泛函分析课程论文

合集下载

泛函分析课程总结论文

泛函分析课程总结论文

泛函分析课程总结论文第一部分:知识点体系第七章:度量空间和赋范线性空间度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。

泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。

一、度量空间的进一步例子 1、度量空间的定义定义1.1 设X 为一个集合,一个映射X X R ⨯→d :.若对于任何x,y,z 属于X ,有1°d(,)0x y ≥,且d(,)0x y =当且仅当x y =(非负性); 2°(,)(,)d x y d y x =(对称性);3°(,)(,)(,)d x y d x z d z y ≤+ (三角不等式) 则称d 为集合X 的一个度量,同时称(),X d 为一个度量空间(课本第二章第一节中已经讲解了度量空间的定义,第七章第一节接着讲解度量空间,下面介绍六种度量空间。

)2、常见的度量空间 例2.1 离散的度量空间设 x 是任意的非空集合,对 x 中的任意两点 ,令 称为离散的度量空间。

例2.2 序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称为序列空间。

例2.3 (3)有界函数空间B(A ),x y X ∈1,(,)0,if x yd x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i id x y ξηξη∞=-=+-∑(,)S d设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义例2.4 可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。

泛函分析论文

泛函分析论文

泛函分析在最优控制中的应用一、引言控制理论中几乎所有的问题,都可以用泛函分析中有关空间和算子的术语来描述,而泛函分析严谨广博的理论体系,对所研究问题的归属有明确的规定,同时可以向研究者提供解决的途径。

例如,利用对偶空间和伴随算子的理论,可以解释控制理论中几乎所有的对偶定理。

而这些定理的发现,大多也是数学结论直接演绎的结果。

控制理论所研究的问题,可以概括为系统分析、系统综合、建模和优化,系统分析包括系统的稳定性分析,能控能观性分析,鲁棒性分析等,主要是分析用以描述系统行为的算子的特性。

传统的分析方法是实用的,但只限于某些类型的非线性系统进行统一的处理,从而获得更加一般的结论。

系统的综合包括控制器和补偿器的设计等,使系统得以镇定或获得某种性能,这是分析的逆问题。

传统的综合方法不仅费时费事,而且解决问题的范围比较狭窄。

现代的综合方法倾向与构造能用于计算机实现某些算法。

迭代算法或递推算法的收敛性分析,以及闭环控制的稳定性分析等,只有借助于泛函分析所提供的工具,才有可能使问题得以解决。

系统建模和系统的最优控制,一般是在某些约束条件下,对某个泛函指标进行优化的问题,这更是泛函分析研究范围内的问题。

在最优控制问题中,目的是根据被控对象的动态过程选取一个最优的容许控制,使得某一性能指标(泛函)达到最优值。

从数学角度来看,这是求取一类带有约束条件的泛函极值问题二、问题描述考虑一个动态系统(,,),x f x u t = 00()x t x = (1) 其中()x t 为n 维状态向量;()u t 为m 维控制向量;f 为n 维向量函数。

确定一个最优的容许控制*()u t ,使得系统产生一个容许状态()x t 满足目标集约束 [(),]0f f x t t ψ= (2) 同时,还要使性能指标[(),](,,)ft f f t J x t t L x u t dt ϕ=+⎰(3)达到极值。

在这个一般描述中,末端时刻f t 可取两种情形:可固定,可自由;末端的状态()f x t 可取三种情形:固定,自由及受[(),]0f f x t t ψ=约束。

纯数学泛函分析大学期末论文

纯数学泛函分析大学期末论文

纯数学泛函分析大学期末论文摘要:本文主要介绍了纯数学泛函分析的基本概念和应用。

首先,我们从泛函分析的起源和发展历程入手,介绍了泛函和泛函空间的概念。

接着,我们详细讨论了泛函分析的基本理论,包括线性算子、Banach空间和Hilbert空间等。

最后,我们探讨了泛函分析在实际问题中的应用,包括偏微分方程的解析和数值方法等。

1. 引言泛函分析作为现代数学的重要分支,对于理解和解决实际问题具有重要意义。

它既是函数论的延伸,又是数学分析的发展。

纯数学泛函分析是泛函分析中的一个重要分支,主要研究无穷维线性空间的性质和结构。

本文将系统地介绍纯数学泛函分析的基本内容,以期对读者有所启发。

2. 泛函分析的起源和发展历程泛函分析是20世纪初发展起来的数学分支,源于对函数序列收敛性的研究。

随着对无穷维空间和泛函的研究深入,泛函分析逐渐形成了自己独特的理论体系。

通过对泛函的定义和性质的研究,人们逐渐发现了泛函分析在实际问题中的广泛应用。

3. 泛函和泛函空间的概念泛函是定义在一个函数空间上的函数。

泛函空间是所有满足一定条件的函数的集合。

泛函和泛函空间是泛函分析的核心概念。

在本节中,我们将详细介绍泛函和泛函空间的定义和性质,并给出一些常用的泛函空间的例子。

4. 线性算子和算子空间线性算子是将一个线性空间映射到另一个线性空间的映射。

算子空间是所有满足一定条件的线性算子的集合。

线性算子和算子空间是研究泛函分析中线性性质的基本对象。

在本节中,我们将讨论线性算子和算子空间的定义和一些重要性质,并给出一些经典的算子空间的例子。

5. Banach空间和Hilbert空间Banach空间是一个完备的赋范线性空间,Hilbert空间是一个完备的内积空间。

它们是泛函分析中最重要的两类空间。

在本节中,我们将详细介绍Banach空间和Hilbert空间的定义和性质,并讨论它们的一些重要的特征和例子。

6. 泛函分析的应用泛函分析作为数学的一种工具,具有广泛的应用领域。

实变函数与泛函分析基础之课程论文提纲

实变函数与泛函分析基础之课程论文提纲

∀ {xn} ⊂ U (x0, λ) ⊂ Df , xn → a, 成立:f (xn) → a
特别地,当 f (x) 在 x0 ∈ X 点连续,即:limx→x0 ∈ Y f (x) = f (x0) ∈ Y ,则上述去心领域均可 改成含心领域。
Theorem 1 复合映照极限定理 设有:
(1) limy→y0 ∈ Y g(y) = c ∈ Z
《实变函数与泛函分析基础》之课程论文提纲
2007 年 7 月 5 日1 赋范线性空间基本概念
Problem 1 (Ck(Ω) 空间) 设 Ω ⊂ Em,Ck(Ω) 表示 Ω 上具有有界连续的 k 阶各类偏导数
的 函 数 全 体 按 通 常 函 数 加 法 和 数 乘 所 成 的 线 性 空 间 。 用 p = (p1, · · · , pn) 表 示 非 负 整 数
注: 1. 上述可测简单函数列中的每一个均可取成具有紧支集的函数。 2. 若 f (x) 是有界的,则上述收敛是都是一致的。
Problem 8 按周民强著《实变函数论》整理 Rm 上测度理论的建立。 Problem 9 按夏道行等著《实变函数论与泛函分析》(上册)整理一般集类上测度理论的建 立。 Problem 10 按周民强著《实变函数论》或夏道行等著《实变函数论与泛函分析》(上册)进 行有关问题(习题)的解答。
注:本学期本课程采用课题论文形式进行考核。可参考上述的提纲进行相关内容的整理 (可以扩充内容或更改上述提纲所反映的思路):(1)澄清概念;(2)完成性质的证明及 问题解答。要求:正本清源;思想清晰,证明推理严谨,并尽量体现微积分及线性代数的思 想和方法在本课程中的应用。
3
f (x0 + h) = f (x) + Df (x0) · h + o(|h|X ), h ∈ X

高馨泛函分析论文

高馨泛函分析论文

泛函分析论文摘要:本文介绍了Hilbert 空间、Banach 空间、距离空间、拓扑空间的概念,通过一些典型例题论述它们空间之间的关系及算子定义和特征值关键词:Hilbert 空间、Banach 空间、距离空间、拓扑空间、算子一、空间每一个内积空间是赋范空间.我们称完备的内积空间为Hilibert 空间..一个内积空间必是一个赋范空间.反之,,每一个赋范空间都可以引进一个内积,使得由这个内积产生的范数是原来的范数,其中范数要满足平行四边形则.Hilbert space 是完备的线性赋范空间(Banach space )的一个特例.1、Hilbert 空间有穷维线性空间可以引进各种种范数使它成为bananch 空间,但是通常欧式空间的一个重要特性是它上面定义了内积,借助于内积就可以定义向量的长和两个向量的正交性。

我们把这种方法推广到无穷维空间的情形,在下面里,我们引进内积空间Hilbert 空间的概念。

设H 是域K 上的线性空间,任意H y x ∈,,有一个K 中数(x,y)与之对应,使得对任意K a H z y x ∈∈,,,满足:⑴正定性:()(),0,;0,=≥x x y x 当且仅当;0=x⑵共轭对称性:()();,,x y y x =⑶对第一变元的线性性:()();,,y x a y ax =()()().,,,z y z x z y x +=+称( , )是H上的一个内积,H 上定义了内积称为内积空间。

()().,,y x a ay x =定理 1.1.1(Schwarz 不等式) 设H 是内积空间,则对任意H y x ∈,有()()().,,,2y y x x y x ≤称内积空间的这个范数是由内积产生的范数,因此每一个内积空间是赋范空间.以后凡说到内积空间是赋范空间都是指范数是由内积产生的.我们称完备的内积空间为Hilbert 空间.例1.1.1 n R 是(实)Hilbert 空间.在定义n R 中定义()k nk k y x ηξ∑==1, {}{}().,n k k R y x ∈==ηξ不难验证,( , )是一个内积,且由这个内积产生的范数为2112⎪⎭⎫ ⎝⎛=∑=n k x ξ {}().n k R x ∈=ξ 因此n R 是Hilbert 空间.例1.1.2 ]2,L a b ⎡⎣是Hilbert 空间与2l 类似,由Holder 不等式,对任意]2,,x y L a b ⎡∈⎣,()()112222,(())(())b b b aa a x t y t dt x t dt y t dt ≤⎰⎰⎰ 在]2,L ab ⎡⎣上定义内积()()(),ba x y x t y t dt =⎰ 有这个内积产生的范数为 122(())b a x x t dt =⎰由此可知]2,L a b ⎡⎣是Hilbert 空间 定理1.1.2 设H 是内积空间,则内积()y x ,是x,y 的连续函数,即当()().,,,,y x y x y y x x n n n n →→→时,定理1.1.4 设X 是赋范空间,如果范数满足平行四边形法则,则可在X 中定义一个内积,使得由它产生的范数正是X 中原来的范数.2、Banach 空间定义2.1.1 设X 是域K(实数域或复数域)上的线性空间,函数:R X →∙: 满足条件:1) 对任意0,0;0,==≥∈x x x X x 当且仅当;2) 对任意(齐次性)及,,x a ax K a X x =∈∈; 3) 对任意(三角不等式),,y x y x X y x +≤+∈. 称 ∙是X 上的一个范数,X 上定义了范数 ∙称为赋范(线性)空间,记为() , ∙X ,有时简记为X .在一个赋范线性空间() , ∙X 中通过范数可以自然地定义一距离,(),,y x y x d -= .,X y x ∈ ()1.1.2事实上,由范数公理,对任意()(),当且仅当当且仅当且0,0,0,,0,,,,=-=-==≥-=∈y x y x y x d y x y x d X z y x ()()()+-≤-+-=-==-=-==z x y z z x y x y x d x y d x y y x y x d y x ,,,,,即()()y z d z x d y z ,,+=-.称赋范空间中这个距离是由范数诱导的距离.这样,赋范空间是一个距离空间,以后凡说赋范空间的距离如无特别说明都指的是由范数诱导的距离.因此,在第一张所讨论的涉及距离空间、拓扑空间的一般概念、性质(如完备性、可分性、紧性等)都可以移植到赋范空间中来.特别地,设{}n x 是赋范空间X 中的点列,X x ∈,如果()∞→→-n x x n 0,称{}n x 强(或按范)收敛于x ,记为()∞→→n x x n ,或x xn n =∞→lim .如果赋范空间是完备的称它为Banach 空间.例2.1.1 空间[],C a b 。

泛函分析期中课程论文(2012.11)

泛函分析期中课程论文(2012.11)

湛江师范学院2012 年-2013 学年度第 1 学期
期中考核题目及评分标准
考查科目:泛函分析授课对象:数科院09数本1-9班
任课教师:栾姝
考核形式:课程论文
具体要求:课程论文应包括以下两方面内容:一、总结《泛函分析》课程的知识体系;二、列举泛函分析中的某个知识点在其
他课程中的应用。

文中如涉及他人论文内容,要列出参考
文献。

题目自拟。

A4纸单面打印(标明院系、专业、班级、
姓名、学号) 字体:小四字数:不限
评分标准:100-90分:一、知识点总结详尽、准确,特别应注重每章
中各个知识点之间的区别和联系,要有自己的
独到之处。

二、要通过查阅参考文献,全面、
系统地总结泛函分析中某个知识点在其他课
程中的应用。

89-80分:一、知识点总结较为详尽、准确,基本体现各
个知识点之间的区别和联系,有自己的观点。

二、通过查阅参考文献,较为全面地总结了泛
函分析中某个知识点在其他课程中的应用。

79-70分:一、知识点总结基本全面、部分知识点内在联系
总结基本准确。

二、文中体现了泛函分析中某
个知识点在其他课程中的应用。

69-60分:一、知识点总结相对不够全面、部分知识点内在联
系总结基本准确。

二、文中有涉及到泛函分析
中某个知识点在其他课程中的应用。

59-0分:一、知识点总结不够全面、部分知识点内在联系总结
不够准确或者完全没有涉及,只是罗列课本中
的内容,没有自己的观点。

二、文中没有涉及
到泛函分析中某个知识点在其他课程中的应
用。

泛函分析

泛函分析

泛函分析论文(数学与计算机科学学院数11 赵洁 1060211014036)摘要:本文简单介绍泛函分析方法的基本理论,以及其在力学和工程的若干应用,包括泛函观点下的结构数学理论、直交投影法等。

关键字:泛函分析1.引言泛函分析是研究拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。

它是20世纪30年代形成的。

从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法分析学的课题,可看作无限维的分析学。

2.泛函分析概述2.1泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。

这就是由于欧几里得第五公社的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。

这些新的理论都为用同一观点把古典分析的基本概念和方法一般化准备了条件。

本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。

随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。

到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。

由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。

这种相似在积分方程论中表现的更突出了。

泛函分析的产生正是和这种情况有关,都存在着类似的地方。

非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。

这样,就显示出了分析和几何之间相似的地方,同时存在着把分析几何化的一种可能性。

这种可能性要求把几何概念进一步推广,以至最后把欧式空间扩充成无穷维数的空间。

这时候,函数概念被赋予了更为一般的意义,古典分析中的概念是指两个数集之间所建立的某种对应关系。

在数学上,把无限维空间到无限维空间的变换叫做算子。

研究无限维线性空间上的泛函数和算子理论,就生了一门新的分析数学,叫做泛函分析。

泛函分析线性赋范空间论文

泛函分析线性赋范空间论文

泛函分析线性赋范空间论文摘要:本论文主要围绕泛函分析线性赋范空间的基本理论进行研究,介绍了线性赋范空间的定义、性质、范畴和代数结构等方面。

对于赋范空间中的基本概念如范数、内积、对偶空间、共轭性等,进行详细阐述,并以此为基础,引入了Banach空间、Hilbert空间、算子空间等重要概念和定理。

论文最后还介绍了一些经典的应用和发展趋势。

通过本论文的研究,可以更好地理解和应用泛函分析线性赋范空间的基本理论。

关键词:泛函分析;线性赋范空间;范数;内积;对偶空间;共轭性;Banach空间;Hilbert空间;算子空间一、引言泛函分析是数学中的一个重要分支,它主要研究无限维向量空间及其上的函数或算子。

线性赋范空间是泛函分析中一个重要的概念,它是带有范数(norm)的线性空间,具有加法、数乘和范数这三个运算,是泛函分析的基础。

本论文旨在对于泛函分析线性赋范空间的基本理论进行系统的阐述和探讨。

二、线性赋范空间的定义与性质线性赋范空间是一个带有范数的线性空间,它的定义包括线性空间的定义和范数的定义。

线性赋范空间具有很多性质,如唯一的零元素、范数的非负性、齐次性、三角不等式等,这些性质为后续的研究提供了基础。

三、范数、内积、对偶空间和共轭性范数、内积、对偶空间和共轭性是赋范空间中的基本概念,范数是一种测量距离的方式,内积是一种度量夹角的方法,对偶空间是指所有从X到标量域的线性连续映射组成的空间,而共轭性则是指内积或对偶空间的一些特殊性质。

四、Banach空间、Hilbert空间、算子空间等Banach空间是指完备的赋范空间,Hilbert空间是一种特殊的Banach空间,具有良好的几何性质和完备性质,是应用广泛的空间之一。

在算子理论中,算子空间则是指线性映射所组成的空间,它也具有重要的应用和意义。

五、经典应用和发展趋势泛函分析线性赋范空间在数学和物理等领域都有着广泛的应用,如偏微分方程、量子力学、信号处理、数据挖掘等。

泛函分析

泛函分析

浅议对Hilbert空间的学习摘要:本文在由正交概念得到勾股定理、正交投影定理的基础上,将这些概念抽象推广到一般的赋范线性空间,建立了内积空间和Hilbert空间,并对Hilbert空间进行了进一步的研究。

关键字:内积空间;Hilbert空间;正交分解;投影定理1引言在数学领域,希尔伯特空间又叫完备的内积空间,是有限维欧几里得空间的一个推广,使之不局限于实的情形和有限的维数,但又不失完备性(而不像一般的欧几里得空间那样破坏了完备性)。

[1]2 内积空间和Hilbert空间2.1内积空间2.1.1 内积空间的定义:设X是数域F(实或复数域)上的线性空间,若,存在唯一的数,满足下列三条(内积公理):i) 对第一变元的线性性质:ii) 共轭对称性:iii) 正定性:则称为x和y的内积,X为内积空间。

当F是实数域时,称X为实内积空间;F为复数域时,称X为复内积空间。

通常X指的是复内积空间。

当X为内积空间时,对有:i)ii)2.1.2内积空间的性质2.1.2.1 在内积空间U中,按内积导出的范数满足平行四边形公式证明:2.1.2.2判别定理若赋范线性空间X的范数满足平行四边形公式,则X可成为内积空间。

证明:①当X为实赋范线性空间时,定义则由平行四边形公式验证其满足内积的三条公理;②当X为复赋范线性空间时,定义则由平行四边形公式验证其满足内积的三条公理。

注:若赋范线性空间X的范数不满足平行四边形公式,则X不能成为内积空间。

2.1.2.3内积的连续性在内积空间U中,内积是两个变元的连函数,即当(按范数)时,数列。

2.2 希尔伯特(Hilbert)空间定义:完备的内积空间X称为Hilbert空间,记作H.(即内积空间X按距离是完备的,亦是Banach空间)。

此空间称为是一个希尔伯特空间,如果其对于这个范数来说是完备的。

这里的完备性是指,任何一个柯西列都收敛到此空间中的某个元素,即它们与某个元素的范数差的极限为0。

应用泛函分析

应用泛函分析

中国地质大学研究生课程论文封面课程名称应用泛函分析教师姓名研究生姓名研究生学号研究生专业所在院系类别: 硕士日期: 2013年12月12日评语注:1、无评阅人签名成绩无效;2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效;3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

应用泛函分析课程报告——泛函分析及其在地球物理中的应用1 前言1.1概述泛函分析是现代数学的一个分支,隶属于分析学,其主要研究对象是无穷维空间和这类空间之间各种映射的一般性质。

它是从分析数学、变分法、积分方程、微分方程、逼近论和理论物理等的研究中发展起来的,成为近代分析的基础之一。

它以集合论为基础,综合运用分析、代数和几何的观点方法,来研究分析学的课题。

可看作无限维分析学。

泛函分析是20世纪30年代形成的。

它的产生和发展主要受两各因素的影响。

一方面,由于数学本身的发展,需要探求其各分支里被孤立讨论过的结论和方法的一般性和统一性。

分析、代数、变分法、积分方程、集合的许多概念和方法常常存在相似的地方,它启发人们从类似的东西中探寻一般的真正属于本质的东西,加以总结和整理,建立一套理论,用统一的观点理解和处理已有的或将要出现的对象,促使了泛函分析抽象理论的形成与提升。

另一方面,正如Newton力学对微积分的发展所起的作用一样,量子物理学的需要对泛函分析的发展起到重要作用。

泛函分析具有高度抽象性和概括性,并具有广泛的应用性以及表述形式的简洁性,使得它的概念和方法已渗透到数学、理论物理和现代工程技术的许多分支。

半个多世纪以来,泛函分析一方面以其他众多学科所提供的素材来提取资自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子普理论、Banach代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力的推动着其它不少学科的发展。

它在微分方程、概率论、函数论、计算数学、控制论、最优化理论等学科中都有重要应用;它也是研究无限个自由度物理系统的重要而自然的工具之一,其方法大量的使用于连续介质力学、电磁场理论、量子场论等学科;此外,它的观点和方法已经渗入到不少工程技术性的学科当中,其概念、术语和符号作为科学的语言已被频频应用于许多技术问题的表述之中,成为一种方便的数学语言和工具。

泛函分析范文

泛函分析范文

泛函分析范文泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。

它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。

它可以看作无限维向量空间的解析几何及数学分析。

泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

泛函分析(FunctionalAnalysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。

泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。

使用泛函作为表述源自变分法,代表作用于函数的函数。

巴拿赫(StefanBanach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家维多·沃尔泰拉(VitoVolterra)对泛函分析的广泛应用有重要贡献。

由于泛函分析源自研究各种函数空间,在函数空间里函数列的收敛有不同的类型(譬如逐点收敛,一致收敛,弱收敛等等),这说明函数空间里有不同的拓扑。

而函数空间一般是无穷维线性空间。

所以抽象的泛函分析研究的是一般的(无穷维的)带有一定拓扑的线性空间。

拓扑线性空间的定义就是一个带有拓扑结构的线性空间,使得线性空间的加法和数乘都是连续映射的空间。

巴拿赫空间这是最常见,应用最广的一类拓扑线性空间。

比如有限闭区间上的连续函数空间,有限闭区间上的k次可微函数空间。

或者对于每个实数p,如果p≥1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。

(参看Lp空间) 在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。

对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。

微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。

泛函分析论文

泛函分析论文

泛函分析论文泛函分析是20世纪30年代形成的数学分科。

是从变分问题,积分方程和理论物理的研究中发展起来的。

它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。

它可以看作无限维向量空间的解析几何及数学分析。

主要内容有拓扑线性空间等。

泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。

泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。

泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。

使用泛函作为表述源自变分法,代表作用于函数的函数。

巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。

他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。

一、度量空间和赋范线性空间1、度量空间现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。

19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。

20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。

度量空间中最符合我们对于现实直观理解的是三维欧氏空间。

这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。

定义:设X为一个集合,一个映射d:X×X→R。

若对于任何x,y,z属于X,有(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y;(II)(对称性)d(x,y)=d(y,x);(III)(三角不等式)d(x,z)≤d(x,y)+d(y,z)则称d为集合X的一个度量(或距离)。

密度泛函理论(DFT)论文:密度泛函理论(DFT)分子识别变构开关自然键轨道(NBO)预组织性

密度泛函理论(DFT)论文:密度泛函理论(DFT)分子识别变构开关自然键轨道(NBO)预组织性

密度泛函理论(DFT)论文:密度泛函理论(DFT)分子识别变构开关自然键轨道(NBO)预组织性密度泛函理论(DFT)论文:密度泛函理论(DFT) 分子识别变构开关自然键轨道(NBO) 预组织性【中文摘要】超分子化学是当前乃至未来相当长时间内化学中最热门、发展最快的领域之一。

本文运用密度泛函(DFT)理论方法计算的方法对3个冠醚类化合物结构、性能进行了理论研究。

3个分子识别的体系分别为:(1)低对称性冠醚及其与碱金属Na+,K+的分子识别;(2)2, 2’-联吡啶基-3, 3’-15-冠-5与碱金属离子Na+,K+及由过渡金属组成的W(CO)4分子碎片的分子识别;(3)含有偶氮功能基团的冠醚分子以及它们的顺式结构体与碱金属Li+, Na+, K+, Rb+的分子识别。

首先,采用密度泛函理论方法(DFT),运用B3LYP杂化函数在6-31G(d)水平上,对4种分别以15-冠-5和18-冠-6为骨架的缩环冠醚14-冠-5、17-冠-6和扩环冠醚16-冠-5、19-冠-6及其它们与碱金属阳离子Na+和K+配位生成的配合物的电子几何结构优化结果进行讨论。

利用福井函数(Fukui functions)对4种低对称冠醚的亲核性能进行了比较。

用量子化学参数,如能隙(ΔE),前线轨道HOMO能级和LUMO能级等,分别对低对称性冠醚和对称性冠醚的配位能力进行了分析比较。

此外,配位反应在298K的焓变也通过一些热力学数据进行了分析讨论。

结果表明:冠醚分子中相邻的两个氧原子之间的亚甲基链的长度对冠醚分子的结构性能和化学性质起到至关重要的作用。

理论计算结果与实验结果吻合。

第二,在B3LYP/6-31G (d)和SDD (Stuttgart-Dresden)基组水平上,对2, 2’-联吡啶基-3, 3’-15-冠-5(L)与碱金属Na+,K+及W(CO)4分子碎片所形成的配合物进行几何结构全优化计算,同时对配合物的能量进行了基组误差(BSSE)分析,并对它们的优化结构进行了NBO讨论。

泛函分析论文范文

泛函分析论文范文

泛函分析论文范文泛函分析是数学中的一个分支,研究的是无限维空间中的向量和函数。

在泛函分析的研究过程中,论文是一种常见的学术产出形式。

下面是一篇关于泛函分析的论文范文,供参考。

Title:The Properties and Applications of Banach SpacesContinuous Linear Operators:In Banach spaces, continuous linear operators play an important role. They are linear transformations that preserve the norm and continuity of vectors. We present the definition and properties of continuous linear operators and prove several theorems related to bounded linear operators on Banach spaces. These theorems provide insight into the behavior of linear operators and their applications insolving mathematical problems.Applications of Banach Spaces:Banach spaces findapplications in various areas of mathematics. In this section,we discuss two specific applications: harmonic analysis and functional equations. Harmonic analysis deals with the representation of functions as superpositions of basic waves,and Banach spaces provide a framework for studying the convergence and properties of these representations. Functional equations involve finding functions that satisfy certainalgebraic conditions, and Banach spaces offer a tool forstudying the existence and uniqueness of solutions to these equations.。

线性赋范空间泛函有界性研究论文

线性赋范空间泛函有界性研究论文

目录1引言 (1)2线性赋范空间 (1)2.1预备知识 (2)2.2线性赋范空间的一些性质 (3)3线性有界泛函与共轭空间 (4)3.1线性有界泛函 (4)3.2线性有界泛函与线性连续泛函 (6)3.3共轭空间 (8)4线性有界算子 (11)4.1线性有界算子定义与举例 (11)4.2线性有界算子与线性连续的关系 (12)4.3线性算子空间 (14)4.4有界性与闭性 (16)致谢 (18)线性赋范空间泛函有界性研究数学系本1104班薛菊峰指导教师:何瑞强摘要:本文研究的是线性赋范空间泛函有界性。

从三个方面进行探讨:首先,阐述线性赋范空间泛函有界性、泛函连续性以及相关的知识点;然后,研究线性赋范空间泛函有界性与连续性的关系,根据两者的等价性给出一些相关泛函理论的推导并给出一些相关的例题便于理解和掌握;最后,将泛函有界性推广到两个线性赋范空间之间,从而引入了两个人空间之间的映射即所谓的线性有界算子。

因此对线性赋范空间泛函有界性的研究是很有必要的,它有助于研究者的掌握和应用。

关键词:线性赋范空间;线性有界泛函;线性连续泛函;线性有界算子Normed linear space bounded functional studiesXue JufengClass 1104, Mathematics DepartmentTutor:He RuiqiangAbstract:This paper studies is a normed linear space functional boundedness.Carries on the discussion from three aspects:first of all,this is a normed linear space functional continuity and boundedness,functional and related knowledge;then,relationship between bounded and continuous on normed linear space function,according to the equivalence of some related functional theory is derived and some related problems easy to understand and master; finally,the functional boundedness is extended to two linear normed space,then the mapping between the two personal space is called bounded linear operator.So the normed linear space of bounded functional of is very necessary,it is to grasp and study help beginners.Keywords:linear normed space;bounded linear functional;continuous linear functional;bounded linear operator1引言有学者在这方面已经做了一定的研究如:李宗铎在《线性赋范空间中几个概念的探讨》证明了当给线性赋范空间装备以相应的拓扑,与线性拓扑空间体系下所定义的线性赋范空间,有界集、线性算子的有界性等概念是等效的,同时严格证明了有界线性算子范数两种规定的一致性;王艳博、张云峰在《关于泛函分析中定理的推广》对于赋范空间X 和Y ,从X 到Y 的全体线性有界算子()Y X B ,关于算子范数亦成为赋范空间,且知当Y 是完备空间时,()Y X B ,也是完备的。

哈工大应用泛函分析最后论文

哈工大应用泛函分析最后论文

应用泛函分析在控制工程中的应用在研一上学期的课程学习过程中,我学习了《应用泛函分析》这门课程,刚接触这门课程的时候,觉的这门课是对数学理论的高度抽象,自己掌握的也是一知半解,并没有深入的去了解该课程对自己今后从事科研工作到底有什么样的帮助,随着学习理论知识的加深,结合王洋老师的《数字信号处理基础》和韩崇昭老师的《泛函分析——系统自动控制的基础》这两本书,我对泛函分析在机械工程和自动控制方面的应用有了一定的了解,以下我就来谈谈我眼中的应用泛函分析这门课程。

首先说一下应用泛函分析这门课程是如何产生并得到发展的。

人们在研究各种自然系统、社会经济系统和工程系统时,发现其内在机理有神奇的相似之处,它们都可以用同一的数学工具进行描述和分析,而针对某一特定类型系统研究的结论,也很容易移植到另一类型的系统。

系统科学或系统工程,正是研究各种系统共同规律的一门边缘学科,而控制理论则偏重于人或外部因素对系统行为的作用。

我由本学期开设的《控制理论及其应用》这门学科中知道,控制理论、系统工程以及其他应用学科的现代研究方法,往往首先需要建立一个用于描述对象特征的数学模型,进而利用这些模型来分析其静态或者动态的行为,诸如稳定性、能控性、能观性、能镇定性等等,或者设计某个控制策略或决策方案,从而产生对系统的有效控制作用,使之按人们预期的目标发展。

而现实的对象,除了极少数可利用物理定律或社会经济规律进行机理建模之外,大多数需要利用实测数据,按照某种方法,借用计算机辨识建模。

对于系统的分析或控制,除了要求掌握专门领域的知识之外,都需要掌握各种数学方法和计算工具,当代计算机技术的辉煌成就,给人们提供了这种研究的可能性,而现代数学理论的发展,已经和正在不断的为控制理论和系统科学提供强有力的分析和计算方法,应用泛函分析正是在这种背景和需求的情况下产生和发展起来的。

那么究竟什么是应用泛函分析呢,我个人认为,泛函分析是高度抽象的数学分支,是研究各类泛函空间及算子的理论。

泛函分析的应用

泛函分析的应用

现代数学基础学习报告泛函分析应用院系:专业:导师::学号:摘要信号与系统的泛函分析是以泛函理论为工具描述和研究信号与系统特性的近代分析方法。

这种方法可使信号与系统的表示更加抽象与概括,并使连续与离散、时域与频域、分析与综合达到统一,从而在信号与系统学科中得到了日益广泛的应用。

本文仅就其基本理论及其在电路设计中的应用加以简要的介绍。

本文将利用泛函分析中的度量空间的理论研究信号处理纠错的问题,首先介绍度量空间相关理论,然后举例分析其在信号纠错处理中的解决过程,通过应用泛函知识,使纠错过程变得更简便和概括。

然后简单介绍泛函的理论知识,使其应用到求解最低功耗电源的设计中,结果表明应用泛函理论可以将求解过程变得更加简便和清晰。

1.泛函分析介绍1.1泛函分特点和容[1]泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。

它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。

它可以看作无限维向量空间的解析几何及数学分析。

泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。

比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。

它既包含了以前讨论过的几何对象,也包括了不同的函数空间。

泛函分析对于研究现代物理学是一个有力的工具。

n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。

比如梁的震动问题就是无穷多自由度力学系统的例子。

一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。

现代物理学中的量子场理论就属于无穷自由度系统。

正如研究有穷自由度系统要求n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函分析课程论文数学与计算科学学院 09数本2班 黄丽萍 2009224725大四新学年开始了,我们也开始学习了一门综合性及专业性强的课程——泛函分析。

首先,理解下“泛函分析”这个概念。

泛函分析是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。

在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。

所以在接下来的两章内容的学习中,我们将先学习“两大空间”——度量空间和赋范线性空间及其相关知识(第七章和第八章)。

在学习中慢慢体味泛函分析的综合性及专业性。

第七章的标题已经明确给出了学习任务——度量空间和赋范线性空间。

§1 度量空间§1.1 定义:若X 是一个非空集合,:d X XR ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。

【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。

§1.2 度量空间的进一步例子例:1、离散的度量空间(,)X d ,设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当。

2、序列空间S ,i =1i |-|1(,)21+|-|i i i i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]k ki d x y y x ∞=∑是度量空间§1.3度量空间中的极限,稠密集,可分空间§1.3.1极限:类似数学分析定义极限,如果{}n x 是(,)X d 中点列,如果∃x X ∈,使n l im (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列,x 是点列{}n x 的极限。

同样的类似于n R ,度量空间中收敛点列的极限是唯一的。

§1.3.2稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令M M M ⊂表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。

即:{},n n M E x E x M s t x x n ⇔∀∈∃⊂→→∞在中稠密对 §1.3.3 例子1、 n 维欧氏空间n R 是可分空间;2、 坐标为有理数的全体是n R 的可数稠密子集;3、 l ∞是不可分空间。

§1.4 连续映射§1.4.1定义:设(,),(,),> 0,X (,) < (T ,T ) < ,o o oo X X d Y Y d T X Y x X d x x x d x x T x εδδε==∈ 是两个度量空间,是到中映射,如果对于任意给定的正数,存在正数 使对中一切满足 的 ,有 则称在连续。

§1.4.2 证明映射连续性的方法1、定义法2、邻域法:对o Tx 的每一个ε—邻域U,必有o x 的某个δ—邻域V 使TV U ⊂, 其中TV 表示V 在映射T 作用下的像。

3、极限观点(定理一):, T ()n o n o T x x x Tx n ⇔→→→∞连续 则4、定理二:度量空间X 到Y 中的映射T 是X 上连续映射 ⇔ Y 中任意开集M 的原像1T M -是X 中的开集。

5、定理二(变式):把“开集”改为“闭集”,定理二仍成立。

§1.4.3 例题例1、 设X,Y,Z 为三个度量空间,f 是X 到Y 中的连续映射,g 是Y 到Z的连续映射,证明复合映射()()=((x))gf x g f 是X 到Z 的连续映射。

证明:设G 是Z 中开集,因g 是Y 到Z 的连续映射,1g G -是Y 中开集, 又因f 是X 到Y 中的连续映射,-11()f g G -是X 中的开集, 即-1(g f)G 是X 中的开集,即(g f) 连续。

【分析】此题就是利用定理二来证明的。

§1.5 柯西点列和完备度量空间§1.5.1 定义:设(,)X X d =是度量空间,{}nx 是X 中点列,如果对0ε∀>,∃正整数()N N ε=,使当,n m N >时,必有(,)n m d x x ε<,则称{}n x 是X 中的柯西点列,如果度量空间(,)X d 中每个点列都在(,)X d 中收敛,那么称(,)X d 是完备的度量空间。

§1.5.2 相关结论1、Q 全体按绝对值距离构成的空间不完备2、柯西点列不一定收敛,但是度量空间中每一个收敛点列都是柯西点列3、柯西点列一定是有界点列4、定理:完备度量空间X 的子空间M 是完备空间的充要条件是M 为X 中的闭子空间。

(即完备性关于闭子空间具有可遗传性)【注意】开子空间不完备。

例:1、[a,b]C 是完备度量空间;2、2l 是完备度量空间;3、n R 是完备的度量空间;4、实系数多项式全体[,]P a b ,[,]P a b 作为[a,b]C 的子空间不是完备度量空间;§1.6 度量空间的完备化定理1 (度量空间的完备化定理):设(,)X X d =是度量空间,那么一定存在一完备度量空间(,)X X d = ,使X 与X的某个稠密子空间W 等距同构,并且X 在等距同构意义下是唯一的,即若(,)X d ∧∧也是一万倍度量空间,且X 与X 的某个稠密空间等距同构,则(,)X d ∧∧与(,)X d 等距同构。

(其中:若( , ) = ( , )d Tx Ty d x y ,称(,)X X d =与(,)X d 等距同构。

) 定理1可以通过图形象表达定理'1 :设(,)XX d =是度量空间,那么存在唯一的完备空间(,)X X d = ,使X 为X的稠密子空间。

§1.7压缩映射原理及其应用§1.7.1定义:设X 是度量空间,T 是X 到X 中的映射,如果,01αα∃<<,.s t ,x y X ∀∈,(,)(,)d Tx Ty d x y α≤,则称T 是压缩映射。

§1.7.2定理1(压缩映射定理)设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有一个不动点(就是说,方程Tx x =,有且只有一个解)。

定理2(隐函数存在定理)设函数(,)f x y 在带状域,a x b y ≤≤-∞<<∞中处处连续,且处处有关于y 的偏导数'(,)y f x y 。

如果∃常数m 和M ,满足'0(,),y m f x y M m M <≤≤<,则方程(,)0f x y =在区间[,]a b 上必有唯一的连续函数()y x ϕ=作为解:(,())0,[f x x x a bϕ≡∈ §1.8 线性空间 §1.8.1定义:设X 是一非空集合,在X 中定义了元素的加法运算和实数(或复数)与X 中元素的乘法运算,满足下列条件:(一)关于加法:(1)交换律(2)结合律(3)有零元(4)有负元,(二)关于数乘:(1)分配律(2)结合律(3)x X ∀∈,均有1x x =,满足这样性质的集合X 称为线性空间。

例:1、n R 按自身定义的加法和数乘成线性空间2、[a,b]C 按自身定义的加法和数乘成线性空间3、空间(0)p lp >按自身定义的加法和数乘成线性空间§2 赋范线性空间§2.1赋范线性空间和巴拿赫空间§2.1.1定义:设X 是实(或复)的线性空间,如果对x X ∀∈,都有确定的一个实数,记为x 与之对应,并且满足:1o0x ≥,且0x =等价于0x =;(非负性) 2o ||x x αα=其中α为任意实(复)数;3o ,,x y x y x y X +≤+∈,(三角不等式)则称x 为向量x 的范数,称X 按范数x 成为赋范线性空间。

注意:1、x 是x 的连续函数 2、||||0(,)0n n x x d x x -→⇔→ (诱导距离) §2.2重要结论:1、完备的赋范线性空间称为巴拿赫空间⇔X 是赋范线性空间,且{}n x 是柯西点列。

2、要判断一个空间是否为巴拿赫空间,有三点:(1)是否为线性空间 (2)是否为赋范线性空间 (3)是否完备3、任何有限维赋范线性空间都同维数欧氏空间拓扑同构,相同维数的有限维赋范线性空间彼此拓扑同构。

(即拓扑同构⇔范数等价)4、定理1: [,](1)p L a b p ≥按范数1(|()|)b p p p a f f t dt =⎰成赋范线性空间。

定理2:[,](1)p L a b p ≥是巴拿赫空间。

例题:1、n R 按范数x =2、空间[a,b]C 按范数max |()|a t b x x t ≤≤=成巴拿赫空间 3、空间p l 是巴拿赫空间区别与联系:1、任意赋范线性空间都是度量空间2、赋范线性空间是一种特殊的度量空间,当它完备时称之为巴拿赫空间。

第八章 有界线性算子和连续线性泛函§1 有界线性算子和线性泛函的定义§1.1定义:设X 和Y 是两个同为实(或复)的线性空间,D 是X 的线性子空间,T 为D 到Y 中的映射,如果对,x y D ∀∈及数α,有()T x y Tx Ty +=+,()T x Tx αα=,则称T 为D 到Y 中的线性算子,其D 称为T 的定义域,记为()D T ,TD 称为T 的值域,记为()R T ,当T 取值于实(或复)数域时,就称T 为实(或复)线性泛函。

例:相似算子、微分算子、乘法算子、积分算子都是线性算子【值得一提】1、在有限维空间上,当基选定后,线性算子与矩阵是相对应的;2、n 维线性空间上线性泛函与数组12(,,,)n ααα (向量)相对应。

定义:T 为赋范线性空间X 的子空间()D T 到赋范线性空间Y 中的线性算子,称0()sup x x D T Tx T x ≠∈=为算子T 在()D T 上的范数。

定理1: 设T 是赋范线性空间X 到赋范线性空间Y 中的线性算子,则T 为有界算子的充分必要条件是T 为X 上的连续算子。

相关文档
最新文档