(完整)泛函分析知识总结,推荐文档
泛函分析第四讲

Tx M x ,
则称 T是 DT Y 中的有界线性算子.
当 DT X时,称 T 是 X Y 中的有界线性算子.
第二章 泛函分析
第二节 赋范线性空间及Banach空间
二、有界线性算子和连续线性泛函
泛函分析
2.2 赋范线性空间及Banach空间
第二章 泛函分析
一、赋范线性空间
1. 赋范线性空间的定义
定义1 设 X 是复(或实)的线性空间,
如果对于 X 中的每个 x ,对应于一个实数 x ,
且满足 (1) x 0,x 0 x 0;
(2) x x , R 或 C;
(非负性) (齐次性)
第二章 泛函分析
第二节 赋范线性空间及Banach空间
三、线性算子空间和共轭空间
定理5 ƁX Y 按通常的线性运算及算子范数
构成一个赋范线性空间. 证Ax sup Ax
x 1
x 1
x 1
A
(3)A B sup A Bx sup Ax Bx
x D, x 0
第二章 泛函分析
第二节 赋范线性空间及Banach空间
二、有界线性算子和连续线性泛函
定理3 设 X ,Y 是两个赋范线性空间, T : X Y 的线性算子,则T连续的充要条件是 T有界.
证明 必要性 若T连续但无界
xn X,xn 0n 1,2, 使 Txn n xn
令
yn
定理2 设 X ,Y 是两个赋范线性空间,T是定义在 X 的子空间D上而值域含在 Y 中的线性算子,则 T 是有界的充要条件是 T将D中任一有界集映成 Y 中有界集.
证明 必要性
泛函分析复习与总结

《泛函分析》复习与总结 (2014年6月26日星期四 10:20---11:50)第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。
以下几点是对第一部分内容的归纳和总结。
一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。
距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。
(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。
赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。
(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。
第二章 泛函分析

d (x,y) min x(t) y(t) 并非距离。因它不满足第 a t b
一个条件。即当min x(t) y(t) =0时,并不能说明 a t b
x(t)=y(t)。我们可以通过下图来说明这个问题。
a
b
2、距离空间的完备性
(1)距离空间中的收敛列与柯西列
n
由此可设 x = i i 1
(2)算子空间B( X,Y )
B(X,Y ) T | T : X Y为有界线性算子,则可证B(X,Y )
关于算子加:(T1 T2 )x T1x T2x,算子数乘(T )x Tx,是
线性空间。其中的零元即零算子:把任意的x映射成0。
定义(X 有限维)Q X 有限维,可设其基为x1……xn,
则对任意x X,有x 1x1 …… n xn Tx T (1x1 …… n xn )
T线性 1Tx1 …… nTxn
1 Tx1 …… n Txn C( 1 …… n )
收敛
柯西列
完备性
距离 空间
lim
n
d
(
xn,x)
0
lim
n,m
d
( xn,xm
)
0
任意柯 西列均
赋范 空间
lim
n
xn x
0
lim
n,m
xn xm
0
收敛
二、有界线性算子与泛函 1、有界性算子与算子空间 (1)有界性算子 # 算子:即映射T : X Y,其中X 和Y是实线性空间。
n
1 n
0。
一般的,在距离( X,d )中,设点列xn X,若有x X,
泛函分析读书笔记(上)(可编辑修改word版)

第一部分线性代数第一章 线性空间第一节 线性空间一、基本概念1、 定义:数域P =复数子集+四则运算封闭2、 定义:线性空间=•+),;;(P V 数域P 上的线性空间V =线性空间V ⑴、解释:=V 非空集合⑵、解释:V V V →⨯=+【加法,加法保持封闭】 ⑶、解释:V V P →⨯=•【数乘,数乘保持封闭】 ⑷、解释:=•+),(线性运算【满足8条规则】3、 8条规则加法规则:⑴、交换律:αββα+=+⑵、结合律:)()(γβαγβα++=++⑶、零元素:V ∈∃0,对于V ∈∀α,都有αα=+0⑷、负元素:对于V ∈∀α,V ∈∃β,使得0=+βα【记为:α-】数乘规则:⑸、αα=1⑹、αα)()(kl l k =加法数乘规则:⑺、βαβαk k k +=+)(⑻、αααl k l k +=+)(二、基本性质1、 性质⑴、性质:零元素唯一⑵、证明:假设:V ∈∃10,对于V ∈∀α,都有αα=+10 V ∈∃20,对于V ∈∀α,都有αα=+20 对于V ∈∀α,都有⇒=+αα10特别:212000=+对于V ∈∀α,都有⇒=+αα20特别:121000=+12120000+=+【交换律】2100=⇒ ⑶、性质:负元素唯一2、 性质⑴、性质:ααα-=-==)1(0000,,k⑵、证明:ααααααα==+=+=+1)10(100【规则5+规则8】 )()(]0[0αααααααα-+=-++⇒=+⇒αααααααα000)]([0)(]0[=+=-++=-++⇒【结合律】0)(=-+αα【负元素的定义】00=⇒α第二节 线性无关一、基本概念1、 概念:线性组合(线性表出)如果:r r k k k αααα+++=Λ2211则称:向量α是向量组r ααα,,,Λ21的一个线性组合 或称:向量α可由向量组r ααα,,,Λ21线性表出2、 概念:线性相关如果:存在不全为0的P k k k r ∈,,,Λ21 使得:02211=+++r r k k k αααΛ则称:向量组r ααα,,,Λ21线性相关3、 概念:线性无关如果:不存在不全为0的P k k k r ∈,,,Λ21 使得:02211=+++r r k k k αααΛ则称:向量组r ααα,,,Λ21线性无关 4、 关键:00212211====⇒=+++r r r k k k k k k ΛΛααα二、基本性质1、 性质⑴、性质:向量组r ααα,,,Λ21线性相关 ⇔其中某一向量可由其余向量线性表出 ⑵、证明:必要性:r r r r k kk k k k k αααααα)()(0121212211-++-=⇒=+++ΛΛ 充分性:0)()(221221=-++-+⇒++=r r r r k k k k ααααααΛΛ2、 性质⑴、性质:如果:向量组r ααα,,,Λ21线性无关 并且:可由向量组s βββ,,,Λ21线性表出 则有:s r ≤⑵、证明:∑∑===⇒=⇒+++=sj j ji i sj j j s s t tt t t 111112211111βαβαβββαΛ∑∑∑∑∑=======⇒=+++s j ri j ji i ri sj j jiiri iir r t k tk k k k k 111112211][][0ββααααΛ⎪⎪⎩⎪⎪⎨⎧⇒=+++=+++=+++⇒000221122222111122111sr r s s rr r r t k t k t k t k t k t k t k t k t k ΛΛΛΛs 个方程,r 个未知数⇒如果s r >,则方程存在非零解r k k k ,,,Λ21 ⇒向量组r ααα,,,Λ21线性相关⇒矛盾3、 等价⑴、概念:两个向量组等价【互相线性表出】⑵、性质:两个等价的线性无关向量组,必定含有相同数目的向量⑶、证明:假设:向量组r ααα,,,Λ21线性无关 向量组s βββ,,,Λ21线性无关4、 性质⑴、性质:如果:向量组r ααα,,,Λ21线性无关 并且:向量组βααα,,,,r Λ21线性相关 那么:β可由向量组r ααα,,,Λ21线性表出,并且表法唯一 ⑵、证明:向量组βααα,,,,r Λ21线性相关 ⇒存在不全为0的P k k k k r ∈β,,,,Λ21 使得:02211=++++βαααβk k k k r r Λr r k kk k k k k αααβββββ)()()(02221-++-+-=⇒≠⇒Λ 假设:r r k k k αααβ+++=Λ2211r r l l l αααβ+++=Λ22110)()()(222111=-++-+-⇒r r r l k l k l k αααΛ⇒===⇒r r l k l k l k ,,,Λ2211表法唯一第三节 维数、基和坐标1、 定义:n 维线性空间V :恰好存在n 个线性无关的向量2、 定义:n 维线性空间V 的一组基:n 个线性无关的向量n εεε,,,Λ213、定义:坐标:对于V ∈∀α,向量组n εεε,,,Λ21线性无关 向量组n a εεε,,,,Λ21线性相关【否则1+n 维】 n n a a a εεεα+++=⇒Λ2211⇒坐标)(21n a a a ,,,Λ=4、 定理⑴、定理:如果:向量组n ααα,,,Λ21线性无关 并且:线性空间V 中的任意向量,均可由它们线性表出那么:V 的维数n =,并且n ααα,,,Λ21是V 的一组基 ⑵、证明:假设:V 的维数1+=n⇒121+n βββ,,,Λ线性无关,可由向量组n ααα,,,Λ21线性表出 ⇒n n ≤+1⇒矛盾第四节 极大线性无关组1、 定义:极大线性无关组:一个向量组的一部分组称为极大线性无关组 如果:该部分组线性无关并且:添加任一向量均线性相关2、 性质⑴、性质:极大线性无关组与向量组本身等价⑵、证明:假设:向量组r k αααα,,,,,ΛΛ21= 极大线性无关组k ααα,,,Λ21= k ααα,,,Λ21⇒可由r k αααα,,,,,ΛΛ21线性表出 对于}{21r k ααααβ,,,,,ΛΛ∈∀ βααα,,,,k Λ21⇒线性相关【否则与极大线性无关组矛盾】 β⇒可由k ααα,,,Λ21线性表出3、 性质⑴、性质:向量组的极大线性无关组,含有相同个数的向量 ⑵、证明:向量组与极大线性无关组1等价 向量组与极大线性无关组2等价⇒极大线性无关组1与极大线性无关组2等价【等价的传递性】第五节 线性子空间1、 定义:),;;(•+P W 是线性空间),;;(•+P V 的一个子空间 =W 是数域P 上的线性空间V 的一个子空间 =W 是线性空间V 的一个子空间如果:⑴、V W =的非空子集⑵、两种运算封闭:W W W ∈+∈∀∈∀βαβα,, W k W P k ∈∈∀∈∀αα,,2、 )(21r L ααα,,,Λ ⑴、性质:如果:∈r ααα,,,Λ21线性空间V 那么:所有可能的线性组合r r k k k ααα+++Λ2211构成V 的一个子空间称为:由r ααα,,,Λ21生成的子空间 记为:)(21r L ααα,,,Λ ⑵、证明:非空子集+两种运算封闭3、 性质⑴、性质:)()(2121s r L L βββααα,,,,,,ΛΛ= ⇔向量组r ααα,,,Λ21与向量组s βββ,,,Λ21等价⑵、证明:①:充分性:∑==+++=⇒∈∀ri ii r r r k k k k L 1221121)(αααααααααΛΛ,,,∑∑===⇒=+++=sj j ji i s j j j s s i t t t t t 1111221111βαββββαΛ∑∑∑∑∑========⇒s j ri j ji i r i sj j jiir i ii t k tk k 11111][][ββαα)()()(212121s r s L L L βββαααβββα,,,,,,,,,ΛΛΛ⊂⇒∈⇒ ②:必要性:)()(2121s i r i L L βββααααα,,,,,,ΛΛ∈⇒∈ i α⇒可由向量组s βββ,,,Λ21线性表出4、 性质⑴、性质:如果:W 是n 维线性空间V 的一个m 维子空间并且:m ααα,,,Λ21是W 的一组基 那么:m ααα,,,Λ21可以扩充为线性空间V 的一组基 ⑵、证明:V ∈∃β,使得βααα,,,,m Λ21线性无关 反证法:βαααβ,,,,,m V Λ21∈∀线性相关 β∀⇒可由m ααα,,,Λ21线性表出 ⇒线性空间V 的维数⇒=m 矛盾第六节 子空间的交与和1、 定义:}|{22112121V V V V ∈∈+=+αααα,2、 性质⑴、性质:如果:21V V ,是线性空间V 的两个子空间 那么:21V V I 也是线性空间V 的子空间 ⑵、证明:=21V V I 非空子集【至少都包含零元素】 2121V V V V ∈∈⇒∈∀ααα,I 2121V V V V ∈∈⇒∈∀βββ,I2121V V V V I ∈+⇒∈+∈+⇒βαβαβα,3、 性质⑴、性质:如果:21V V ,是线性空间V 的两个子空间 那么:21V V +也是线性空间V 的子空间 ⑵、证明:22112121V V V V ∈∈+=⇒+∈∀αααααα,, 22112121V V V V ∈∈+=⇒+∈∀ββββββ,, 222111V V ∈+∈+⇒βαβα,2122112121)()()()(V V +∈+++=+++=+⇒βαβαββααβα4、 维数公式⑴、公式:维+1V 维=2V 维+)(21V V I 维)(21V V +⑵、证明:假设:m αα,,Λ1是21V V I 的一组基 111n m ββαα,,,,,ΛΛ是1V 的一组基 211n m γγαα,,,,,ΛΛ是2V 的一组基证明:21111n n m γγββαα,,,,,,,,ΛΛΛ是21V V +的一组基①、线性无关:022********=++++++++n n n n m m q q p p k k γγββααΛΛΛ2211111111n n n n m m q q p p k k γγββααα---=+++++=ΛΛΛm m l l V V V V αααααα++=⇒∈⇒∈-∈⇒ΛI 112121, m m n n m m l l p p k k ααββαα++=+++++ΛΛΛ11111111 01111====⇒n m m p p l k l k ,,m m n n l l q q ααγγ++=++ΛΛ11221100211=====⇒n m q q l l ,Λ②、21V V +∈∀α,均可由21111n n m γγββαα,,,,,,,,ΛΛΛ线性表出第七节 子空间的直和1、 直和⑴、定义:=+21V V 直和⇔任何元素的分解式唯一⑵、分析:22112121V V V V ∈∈+=⇒+∈∀αααααα,,唯一2、 性质⑴、性质:=+21V V 直和⇔零元素的分解式唯一⑵、证明:充分性:假设:22112121V V V V ∈∈+=⇒+∈αααααα,,221121V V ∈∈+=ββββα,,)()()()(022112121βαβαββαα-+-=+-+=⇒ 2211βαβα==⇒,3、 性质⑴、性质:=+21V V 直和}0{21=⇔V V I⑵、证明:充分性:22112121V V V V ∈∈+=⇒+∈∀αααααα,,2211210V V ∈∈+=⇒αααα,,1221221121V V V V ∈∈∈∈⇒-=⇒αααααα,,, 021212211==⇒∈∈⇒ααααV V V V I I , 必要性:212121V V V V V V ∈-∈⇒∈∈⇒∈∀ααααα,,I 00)(=⇒=-+ααα4、 性质⑴、引理:⇔=}0{V 维0=V⑵、证明:必要性:向量0线性相关⇒不存在线性相关的向量组 充分性:假设:线性空间V 至少包括一个非零向量α ⇒≠⇒0α向量α线性无关α⇒可以扩充为线性空间V 的一组基⇒维1≥V ⇒矛盾⑶、性质:=+21V V 直和⇔维+1V 维=2V 维)(21V V +第八节 线性空间的同构1、 定义:同构如果:=W V ,线性空间并且:存在W V →的双射σ【双射=一一映射=满射+单射】并且:σ满足两条性质:①)()()(βσασβασ+=+②)()(ασασk k = 则称:V 和W 同构,=σ同构映射2、 基本性质⑴、性质:数域P 上的n 维线性空间V 与n P 同构⑵、证明:①、=•+)(,,;P P n线性空间【两种运算封闭+满足8条性质】 n n n n P b b b P a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα )(2211n n b a b a b a +++=+⇒,,,Λβα n n P a a a P k ∈=∀∈∀)(21,,,,Λα)(21n ka ka ka k ,,,Λ=•⇒α ②、构造nP V →的双射σ【向量到坐标的双射】假设:V n =εεε,,,Λ21的一组基 )()(212211n n n a a a a a a V ,,,ΛΛ=⇒++=⇒∈∀ασεεεαα ③、σ满足两条性质)()(212211n n n a a a a a a V ,,,ΛΛ=⇒++=⇒∈∀ασεεεαα )()(212211n n n b b b b b b V ,,,ΛΛ=⇒++=⇒∈∀βσεεεββn n n b a b a b a εεεβα)()()(222111+++++=+⇒Λ)()()()(2211βσασβασ+=++++=+⇒n n b a b a b a ,,,Λ3、 性质群1⑴、性质:)()()()(22112211r r r r k k k k k k ασασασααασ+++=+++ΛΛ ⑵、证明:σ的两条性质⑶、性质:r ααα,,,Λ21线性无关)()()(21r ασασασ,,,Λ⇔线性无关 ⑷、证明:必要性:假设:0)()()(2211=+++r r k k k ασασασΛ0)(2211=+++⇒r r k k k ααασΛ由于0)0(=σ,并且=σ双射00212211====⇒=+++⇒r r r k k k k k k ΛΛααα⑸、性质:r ααα,,,Λ21线性相关)()()(21r ασασασ,,,Λ⇔线性相关 ⑹、证明:反证法⑺、性质:同构的线性空间同维⑻、证明:假设:线性空间V 和W 同构,并且维n V =)(,维m W =)(维⇒=n V )(存在n 个线性无关的向量组V n ∈ααα,,,Λ21 ⇒存在n 个线性无关的向量组W n ∈)()()(21ασασασ,,,Λ ⇒维n m W ≥=)( 同理:n m n m =⇒≤4、 性质群2⑴、性质:如果:1V 是线性空间V 的一个子空间那么:}|)({)(11V V ∈=αασσ是线性空间)(V σ的子空间 ⑵、证明:①、=1V 非空子集=⇒)(1V σ非空子集②、两种运算封闭假设:111*)()(*)(*V V ∈=⇒=⇒∈∀-αασασασα【双射】 111*)()(*)(*V V ∈=⇒=⇒∈∀-ββσβσβσβ111*)(*)(V ∈+⇒--βσασ【运算封闭】)(*)](*)([111V σβσασσ∈+⇒--【定义】【σ的两条性质】***)]([*)]([*)](*)([1111βαβσσασσβσασσ+=+=+----)(**1V σβα∈+⇒⑶、性质:=-στσ、1同构映射 ⑷、证明:①、=-1σ双射②、1-σ的两条性质)]([)]([)]([111βσσασσβασσβαβα---+=+⇒+=+ )]()([)]([111βσασσβασσ---+=+⇒【σ的两条性质】)()()(111βσασβασ---+=+⇒第二章 欧几里得空间第一节 实线性空间1、 定义:实线性空间)(•+=,;;R R n⑴、两种运算:①、向量加法n n n n R b b b R a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα)(2211n n b a b a b a +++=+⇒,,,Λβα ②、向量数乘n n R a a a R k ∈=∀∈∀)(21,,,,Λα)(21n ka ka ka k ,,,Λ=•⇒α ⑵、两种运算封闭+满足8条性质第二节 欧几里得空间一、基本概念1、 定义:内积==)(βα,内积的4条性质 ⑴、交换:)()(αββα,,= ⑵、数乘:)()(βαβα,,k k =⑶、分解:)()()(γβγαγβα,,,+=+ ⑷、正定:0)(≥αα,,00)(=⇔=ααα,2、 欧几里得空间【欧氏空间】⑴、定义:欧几里得空间+•+=)(,;;R V 内积⑵、分析:未确定因素;③,;②①•+V 内积⑶、典例:=nE 实线性空间+•+)(,;;R R n内积 ⑷、分析:①、nR V =;②、=•+,向量加法+向量数乘;③、内积:n n n n R b b b R a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα n n b a b a b a +++=⇒Λ2211)(βα,【满足内积的4条性质】3、 基本概念⑴、概念:向量长度)(||ααα,== ⑵、概念:单位向量||αα=⑶、概念:向量距离)(||)(βαβαβαβα--=-==,,d ⑷、概念:夹角||||)(cos 1βαβαβα,,->==<二、柯西不等式1、 基本公式⑴、公式:|||||)(|βαβα≤,⑵、证明:①0)(0||0==⇒=βαββ,, ②⇒≠0β令βαγt +=022≥++=++=⇒),(),(),(),(),(βββαααβαβαγγt t t t04]2[2≤-=∆⇒),)(,(),(ββααβα【开口向上+单根或者无根】),)(,(),(ββααβα≤⇒2][③等号成立条件:βαβαγγγt t -=⇒=+⇒=⇒=000),(),(),(βββα-=-=a b t 2【单根】 βαββββαα、),(),(⇒=⇒线性相关2、 推论⑴、推论:||||||βαβα+≤+⑵、证明:),(),(),(),(βββαααβαβα++=++2 222|]||[|||||||2||βαββαα+=++≤⑶、推论:||||||γββαγα-+-≤-⑷、证明:令γαβαγβββαα-=+⇒-=-=,【代入上式】第三节 标准正交基1、 基本概念⑴、定义:两个向量正交【如果0)(=βα,,则称βα、正交,记为βα⊥】⑵、性质:n 维欧几里得空间V 的内积∑∑====n j ni jiji b a 11)()(εεβα,,⑶、证明:假设:V n =εεε,,,Λ21的一组基 n n a a a V εεεαα+++=⇒∈∀Λ2211n n b b b V εεεββ+++=⇒∈∀Λ22112、 基本概念⑴、定义:正交向量组=两两正交的非零向量组⎩⎨⎧≠==≠==ji ji j i 00)(αα,⑵、定义:正交基=正交向量组+基⑶、定义:标准正交基=正交基+单位向量3、 基本性质⑴、性质:正交向量组线性无关⑵、证明:假设:=r ααα,,,Λ21正交向量组 02211=+++++⇒r r i i k k k k ααααΛΛ0)()(2211==+++++⇒i i i i r r i i k k k k k ααααααα,,ΛΛ 0=⇒i k4、 定理⑴、定理:任何一个正交向量组,可以扩充为一组正交基⑵、证明:①假设:=m ααα,,,Λ21线性空间V 的正交向量组 V ∈∃β,使得βααα,,,,m Λ21线性无关 否则:βαααβ,,,,,m V Λ21∈∀线性相关 β∀⇒可由m ααα,,,Λ21线性表出 ⇒维V ⇒=m 矛盾 ②∑=+-=mj jj m k 11αβαm i k i mj j j i m ,,,,,,Λ21)()(11=-=⇒∑=+ααβαα0))1=-=-=∑=),(,(),(,(i i i i i mj j j i k k αααβαααβ),(,(i i i i k αααβ)=⇒5、 定理⑴、定理:如果:V n =εεε,,,Λ21的一组基 那么:可以找到一组标准正交基n ηηη,,,Λ21 并且:)()(2121n n L L ηηηεεε,,,,,,ΛΛ= ⑵、证明:①||111εεη=②假设:已经找到一组单位正交向量m ηηη,,,Λ21 使得:)()(2121m m L L ηηηεεε,,,,,,ΛΛ= ∑=+++-=⇒mj j j m m m 1111)(ηηεεγ,m i i mj j j m m i m ,,,,,,,Λ21))(()(1111=-=⇒∑=+++ηηηεεηγ))(()())(()(11111i i i m i m i mj j j m i m ηηηεηεηηηεηε,,,,,,++=++-=-=∑0))(()(11=-=++i i i m i m ηηηεηε,,, ||111+++=⇒m m m γγη ③∑=++++-=nj j j m m m m 11111)(||ηηεεγη,1+⇒m η可由121+m εεε,,,Λ线性表出 1+m ε可由121+m ηηη,,,Λ线性表出121+⇒m εεε,,,Λ与121+m ηηη,,,Λ等价 )()(121121++=⇒m m L L ηηηεεε,,,,,,ΛΛ第四节 正交补1、 基本概念⑴、定义:V ⊥α:如果V ∈∀β,都有0)(=βα,则称V 、α正交,记为V ⊥α⑵、定义:W V ⊥:如果W V ∈∀∈∀βα,,都有0)(=βα,则称W V 、正交,记为W V ⊥⑶、定义:正交补:假设:=21V V ,线性空间V 的两个子空间 如果:V V V V V =+⊥2121,则称:12V V =的正交补,记为:⊥=12V V2、 性质⑴、性质:如果:s V V V ,,,Λ21两两正交 那么:=+++s V V V Λ21直和 ⑵、证明:假设:i i s V ∈+++=αααα,Λ21000)(0)(21=⇒=⇒=+++⇒i i i i s ααααααα,,Λ3、 性质⑴、性质:任何子空间的正交补,存在并且唯一⑵、证明:假设:=1V 线性空间V 的一个子空间,⊥=12V V ①、V V V =⇒=21}0{②、1211}0{V V m =⇒≠εεε,,,Λ的一组正交基 ⇒可以扩充为=n m εεε,,,,ΛΛ1V 的一组正交基 )(12n m L V εε,,Λ+=⇒⊥=⇒12V V 【证明集合相等】【根据定义证明正交】③、假设:21V V ⊥,并且V V V =+2131V V ⊥,并且V V V =+313311312222V V V V ∈∈+=⇒∈∀⇒∈∀ααααααα,,00((111131112=⇒=⇒+=⇒ααααααααα),),(),),( 32323323V V V V ⊂⇒∈⇒∈=⇒αααα, 同理可证:3223V V V V =⇒⊂第三章 线性变换一、线性变换的定义1、 定义:线性变换假设:=T 线性空间),;;(•+P V 的一个变换 如果:T 满足两个条件⑴、V T T T ∈∀+=+βαβαβα,,)()()( ⑵、V P k kT k T ∈∀∈∀=ααα,,)()(则称:=T 线性变换2、 等价条件⑴、性质:T 的两个条件等价于V P k k T k T k k k T ∈∀∈∀+=+βαβαβα,,,,212121)()()(⑵、证明:①必要性:)()()()()(212121βαβαβαT k T k k T k T k k T +=+=+②充分性:)()()(121βαβαT T T k k +=+⇒==)()(021ααkT k T k k k =⇒==,二、线性变换的运算1、 线性变换的乘积⑴、定义:V T T T T ∈=ααα,))(())((2121 ⑵、性质:线性变换的乘积,仍是线性变换⑶、证明:①))(())(())((2212121βαβαβα()T T T T T T T +=+=+))(())(())(())((21212121βαβαT T T T T T T T +=+=②)))ααααα)(()(()(())(())((2121212121T T k T kT kT T k T T k T T ====2、 线性变换的加法⑴、定义:V T T T T ∈+=+αααα,)()())((2121 ⑵、性质:线性变换的加法,仍是线性变换 ⑶、证明:同上类似三、线性变换的矩阵1、 定理:⑴、定理:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基 =n a a a ,,,Λ21任意一组向量那么:存在唯一的一个线性变换T使得:n i a T i i ,,,,Λ21==ε ⑵、证明:存在性和唯一性2、 唯一性⑴、性质:如果:n i T T i i ,,,,Λ2121==εε 那么:21T T =⑵、证明:n n x x x x V x εεε+++=⇒∈∀Λ2211n n n n T x T x T x x x x T x T εεεεεε1212111221111)(+++=+++=⇒ΛΛ x T x x x T T x T x T x n n n n 2221122222121)(=+++=+++=εεεεεεΛΛ3、 存在性⑴、性质:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基=n a a a ,,,Λ21任意一组向量那么:存在一个线性变换T使得:n i a T i i ,,,,Λ21==ε⑵、证明:①变换T :∑==+++=⇒∈∀ni ii n n x x x x x V x 12211εεεεΛ∑==+++=⇒ni ii n n ax a x a x a x Tx 12211Λ②线性变换T :假设:∑∑===⇒∈∀=⇒∈∀ni ii ni i i z z V z y y V y 11εε,∑∑===+=+⇒ni i i ni i i iky ky z yz y 11)(εε,Tz Ty a z a y a z yz y T ni i i n i i i ni i i i+=+=+=+⇒∑∑∑===111)()(kTy a y k aky ky T ni i i ni ii ===⇒∑∑==11)(③证明i i a T =ε:n i i εεεεε010021+++++=ΛΛi n i a a a a a T =+++++=⇒0100221ΛΛε4、 定义:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基 V T =的一个线性变换那么:⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=⇒nnn n n n n n n n a a a T a a a T a a a T εεεεεεεεεεεεΛΛΛΛ22112222112212211111 )()(2121222211121121n nn n n n n n T T T a a a a a a a a a εεεεεε,,,,,,ΛΛΛΛΛΛΛΛΛ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒ )()(2121n n T T T A εεεεεε,,,,,,ΛΛ=⇒ 则称:=A 线性变换T 在n εεε,,,Λ21下的矩阵⑵、性质:如果:取定一组基并且:=ϕ线性变换n n T ⨯→矩阵的一个映射那么:=ϕ双射⑶、证明:①单射:假设:2211)()(A T A T ==ϕϕ,212121T T T T A A i i =⇒=⇒=εε【唯一性】②满射:i i ni i i i a T a a a a A =⇒=⇒ε)(21,,,Λ【存在性】5、 定理⑴、线性变换的加法,对应于矩阵的加法⑵、线性变换的乘积,对应于矩阵的乘积⑶、线性变换的数乘,对应于矩阵的数乘⑷、线性变换的逆,对应于矩阵的逆第二部分泛函分析第一章 度量空间第一节 度量空间一、度量空间1、 符号约定:),;;(),;;(•+⇒•+F R P V2、 定义:距离ρρ==),(y x 的两条性质⑴、正定:R y x y x y x y x ∈∀=⇔=≥,;),(,),(00ρρ⑵、三角不等式:R z y x z y z x y x ∈∀+≤,,);,(),(),(ρρρ3、 定义:度量空间)ρ,(R =【距离空间】⑴、解释:=R 非空集合⑵、解释:=ρ距离【满足ρ的两条性质】4、 对称性⑴、性质:),(),(x y y x ρρ= ⑵、证明:),(),(),(z y z x y x ρρρ+≤),(),(),(),(),(x y y x x y x x y x ρρρρρ≤⇒+≤⇒同理可证:),(),(),(),(x y y x y x x y ρρρρ=⇒≤二、基本概念1、 子空间⑴、性质:度量空间的任何子空间,仍是度量空间⑵、证明:假设:=)ρ,(R 度量空间, =)ρ,(M 度量空间的子空间证明:=M 非空子集,ρ的两条性质仍然满足2、 一致离散:如果:0>∃α使得:y x R y x ≠∈∀,,;都有:αρ>),(y x则称:=R 一致离散的度量空间3、 等距映射和等距同构⑴、定义:等距映射:假设:=))11ρρ,,(,(R R 度量空间;1R R →=ϕ的映射 如果:),(),(y x y x ϕϕρρ1= 则称:1R R →=ϕ的等距映射⑵、性质:1R R →=ϕ的等距映射1R R →=⇒ϕ的单射⑶、证明:y x y x y x y x ϕϕϕϕρρ≠⇒≠⇒≠⇒≠001),(),(⑷、定义:等距同构:假设:1R R →=ϕ的等距映射如果:1)(R R =ϕ则称:=))11ρρ,,(,(R R 等距同构【双射】 ⑸、性质:11)(R R R R →=⇒=ϕϕ的满射三、极限1、 极限⑴、定义:假设:=R 度量空间,R x n x n ∈=,,,)21(Λ 如果:0)(lim =∞→x x n n ,ρ则称:点列}{n x 按距离收敛于x记为:x x n →【x x n n =∞→lim 】 并称:=}{n x 收敛点列,}{n x x =的极限⑵、归纳:0)(lim lim =⇔=⇔→∞→∞→x x x x x x n n n n n ,ρ2、 性质⑴、性质:收敛点列的极限唯一⑵、证明:假设:0)(lim =⇒→∞→x x x x n n n ,ρ 0)(lim =⇒→∞→y x y x n n n ,ρ )()()(0y x x x y x n n ,,,ρρρ+≤≤⇒【三角不等式】0)]()([lim )(0=+≤≤⇒∞→y x x x y x n n n ,,,ρρρ【夹逼原则】 y x y x =⇒=⇒0)(,ρ3、 性质⑴、性质:如果:00y y x x n n →→,那么:)()(lim 00y x y x n n n ,,ρρ=∞→【y x y x ,,=)(ρ的连续函数】 ⑵、证明:0)(lim 00=⇒→∞→x x x x n n n ,ρ 0)(lim 00=⇒→∞→y y y y n n n ,ρ )()()()(0000n n n n y y y x x x y x ,,,,ρρρρ++≤)()()()(0000y y x x y x y x n n n n ,,,,ρρρρ+≤-⇒)()()()(0000y y y x x x y x n n n n ,,,,ρρρρ++≤)()()()(0000y y x x y x y x n n n n ,,,,ρρρρ+≤-⇒)()(|)()(|00000y y x x y x y x n n n n ,,,,ρρρρ+≤-≤⇒0)]()([lim |)()(|lim 00000=+≤-≤⇒∞→∞→y y x x y x y x n n n n n n ,,,,ρρρρ )()(lim 00y x y x n n n ,,ρρ=⇒∞→4、 定义:开球})(|{)(00R x r x x x r x O ∈<==,,,ρ其中:=R 度量空间,R x ∈0,+∞<<r 0【=r 有限正数】5、 定义:有界集:假设:=R 度量空间,R M =中的点集如果:M 包含在某个开球)(0r x O ,中则称:R M =中的有界集6、 性质⑴、性质:如果=}{n x 收敛点列,那么=}{n x 有界集⑵、证明:=}{n x 收敛点列0lim x x n n =⇒∞→ 0>∃⇒N ,使得当N n >时,都有1)(0<x x n ,ρ1)1)()(m ax (001+=⇒,,,,,x x x x r N ρρΛ }{n x ⇒包含在开球)(0r x O ,中四、常见的度量空间1、 欧氏空间nE =,其中:)()(y x y x y x --=,,ρ【内积】2、 函数空间==][b a C ,区间][b a ,上的连续函数的全体其中:|)()(|max )(][t y t x y x b a t -=∈,,ρ第二节 范数一、范数1、 定义:R 上的实值函数)(x P 的4个条件【范数的4个条件】⑴、正定1:R x x P ∈∀≥,0)(⑵、齐次性:R x F x P x P ∈∀∈∀=,,ααα)(||)(⑶、三角不等式:R y x y P x P y x P ∈∀+≤+,,)()()(⑷、正定2:00)(=⇔=x x P2、 定义:范数:假设:=•+),;;(F R 实数域F 上的线性空间如果:R 上的实值函数)(x P 满足范数的4个条件则称:x x P =)(的范数记为:x x =||||的范数【)(||||x P x =】并称:=R 赋范线性空间【赋范空间】3、 性质⑴、定义:半范数:如果满足范数的前3个条件⑵、性质:范数的第4个条件可以简化为:00)(=⇒=x x P⑶、证明:0)0(0)(|0|)0()0(00=⇒===⇒=P x P x P P x4、 典例:函数空间][b a C ,⑴、性质:如果:][|)(|max ||||][b a C f x f f b a x ,,,∈∀=∈ 那么:=][b a C ,赋范线性空间⑵、证明:①=][b a C ,线性空间),;;(•+F R 定义:=+向量加法,=•向量数乘⇒两种运算封闭+满足8个条件②范数的4个条件正定1:0|)(|max ||||][≥=∈x f f b a x , 齐次性:||||*|||)(|max |||)(|max ||||][][f x f x f f b a x b a x αααα===∈∈,, 三角不等式:|)()(|max ||||][x g x f g f b a x +=+∈, |||||||||)(|max |)(|max ][][g f x g x f b a x b a x +=+≤∈∈,, 正定2:0)(0|)(|max 0||||][=⇒=⇒=∈x f x f f b a x ,5、 典例:n 维向量空间n R⑴、范数1:n n ni i R x x x x x x x x x ∈=∀===∑=)()(||||||2112,,,,,Λ ⑵、范数2:∑==n i ix x 1|||||| ⑶、范数3:||max ||||1i ni x x ≤≤=二、范数和距离1、 性质⑴、性质:利用范数可以定义距离:||||)(y x y x -=,ρ⑵、证明:距离的两个条件①正定:0||||)(≥-=y x y x ,ρy x y x y x =⇔=-⇔=0||||0)(,ρ②三角不等式:||||||||||||y x y x +≤+y x y x y z y z x x -=+⇒-=-=,||||||||||||||||||||z y z x y z z x y x -+-=-+-≤-⇒)()()(z y z x y x ,,,ρρρ+≤⇒⑶、归纳:赋范线性空间+利用范数定义距离⇒度量空间【线性空间+范数+距离】2、 极限⑴、定义:假设:=R 赋范线性空间,R x n x n ∈=,,,)21(Λ 如果:0||||lim =-∞→x x n n 则称:点列}{n x 按范数收敛于x记为:x x n →【x x n n =∞→lim 】 ⑵、归纳:0||||lim lim =-⇔=⇔→∞→∞→x x x x x x n n n n n3、 性质⑴、性质:如果0x x n →,那么||||||||lim 0x x n n =∞→【x x =||||的连续函数】 ⑵、证明:0||||lim 00=-⇒→∞→x x x x n n n ||||||||||||||||||||||||0000x x x x x x x x n n n n -≤-⇒+-≤||||||||||||||||||||||||0000x x x x x x x x n n n n -≤-⇒+-≤||||||||||||||000x x x x n n -≤-≤⇒0||||lim |||]||||[|||lim 000=-≤-≤⇒∞→∞→x x x x n n n n ||||||||lim 0||]||||[||lim 0||||||||||lim 000x x x x x x n n n n n n =⇒=-⇒=-⇒∞→∞→∞→4、 性质⑴、性质:利用范数定义距离,必然满足两个条件①、)0()(,,y x y x -=ρρ②、)0(||)0(,,x x ρααρ=⑵、证明:①、||||)(y x y x -=,ρ||||||0||)0(y x y x y x -=--=-,ρ②、||||*||||||||0||)0(x x x x ααααρ==-=,||||*||||0||*||)0(||x x x ααρα=-=,5、 性质⑴、性质:如果:)(y x ,ρ满足两个条件那么:可以利用距离定义范数:)0(||||,x x ρ=⑵、证明:范数的4个性质①正定1:0)0(||||≥=,x x ρ②齐次性:||||*||)0(||)0(||||x x x x αρααρα===,,③三角不等式:),(),(),(z y z x y x ρρρ+≤ ),(),(),(),(),(),(00000y x y x y x y x ρρρρρρ+≤-⇒+≤⇒ ),(),(),(00|1|0y y y ρρρ=-=- ),(),(),(),(),(),(000000y x y x y x y x ρρρρρρ+≤+⇒-+≤-⇒ ||||||||||||y x y x +≤+⇒④正定2:00)0(0||||=⇒=⇒=x x x ,ρ6、 定理⑴、利用范数,可以定义距离⑵、利用函数,可以定义距离+满足两个条件⑶、利用距离+满足两个条件,可以定义范数⑷、利用距离,不一定可以定义范数【反例】第二章 有界线性算子第一节 度量空间中的点集1、 基本概念⑴、概念:0x 的-ε环境})(|{)(00R x x x x x O ∈<==,,,ερε⑵、概念:A x =0的内点:如果存在0x 的一个-ε环境A x O ⊂=)(0ε,⑶、概念:=A 开集:如果A 的每一个点都是内点⑷、概念:0x 的环境==)(0x O 包含0x 的开集2、 基本性质⑴、性质:)(00ε,x O x ∈,)(00ε,x O x =的内点【ερ<=0)(00x x ,】【2*εε=】⑵、性质:)(00x O x ∈,)(00x O x =的内点【定义】3、 重要性质⑴、性质:=)(0ε,x O 开集⑵、证明:ερε<⇒∈∀)()(00x z x O z ,,)(*0)(000x z x z ,,ρεερε-<<⇒-<⇒*)(*)(ερε<⇒∈∀z x z O x ,, ερερρρ<+<+≤⇒)(*)()()(000z x z x z x x x ,,,,)(*)()(00εεε,,,x O z O x O x ⊂⇒∈⇒)(0ε,x O z =⇒的内点=⇒)(0ε,x O 开集4、 重要性质⑴、性质:0x 的任何一个-ε环境)(0ε,x O =,都是0x 的环境⑵、意义:-ε环境=环境的特殊情况⑶、证明:=∈)()(000εε,,,x O x O x 开集⑷、性质:A x =0的内点⇔存在0x 的一个环境A x O ⊂=)(0⑸、意义:利用环境定义内点⑹、证明:①:A x =0的内点⇒存在0x 的一个-ε环境A x O ⊂=)(0ε,⇒存在0x 的一个环境A x O ⊂=)(0②:存在0x 的一个环境A x O ⊂=)(0)(00x O x =⇒的内点⇒存在0x 的一个-ε环境)()(00x O x O ⊂=ε,⇒存在0x 的一个-ε环境A x O ⊂=)(0ε,A x =⇒0的内点5、 定理⑴、定理:⇔→0x x n对于0x 的任何环境)(0x O =,存在0>N ,当N n >时,)(0x O x n ∈⑵、意义:利用环境定义收敛点列⑶、证明:①:任取0x 的一个环境)(0x O =)(00x O x =⇒的内点⇒存在0x 的一个-ε环境)()(00x O x O ⊂=ε,⇒→0x x n 对于0>ε,存在0>N ,当N n >时,ερ<)(0x x n ,)()(00x O x x O x n n ∈⇒∈⇒ε,②:对于0x 的任何环境)(0x O =,存在0>N ,当N n >时,)(0x O x n ∈⇒对于0x 的任何一个-ε环境)(0ε,x O =,存在0>N ,当N n >时,)(0ε,x O x n ∈00)(x x x x n n →⇒<⇒ερ,⑷、推论:⇔→0x x n对于0x 的任何-ε环境)(0ε,x O =,存在0>N ,当N n >时,)(0ε,x O x n ∈ ⑸、意义:利用-ε环境定义收敛点列第二节 连续映射1、 函数)(x f 在0x 点连续⑴、传统描述:对于00>∃>∀δε,,当δ<-||0x x 时,ε<-|)()(|0x f x f⑵、环境描述:对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个-δ环境)(0δ,x O =当)(0δ,x O x ∈时,))(()(0ε,x f O x f ∈2、 映射f 在0x 点连续【双重扩展】⑴、定义:假设:=Y X ,度量空间,X D =的一个子空间,Y D f →=的映射如果:对于)(0x f 的任何环境Y x f O ⊂=))((0存在0x 的一个环境D x O ⊂=)(0当)(0x O x ∈时,))(()(0x f O x f ∈则称:映射f 在0x 点连续⑵、定义:如果:映射f 在D 上的每一点都连续则称:D f =上的连续映射3、 等价定理⑴、定理:①:映射f 在0x 点连续②:对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个-δ环境)(0δ,x O =当)(0δ,x O x ∈时,))(()(0ε,x f O x f ∈③:)()(00x f x f x x n n →⇒→⑵、证明:①⇒②映射f 在0x 点连续⇒对于)(0x f 的任何环境))((0x f O =存在0x 的一个环境)(0x O =当)(0x O x ∈时,))(()(0x f O x f ∈【定义】⇒对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个环境)(0x O =当)(0x O x ∈时,))(()(0ε,x f O x f ∈【-ε环境=环境的特殊情况】 )(00x O x =的内点⇒存在0x 的一个-δ环境)()(00x O x O ⊂=δ,⇒结论【全局满足则局部满足】⑶、证明:②⇒③⇒→0x x n 对于0>∀δ,存在0>N ,当N n >时,)(0δ,x O x n ⊂ N 由δ决定,δ由ε决定⇒N 由ε决定⇒对于0>∀ε,存在0>N ,当N n >时,))(()(0ε,x f O x f n ∈)()(0x f x f n →⇒⑷、证明:③⇒①反证法:映射f 在0x 点不连续⇒存在)(0x f 的一个环境))((0x f O =对于0x 的任何环境)(0x O =存在)(0x O x ∈,))(()(0x f O x f ∉⇒对于0x 的任何环境)1(0nx O ,=,存在)(0x O x n ∈,))(()(0x f O x f n ∉ 0)(lim 1)(0)(000=⇒<<⇒∈∞→x x nx x x O x n n n n ,,ρρ【夹逼定理】 )()(00x f x f x x n n →⇒→⇒【条件】⇒对于0>∀ε,存在0>N ,当N n >时,))(()(0ε,x f O x f n ∈ ))(()(00x f O x f =的内点⇒存在)(0x f 的一个-*ε环境))((*))((00x f O x f O ⊂=ε,⇒对于0*>ε,存在0>N ,当N n >时,))((*))(()(00x f O x f O x f n ⊂∈ε, ⇒存在0>N ,当N n >时,))(()(0x f O x f n ∈⇒矛盾【N 由*ε决定,*ε由))((0x f O 决定】第三节 线性算子1、 算子⑴、定义:算子=映射⑵、定义:泛函=取值于实数域或者复数域的算子2、 线性算子⑴、定义:假设:=Y X ,实数域F 上的线性空间X D =的子空间Y D T →=的映射如果:T 满足条件:D F k k T k T k k k T ∈∀∈∀+=+βαβαβα,,,,212121)()()(则称:=T 线性算子并称:T D =的定义域,T D x Tx TD =∈=}|{的值域⑵、定义:如果:=T 线性算子并且:F TD ⊂则称:=T 线性泛函第四节 线性算子的有界性与连续性一、有界算子1、 连续定理⑴、定理:线性算子一点连续,处处连续⑵、描述:假设:=Y X ,赋范线性空间,X D =的一个子空间,Y D T →=的线性算子 如果:T 在D x ∈0连续那么:D T =上的连续算子⑶、证明:①:假设:x x D x n →∀⇒∈∀②:x x n →⇒对于0>∀ε,存在0>N ,当N n >时,ερ<)(x x n ,||||)(x x x x n n -=,ρ【=X 赋范线性空间】||||)(00x x x x x x n n -=+-,ρ⇒对于0>∀ε,存在0>N ,当N n >时,ερ<+-)(00x x x x n ,00x x x x n →+-⇒③:T 在0x 点连续00)(Tx x x x T n →+-⇒【等价定理①⇒③】00Tx Tx Tx Tx n →+-⇒【=T 线性算子】Tx Tx n →⇒【=Y 赋范线性空间】T ⇒在x 点连续【+∀n x 等价定理③⇒①】T ⇒在D 上处处连续【x ∀】。
泛函分析H总结

其他概念:聚点、闭包、有界集、拓扑空间
注:A的闭包是包含A的最小的闭集,A是闭集当且仅当A与其闭包相 等,取闭包运算满足分配律。
• 设A是X的子集,x是X中定点,x与A的关系: 1. x“附近”全是A中的点(内点) 2. x“附近”没有A中的点(外点) 3. x“附近”有A中点也有不是A中点(边界 点) 4. x的任意邻域都含A-{x}中点(A的聚点) 5. x的某个邻域不含A-{x}中点(孤立点) • 练习:设X是距离空间,A,B是X的子集,则
E E E
1 p
等号相等当且仅当它们线性相关
例子
• • • • • •
•
以出租车距离定义的平面距离空间; p l 序列空间 , l , p 1 函数空间C[a,b]; 离散距离空间; R上函数|x-y|^2;|x-y|^1/2是距离吗? Hamming距离:X为所有0和1构成的三元序组所构成的集合
1
(4)式给出了用逼近解x的误差估计式。
以及隐函数存在定理
• 例:线性代数Ax=b均可写成x=Cx+D,如果 矩阵C满足条件|C|<1,则该方程有唯一解, 且可以由迭代求得 • 练习:利用压缩映像原理证明方程x=a sinx 只有唯一解x=0,其 中0<a<1。 • 隐函数定理:设函数 f(x,y)在带状区域D中 处处连续,且处处有关于y的偏导数。如果 存在常数m<M,满足 0 m f y '( x, y) M . 则方程f(x,y)=0在区间[a,b]上必有唯一的连 续函数y=g(x)作为解。其中
泛函分析知识点总结

泛函分析知识点总结1.Baire定理定理(Baire纲定理)完备的距离空间是第⼆类型集。
解释:完备的距离空间(X,d),∀x∈X都是内点,因为X在X中是开集。
⼀个⽆处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个X,即X不是第⼀类型集,所以只能是第⼆类型集。
注:完备的距离空间是第⼆类型集,那么它的闭包⾄少存在⼀个内点。
这个经常被⽤来证明。
例如,开映射定理、闭图像定理等。
2. 闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。
导集是集合所有聚点组成的集合,不包含孤⽴点。
所以闭包是集合导集和孤⽴点组成的集合。
3.闭集在度量空间中,如果⼀个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。
4.不动点定理压缩映射:设(X,d)是距离空间,T是X到X的映射,如果存在⼀个常数θ(0≤θ<1),对于所有的x,y∈X,满⾜下述不等式:d(Tx,Ty)<θd(x,y)则称T是X上的⼀个压缩映射。
不动点定理:设X是完备的距离空间,T是X到X的压缩映射,则T在X上有唯⼀的不动点x∗.即Tx∗=x∗是⽅程Tx=x在X上的唯⼀解。
5.施密特正交化将⼀个线性⽆关的集合{x n}进⾏施密特正交化。
e1=x1 ||x1||e2=x2−<x2,e1>e1 ||x2−<x2,e1>e1||e j+1=x j+1−j∑k=1<x j+1,e k>e k ||x j+1−j∑k=1<x j+1,e k>e k||注:本质上说就是让x j+1减去其在e k,k=0,…,j上的分量,就正交化了。
然后再除以对应范数,进⾏单位化。
6.Hilbert空间的同构n为的实(复)Hilbert空间与R n(C n)同构。
(保距离,保线性,保范数,保内积)⽆限维可分Hilbert空间与l2空间(L2[0,1])等距同构。
7.算⼦的连续性和有界性连续性:对于X中的任何收敛于x0的点列{x n},恒有Tx n→Tx0,n→=∞有界性:存在正常数M,使得对⼀切x∈X,有||Tx||≤M||x||⼀点连续,则处处连续:设X和Y是数域\textbf{F}上的线性赋范空间,T:X→Y是⼀个线性算⼦。
泛函分析知识总结讲解

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间nR (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析第三讲

A 是列紧集当且仅当 A中函数是一致有界和 等度连续的.
如果存在 M 0,使得 f A和x a,b, 有 f x M,则称函数族 A是一致有界的.
如果 0, 存在 0, x, y a,b,f A, 只要 dx, y , 就有 f x f y ,
对于x x1, x2 ,, xn ,定义
x x1 2 x2 2 xn 2 ,
则 Rn是Banach空间.
第二章 泛函分析
第二节 赋范线性空间及Banach空间
一、赋范线性空间
例2 空间Ca,b.对于xtCa,b,定义
x max xt at b
则 Ca, b是Banach空间.
第二章 泛函分析
第一节 距离空间
二、紧集与列紧集
定义5 设 X , d 是一个距离空间,A, B X.
0是给定的数, 如果对 A 中的任何点 x,必有 B中
的点 x,使得dx, x ,则称 B是 A的一个 -网.
定义6 设 X , d 是一个距离空间,A X.
如果对任意 0,A中总存在有限的 - 网,
二、紧集与列紧集
定理6 设A 是距离空间 X的紧集,f : A R是连续的,则 (1) f 在 A上有界; (2) f在 A 上可取到最大值和最小值.
第二章 泛函分析
第一节 距离空间
2.2 赋范线性空间及Banach空间
第二章 泛函分析
一、赋范线性空间
1. 赋范线性空间的定义
定义1 设 X 是复(或实)的线性空间,
一、赋范线性空间
3. Banach空间的定义 定义3 设 X 为赋范线性空间, d是由范数 诱导的距离,如果X是完备的距离空间, 称 X 为Banach空间.
泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。
泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。
一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°的充要条件为x=y 2°对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。
x 中的元素称为点。
2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称为离散的度量空间。
(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。
(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义(4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。
令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列是(X ,d ) 中的收敛点列,x 是点列 的极限。
收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。
(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。
(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列, 即:按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。
泛函分析部分知识总结

泛函分析单元知识总结与知识应用一、单元知识总结第七章、 度量空间和赋范线性空间 §1 度量空间§1.1定义:若X 是一个非空集合,:dX X R ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。
例:1、设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当,则(,)X d 为离散的度量空间。
2、序列空间S ,i =1i |-|1(,)21+|-|i ii i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]kki d x y y x ∞=∑是度量空间§2 度量空间中的极限,稠密集,可分空间 §2.1收敛点列:设{}n x 是(,)X d 中点列,如果∃x X ∈,使n lim (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列。
例:1、nn x R ∈,{}n x 按欧氏距离收敛于x 的充要条件为1,i n ∀≤≤各点列依分量收敛。
2、[a,b]C 中(,)0k d x y x x →⇔→(一致)3、可测函数空间()M X 中点列(,)0n n d f f f f→⇔⇒(依测度)稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令M M M ⊂表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。
泛函分析

泛函分析1.范数&线性泛函的定义定义 设X 是线性空间,若对∀x ∈X ,有唯一实数∥x ∥与之应对,且使得(1) ∥x ∥≥0,且x =0⟺∥x ∥=0(2) ∥x +y ∥≤∥x ∥+∥y ∥, x,y ∈X(3) ∥αx ∥=|α|⋅∥x ∥,α∈R or C,x ∈X则称∥x ∥为X 的范数,此时的线性空间X 称为赋范线性空间.2.设x,y 为线性赋范空间,T:x →y 为线性算子.若T 在x 0处连续,则T 在x 上一致连续,且T 连续当且仅当存在M >0,使得∥Tx ∥≤M ∙∥x ∥,x ∈X证明 (1) 因为T 在x 0处连续,则有∀ε>0,∃δ>0,使得当∥x −x 0∥<δ时,有∥Tx −Tx 0∥<ε对∀y,z ∈X ,∥z −y ∥<δ.令x =z −y +x 0,则x −x 0=z −y.∥Tz −Ty ∥=∥T (z −y )∥=∥T (x −x 0)∥=∥Tx −Tx 0∥<ε若T 在x 0处连续,则T 在x 上一致连续(2) 必要性 设T 在x 上一致连续,则在0处也连续。
令ε=1,∃δ>0,当∥u ∥<δ时,∥Tu ∥<1对∀x ∈X,x =∥x∥δ(δ∥x∥⋅x).令c =∥x∥δ,u =δ∥x∥⋅x ,则∥u ∥=δ,x =cu ∥Tx ∥=∥T (cu )∥=c ∥Tu ∥≤c =∥x ∥δ 令δ−1=M ,则∥Tx ∥≤M ∙∥x ∥充分性 若∥Tx ∥≤M ∙∥x ∥,x ∈X ,当x 0=0时,对于∀ε>0,∃δ=εM ,当∥x −0∥<δ时,有 ∥Tx ∥≤M ∙∥x ∥<M ∙δ=M ∙εM=ε 则对x =0,T 是连续的.3.算子范数∥T ∥=sup ∥x∥<1∥Tx ∥,设T:x →y 为连续线性算子,定义∥T ∥为T 的范数,证明: ∥T ∥=sup ∥x∥<1∥Tx ∥=sup ∥x∥=1∥Tx ∥=sup ∥x∥≠0∥Tx ∥∥x ∥证明 sup ∥x∥≠0∥Tx∥∥x∥=sup ∥x∥≠0∥1∥x∥Tx ∥=sup ∥x∥≠0∥T(1∥x∥x)∥≤sup ∥x∥=1∥Tx ∥≤sup ∥x∥≤1∥Tx ∥=∥T ∥ sup∥x∥≠0∥Tx ∥∥x ∥≥sup ∥x∥≤1∥Tx ∥∥x ∥≥sup ∥x∥≤1∥Tx ∥=∥T ∥ 则∥T ∥=sup ∥x∥≠0∥Tx∥∥x∥=sup ∥x∥≤1∥Tx ∥ 4.完备性的证明 什么是柯西列,收敛列,收敛列为什么是柯西列答 度量空间X 中的任意柯西列收敛与X 中的一点,则称X 是完备的柯西列:设空间X 为线性空间,{x n }⊂X ,若∀ε>0,∃N ,当n,m >N 时,有∥x n −x m ∥<ε,则{x n }称为柯西列收敛列:设空间X 有{x n },lim x n =x ,由极限的性质,对∀ε>0,∃N ,当n >N 时,有∥x n −x ∥<ε, 当m >N 时,有∥x −x m ∥<ε. 则当n,m >N 时,有∥x n −x m ∥=∥x n −x +x −x m ∥=∥(x n −x )−(x m −x )∥≤∥x n −x ∥+∥x −x m ∥<2ε 则称{x n }为一个收敛列由定义可知,收敛列必定是柯西列,但柯西列不一定是收敛列.比如:有理数集Q ,级数展开式中e =∑1n!∞n=0=1+1+12+⋯ S n =1n!这个数列是柯西列,但是在Q 上不收敛5.内积空间与赋范线性空间的关系内积空间→赋范线性空间(定义∥x ∥=√(x,x))赋范线性空间→内积空间(满足平行四边形法则)6. 证明:内积空间和线性赋范空间,当∥x ∥=√(x,x)证:(1) ∥x +y ∥2=(x +y,x +y )=(x,x +y )+(y,x +y )=(x,x )+(x,y )+(y,x )+(y,y) 由Cauchy-Schwarz 不等式,可知(x,y )≤√(x,x)√(y,y),则上式有∥x +y ∥2≤(x,x )+√(x,x )√(y,y )+√(y,y )√(x,x )+(y,y )=∥x ∥2+∥y ∥2+2∥x ∥∥y ∥=(∥x ∥+∥y ∥)2即∥x +y ∥≤∥x ∥+∥y ∥(2) ∥αx ∥2=(αx,αx )=αα̅(x,x),因为αα̅=|α|2,则等式=|α|2(x,x)则∥αx ∥=|α|√(x,x )=|α|∥x ∥(3) ∥x ∥=√(x,x ),因为(x,x )≥0,所以∥x ∥≥0(4) 当∥x ∥=√(x,x )=0时,(x,x )=0,即x =07.正交系(集)性质,勾股,三角不等式,线性相关的证明答: 向量集S 称为正交的,是指对于每一对x,y 都有x ⊥y ,其中x ∈S,y ∈S 且x ≠y.若对于每一个x ∈S 还有∥x ∥=1,则称这个集为标准正交集平行四边形法则:∥x +y ∥2+∥x −y ∥2=2∥x ∥2+2∥y ∥2证明: ∥x +y ∥2+∥x −y ∥2=(x +y,x +y )+(x −y,x −y )=(x,x )+(x,y )+(y,x )+(y,y )+(x,x )−(x,y )−((y,x )−(y,y ))=(x,x )+(x,y )+(y,x )+(y,y )+(x,x )−(x,y )−(y,x )+(y,y )=2(x,x )+2(y,y )=2∥x ∥2+2∥y ∥2ε1,ε2,…,εn 为正交向量组,且k 1ε1+k 2ε2+⋯k n εn =0,则0=(0,εi )=(k 1ε1+k 2ε2+⋯k n εn )=k i (εi ,εi )=k i ,即k i =0(i =1,2,…,n),所以ε1,ε2,…,εn 线性无关.8. X 是一个线性空间,S ⊂X,S ⊥={x ′:x ′∈X f |(x,x ′)=0,x ∈S}⊂X f ,证明S ⊥是X f 一个子空间证明 X 是线性空间,则X f 也是线性空间.因为S ⊥⊂X f ,则对任意x ′,y ′∈S ⊥,有x ′,y ′∈X f 而(x ′+y ′)(x )=x ′(x )+y ′(x )=0,故x ′+y ′∈S ⊥.∀α∈R,x ′(αx )=αx ′(x )=0.故αx ′∈S ⊥,则S ⊥是X f 一个子空间。
泛函分析知识点汇总

泛函分析知识点知识体系概述(一)、度量空间和赋线性空间 第一节 度量空间的进一步例子1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间例1 离散的度量空间 例2 序列空间S例3 有界函数空间B(A) 例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间 例6 l 2第二节 度量空间中的极限,稠密集,可分空间 1. 开球定义 设(X,d )为度量空间,d 是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限定义 若{x n }⊂X, ∃x ∈X, s.t. ()lim ,0n n d x x →∞= 则称x 是点列{x n }的极限.3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。
5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 是可分空间。
第三节 连续映射1.定义 设X=(X,d),Y=(Y, ~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ<的x ,有()~0,d Tx Tx ε<,则称T 在x 连续.2.定理1 设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节 柯西(cauchy )点列和完备度量空间1.定义 设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
1.1举例1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点x,y ∈X ,令()1x y d x y =0x=y≠⎧⎨⎩,当,,当,则称(X ,d )为离散度量空间。
1.12 序列空间S :S 表示实数列(或复数列)的全体,d(x,y)=1121i i i i i i ςηςη∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义d(x,y)=At ∈sup )()(t y t x -1.14 可测函数空间M(X):M(X)为X 上实值(或复值)的L 可测函数全体。
d(f,g)=dt t g t f t g t f x ⎰-+-)()(1)()(1.15 C[a,b]空间(重要的度量空间):C[a,b]表示闭区间[a,b]上实值(或复值)连续函数全体,对C[a,b]中任意两点x,y ,定义d(x,y)=)()(max t y t x bt a -≤≤ 1.16 l 2:无限维空间(重要的度量空间)★ 例1.15、1.16是考试中常考的度量空间。
2.度量空间中的极限,稠密集,可分空间2.1 0x 的ε—领域:设(X ,d )为度量空间,d 是距离,定义{}00(,)U x x X εε==∈∣d(x,x )<为0x 的以ε为半径的开球,亦称为0x 的ε—领域。
注:通过这个定义我们可以从点集这一章学到的知识来定义距离空间中一个点集的内点,外点,边界点及聚点,导集,闭包,开集等概念。
2.2度量空间的收敛点列:设(X ,d)是一个度量空间,{}n x 是(X ,d )中点列,如果存在x X ∈,{}n x 收敛于x ,使lim n n x x →∞=,即(,)0()n d x x n →→∞,称点列{}n x 是(X ,d )中的收敛点列,x 叫做点列{}n x 的极限,且收敛点列的极限是唯一的。
注:度量空间中点列收敛性质与数列的收敛性质有许多共同之处。
2.3有界集:设M 是度量空间(X ,d )中的点集,定义,()(,)sup x y MM d x y δ∈=为点集M 的直径。
若()M δ∞<,则称M 为(X ,d )中的有界集。
(类似于n R ,我们可以证明一个度量空间中收敛点列是有界点集)2.4闭集:A 是闭集⇔A 中任意收敛点列的极限都在A 中,即若n x A ∈,n=1,2,....n x x →,则x A ∈。
(要会证明)2.5举例2.5.1 n 维欧氏空间n R 中,点列依距离收敛(,)0k d x x →⇔依分量收敛。
2.5.2 C[a,b]空间中,点列依距离收敛(,)0k d x x →⇔依分量一致收敛。
2.5.3 序列空间S 中,点列依坐标收敛。
2.5.4 可测函数空间M(X):函数列依测度收敛于f ,即 (,)0n n d f f f f →⇔⇒。
2.6稠密子集和可分度量空间有理数集在实数集中的稠密性,它属于实数集中,现把稠密性推广到一般的度量空间中。
2.6.1定义:设 X 是度量空间,E 和M 是X 的两个子集,令M 表示M 的闭包,如果E ⊂M ,则称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 为可分空间。
注:可分空间与稠密集的关系:由可分空间定义知,在可分空间X 中一定有稠密的可数集。
这时必有X 中的有限个或可数个点在X 中稠密。
2.6.2举例①n 维欧式空间n R 是可分空间:坐标为有理数的全体是nR 的可数稠密子集。
②离散度量空间X 可分⇔X 是可数集。
(因为X 中无稠密真子集,X 中唯一的稠密只有X 本身)③l ∞是不可分空间。
数学知识间都有联系,现根据直线上函数连续性的定义,引进了度量空间中映射连续性的概念。
3. 连续映射3.1定义:设X=(X ,d ) Y=(Y ,~d )是两个度量空间,T 是X 到Y 中的映射0x єX ,如果对∀ε>0,∃δ>0 ,使对X 中一切满足d (x ,0x )<δ的x ,有~0(,x )d Tx T ε<,则称T 在0x 连续。
(度量空间之间的连续映射是数学分析中连续函数概念的推广,特别,当映射是值域空间Y R =时,映射就是度量空间上的函数。
) 注:对于连续可以用定义证明,也可以用邻域的方法证明。
下面用邻域描述:对T 0x 的ε-邻域U ,存在0x 的某个δ—邻域V ,使T V ⊂U ,其中T V 表示V 在映射T 作用下的像。
3.2 定理1:设T 是度量空间(X ,d )到度量空间(Y ,~d )中映射,T 在0x X ∈连续⇔当0n x x →()n →∞时,必有0()n Tx Tx n →→∞。
在映射中我们知道像与原像的概念,下面对原像给出定义。
3.3 原像的定义:映射T 在X 的每一点都连续,则称T 是X 上的连续映射,称集合{x ∣x ∈X ,Tx ⊂M ⊂Y}为集合M 在映射T 下的原像,简记为1T M -。
★可见,对于度量空间中的连续映射可以用定理来证明,也可以用原像的定义来证明。
3.4定理2:度量空间X 到Y 中的映射T 是X 上连续映射⇔Y 中任意开集M 的原像1T M -是X中的开集(除此之外,利用1T -(M 的补集)=(1T M -)的补集,可将定理中开集改成闭集,定理也成立。
)注:像开原像开,像闭原像闭,映射连续。
在数学分析中有学过收敛点列,柯西点列,但研究都在R 中。
现在我们可类似的给出度量空间中柯西点列的概念。
4. 柯西(Cauchy )点列和完备的度量空间。
4.1柯西点列的定义 :设X=(X ,d )是度量空间,{n x }是X 中的点列,对∀ε>0,∃正整数N=N (ε),使当n,m>N 时,必有d(n x ,m x )<ε,则称{n x }是X 中的柯西(Cauchy )点列或基本点列。
【会判断:柯西点列是有界点列】我们知道实数集的完备性,同时在学习数列收敛时,数列收敛的充要条件是数列是Cauchy 列,这由实数的完备性所致。
在度量空间中,这一结果未必成立。
但在度量空间中的确存在完备的度量空间。
4.2完备的度量空间的定义:如果度量空间(X,d)中每一个柯西点列都在(X,d)中收敛,那么称(X,d)是完备的度量空间.★但要注意,在定义中要求X中存在一点,使该柯西点列收敛到这一点。
4.3举例(记住结论)4.3.1有理数全体按绝对值距离构成的空间不完备,但n维欧式空间nR是完备的度量空间。
4.3.2在一般度量空间中,柯西点列不一定收敛,但是度量空间中的每一个收敛点列都是柯西点列:C、C[a,b]、l∞也是完备的度量空间。
4.4定理完备度量空间X的子空间M,是完备空间⇔M是X中的闭子空间。
P[a,b](表示闭区间[a,b]上实系数多项式全体,作为C[a,b]的子空间)是不完备的度量空间.5. 度量空间的完备化。
5.1等距映射:设(X,d),~~ ,X d()是两个度量空间,T是从X到~X上的映射,即对∀x,y X∈,~d(Tx,Ty)=d(x,y),则称T是等距映射。
5.2定义:设(X,d),~~ ,X d()是两个度量空间,如果存在一个从X到~X上的等距映射T,则称(X,d)和~~ ,X d()等距同构,此时T称为X到~X上的等距同构映射。
(像的距离等于原像的距离)注:在泛函分析中往往把两个等距同构的度量空间不加区别而视为同一的。
5.2定理1(度量空间的完备化定理):设X=(X,d)是度量空间,那么一定存在完备度量空间~~~=,X X d(),使X与~X的某个稠密子空间W等距同构,并且~X在等距同构下是唯一的,即若(ˆX,ˆd)也是一个完备的度量空间,且X与ˆX的某个稠密子空间等距同构,则~~ ,X d()与(ˆX,ˆd)等距同构。
(不需要掌握证明但是要记住结论)5.2.1定理1的改述:设X=X(,d)是度量空间,那么存在唯一的完备度量空间~~~=,X X d(),使X为~X的稠密子空间。
6. 压缩映射原理及其应用(重点内容,要求掌握并会证明)学习完备度量空间概念,就需要应用,而压缩映像原理是求解代数方程、微分方程、积分方程,以及数值分析中迭代算法收敛性很好的工具,另外要学会如何求不动点。
6.1压缩映射定义:X 是度量空间,T 是X 到X 的映射,如果存在一个数α,0,1α∈(),使 对∀ x ,y X ∈,d (Tx ,Ty )≦αd (x ,y ) 则称T 为压缩映射。
6.2(压缩映射定理)设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且仅有一个不动点(即方程Tx=x ,有且只有一个解)。
(x 是T 的不动点⇔x 是方程Tx=x 的解)这个定理对代数方程、微分方程、积分方程、数值分析的解的存在性和唯一性的证明中起重要作用。