中的拓扑结构,并用拓扑结构来定义连续性和收敛性。

连续性衡量的是向量映射的光滑程度,而收敛性则衡量的是向量序列的趋于极限的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
xk
))


min
1k n

(
x0 2
,
x
)
,
x

B(
x0
,

)
( x, xk ) ( xk , x0 ) ( x, x0 ) 2
所 以 ,B( x0 , ) M为 空 集 , 从 而M的 余 集 为 开 集 , 从 而M闭 集
(2) 证M是 列 紧 的(. 反 证 ) 若M不 是 列 紧 的 , 则 存 在{ xn }没 有 收 敛 子 列
的 集 合M是 列 紧 的 必 须 ( 且 仅 须)M是 完 全 有 界 集
“” 若{ xn }是M中 的 无 穷 点 列 , 欲 证 存在 收 敛 子 列 因 为M是 完 全 有 界 集
对1 网 ,y1 M ,有{ xn }的 子 列{ xn(1)}, 使 得{ xn(1)} B( y1 ,1); 对1 / 2 网 ,y2 M ,有{ xn(1)}的 子 列{ xn(2)}, 使 得{ xn(2)} B( y2 ,1 / 2);
证 : “” (1) 证M是 闭 的 , 即 证X M是 开 的
任 取x0

X

M
, x

M ,令B( x,
( x0,
2
x ) ),则M

B( x,
( x0,
2
x) )
由 于M紧 , 所 以 可 取 有 限 个xk (k

1,2,, n),使 得M

n
B( xk
k 1
,
( x0,
度量空间
列紧集
列紧集
A是距离空间X的一个子集,
• 称A是有界的,如果A包含在X的某点的开 球中;
• 称A是列紧的,如果A中任意点列在X中有 一个收敛的子列;
• 称A是自列紧的,如果上述子列的极限点 在A中;
• 称X为列紧空间,如果X是列紧的。
命 题 : 在Rn中 任 意 有 界 集 是 列 紧 集, 任 意 有 界 闭 集 是 自 列 紧集
M B( y, )
yN
M是 距 离 空 间X的 一 个 子 集 , 称M是 完 全 有 界 的 ,
如 果 0, 都 存 在 着M的 一 个 有 穷网 。
定 理1.3.(7 Hausdorff ) 为 了 ( 完 备 ) 距 离 空间 (X , ) 中
的 集 合M是 列 紧 的 必 须 ( 且 仅 须)M是 完 全 有 界 集
对1 / k 网 ,yk M ,有{ xn(k1)}的 子 列{ xn(k)}, 使 得{ xn(k)} B( yk ,1 / k );
取 子 列{ xk(k)}则 0,当n 2 / 时 ,
(xn
(n p
p),
xn(n))
(xn
(n p
p),
yn)


“”




若M不








使
0
得M中





0
任 取x1 M , x2 M \ B( x1, 0 );
对{ x1,x2 } M,x3 M \ B( x1 , 0 ) B( x2 , 0 );

n
对{ x1,x2

xn }
M,xn1

M
\

k 1
B( xk
, 0 );

所 以 存 在 数 列{ xn } M, 且m, n, ( xm , xn ) 0 (m n)
且{ xn }不 含 收 敛 子 列 , 与M列 紧 矛 盾 , 从 而M是 完 全 有 界 集
定 理1.3.(7 Hausdorff ) 为 了 ( 完 备 ) 距 离 空间 (X , ) 中
假 定xn互 异 , 作Sn

{ x1 ,
x2 ,,
xn1 ,
xn
1
,}
,则S

n


,X

S

n


(X \ Sn) X \ Sn X M , 从 而{ X \ Sn }是M的 一 个 开 覆 盖
N
N
由 于M紧 , 从 而N , 使 得M (X \ Sn) X \ Sn
命题:列紧空间内任意(闭)子集都是(自)列紧集
命题:列紧空间必是完备空间
M是距离空间X的一个子集, 0, N M
如 果 对 于x M , y N ,使 得(x, y) , 那 么 称N是M的 一 个网
如 果N还 是 一 个 有 穷 集 ( 个 数依 赖 于), 那 么 称N是M的 一 个 有 穷网
(yn , xn(n))
2/

2/


所 以{ xk(k)}是 一 基 本 列 , 因 此 收 敛
基本概念:可分、紧
定理1.3.9:完全有界的距离空间是可分的
定 理1.3.11: 设 (X , ) 是 一 个 距 离 空 间 , 为了M X是 紧 的
必 须 且 仅 须 它 是 自 列 紧集
n1
n1
N
N
对xn1 , 显 然xn1

M , 但xn
而xn1

X
\

Sn, 矛 盾
n1
n1
从 而M是 列 紧 的 , 所 以M是 自 列 紧 的
“” ( 反 证 ) 由 于M自 列 紧 , 所 以M列 紧 , 所 以M完 全 有 界
假定存在M的某个开覆盖 B M不能取出M的有限覆盖
由于M完全有界,所以n
N , 有穷1 /
n网N n

{ x1(n) ,
x2( n
)
,
x(n) k(n)
}
显然 B( y,1 / n) M
yN n
由假设,n, yn Nn ,使得B( yn ,1 / n)不能被有限个B覆盖
对{ yn }, 由 于M是 自列 紧集 , 所 以存 在{ yn }的 收敛 子列{ ynk } 使 得ynk y0, 必 存 在 某 个G0 , 使 得y0 G0
设M是一个紧的距离空间,带有距离,用C(M )表示M R1
所 以 0, 使 得B( y0 , ) G0 ,取k足 够大 , 使 得nk 2 / 且( ynk , y0 ) 2 / , 所 以x B( ynk ,1 / nk ) ( x, y0 ) ( x, ynk ) ( ynk , y0 ) 1 / nk 2 / 所 以x B( y0 , ),所 以B( ynk ,1 / nk ) B( y0 , ) G0 ,与 假设 矛盾
相关文档
最新文档