泛函分析线性赋范空间论文
泛函分析课程论文

泛函分析课程论文数学与计算科学学院 09数本2班 黄丽萍 2009224725大四新学年开始了,我们也开始学习了一门综合性及专业性强的课程——泛函分析。
首先,理解下“泛函分析”这个概念。
泛函分析是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。
在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。
所以在接下来的两章内容的学习中,我们将先学习“两大空间”——度量空间和赋范线性空间及其相关知识(第七章和第八章)。
在学习中慢慢体味泛函分析的综合性及专业性。
第七章的标题已经明确给出了学习任务——度量空间和赋范线性空间。
§1 度量空间§1.1 定义:若X 是一个非空集合,:d X XR ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。
【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。
§1.2 度量空间的进一步例子例:1、离散的度量空间(,)X d ,设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当。
2、序列空间S ,i =1i |-|1(,)21+|-|i i i i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]k ki d x y y x ∞=∑是度量空间§1.3度量空间中的极限,稠密集,可分空间§1.3.1极限:类似数学分析定义极限,如果{}n x 是(,)X d 中点列,如果∃x X ∈,使n l im (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列,x 是点列{}n x 的极限。
泛函中四大空间的认识结课论文

泛函分析结课论文Functional Analysis Course Paper泛函中四大空间的认识- - 考试资料.一、泛函分析空间理论泛函中四大空间的认识第一部分我们将讨论线性空间,在线性空间的基础上引入长度和距离的概念,进而建立了赋范线性空间和度量空间。
在线性空间中赋以“范数”,然后在范数的基础上导出距离,即赋范线性空间,完备的赋范线性空间称为巴拿赫空间。
范数可以看出长度,赋范线性空间相当于定义了长度的空间,所有的赋范线性空间都是距离空间。
在距离空间中通过距离的概念引入了点列的极限,但是只有距离结构、没有代数结构的空间,在应用过程中受到限制。
赋范线性空间和内积空间就是距离结构与代数结构相结合的产物,较距离空间有很大的优越性。
赋范线性空间是其中每个向量赋予了范数的线性空间,而且由范数诱导出的拓扑结构与代数结构具有自然的联系。
完备的赋范线性空间是Banach空间。
赋范线性空间的性质类似于熟悉的n R,但相比于距离空间,赋范线性空间在结构上更接近于nR。
赋范线性空间就是在线性空间中,给向量赋予范数,即规定了向量的长度,而没有给出向量的夹角。
在内积空间中,向量不仅有长度,两个向量之间还有夹角。
特别是定义了正交的概念,有无正交性概念是赋范线性空间与内积空间的本质区别。
任何内积空间都赋范线性空间,但赋范线性空间未必是内积空间。
距离空间和赋范线性空间在不同程度上都具有类似于n R的空间结构。
事实上,n R 上还具有向量的内积,利用内积可以定义向量的模和向量的正交。
但是在一般的赋范线性空间中没有定义内积,因此不能定义向量的正交。
内积空间实际上是定义了内积的线性空间。
在内积空间上不仅可以利用内积导出一个范数,还可以利用内积定义向量的正交,从而讨论诸如正交投影、正交系等与正交相关的性质。
Hilbert空间是完备的内积空间。
与一般的Banach空间相比较,Hilbert空间上的理论更加丰富、更加细致。
- - 考试资料.- - 考试资料.1 线性空间(1)定义:设X 是非空集合,K 是数域,X 称为数域上K 上的线性空间,若,x y X ∀∈,都有唯一的一个元素z X ∈与之对应,称为x y 与的和,记作z x y =+ ,x X K α∀∈∈,都会有唯一的一个元素u X ∈与之对应,称为x α与的积,记作 u x α=且,,x y z X ∀∈,,K αβ∈,上述的加法与数乘运算,满足下列8条运算规律: 10 x y y x +=+20 ()()x y z x y z ++=++30 在X 中存在零元素θ,使得x X ∀∈,有x x θ+=40 x X ∀∈,存在负元素x X ∀-∈,使得()x x θ+-=50 1x x ⋅=60 ()()x x αβαβ=70 ()+x x x αβαβ+=80 ()x y x y ααα+=+当K R =时,称X 为实线性空间;当K C =时,称X 为复线性空间(2)维数:10 设X 为线性空间,12,,,n x x x X ∈若不存在全为0的数12,,,n K ααα∈,使得11220n n x x x ααα+++= 则称向量组12,,,n x x x 是线性相关的,否则称为线性无关。
泛函分析课程总结论文

泛函分析课程总结论文第一部分:知识点体系第七章:度量空间和赋范线性空间度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。
泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。
一、度量空间的进一步例子 1、度量空间的定义定义1.1 设X 为一个集合,一个映射X X R ⨯→d :.若对于任何x,y,z 属于X ,有1°d(,)0x y ≥,且d(,)0x y =当且仅当x y =(非负性); 2°(,)(,)d x y d y x =(对称性);3°(,)(,)(,)d x y d x z d z y ≤+ (三角不等式) 则称d 为集合X 的一个度量,同时称(),X d 为一个度量空间(课本第二章第一节中已经讲解了度量空间的定义,第七章第一节接着讲解度量空间,下面介绍六种度量空间。
)2、常见的度量空间 例2.1 离散的度量空间设 x 是任意的非空集合,对 x 中的任意两点 ,令 称为离散的度量空间。
例2.2 序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称为序列空间。
例2.3 (3)有界函数空间B(A ),x y X ∈1,(,)0,if x yd x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i id x y ξηξη∞=-=+-∑(,)S d设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义例2.4 可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。
纯数学泛函分析大学期末论文

纯数学泛函分析大学期末论文摘要:本文主要介绍了纯数学泛函分析的基本概念和应用。
首先,我们从泛函分析的起源和发展历程入手,介绍了泛函和泛函空间的概念。
接着,我们详细讨论了泛函分析的基本理论,包括线性算子、Banach空间和Hilbert空间等。
最后,我们探讨了泛函分析在实际问题中的应用,包括偏微分方程的解析和数值方法等。
1. 引言泛函分析作为现代数学的重要分支,对于理解和解决实际问题具有重要意义。
它既是函数论的延伸,又是数学分析的发展。
纯数学泛函分析是泛函分析中的一个重要分支,主要研究无穷维线性空间的性质和结构。
本文将系统地介绍纯数学泛函分析的基本内容,以期对读者有所启发。
2. 泛函分析的起源和发展历程泛函分析是20世纪初发展起来的数学分支,源于对函数序列收敛性的研究。
随着对无穷维空间和泛函的研究深入,泛函分析逐渐形成了自己独特的理论体系。
通过对泛函的定义和性质的研究,人们逐渐发现了泛函分析在实际问题中的广泛应用。
3. 泛函和泛函空间的概念泛函是定义在一个函数空间上的函数。
泛函空间是所有满足一定条件的函数的集合。
泛函和泛函空间是泛函分析的核心概念。
在本节中,我们将详细介绍泛函和泛函空间的定义和性质,并给出一些常用的泛函空间的例子。
4. 线性算子和算子空间线性算子是将一个线性空间映射到另一个线性空间的映射。
算子空间是所有满足一定条件的线性算子的集合。
线性算子和算子空间是研究泛函分析中线性性质的基本对象。
在本节中,我们将讨论线性算子和算子空间的定义和一些重要性质,并给出一些经典的算子空间的例子。
5. Banach空间和Hilbert空间Banach空间是一个完备的赋范线性空间,Hilbert空间是一个完备的内积空间。
它们是泛函分析中最重要的两类空间。
在本节中,我们将详细介绍Banach空间和Hilbert空间的定义和性质,并讨论它们的一些重要的特征和例子。
6. 泛函分析的应用泛函分析作为数学的一种工具,具有广泛的应用领域。
高馨泛函分析论文

泛函分析论文摘要:本文介绍了Hilbert 空间、Banach 空间、距离空间、拓扑空间的概念,通过一些典型例题论述它们空间之间的关系及算子定义和特征值关键词:Hilbert 空间、Banach 空间、距离空间、拓扑空间、算子一、空间每一个内积空间是赋范空间.我们称完备的内积空间为Hilibert 空间..一个内积空间必是一个赋范空间.反之,,每一个赋范空间都可以引进一个内积,使得由这个内积产生的范数是原来的范数,其中范数要满足平行四边形则.Hilbert space 是完备的线性赋范空间(Banach space )的一个特例.1、Hilbert 空间有穷维线性空间可以引进各种种范数使它成为bananch 空间,但是通常欧式空间的一个重要特性是它上面定义了内积,借助于内积就可以定义向量的长和两个向量的正交性。
我们把这种方法推广到无穷维空间的情形,在下面里,我们引进内积空间Hilbert 空间的概念。
设H 是域K 上的线性空间,任意H y x ∈,,有一个K 中数(x,y)与之对应,使得对任意K a H z y x ∈∈,,,满足:⑴正定性:()(),0,;0,=≥x x y x 当且仅当;0=x⑵共轭对称性:()();,,x y y x =⑶对第一变元的线性性:()();,,y x a y ax =()()().,,,z y z x z y x +=+称( , )是H上的一个内积,H 上定义了内积称为内积空间。
()().,,y x a ay x =定理 1.1.1(Schwarz 不等式) 设H 是内积空间,则对任意H y x ∈,有()()().,,,2y y x x y x ≤称内积空间的这个范数是由内积产生的范数,因此每一个内积空间是赋范空间.以后凡说到内积空间是赋范空间都是指范数是由内积产生的.我们称完备的内积空间为Hilbert 空间.例1.1.1 n R 是(实)Hilbert 空间.在定义n R 中定义()k nk k y x ηξ∑==1, {}{}().,n k k R y x ∈==ηξ不难验证,( , )是一个内积,且由这个内积产生的范数为2112⎪⎭⎫ ⎝⎛=∑=n k x ξ {}().n k R x ∈=ξ 因此n R 是Hilbert 空间.例1.1.2 ]2,L a b ⎡⎣是Hilbert 空间与2l 类似,由Holder 不等式,对任意]2,,x y L a b ⎡∈⎣,()()112222,(())(())b b b aa a x t y t dt x t dt y t dt ≤⎰⎰⎰ 在]2,L ab ⎡⎣上定义内积()()(),ba x y x t y t dt =⎰ 有这个内积产生的范数为 122(())b a x x t dt =⎰由此可知]2,L a b ⎡⎣是Hilbert 空间 定理1.1.2 设H 是内积空间,则内积()y x ,是x,y 的连续函数,即当()().,,,,y x y x y y x x n n n n →→→时,定理1.1.4 设X 是赋范空间,如果范数满足平行四边形法则,则可在X 中定义一个内积,使得由它产生的范数正是X 中原来的范数.2、Banach 空间定义2.1.1 设X 是域K(实数域或复数域)上的线性空间,函数:R X →∙: 满足条件:1) 对任意0,0;0,==≥∈x x x X x 当且仅当;2) 对任意(齐次性)及,,x a ax K a X x =∈∈; 3) 对任意(三角不等式),,y x y x X y x +≤+∈. 称 ∙是X 上的一个范数,X 上定义了范数 ∙称为赋范(线性)空间,记为() , ∙X ,有时简记为X .在一个赋范线性空间() , ∙X 中通过范数可以自然地定义一距离,(),,y x y x d -= .,X y x ∈ ()1.1.2事实上,由范数公理,对任意()(),当且仅当当且仅当且0,0,0,,0,,,,=-=-==≥-=∈y x y x y x d y x y x d X z y x ()()()+-≤-+-=-==-=-==z x y z z x y x y x d x y d x y y x y x d y x ,,,,,即()()y z d z x d y z ,,+=-.称赋范空间中这个距离是由范数诱导的距离.这样,赋范空间是一个距离空间,以后凡说赋范空间的距离如无特别说明都指的是由范数诱导的距离.因此,在第一张所讨论的涉及距离空间、拓扑空间的一般概念、性质(如完备性、可分性、紧性等)都可以移植到赋范空间中来.特别地,设{}n x 是赋范空间X 中的点列,X x ∈,如果()∞→→-n x x n 0,称{}n x 强(或按范)收敛于x ,记为()∞→→n x x n ,或x xn n =∞→lim .如果赋范空间是完备的称它为Banach 空间.例2.1.1 空间[],C a b 。
泛函分析

试述Hilbert 空间、Banach 空间、距离空间、拓扑空间的概念及空间之间的关系摘要:本文介绍了Hilbert 空间、Banach 空间、距离空间、拓扑空间的概念,通过一些典型例题论述它们空间之间的关系。
关键词:Hilbert 空间、Banach 空间、距离空间、拓扑空间每一个内积空间是赋范空间.我们称完备的内积空间为Hilibert 空间..一个内积空间必是一个赋范空间.反之,,每一个赋范空间都可以引进一个内积,使得由这个内积产生的范数是原来的范数,其中范数要满足平行四边形则.Hilbert space 是完备的线性赋范空间(Banach space )的一个特例.一、Hilbert 空间有穷维线性空间可以引进各种种范数使它成为bananch 空间,但是通常欧式空间的一个重要特性是它上面定义了内积,借助于内积就可以定义向量的长和两个向量的正交性。
我们把这种方法推广到无穷维空间的情形,在下面里,我们引进内积空间Hilbert 空间的概念。
设H 是域K 上的线性空间,任意H y x ∈,,有一个K 中数(x,y)与之对应,使得对任意K a H z y x ∈∈,,,满足:⑴正定性:()(),0,;0,=≥x x y x 当且仅当;0=x⑵共轭对称性:()();,,x y y x =⑶对第一变元的线性性:()();,,y x a y ax =()()().,,,z y z x z y x +=+称( , )是H上的一个内积,H 上定义了内积称为内积空间。
从定义可以看出,内积()y x ,对于每一H y ∈,是H 上的一个线性泛函;当C K =时,对于每一H x ∈,()y x ,是H 上的一个共轭线性泛函,即它是可加的并且是共轭齐次的:()().,,y x a ay x =定理 1.1.1(Schwarz 不等式) 设H 是内积空间,则对任意H y x ∈,有()()().,,,2y y x x y x ≤称内积空间的这个范数是由内积产生的范数,因此每一个内积空间是赋范空间.以后凡说到内积空间是赋范空间都是指范数是由内积产生的.我们称完备的内积空间为Hilbert 空间.例1.1.1 n R 是(实)Hilbert 空间.在定义n R 中定义()k nk k y x ηξ∑==1, {}{}().,n k k R y x ∈==ηξ不难验证,( , )是一个内积,且由这个内积产生的范数为2112⎪⎭⎫ ⎝⎛=∑=n k x ξ {}().n k R x ∈=ξ因此n R 是Hilbert 空间.例1.1.2 ]2,L a b ⎡⎣是Hilbert 空间与2l 类似,由Holder 不等式,对任意]2,,x y L a b ⎡∈⎣,()()112222,(())(())b b b aa a x t y t dt x t dt y t dt ≤⎰⎰⎰ 在]2,L ab ⎡⎣上定义内积()()(),ba x y x t y t dt =⎰ 有这个内积产生的范数为122(())b ax x t dt =⎰ 由此可知]2,L a b ⎡⎣是Hilbert 空间定理1.1.2 设H 是内积空间,则内积()y x ,是x,y 的连续函数,即当()().,,,,y x y x y y x x n n n n →→→时,定理1.1.3 设H 是内积空间,则对任意H y x ∈,,有以下关系式成立,1)平行四边形法则: ()22222y x y x y x +=-++;2)极化恒等式:()()222241,iy x iy x i y x y x y x --++--+=.注:若赋范线性空间X 的范数不满足平行四边形公式,则X 不能成为内积空间。
泛函分析线性赋范空间论文

泛函分析线性赋范空间论文摘要:本论文主要围绕泛函分析线性赋范空间的基本理论进行研究,介绍了线性赋范空间的定义、性质、范畴和代数结构等方面。
对于赋范空间中的基本概念如范数、内积、对偶空间、共轭性等,进行详细阐述,并以此为基础,引入了Banach空间、Hilbert空间、算子空间等重要概念和定理。
论文最后还介绍了一些经典的应用和发展趋势。
通过本论文的研究,可以更好地理解和应用泛函分析线性赋范空间的基本理论。
关键词:泛函分析;线性赋范空间;范数;内积;对偶空间;共轭性;Banach空间;Hilbert空间;算子空间一、引言泛函分析是数学中的一个重要分支,它主要研究无限维向量空间及其上的函数或算子。
线性赋范空间是泛函分析中一个重要的概念,它是带有范数(norm)的线性空间,具有加法、数乘和范数这三个运算,是泛函分析的基础。
本论文旨在对于泛函分析线性赋范空间的基本理论进行系统的阐述和探讨。
二、线性赋范空间的定义与性质线性赋范空间是一个带有范数的线性空间,它的定义包括线性空间的定义和范数的定义。
线性赋范空间具有很多性质,如唯一的零元素、范数的非负性、齐次性、三角不等式等,这些性质为后续的研究提供了基础。
三、范数、内积、对偶空间和共轭性范数、内积、对偶空间和共轭性是赋范空间中的基本概念,范数是一种测量距离的方式,内积是一种度量夹角的方法,对偶空间是指所有从X到标量域的线性连续映射组成的空间,而共轭性则是指内积或对偶空间的一些特殊性质。
四、Banach空间、Hilbert空间、算子空间等Banach空间是指完备的赋范空间,Hilbert空间是一种特殊的Banach空间,具有良好的几何性质和完备性质,是应用广泛的空间之一。
在算子理论中,算子空间则是指线性映射所组成的空间,它也具有重要的应用和意义。
五、经典应用和发展趋势泛函分析线性赋范空间在数学和物理等领域都有着广泛的应用,如偏微分方程、量子力学、信号处理、数据挖掘等。
[论文]泛函分析论文
![[论文]泛函分析论文](https://img.taocdn.com/s3/m/205801d059f5f61fb7360b4c2e3f5727a5e92498.png)
泛函分析是现代数学的一个分支,其研究的主要对象是函数构成的空间。
它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。
主要内容有拓扑线性空间等。
泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。
泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科,是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。
使用泛函作为表述源自变分法,代表作用于函数的函数。
巴拿赫是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉对泛函分析的广泛应用有重要贡献。
泛函分析是二十世纪三十年代从变分法、微分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。
下面结合这学期的学习和内容从以下几个方面来浅谈泛函分析:一、度量空间和赋范线性空间1、度量空间现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。
19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。
20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。
度量空间中最符合我们对于现实直观理解的是三维欧氏空间。
这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。
定义:设X为一个集合,一个映射d:X×X→R。
若对于任何x,y,z属于X,有(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;(II)(对称性)d(x,y)=d(y,x);(III)(三角不等式)d(x,z)≤d(x,y)+d(y,z)则称d为集合X的一个度量(或距离)。
称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。
2、赋范线性空间泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性赋范空间上算子的一致连续性定理
摘 要:证明线性赋泛空间紧子集上的连续算子一定一致连续,以及算子为一致
连续个充要条件是任意两个
ε>0,存在正数c,使得对x 、y ∈D,当‖Tx-Ty ‖>c ‖x-y ‖时,恒有‖Tx-Ty ‖<ε。
关键词: 连续; 一致连续; 线性赋范空间
满足
n n n lim x -y →∞
(){}
n x {}n y 的序列 和 都有
n
n
n lim Tx -Ty =→∞
()0; 或对任意Cuchy 序列{xn},{Txn}是Y 中的Cuchy 序列;或对任意
前言
众所周知,数学分析中所讲的函数的一致连续性反映的是函数的整体性质,它是连续函数理论的重要组成部分.由于其重要性人们在这方面做了大量的深入研究.但是在对数学分析全面提升的泛函分析中,关于算子一致连续性的讨论就少的多.本文主要是给出线性赋泛空间上算子一致连续的几个等价条件以及连续算子成为一致连续算子的几个充分条件,从而推广了数学分析中大家都熟悉的一致连续性定理.在本文中(X,‖・‖1)、(Y,‖・‖2)分别表示两个线性赋范空间(实的或复的),简记为X、Y。
定义1设T是从线性赋范空间X到线性赋范空间Y的一算子,x0∈X,若对任意ε>0,存在δ>0,使得当‖x-x0‖<δ时有:‖Tx-Tx0‖<ε,则称算子T在x0处是连续的;如果T在X中的每一点处都连续,则称T在X上是连续的。
定义2 设T是从线性赋范空间X到线性赋范空间Y的一算子,若对任意ε>0,存在δ>0,使得对中的任意两个点x1,x2,当‖x1-x2‖<δ时都有‖Tx1-Tx2‖<ε成立,则称T在X上是一致连续的.关于一致连续有以下等价定义:若对任意ε>0,存在δ>0,使得对X中的任意两个点x1,x2,如果‖Tx1-Tx2‖≥ε,那么必有‖x1-x2‖≥δ,则T在X上是一致连续的。
从以上的定义不难看出,如果T在X上是一致连续的,那么T必在X上的每一点处都是连续的;反之不真。
所以下面我们重点考虑在条件情况下,由算子的连续性可以推出一致连续以及一致连续的一些非常实用的等价命题.首先给出空间紧的概念。
定义3 设M是线性赋范空间X的一个子集,若M中的任何序列都有在M 中收敛的子列,则称M是X的一个紧集.若X本身是紧的,则称Y为紧的线性赋范空间。
连续算子一致连续的两个充分条件
我们有如下一些主要结果:
定理1 设A是线性赋范空间X的紧子集,若T是从A到线性赋范空间Y上的连续算子,则T一定是一致连续的。
证明用反证法,设T在X上不是一致连续的,则由定义知,存在某ε0>0一,使得对于任意的ε>0,都存在X中的相应两个点x′,x″,虽然‖x′-x″‖<δ,但是
有‖Tx ′-Tx ″‖≥ε0 (1)
上面的(3)式与(4)式矛盾。
所以T 在X 是一致连续的。
对空间R 而言,由于任何有限闭区间[a,b]都是紧集,所以上述定理2是我们在数学分析中熟悉的一致连续性定理(即闭区间上的连续函数一定是一致连续的)的推广。
定理2 设X 是紧的线性赋范空间,T 是从X 到线性赋范空间Y 的一连续算子,则T 是一致连续的。
证明 可用反证法:具体过程与定理1完全类似。
算子一致连续的几个充要条件
定义4 设X 是一线性空间,x1,x2为X 中的两个点,称集合{x ∶x=(1-t)x1+tx2,0≤t ≤1}为连接点x1,x2的线段;对于X 的一子集S,若S 包含连接S 中任意两点的线段,则称S 为X 的凸子集。
定理3设D 是线性赋范空间X 的一个凸子集,T 是从D 到线性赋范空间Y 上的一算子,则T 一致连续的充分必要条件是对任意ε>0,存在正数c,使得对x,y ∈D,当
‖Tx-Ty ‖>c ‖x-y ‖ (7) 时,恒有
‖Tx-Ty ‖<ε (8)证明 充分性: 根据已知条件,对任意ε>0,存在正数c,使得对x,y ∈D,当 ‖Tx-Ty ‖≥ε (9)
对任意的自然数n,取δ-1/n,则分别存在 n n x ,x '''n n 1x x n
'''-<
虽然
但是 n n 0
Tx x T ε'''-≥(2)
从而得X 中的两个序列 分别有收敛子列
,由于A 是紧子集,所以 {}{}
n n x ,x '''
{}{}
n n
x ,x '''
易知此时有 {}
nk nk x ,x '''nk 0
x x ''→则由
若设 nk nk 1
x x n
'''-<
nk 0x x '→nk nk 0n0Tx x Tx x =0
T T '''-→-(3)
由T 的连续性,有
{}{}
n
n
x ,x '''(4)
的取法以及(2)知,有
但是另一方面,由
nk nk 0
Tx x T ε'''-≥
时,成立
‖Tx-Ty‖≤c‖x-y‖(10) 此时由(10)、(9)式可得
‖x-y‖≥c ‖Tx-Ty‖≥ε/c
所以对任意ε>0,只需取δ=ε/c,则当x,y∈D,且满足‖Tx-Ty‖≥ε时,必有
‖x-y‖≥δ,利用一致连续的等价定义可知,T是一致连续的.
必要性:设T在D上一致连续的,则由一致连续的等价定义知,对任意ε>0,存在δ>0,使得对D中的任意两个点x,y,如果‖Tx-Ty‖≥ε,那么必有‖x-y‖≥δ.现取自然数k,使得
kδ≤‖x-y‖≤(k+1)δ(11) 令xi=(1-i/k+1)x+(i/k+1)y, i=0,1,2,…,k+1,则由(11)式易见有,
‖xi+1-xi‖=‖x-y‖k+1<δ
,所以此时有:‖Tx-Ty‖≤∑k‖Txi+1-Txi‖/kδ<(k+1)ε/kδ<2ε/δ若令
c=[2ε/δ]+1,则对D中的任意两个点x,y,如果‖Tx-Ty‖≥ε,那么必有
‖Tx-Ty‖≤c‖x-y‖成立,即如果(7)式成立,那么必有(8)式成立。
结论
从上面的证明过程可以看出,定理的充分性对任意的子集D都成立,不需要凸这一假设;而对定理的必要性,子集D的凸性只是为了保证D具有某种“连通性”。
不难看出,对任意子集D,当D中任意两点都可以通过折线时,定理仍然成立。
如果只要求D是道路连通的,定理就不一定成立。
参考文献
[1] 范新华.判断函数一致连续的几种方法[J].常州工学院学报,2004(4),49-51.
[2] 葛洵.关于函数的一致连续性[J].商丘师范学院学报, 2003(5),57-58.
[3] 汪义瑞,李本庆.一致连续函数的判定[J].安康师专学报, 2003(4),52-54.
[4] 周哲.一元函数一致连续的一个充要条件[J].南都学坛, 2001(3),25-26.
[5] 程其襄.实变函数与泛函分析基础(第二版)[M].北京:高等教育出版社,2003.
[6] 熊金城.点集拓扑讲义(第三版)[M].北京:高等教育出版社,2003。