泛函分析论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函分析是现代数学的一个分支,其研究的主要对象是函数构成的空间。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科,是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉对泛函分析的广泛应用有重要贡献。

泛函分析是二十世纪三十年代从变分法、微分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。下面结合这学期的学习和内容从以下几个方面来浅谈泛函分析:

一、度量空间和赋范线性空间

1、度量空间现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.

弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;(II)(对称性)d(x,y)=d(y,x);(III)(三角不等式)d(x,z)≤d(x,y)+d(y,z)则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。2、赋范线性空间泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。(一)、希尔伯特空间希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。

2、巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维

空间,可看成通常向量空间的无穷维推广巴拿赫空间(Banach space)是一种赋有“长度”的线性空间﹐泛函分析研究的基本对象之一。数学分析各个分支的发展为巴拿赫空间理论的诞生提供了许多丰富而生动的素材。从外尔斯特拉斯﹐K.(T.W.)以来﹐人们久已十分关心闭区间[a﹐b ]上的连续函数以及它们的一致收敛性。甚至在19世纪末﹐G.阿斯科利就得到[a﹐b ]上一族连续函数之列紧性的判断准则﹐后来十分成功地用于常微分方程和复变函数论中。

二、线性算子

出现在各个数学领域中具有线性性质的运算(例如线性代数中的线性变换;微分方程论、积分方程论中大量出现的微分、积分运算、积分变换等)的抽象概括。它是线性泛函分析研究的重要对象。关于线性算子的理论不仅在数学的许多分支中有很好的应用,同时也是量子物理的数学基础之一。中国物理学界习惯上把算子称为算符。

线性算子与线性泛函设x、Y是两个(实数或复数域上的)线性空间,T是x到Y的映射。T的定义域和值域分别记为D(T)、R(T)。如果对任何数α、β和x1、x2∈D(T),满足αx1+βx2∈D(T),并且

,则称T是以D(T)为定义域的x到Y的线性算子。特别当D(T)=x,Y是实数域或复数域时,称T是x上的线性泛函。例1,设x=C【α,b】(【α,b】上的连续函数全体), K(t,s)是【α,b】×【α,b】上的二元连续函数,定义,则T是x到x的线性算子。例3,设x=C【α,b】,则,T2x =x(t0)(t0是【α,b】中取定的一个点)都是x上的线性泛函。线性算子的运算设T1、T2是x到Y的线性算子,它们的定义域分别是D(T1)、D(T2)。对任一数α,规定αT1表示以D(T1)为定义域,而对任何x∈D(T1),(α T1)x=α(T1x)的算子规定T1+T2表示以D(T1)∩D(T2)为定义域,而对任何的算子。易知αT1(称

T1的α倍),T1+T2(称T1与T2的和)仍是线性算子。又设T3是以D(T3)为定义域的Y到Z的线性算子,规定T3·T1(也记作T3T1)表示以

为定义域而对任何

的算子。

三.泛函分析的主要定理包括:

1. 一致有界定理,该定理描述一族有界算子的性质。

2. 谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。

3. 罕-巴拿赫定理(Hahn-Banach Theorem)研究了如何将一个算子保范数地从一个子空间延拓到整个空间。另一个相关结果是对偶空间的非平凡性。

4. 开映射定理和闭图像定理。

四.四泛函分析与选择公理

泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理。此外,泛函分析中大部分重要定理都构建与罕-巴拿赫定理的基础之上,而该定理本身就是选择公理弱于布伦素理想定理的一个形式。

五.泛函分析的特点和内容

泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。

泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多自由度力学系统的例子。一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的量子场理论就属于无穷自由度系统。

正如研究有穷自由度系统要求n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学。古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学

相关文档
最新文档