(完整版)2017年湖北省宜昌市中考数学试卷(含答案解析版)

合集下载

2017年湖北省宜昌市中考数学试卷

2017年湖北省宜昌市中考数学试卷

2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣的倒数为()A.5 B .C .D.﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是()A .B .C .D .3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺C.三角板D.圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝1鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.12006.(3分)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B .C .D .7.(3分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a5D.a6÷a2=a38.(3分)如图,在△AEF中,尺规作图如下:分别以点E,点F 为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH2平分AF9.(3分)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④11.(3分)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()3A.AB=AD B.BC=CD C . D.∠BCA=∠DCA12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是()手工制品手串中国结手提包木雕笔筒总数量(个)2001008070销售数量1901007668(个)A.手串B.中国结C.手提包D.木雕笔筒13.(3分)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()4A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1 14.(3分)计算的结果为()A.1 B .C .D.015.(3分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A .B .C .D .二、解答题(本大题共9小题,共75分.解答应写出文字说明、5证明过程或演算步骤.)16.(6分)计算:23×(1﹣)×0.5.17.(6分)解不等式组.18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)15001200130013001200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s)与时间x(单位:s)的关系如图所示,其中线段6BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.722.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?8(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON(可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=4S △OBG,连接GP,求四边形PKBG的最大面积.24.(12分)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且9a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF =S△ADE,求此时抛物线的表达式.102017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•宜昌)有理数﹣的倒数为()A.5 B .C .D.﹣5【分析】根据倒数的定义,找出﹣的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•宜昌)如下字体的四个汉字中,是轴对称图形的是()A .B .C .D .【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对11折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017•宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.12故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017•宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺C.三角板D.圆规【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.120013【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017•宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B .C .D .【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017•宜昌)下列计算正确的是()14A.a3+a2=a5B.a3•a2=a5C.(a3)2=a5D.a6÷a2=a3【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3•a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017•宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F 为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()15A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH 平分AF【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【分析】根据中位线定理可得:AB=2DE=48m.16【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017•宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是17180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017•宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C . D.∠BCA=∠DCA【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD 的大小关系不确定,∴与不一定相等,故本选项错误;18D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017•宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是()手工制品手串中国结手提包木雕笔筒总数量(个)20010080701901007668销售数量(个)A.手串B.中国结C.手提包D.木雕笔筒【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率==<1;中国结的销售率19==1;手提包的销售率==<1;木雕笔筒的销售率==<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017•宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,20∴sinα=cosα=,故①正确,tanC==2,故②正确,tanα=1,故D正确,③∵sinβ==,cosβ=,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017•宜昌)计算的结果为()A.1 B .C .D.0【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:===1.21故选:A.【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017•宜昌)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A .B .C .D .【分析】易知x、y是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m2,∴x、y存在关系y=,22∵两边长均不小于5m,∴x≥5、y≥5,则x≤20,故选 C.【点评】反比例函数确定y的取值范围,即可求得x的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017•宜昌)计算:23×(1﹣)×0.5.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8××=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017•宜昌)解不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.23【解答】解:,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017•宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人1500120013001300120024数(人)(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)25叫做中位数.平均数=总数÷总个数.19.(7分)(2017•宜昌)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x≤10,y关于x的函数解析式;(2)根据函数图象可以得到当10≤x≤30时,y关于x的函数解析式,然后将x=30代入求出相应的y值,然后线段BC∥x轴,即可求得点C的坐标.【解答】解:(1)当0≤x≤10时,设y关于x的函数解析式为y=kx,2610k=50,得k=5,即当0≤x≤10时,y关于x的函数解析式为y=5x;(2)设当10≤x≤30时,y关于x的函数解析式为y=ax+b,,得,即当10≤x≤30时,y关于x的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC∥x轴,∴点C的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017•宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,27根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017•宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.28【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD 是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,29∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.30【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017•宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.31(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据题意,得:,32解得:,∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得:20(1﹣y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017•宜昌)正方形ABCD的边长为1,点O是BC 边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON 不可能(可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂33足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=4S △OBG,连接GP,求四边形PKBG的最大面积.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG 的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.34【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BA O=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,35又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=4S△OBG,∴=()2=4,∴OP=2,∴S△POG =OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=1,∴b=,∴S△OBG =ab=a ==,∴当a2=时,△OBG 有最大值,此时S△PKO=4S△OBG=1,∴四边形PKBG的最大面积为1+1+=.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全36等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017•宜昌)已知抛物线y=ax2+bx+c,其中2a=b >0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF =S△ADE,求此时抛物线的表达式.37【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣=﹣1,把b=2a代入a+b+c=0中得:c=﹣3a,38∵a>0,c<0,∴△=b2﹣4ac>0,∴<0,则顶点A(﹣1,)在第三象限;(3)由b=2a,c=﹣3a,得到x==,解得:x1=﹣3,x2=1,二次函数解析式为y=ax2+2ax﹣3a,∵直线y=x+m与x,y轴分别相交于点B,C两点,则OB=OC=|m|,∴△BOC是以∠BOC为直角的等腰直角三角形,即此时直线y=x+m 与对称轴x=﹣1的夹角∠BAE=45°,∵点F在对称轴左侧的抛物线上,则∠DAF>45°,此时△ADF 与△BOC相似,顶点A只可能对应△BOC的直角顶点O,即△ADF是以A为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF交于点G,∵直线y=x+m过顶点A(﹣1,﹣4a),∴m=1﹣4a,∴直线解析式为y=x+1﹣4a,39联立得:,解得:或,这里(﹣1,﹣4a)为顶点A,(﹣1,﹣4a)为点D坐标,点D到对称轴x=﹣1的距离为﹣1﹣(﹣1)=,AE=|﹣4a|=4a,∴S△ADE =××4a=2,即它的面积为定值,这时等腰直角△ADF的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D、C重合且在y轴上,由﹣1=0,解得:a=1.此时抛物线解析式为y=x2+2x﹣3.【点评】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,二次函数与一次函数的关系,以及待定系数法求函数解析式,熟练掌握各自的性质是解本题的关键.40。

湖北宜昌2017中考试题数学卷(word版含解析)

湖北宜昌2017中考试题数学卷(word版含解析)

一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有理数15-的倒数为()A. 5 B.15C.15- D.5-【答案】D 【解析】试题分析:根据倒数的定义:乘积为1的两数互为倒数,可知:﹣15的倒数为﹣5.故选:D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.考点:倒数2.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.【答案】A考点:轴对称图形3.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美 B.丽 C.宜 D.昌【答案】C【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点可知,有“爱”字一面的相对面上的字是宜.故选:C.考点:正方体相对两个面上的文字4.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器 B.直尺 C. 三角板 D.圆规【答案】D考点:数学常识5.5月18 日,新平社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实观了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【答案】A【解析】试题分析:利用精确数和近似数的区别,可知27354为准确数,4000、50000、1200都是近似数.故选:A.考点:近似数和有效数字6.九一(1)班在参加学校4100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A. 1 B.12C.13D.14【答案】D 【解析】试题分析:根据概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数,可得甲跑第一棒的概率为14. 故选:D . 考点:概率公式7.下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方 8.如图,在AEF ∆中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于,G H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分 EAF ∠B .AO 垂直平分EF C. GH 垂直平分EF D .GH 平分AF 【答案】C 【解析】试题分析:根据线段垂直平分线的作法可得,GH 垂直平分线段EF . 故选:C .考点:1、作图—基本作图;2、线段垂直平分线的性质AC BC,并分9.如图,要测定被池塘隔开的,A B两点的距离.可以在AB外选一点C,连接,别找出它们的中点,D E, 连接E D.现测得304024,,,则AB=()===AC m BC m DE mA.50m B.48m C.45m D.35m【答案】B考点:三角形中位线定理10.如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C. ②④ D.③④【答案】B【解析】试题分析:根据多边形的内角和定理可知:①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;因此可知①③剪开后的两个图形的内角和相等,故选:B.考点:多边形内角与外角11.如图,四边形ABCD 内接O e ,AC 平分BAD ∠,则下列结论正确的是( )A .AB AD = B .BC CD = C.»»AB AD = D .BCA DCA ∠=∠ 【答案】B考点:圆心角、弧、弦的关系12.今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品 手串 中国结 手提包 木雕笔筒总数量(个) 200 100 80 70 销售数量(个)1901007668A .手串B .中国结 C. 手提包 D .木雕笔筒 【答案】B 【解析】试题分析:根据图表可知:手串的销售率=19019=20020<1;中国结的销售率=100100=1;手提包的销售率=7619=8020<1;木雕笔筒的销售率=6834=7035<1,比较可知销售率最高的是中国结. 故选:B .考点:1、有理数大小比较;2、有理数的除法13.ABC ∆在网格中的位置如图所示(每个小正方体边长为1),AD BC ⊥于D ,下列选项中,错误..的是( )A .sin cos αα=B .tan 2C = C. sin cos ββ=D .tan 1α= 【答案】C③∵sinβ=55CD AC =,cosβ=255, ∴sinβ≠cosβ,故C 错误. 故选:C .考点:1、锐角三角函数,2、等腰直角三角形的判定和性质,3、勾股定理14.计算()()224x y x yxy+--的结果为()A.1 B.12C.14D.0【答案】A【点评】本题考查了约分..考点:约分15.某学校要种植一块面积为1002m的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A.B. C.D.【答案】C【解析】试题分析:由草坪面积为100m2,可知x、y存在关系y=100x,然后根据两边长均不小于5m,可得x≥5、y≥5,则x≤20,故选:C.考点:反比例函数的应用二、解答题 (本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.计算:31210.54⎛⎫⨯-⨯ ⎪⎝⎭【答案】3 【解析】试题分析:原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果. 试题解析:原式=8×34×12=3. 考点:有理数的混合运算17.解不等式组122(1)43xx x⎧≥-⎪⎨⎪--⎩<【答案】﹣2≤x <2考点:解一元一次不等式组18.YC 市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够, 导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格. 请回答下列问题:时间 第一天7:00﹣8:00第二天7:00﹣8:00 第三天7:00﹣8:00 第四天7:00﹣8:00 第五天7:00﹣8:00 需要租用自行车却未租15001200130013001200到车的人数(人)(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00-8:00 :需要租用公共自行车的人数是多少?【答案】(1)1300(2)2000【解析】试题分析:(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;考点:1、中位数;2、用样本估计总体19.“和谐号”火车从车站出发,在行驶过程中速度y (单位:/m s)与时间x (单位:s)的关系如图所示,其中线段//BC x轴.(1)当010≤≤,求y关于x的函数解析式;x(2)求C点的坐标.【答案】(1)y=5x(2)(60,90)【解析】试题分析:(1)根据函数图象和图象中的数据可以求得当0≤x≤10,y关于x的函数解析式;(2)根据函数图象可以得到当10≤x≤30时,y关于x的函数解析式,然后将x=30代入求出相应的y值,然后线段BC∥x轴,即可求得点C的坐标.试题解析:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx , 10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ; (2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,10502580a b a b +=⎧⎨+=⎩,得230a b =⎧⎨=⎩, 即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30, 当x=30时,y=2×30+30=90, ∵线段BC ∥x 轴,∴点C 的坐标为(60,90). 考点:一次函数的应用20.阅读:能够成为直角三角形三条边长的三个正整数,,a b c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: ()()22221,2,1.2a m n b mn c m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中0m n >>,mn 是互质的奇数. 应用,当1n =时,求有一边长为5的直角三角形的另外两条边长. 【答案】直角三角形的另外两条边长分别为12,13或3,4 【解析】试题分析:由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.考点:1、勾股数;2、勾股定理21.已知,四边形ABCD中,E是对角线AC上一点,DE ECe与边CD=,以AE为直径的O相切于点D.B点在Oe上,连接OB.(1)求证:DE OE=;(2)若//CD AB,求证:四边形ABCD是菱形.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴▱ABCD是菱形.考点:1、切线的性质;2、菱形的判定22.某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3: 2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【答案】(1)36(2)35亿元(3)50%【解析】试题分析:(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.试题解析:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=0.5,y 2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.考点:1、一元二次方程的应用;2、分式方程的应用23. 正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与,B C 不重合),以O 为顶点在BC 所在直线的上方作90MON ∠=︒.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析) ②如图2,在ON 上截取OE OA =,过E 点作EF 垂直于直线BC ,垂足为点F ,册EH CD ⊥于H ,求证:四边形EFCH 为正方形. (2)当OM 不过点A 时,设OM 交边AB 于G ,且1OG =.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得4PKO OBG S S ∆∆=,连接GP ,求四边形PKBG 的最大面积.【答案】(1)①不可能②证明见解析(2)94试题解析: (1)①若ON 过点D ,则OA >AB ,OD >CD ,∴OA 2>AD 2,OD 2>AD 2,∴OA 2+OD 2>2AD 2≠AD 2,∴∠AOD ≠90°,这与∠MON=90°矛盾,∴ON 不可能过D 点,故答案为:不可能;②∵EH ⊥CD ,EF ⊥BC ,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH 为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB ,在正方形ABCD 中,∠BAO=90°﹣∠AOB ,∴∠EOF=∠BAO ,在△OFE 和△ABO 中 EOF BAO EFO BOE AO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴21a -,∴S △OBG =12ab=1221a -=1242a a -+122211()24a --+ ∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1, ∴四边形PKBG 的最大面积为1+1+14=94. 考点:1、矩形的判定和性质,2、全等三角形的判定和性质,3、相似三角形的判定和性质,4、三角形的面积,5、二次函数的性质,6、方程思想24.已知抛物线2y ax bx c =++,其中20a b c =>>,且0a b c ++=.(1)直接写出关于x 的一元二次方程20ax bx c ++=的一个根;(2)证明:抛物线2y ax bx c =++的顶点A 在第三象限;(3)直线y x m =+与,x y 轴分别相交于,B C 两点,与抛物线2y ax bx c =++相交于,A D 两点.设抛物线2y ax bx c =++的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.【答案】(1)x=1(2)证明见解析(3)y=x 2+2x ﹣3试题解析:(1)∵抛物线y=ax 2+bx+c ,a+b+c=0,∴关于x 的一元二次方程ax 2+bx+c=0的一个根为x=1;(2)证明:∵2a=b ,∴对称轴x=﹣2b a=﹣1, 把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0, ∴244ac b a-<0, 则顶点A (﹣1,244ac b a-)在第三象限;设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:21423y x a y ax ax a =+-⎧⎨=+-⎩, 解得:14x y a =-⎧⎨=-⎩或1114x a y a a ⎧=-⎪⎪⎨⎪=-⎪⎩, 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a,AE=|﹣4a|=4a , ∴S △ADE =12×1a ×4a=2,即它的面积为定值, 这时等腰直角△ADF 的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D 、C 重合且在y 轴上,由1a﹣1=0, 解得:a=1,此时抛物线解析式为y=x 2+2x ﹣3.考点:1、二次函数的图象与性质,2、二次函数与一次函数的关系,3、待定系数法求函数解析式。

湖北省宜昌市2017年中考数学真题试题(中考)

湖北省宜昌市2017年中考数学真题试题(中考)

( )
c
=
1
m2 + n2
.
2
应用,当 n =1时,求有一边长为 5 的直角三角形的另外两条边长.
21.已知,四边形 ABCD 中,E 是对角线 AC 上一点,DE = EC ,以 AE 为直径的 O 与边 CD 相切于点 D . B
点在 O 上,连接 OB .
(1)求证: DE = OE ; (2)若 CD / / AB ,求证:四边形 ABCD 是菱形. 22.某市总预算 a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工 程组成.从 2015 年开始,市政府在每年年初分别对三项工程进行不同数额的投资. 2015 年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的 2 倍、4 倍.随后两年,线路敷设投资每 年都增加 b 亿元,预计线路敷设三年总投资为 54 亿元时会顺利如期完工;搬迁安置投资从 2016 年初开始遂 年按同一百分数递减,依此规律,在 2017 年年初只需投资 5 亿元,即可顺利如期完工;辅助配套工程在 2016 年年初的投资在前一年基础上的增长率是线路敷设 2016 年投资增长率的 1.5 倍,2017 年年初的投资
24.已知抛物线 y = ax2 + bx + c ,其中 2a = b 0 c ,且 a + b + c = 0 . (1)直接写出关于 x 的一元二次方程 ax2 + bx + c = 0 的一个根; (2)证明:抛物线 y = ax2 + bx + c 的顶点 A 在第三象限;
(3)直线 y = x + m 与 x, y 轴分别相交于 B,C 两点,与抛物线 y = ax2 + bx + c 相交于 A, D 两点.设抛物线

2017年宜昌市中考数学试卷

2017年宜昌市中考数学试卷

2017年宜昌市中考数学试卷一、选择题(共15小题;共75分)1. 有理数的倒数为A. B. C. D.2. 如下字体的四个汉字中,是轴对称图形的是A. B.C. D.3. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是A. 美B. 丽C. 宜D. 昌4. 谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为A. 量角器B. 直尺C. 三角板D. 圆规5. 月日,新华社电讯:我国利用世界唯一的“蓝鲸号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸号”拥有台设备,约根管路,约个MCC报验点,电缆拉放长度估计千米,其中准确数是A. B. C. D.6. 九()班在参加学校接力赛时,安排了甲、乙、丙、丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为A. B. C. D.7. 下列计算正确的是A. B. C. D.8. 如图,在中,尺规作图如下:分别以点,点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线,交于点,连接,则下列结论正确的是A. 平分B. 垂直平分C. 垂直平分D. 平分9. 如图,要测定被池塘隔开的,两点的距离,可以在外选一点,连接,,并分别找出它们的中点,,连接.现测得,,,则A. B. C. D.10. 如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是A. ①②B. ①③C. ②④D. ③④11. 如图,四边形内接于,平分,则下列结论正确的是A. B.C. D.12. 今年月日是全国第个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包,木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是手工制品手串中国结手提包木雕笔筒总数量个销售数量个A. 手串B. 中国结C. 手提包D. 木雕笔筒13. 在网格中的位置如图所示(每个小正方形边长为),于点,下列四个选项中,错误的是A. B. C. D.14. 计算的结果为A. B. C. D.15. 某学校要种植一块面积为的长方形草坪,要求两边长均不小于,则草坪的一边长(单位:)随另一边长(单位:)的变化而变化的图象可能是A. B.C. D.二、解答题(共9小题;共117分)16. 计算:.17. 解不等式组18. YC市首批一次性投放公共自行车辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现将随机抽取的某五天在同一时段的调查数据汇成如下表格.时间第一天第二天第三天第四需要租用自行车却未租到车的人数人请回答下列问题:(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在需要租用公共自行车的人数是多少?19. “和谐号”火车从车站出发,在行驶过程中速度(单位:)与时间(单位:)的关系如图所示,其中线段轴.请根据图象提供的信息解答下列问题:(1)当,求关于的函数解析式;(2)求点的坐标.20. 阅读:能够成为直角三角形三边长的三个正整数,,,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中,,是互质的奇数.应用:当时,求有一边长为的直角三角形的另外两条边长.21. 已知,在四边形中,是对角线上一点,,以为直径的与边相切于点,点在上,连接.(1)求证:;(2)若,求证:四边形是菱形.22. 某市总预算亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从年开始,市政府在每年年初分别对三项工程进行不同数额的投资.年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的倍、倍.随后两年,线路敷设投资每年都增加亿元,预计线路敷设三年总投资为亿元时会顺利如期完工;搬迁安置投资从年年初开始逐年按同一百分数递减,依此规律,在年年初只需投资亿元,即可顺利如期完工;辅助配套工程在年年初的投资在前一年基础上的增长率是线路敷设年投资增长率的倍,年年初的投资比该项工程前两年投资的总和还多亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23. 正方形的边长为,点是边上的一个动点(与,不重合),以为顶点在所在直线的上方作.(1)当经过点时,①请直接填空:(可能,不可能)过点;②如图,在上截取,过点作垂直于直线,垂足为点,于点,求证:四边形为正方形.(2)当不过点时,设交边于,且.在上存在点,过点作垂直于直线,垂足为点,使得,连接,求四边形的最大面积.24. 已知抛物线,其中,且.(1)直接写出关于的一元二次方程的一个根;(2)证明:抛物线的顶点在第三象限;(3)直线与,轴分别相交于,两点,与抛物线相交于,两点.设抛物线的对称轴与轴相交于,如果在对称轴左侧的抛物线上存在点,使得与相似,并且,求此时抛物线的表达式.答案第一部分1. D2. A3. C4. D5. A6. D7. B8. C9. B 10. B11. B 12. B 13. C 14. A 15. C第二部分原式16.17. 不等式的解集为:,不等式的解集为:,原不等式组的解集为:.18. (1)中位数是;(2)平均每天需要租车却未租到车的人数:(人),平均每天需要租车的人数:(人).19. (1)当时,关于的图象呈直线且过原点,故设函数解析式为,将代入上式,得,故解析式为.(2)当时,关于的图象呈直线,故设函数解析式为,将,代入上式,得解得:,,所以解析式为,将代入,得.所以点的坐标为.20. 当时,因为直角三角形有一边长为,分情况如下:情况:当时,即,解得(舍);情况:当时,即,再将它分别代入,得, .情况三:当时,即,,;因为,所以.把分别代入,得,.综上所述,直角三角形的另两边长为,或,.21. (1)连接,如图所示,因为是的切线,所以,所以,又因为,所以,所以,所以.(2)因为,所以,所以,所以,因为,而,所以,又因为,所以,所以,在和中,所以,所以.所以四边形是平行四边形,所以,所以,所以,所以平行四边形是菱形.22. (1)三年用于辅助配套的投资为(亿元).(2)设年年初,对辅助配套投资为亿元,则线路敷设、搬迁安置的投资分别是亿元,亿元.由题意得:解得,年年初三项工程的总投资为亿元.(3)由得,年初搬迁安置的投资为亿元,设从年初开始,搬迁安置投资逐年递减的百分数为.由题意得解得舍搬迁安置投资逐年递减的百分数为.23. (1)①不可能;②,,在正方形中,,.又,,,而,四边形为矩形.在与中,.,.有,由得四边形为正方形.(2)由,,得.,有,,则为定值,且等于.为定值,如图,内接于(设,),过作,垂足为,则,当为半径时,最大,即为,这时最大面积为,则,四边形的最大面积为.24. (1)的一个根为(或者);(2),对称轴,将代入,得.法一:,,,,所以顶点在第三象限.【解析】法二:,,,所以顶点在第三象限.(3)由,,得,,,表达式为(也可由对称求另一点的坐标,写出表达式).直线与,轴分别相交于,两点,则,所以是以为直角的等腰直角三角形,这时直线与对称轴的夹角.又点在对称轴左侧的抛物线上,则,这时与相似,顶点只可能对应中的直角顶点,即是以为直角顶点的等腰直角三角形,且对称轴为直线,设对称轴直线与交于.直线过顶点,,直线解析式为.解方程组解得这里的即为顶点,即为点坐标.点到对称轴直线的距离为,,,即它的面积为定值.这时等腰直角的面积为,所以底边,而直线是它的对称轴,这时,重合且在轴上,由,,此时抛物线的解析式.。

历年湖北省宜昌市中考数学试卷(含答案)

历年湖北省宜昌市中考数学试卷(含答案)

2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣的倒数为()A.5 B.C.D.﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺C.三角板D.圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.12006.(3分)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.C.D.7.(3分)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a5 C.(a3)2=a5D.a6÷a2=a38.(3分)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF 的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 9.(3分)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④11.(3分)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是()手工制品手串中国结手提包木雕笔筒总数量(个)2001008070销售数量(个)1901007668A.手串B.中国结C.手提包D.木雕笔筒13.(3分)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=114.(3分)计算的结果为()A.1 B.C.D.015.(3分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A .B .C .D .二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣)×0.5.17.(6分)解不等式组.18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)15001200130013001200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线y=ax 2+bx +c ,其中2a=b >0>c ,且a +b +c=0.(1)直接写出关于x 的一元二次方程ax 2+bx +c=0的一个根;(2)证明:抛物线y=ax 2+bx +c 的顶点A 在第三象限;(3)直线y=x +m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx +c 相交于A ,D 两点.设抛物线y=ax 2+bx +c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =S △ADE ,求此时抛物线的表达式.2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•宜昌)有理数﹣的倒数为()A.5 B.C.D.﹣5【分析】根据倒数的定义,找出﹣的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017•宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017•宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺C.三角板D.圆规【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017•宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.C.D.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017•宜昌)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a5 C.(a3)2=a5D.a6÷a2=a3【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3•a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017•宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F 为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF 于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017•宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017•宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017•宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是()手工制品手串中国结手提包木雕笔筒总数量(个)2001008070销售数量(个)1901007668A.手串B.中国结C.手提包D.木雕笔筒【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率==<1;中国结的销售率==1;手提包的销售率==<1;木雕笔筒的销售率==<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017•宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,∴sinα=cosα=,故①正确,tanC==2,故②正确,tanα=1,故D正确,③∵sinβ==,cosβ=,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017•宜昌)计算的结果为()A.1 B.C.D.0【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:===1.故选:A.【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017•宜昌)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A.B. C.D.【分析】易知x、y是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m2,∴x、y存在关系y=,∵两边长均不小于5m,∴x≥5、y≥5,则x≤20,故选C.【点评】反比例函数确定y的取值范围,即可求得x的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017•宜昌)计算:23×(1﹣)×0.5.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8××=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017•宜昌)解不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017•宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)15001200130013001200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017•宜昌)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x≤10,y关于x的函数解析式;(2)根据函数图象可以得到当10≤x≤30时,y关于x的函数解析式,然后将x=30代入求出相应的y值,然后线段BC∥x轴,即可求得点C的坐标.【解答】解:(1)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=50,得k=5,即当0≤x≤10时,y关于x的函数解析式为y=5x;(2)设当10≤x≤30时,y关于x的函数解析式为y=ax+b,,得,即当10≤x≤30时,y关于x的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC∥x轴,∴点C的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017•宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017•宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017•宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据题意,得:,解得:,∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得:20(1﹣y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017•宜昌)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON不可能(可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.【分析】(1)①若ON 过点D 时,则在△OAD 中不满足勾股定理,可知不可能过D 点;②由条件可先判业四边形EFCH 为矩形,再证明△OFE ≌△ABO ,可证得结论;(2)由条件可证明△PKO ∽△OBG ,利用相似三角形的性质可求得OP=2,可求得△POG 面积为定值及△PKO 和△OBG 的关系,只要△CGB 的面积有最大值时,则四边形PKBG 的面积就最大,设OB=a ,BG=b ,由勾股定理可用b 表示出a ,则可用a 表示出△CBG 的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG 面积的最大值.【解答】解:(1)①若ON 过点D ,则OA >AB ,OD >CD ,∴OA 2>AD 2,OD 2>AD 2,∴OA 2+OD 2>2AD 2≠AD 2,∴∠AOD ≠90°,这与∠MON=90°矛盾,∴ON 不可能过D 点,故答案为:不可能;②∵EH ⊥CD ,EF ⊥BC ,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH 为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB ,在正方形ABCD 中,∠BAO=90°﹣∠AOB ,∴∠EOF=∠BAO ,在△OFE 和△ABO 中∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF +OC=AB=BC=BO +OC=EF +OC ,∴CF=EF ,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB ,∠PKO=∠OBG ,∴△PKO ∽△OBG ,∵S △PKO =4S △OBG , ∴=()2=4,∴OP=2,∴S △POG =OG•OP=×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=,∴S △OBG =ab=a ==, ∴当a 2=时,△OBG 有最大值,此时S △PKO =4S △OBG =1,∴四边形PKBG 的最大面积为1+1+=.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017•宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF =S△ADE,求此时抛物线的表达式.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m 与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣=﹣1,把b=2a代入a+b+c=0中得:c=﹣3a,∵a>0,c<0,∴△=b2﹣4ac>0,∴<0,则顶点A(﹣1,)在第三象限;(3)由b=2a,c=﹣3a,得到x==,解得:x1=﹣3,x2=1,二次函数解析式为y=ax2+2ax﹣3a,∵直线y=x+m与x,y轴分别相交于点B,C两点,则OB=OC=|m|,∴△BOC是以∠BOC为直角的等腰直角三角形,即此时直线y=x+m与对称轴x=﹣1的夹角∠BAE=45°,∵点F在对称轴左侧的抛物线上,则∠DAF>45°,此时△ADF与△BOC相似,顶点A只可能对应△BOC的直角顶点O,即△ADF是以A为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF交于点G,∵直线y=x+m过顶点A(﹣1,﹣4a),∴m=1﹣4a,∴直线解析式为y=x+1﹣4a,联立得:,解得:或,这里(﹣1,﹣4a)为顶点A,(﹣1,﹣4a)为点D坐标,点D到对称轴x=﹣1的距离为﹣1﹣(﹣1)=,AE=|﹣4a|=4a,∴S=××4a=2,即它的面积为定值,△ADE这时等腰直角△ADF的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D、C重合且在y轴上,由﹣1=0,解得:a=1.此时抛物线解析式为y=x2+2x﹣3.【点评】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,二次函数与一次函数的关系,以及待定系数法求函数解析式,熟练掌握各自的性质是解本题的关键.。

湖北省宜昌市2017届九年级上期中数学试卷含答案解析

湖北省宜昌市2017届九年级上期中数学试卷含答案解析

……○…………装…………○………学校:___________姓名:___________班级:______……○…………装…………○………绝密★启用前湖北省宜昌市2017届九年级上期中数学试卷含答案解析题号 一 二 得分注意事项:1.本试卷共XX 页,二个大题,满分117分,考试时间为1分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、单选题(共45分)评卷人 得分1.下列汽车标志中既是轴对称图形又是中心对称图形的是( )(3分)A.B.C.D.2.一元二次方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( )(3分)A. 3,﹣1B. 3,﹣4C. 3,4D. 3x 2,﹣4x试卷第2页,总19页…………外………线…………内………线3.方程x 2=2x 的解是( )(3分) A. x=0 B. x=2 C. x 1=0,x 2=2D.4.若m 、n 是一元二次方程x 2﹣5x+2=0的两个实数根,则m+n ﹣mn 的值是( )(3分) A. 7 B. ﹣7 C. 3 D. ﹣35.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( )(3分) A. 12 B. 16 C. 9 D. 66.将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( )(3分) A. y=2(x+1)2+3 B. y=2(x ﹣1)2﹣3 C. y=2(x+1)2﹣3 D. y=2(x ﹣1)2+37.(3分)A. (2,1)B. (﹣2,1)……○…………订…………○…________班级:___________考号:___________……○…………订…………○… C. (2,﹣1) D. (﹣2,﹣1)8.已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:则该二次函数图象的对称轴为( )(3分)A.B.C.D.9.关于x 的一元二次方程9x 2﹣6x+k=0有两个不相等的实根,则k 的范围是( )(3分) A. k <1 B. k >1 C. k≤1 D. k≥110.如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形0ABC 绕点O 旋转180°旋转后的图形为矩形OA 1B 1C 1,那么点B 1的坐标为( )试卷第4页,总19页………○…………线…………○……在※※装※※订※※………○…………线…………○……(3分)A. (2,1)B. (﹣2,1)C. (﹣2,﹣1)D. (2,﹣l)11.如图,△ABC 中,将△ABC 绕点A 顺时针旋转40°后,得到△AB′C′,且C′在边BC 上,则∠AC′C 的度数为( )(3分)A. 50°B. 60°C. 70°D. 80°12.已知⊙O 的半径为4cm ,A 为线段OP 的中点,当OP=7cm 时,点A 与⊙O 的位置关系是( )(3分) A. 点A 在⊙O 内 B. 点A 在⊙O 上 C. 点A 在⊙O 外 D. 不能确定………内…………○……线…………学………外…………○……线…………13.如图,⊙O 是△ABC 的外接圆,连结OA 、OB ,且点C 、O 在弦AB 的同侧,若∠ABO=50°,则∠ACB 的度数为( )(3分)A. 50°B. 45°C. 40°D. 30°14.⊙O 的直径为10,圆心O 到弦AB 的距离为3,则弦AB 的长是( )(3分) A. 4 B. 6 C. 7 D. 815.已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=﹣1,给出下列结果: ①b 2>4ac ;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c <0, 则正确的结论是( )(3分)A. ①②③④。

湖北省宜昌市2017年中考数学试卷

湖北省宜昌市2017年中考数学试卷

2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣的倒数为()A.5 B.C.D.﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺 C.三角板D.圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.12006.(3分)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.C.D.7.(3分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a5D.a6÷a2=a38.(3分)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF9.(3分)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④11.(3分)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是()A.手串 B.中国结C.手提包D.木雕笔筒13.(3分)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=114.(3分)计算的结果为()A.1 B.C.D.015.(3分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A .B . C.D .二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣)×0.5.17.(6分)解不等式组.18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O 为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON (可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.24.(12分)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=S△ADE,求此时抛物线的表达式.2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•宜昌)有理数﹣的倒数为()A.5 B.C.D.﹣5【分析】根据倒数的定义,找出﹣的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017•宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017•宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺 C.三角板D.圆规【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017•宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.C.D.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017•宜昌)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a5D.a6÷a2=a3【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3•a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017•宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017•宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017•宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017•宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是()A.手串 B.中国结C.手提包D.木雕笔筒【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率==<1;中国结的销售率==1;手提包的销售率==<1;木雕笔筒的销售率==<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017•宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,∴sinα=cosα=,故①正确,tanC==2,故②正确,tanα=1,故D正确,③∵sinβ==,cosβ=,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017•宜昌)计算的结果为()A.1 B.C.D.0【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:===1.故选:A.【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017•宜昌)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A.B. C.D.【分析】易知x、y是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m2,∴x、y存在关系y=,∵两边长均不小于5m,∴x≥5、y≥5,则x≤20,故选 C.【点评】反比例函数确定y的取值范围,即可求得x的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017•宜昌)计算:23×(1﹣)×0.5.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8××=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017•宜昌)解不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017•宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017•宜昌)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x≤10,y关于x的函数解析式;(2)根据函数图象可以得到当10≤x≤30时,y关于x的函数解析式,然后将x=30代入求出相应的y值,然后线段BC∥x轴,即可求得点C的坐标.【解答】解:(1)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=50,得k=5,即当0≤x≤10时,y关于x的函数解析式为y=5x;(2)设当10≤x≤30时,y关于x的函数解析式为y=ax+b,,得,即当10≤x≤30时,y关于x的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC∥x轴,∴点C的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017•宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017•宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017•宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据题意,得:,解得:,∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得:20(1﹣y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017•宜昌)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C 不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON 不可能(可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BA O=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=4S△OBG,∴=()2=4,∴OP=2,∴S△POG=OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=1,∴b=,∴S△OBG=ab=a==,∴当a2=时,△OBG有最大值,此时S△PKO=4S△OBG=1,∴四边形PKBG的最大面积为1+1+=.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017•宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=S△ADE,求此时抛物线的表达式.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形ADE 面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣=﹣1,把b=2a代入a+b+c=0中得:c=﹣3a,∵a>0,c<0,∴△=b2﹣4ac>0,∴<0,则顶点A(﹣1,)在第三象限;(3)由b=2a,c=﹣3a,得到x==,解得:x1=﹣3,x2=1,二次函数解析式为y=ax2+2ax﹣3a,∵直线y=x+m与x,y轴分别相交于点B,C两点,则OB=OC=|m|,∴△BOC是以∠BOC为直角的等腰直角三角形,即此时直线y=x+m与对称轴x=﹣1的夹角∠BAE=45°,∵点F在对称轴左侧的抛物线上,则∠DAF>45°,此时△ADF与△BOC相似,顶点A只可能对应△BOC的直角顶点O,即△ADF是以A为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF交于点G,∵直线y=x+m过顶点A(﹣1,﹣4a),∴m=1﹣4a,∴直线解析式为y=x+1﹣4a,联立得:,解得:或,这里(﹣1,﹣4a)为顶点A,(﹣1,﹣4a)为点D坐标,点D到对称轴x=﹣1的距离为﹣1﹣(﹣1)=,AE=|﹣4a|=4a,∴S△ADE=××4a=2,即它的面积为定值,这时等腰直角△ADF的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D、C重合且在y轴上,由﹣1=0,解得:a=1.此时抛物线解析式为y=x2+2x﹣3.【点评】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,二次函数与一次函数的关系,以及待定系数法求函数解析式,熟练掌握各自的性质是解本题的关键.。

宜昌市中考数学试卷包括

宜昌市中考数学试卷包括

2017 年宜昌市中考数学试卷含答案2017 年湖北省宜昌市中考数学试卷一、选择题:本大题共15 个小题,每题 3 分,共 45 分 .在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.有理数﹣的倒数为()A. 5 B.C.D.﹣ 52.以下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.如图是一个小正方体的张开图,把张开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌4.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习器具,谜底为()A.量角器B.直尺C.三角板D.圆规5.5 月 18 日,新平社电讯:我国利用世界独一的“蓝鲸 1 号”,在南海实观了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸 1 号”拥有 27354 台设施,约 40000 根管路,约 50 000 个 MCC 报验点,电缆拉放长度估计 1200 千米.其中正确数是()A. 27354 B.40000 C.50000 D.12006.九一( 1)班在参加学校4× 100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的次序由抽签随机决定,则甲跑第一棒的概率为()A. 1 B.C.D.7.以下计算正确的选项是()3 a25 3 2 53)2 5 6 ÷a2 3A. a +=a B.a ?a =a C.( a =a D. a=a8.如图,在△ AEF 中,尺规作图以下:分别以点E,点 F 为圆心,大于EF 的长为半径作弧,两弧订交于G, H 两点,作直线 GH,交 EF 于点 O,连结 AO ,则以下结论正确的选项是()A. AO 均分∠ EAF B.AO 垂直均分 EF C. GH 垂直均分 EF D . GH 平分AF9.如图,要测定被池塘分开的A, B 两点的距离.能够在AB 外选一点 C,连接 AC ,BC,并分别找出它们的中点D,E,连结 ED.现测得AC=30m ,BC=40m,DE=24m,则AB= ()A. 50m B.48m C.45mD. 35m10.如图,将一张四边形纸片沿直线剪开,假如剪开后的两个图形的内角和相等,以下四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④11.如图,四边形 ABCD 内接⊙ O,AC 均分∠ BAD ,则以下结论正确的选项是()A. AB=AD B .BC=CD C .D.∠ BCA= ∠DCA12.今年 5 月 21 日是全国第27 个助残日,某地张开“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特别教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的有关销售信息汇总以下表,此中销售率最高的是()手工制品手串中国结手提包木雕笔筒总数目(个)2001008070销售数目(个)1901007668 A.手串B.中国结 C.手提包 D.木雕笔筒13.△ABC 在网格中的地点以以下图(每个小正方形边长为1),AD ⊥BC 于 D,以下选项中,错误的选项是()A. sin α =cosαB. tanC=2 C. sin β =cosβD. tan α =114.计算的结果为()A. 1 B.C.D.015.某学校要栽种一块面积为 100m2的长方形草坪,要求两边长均不小于 5m,则草坪的一边长为 y(单位: m)随另一边长 x(单位: m)的变化而变化的图象可能是()A.B.C.D.二、解答题(本大题共9 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤 .)16.计算: 23×( 1﹣)× 0.5.17.解不等式组.18.YC 市首批一次性投放公共自行车700 辆供市民租用出行,因为投入数目不够,致使出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成以下表格.请回答以下问题:时间第一天7:00﹣次日7:00﹣第三天7:00﹣第四天7:00﹣第五天7: 00﹣8:008:008: 008:008:00需要租用自行车却未租15001200130013001200到车的人数(人)(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,均匀每日在 7:00﹣8:00:需要租用公共自行车的人数是多少?19.“友好号”火车从车站出发,专家驶过程中速度 y(单位: m/s)与时间 x(单位: s)的关系以以下图,此中线段BC∥x 轴.(1)当 0≤x≤10,求 y 对于 x 的函数分析式;(2)求 C 点的坐标.20.阅读:能够成为直角三角形三条边长的三个正整数界上第一次给出勾股数通解公式的是我国古代数学著作a,b,c,称为勾股数.世《九章算术》,其勾股数组公式为:此中 m> n> 0, m,n 是互质的奇数.应用:当 n=1 时,求有一边长为 5 的直角三角形的其他两条边长.21.已知,四边形 ABCD 中,E 是对角线 AC 上一点, DE=EC,以 AE 为直径的⊙O 与边 CD 相切于点 D.B 点在⊙ O 上,连结OB.( 1)求证: DE=OE;( 2)若 CD∥AB ,求证:四边形 ABCD 是菱形.22.某市总估计 a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、乔迁部署、协助配套三项工程构成.从2015 年开始,市政府在每年年初分别对三项工程进行不一样样数额的投资.2015 年年初,对线路敷设、乔迁部署的投资分别是协助配套投资的 2 倍、4 倍.随后两年,线路敷设投资每年都增添 b 亿元,估计线路敷设三年总投资为54 亿元时会顺利按期竣工;乔迁部署投资从2016 年初开始遂年按同一百分数递减,依此规律,在2017 年年初只需投资 5 亿元,即可顺利按期竣工;协助配套工程在2016 年年初的投资在前一年基础上的增添率是线路敷设2016 年投资增添率的1.5 倍, 2017 年年初的投资比该项工程前两年投资的总和还多 4 亿元,若这样,协助配套工程也能够按期竣工.经测算,这三年的线路敷设、协助配套工程的总投资资本之比达到3:2.(1)这三年用于协助配套的投资将达到多少亿元?(2)市政府 2015 年年初对三项工程的总投资是多少亿元?(3)求乔迁部署投资逐年递减的百分数.23.正方形 ABCD 的边长为 1,点 O 是 BC 边上的一个动点(与 B,C 不重合),以O 为极点在 BC 所在直线的上方作∠MON=90° .( 1)当 OM 经过点 A 时,①请直接填空: ON (可能,不能够能)过 D 点;(图 1 仅供分析)②如图 2,在ON 上截取 OE=OA,过 E 点作 EF 垂直于直线 BC,垂足为点 F,作 EH⊥CD 于 H,求证:四边形 EFCH 为正方形.( 2)当 OM 可是点 A 时,设 OM 交边 AB 于 G,且 OG=1.在 ON 上存在点 P,过P 点作 PK 垂直于直线 BC,垂足为点 K ,使得 S△PKO=4S△OBG,连结 GP,求四边形PKBG 的最大面积.24.已知抛物线 y=ax2+bx+c,此中 2a=b>0>c,且 a+b+c=0.(1)直接写出对于 x 的一元二次方程 ax2+bx+c=0 的一个根;(2)证明:抛物线 y=ax2+bx+c 的极点 A 在第三象限;(3)直线 y=x+m 与 x,y 轴分别订交于 B, C 两点,与抛物线 y=ax2+bx+c 订交于A ,D 两点.设抛物线 y=ax2+bx+c 的对称轴与 x 轴订交于 E.假如在对称轴左边的抛物线上存在点 F,使得△ ADF 与△ BOC 相像,而且 S△ADF= S△ADE,求此时抛物线的表达式.2017 年湖北省宜昌市中考数学试卷参照答案与试题分析一、选择题:本大题共15 个小题,每题 3 分,共 45 分 .在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.有理数﹣的倒数为()A. 5B.C.D.﹣ 5【考点】17:倒数.【分析】依据倒数的定义,找出﹣的倒数为﹣5,本题得解.【解答】解:依据倒数的定义可知:﹣的倒数为﹣5.应选D.2.以下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【考点】 P3:轴对称图形.【分析】依据轴对称图形的意义:假如一个图形沿着一条直线对折后两部分完满重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:依据轴对称图形的见解可知, A 为轴对称图形.应选: A.3.如图是一个小正方体的张开图,把张开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【考点】 I8:专题:正方体相对两个面上的文字.【分析】正方体的表面张开图,相对的面之间必定相隔一个正方形,依据这一特点作答.【解答】解:∵正方体的表面张开图,相对的面之间必定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.应选 C.4.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习器具,谜底为()A.量角器B.直尺C.三角板D.圆规【考点】 1O:数学知识.【分析】利用圆规的特色直接获得答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,应选 D.5.5 月 18 日,新平社电讯:我国利用世界独一的“蓝鲸1号”,在南海实观了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸 1 号”拥有 27354 台设备,约 40000 根管路,约 50 000 个 MCC 报验点,电缆拉放长度估计1200 千米.其中正确数是()2· 1· c· n· j· yA. 27354 B.40000 C.50000 D.1200【考点】 1H:近似数和有效数字.【分析】利用精准数和近似数的差别进行判断.【解答】解: 27354 为正确数, 4000、50000、1200 都是近似数.应选 A .6.九一( 1)班在参加学校 4× 100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的次序由抽签随机决定,则甲跑第一棒的概率为()A . 1B .C .D .【考点】 X4:概率公式.【分析】 依据概率公式进行解答.【解答】 解:甲跑第一棒的概率为.应选: D .7.以下计算正确的选项是( )3 2 5 . 3 2 5 .( 3 ) 2 5 . 6 2 3 A . a +a?a=a C a =a D a ÷a=a=a B a 【考点】 48:同底数幂的除法; 35:归并同类项; 46:同底数幂的乘法; 47:幂的乘方与积的乘方.【分析】由归并同类项、同底数幂的乘法法例、幂的乘方法例、同底数幂的除法法例即可得出结论.【解答】 解: A 、a 3+a 2=a 5.不正确;B 、a 3?a 2=a 5正确;C 、( a 3)2=a 6≠ a 5,不正确;D 、 a 6 ÷a 2 =a 4≠a 3,不正确;应选: B .8.如图,在△ AEF 中,尺规作图以下:分别以点 E ,点 F 为圆心,大于 EF 的长为半径作弧,两弧订交于 G , H 两点,作直线 GH ,交 EF 于点 O ,连结 AO ,则以下结论正确的选项是( )2-1-c-n-j-yA . AO 均分∠ EAFB .AO 垂直均分 EFC . GH 垂直均分 EFD . GH 平分AF【考点】 N2:作图—基本作图; KG:线段垂直均分线的性质.【分析】直接依据线段垂直均分线的作法即可得出结论.【解答】解:由题意可得, GH 垂直均分线段 EF.应选 C.9.如图,要测定被池塘分开的A, B两点的距离.能够在AB外选一点C,连接 AC ,BC,并分别找出它们的中点D,E,连结ED.现测得AC=30m ,BC=40m,DE=24m,则AB= ()【出处: 21 教育名师】A. 50m B.48m C.45mD. 35m【考点】 KX :三角形中位线定理.【分析】依据中位线定理可得: AB=2DE=48m .【解答】解:∵ D 是 AC 的中点, E 是 BC 的中点,∴DE 是△ ABC 的中位线,∴DE= AB ,∵DE=24m,∴AB=2DE=48m ,应选 B.10.如图,将一张四边形纸片沿直线剪开,假如剪开后的两个图形的内角和相等,以下四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④【考点】 L3:多边形内角与外角.【分析】依据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,应选 B.11.如图,四边形 ABCD 内接⊙ O,AC 均分∠ BAD ,则以下结论正确的选项是()A. AB=AD B .BC=CD C .D.∠ BCA= ∠DCA【考点】 M4:圆心角、弧、弦的关系.【分析】依据圆心角、弧、弦的关系对各选项进行逐个判断即可.【解答】解:A 、∵∠ ACB 与∠ ACD 的大小关系不确立,∴ AB 与 AD 不用然相等,故本选项错误;B、∵ AC 均分∠ BAD ,∴∠ BAC= ∠DAC ,∴ BC=CD,故本选项正确;C、∵∠ ACB 与∠ ACD 的大小关系不确立,∴与不用然相等,故本选项错误;D、∠ BCA 与∠ DCA 的大小关系不确立,故本选项错误.应选 B.12.今年 5 月 21 日是全国第 27 个助残日,某地张开“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特别教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的有关销售信息汇总以下表,此中销售率最高的是()手工制品手串中国结手提包木雕笔筒总数目(个)2001008070销售数目(个)1901007668 A.手串B.中国结 C.手提包D.木雕笔筒【考点】 18:有理数大小比较; 1D:有理数的除法.【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率 == <1;中国结的销售率 ==1;手提包的销售率 ==< 1;木雕笔筒的销售率 = =<1,21世纪教育网版权全部∴销售率最高的是中国结.应选 B.13.△ABC 在网格中的地点以以下图(每个小正方形边长为1),AD ⊥BC 于 D,以下选项中,错误的选项是() A. sin α =cosαB. tanC=2 C. sin β =cosβD. tan α =1【考点】 T1:锐角三角函数的定义.【分析】察看图象可知,△ADB 是等腰直角三角形, BD=AD=2 ,AB=2,AD=2,CD=1,AC=,利用锐角三角函数一一计算即可判断.【解答】解:察看图象可知,△ ADB 是等腰直角三角形, BD=AD=2 ,AB=2,AD=2 ,CD=1,AC=,∴ sin α=cosα=,故①正确,tanC= =2,故②正确,tan α =1,故 D 正确,③∵ sin β= =,cosβ=,∴sin β≠cosβ,故 C 错误.应选 C.14.计算的结果为()A. 1 B.C.D.0【考点】 66:约分.【分析】分子利用平方差公式进行因式分解,此后经过约分进行化简.【解答】解:===1.应选: A.15.某学校要栽种一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位: m)随另一边长 x(单位: m)的变化而变化的图象可能是()A.B.C.D.【考点】 GA:反比率函数的应用.【分析】易知 x、y 是反比率函数,再依据边长的取值范围即可解题.【解答】解:∵草坪面积为100m2,∴ x、 y 存在关系 y=,∵两边长均不小于5m,∴x≥ 5、 y≥5,则 x≤20,应选 C.二、解答题(本大题共 9 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤 .)16.计算: 23×( 1﹣)× 0.5.【考点】 1G:有理数的混淆运算.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可获得结果.【解答】解:原式 =8××=3.17.解不等式组.【考点】 CB:解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得: x≥﹣ 2,由②得: x< 2,故不等式组的解集为﹣ 2≤x<2.18.YC 市首批一次性投放公共自行车700 辆供市民租用出行,因为投入数目不够,致使出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的检查数据汇成以下表格.请回答以下问题:时间第一天次日第三天第四天第五天7:00﹣7: 00﹣7:00﹣7:00﹣7: 00﹣8:008:008: 008:008:00需要租用自行车却未租15001200130013001200到车的人数(人)(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,均匀每日在 7:00﹣8:00:需要租用公共自行车的人数是多少?【考点】 W4:中位数; V5 :用样本估计整体.【分析】(1)表格中 5 个数据按从小到大的次序摆列后,中位数应是第 3 个数据;(2)依据均匀数等于数据之和除以总个数求出均匀每日需要租用自行车却未租到车的人数,再加上 700 即可.【解答】解:(1)表格中 5 个数据按从小到大的次序摆列为1200,1200,1300,1300,1500,因此中位数是 1300;( 2)均匀每日需要租用自行车却未租到车的人数:÷5=1300,∵YC 市首批一次性投放公共自行车700 辆供市民租用出行,∴均匀每日需要租用公共自行车的人数是 1300+700=2000.19.“友好号”火车从车站出发,专家驶过程中速度 y(单位: m/s)与时间 x(单位: s)的关系以以下图,此中线段BC∥x 轴.(1)当 0≤x≤10,求 y 对于 x 的函数分析式;(2)求 C 点的坐标.【考点】 FH:一次函数的应用.【分析】(1)依据函数图象和图象中的数据能够求合适0≤ x≤ 10,y 对于 x 的函数分析式;( 2)依据函数图象能够获合适 10≤x ≤30 时, y 对于 x 的函数分析式,此后将x=30 代入求出相应的 y 值,此后线段 BC∥x 轴,即可求得点 C 的坐标.【解答】解:( 1)当 0≤x≤10 时,设 y 对于 x 的函数分析式为 y=kx ,10k=50,得 k=5,即当 0≤x≤10 时, y 对于 x 的函数分析式为y=5x;( 2)设当 10≤x≤30 时, y 对于 x 的函数分析式为y=ax+b,,得,即当 10≤x≤30 时, y 对于 x 的函数分析式为y=2x+30,当x=30 时, y=2×30+30=90,∵线段 BC∥ x 轴,∴点 C 的坐标为( 60, 90).20.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:此中 m> n> 0, m,n 是互质的奇数.应用:当 n=1 时,求有一边长为 5 的直角三角形的其他两条边长.【考点】 KT:勾股数; KQ:勾股定理.【分析】由 n=1,获得 a= ( m2﹣1)①, b=m②, c=(m2+1)③,依据直角三角形有一边长为5,列方程即可获得结论.21·cn· jy· com【解答】解:当n=1,a=(m2﹣ 1)①, b=m②, c=(m2 1)③,+∵直角三角形有一边长为5,∴ Ⅰ、当 a=5 时,(m2﹣1)=5,解得: m=(舍去),Ⅱ、当 b=5 时,即 m=5,代入①③得, a=12, c=13,Ⅲ、当c=5 时,(m2 1)=5,解得: m=± 3,+∵m>0,∴m=3,代入①②得, a=4,b=3,综上所述,直角三角形的其他两条边长分别为12,13 或 3, 4.21.已知,四边形 ABCD 中,E 是对角线 AC 上一点, DE=EC,以 AE 为直径的⊙O 与边 CD 相切于点 D.B 点在⊙ O 上,连结OB.( 1)求证: DE=OE;( 2)若 CD∥AB ,求证:四边形 ABCD 是菱形.【考点】 MC :切线的性质; L9:菱形的判断.【分析】(1)先判断出∠ 2+∠3=90°,再判断出∠ 1=∠ 2 即可得出结论;(2)先判断出△ ABO ≌△ CDE 得出 AB=CD ,即可判断出四边形 ABCD 是平行四边形,最后判断出 CD=AD 即可.【解答】解:( 1)如图,连结 OD,∵ CD 是⊙ O 的切线,∴ OD⊥ CD,∴∠ 2+∠ 3=∠1+∠COD=90°,∵DE=EC,∴∠ 1=∠ 2,∴∠ 3=∠ COD,∴ DE=OE;(2)∵ OD=OE,∴ OD=DE=OE,∴∠ 3=∠COD=∠DEO=60°,∴∠2=∠ 1=30°,∵ OA=OB=OE ,OE=DE=EC,∴ OA=OB=DE=EC ,∵ AB∥ CD,∴∠ 4=∠ 1,∴∠ 1=∠ 2=∠4=∠OBA=30°,∴△ ABO ≌△ CDE,∴ AB=CD ,∴四边形 A ∴D 是平行四边形,∴∠ DAE= ∠ DOE=30°,∴∠ 1=∠ DAE ,∴CD=AD ,∴? ABCD 是菱形.22.某市总估计 a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、乔迁部署、协助配套三项工程构成.从2015 年开始,市政府在每年年初分别对三项工程进行不一样样数额的投资.21*cnjy*com2015 年年初,对线路敷设、乔迁部署的投资分别是协助配套投资的 2 倍、4 倍.随后两年,线路敷设投资每年都增添 b 亿元,估计线路敷设三年总投资为54 亿元时会顺利按期竣工;乔迁部署投资从2016 年初开始遂年按同一百分数递减,依此规律,在2017 年年初只需投资 5 亿元,即可顺利按期竣工;协助配套工程在2016 年年初的投资在前一年基础上的增添率是线路敷设2016 年投资增添率的1.5 倍, 2017 年年初的投资比该项工程前两年投资的总和还多 4 亿元,若这样,协助配套工程也能够按期竣工.经测算,这三年的线路敷设、协助配套工程的总投资资本之比达到3:2.(1)这三年用于协助配套的投资将达到多少亿元?(2)市政府 2015 年年初对三项工程的总投资是多少亿元?(3)求乔迁部署投资逐年递减的百分数.【考点】 AD:一元二次方程的应用;B7:分式方程的应用.【分析】( 1)由线路敷设三年总投资为54 亿元及这三年的线路敷设、协助配套工程的总投资资本之比达到3:2,可得答案.【根源:21cnj*y.co*m】(2)设2015 年年初,对协助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,乔迁部署的投资是 4x 亿元,依据“线路敷设三年总投资为 54 亿元、协助配套三年的总投资为 36 亿元”列方程组,解之求得 x、b 的值可得答案.( 3)由 x=5 得出 2015 年初乔迁部署的投资为20 亿元,设从 2016 年初开始,搬迁部署投资逐年递减的百分数为y,依据“2017 年年初乔迁部署的为投资 5 亿”列方程求解可得.21*cnjy*com【解答】解:( 1)三年用于协助配套的投资将达到54×=36(亿元);(2)设2015 年年初,对协助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,乔迁部署的投资是 4x 亿元,21教育网依据题意,得:,解得:,∴市政府 2015 年年初对三项工程的总投资是7x=35 亿元;(3)由 x=5 得, 2015 年初乔迁部署的投资为 20 亿元,设从 2016 年初开始,乔迁部署投资逐年递减的百分数为 y,由题意,得: 20(1﹣ y)2=5,解得: y1=0.5,y2=1.5(舍)答:乔迁部署投资逐年递减的百分数为50%.23.正方形 ABCD 的边长为 1,点 O 是 BC 边上的一个动点(与 B,C 不重合),以 O 为极点在 BC 所在直线的上方作∠ MON=90° .21教育名师原创作品( 1)当 OM 经过点 A 时,①请直接填空: ON 不能够能(可能,不能够能)过 D 点;(图 1 仅供分析)②如图 2,在 ON 上截取 OE=OA,过 E 点作 EF 垂直于直线 BC,垂足为点 F,作EH⊥CD 于 H,求证:四边形 EFCH 为正方形.(2)当 OM 可是点 A 时,设 OM 交边 AB 于 G,且 OG=1.在 ON 上存在点 P,过P 点作 PK 垂直于直线 BC,垂足为点 K ,使得 S△PKO=4S△OBG,连结 GP,求四边形PKBG 的最大面积.【考点】 LO:四边形综合题.【分析】( 1)①若 ON 过点 D 时,则在△ OAD 中不知足勾股定理,可知不能够能过 D 点;②由条件可先判业四边形EFCH 为矩形,再证明△OFE≌△ABO ,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相像三角形的性质可求得OP=2,可求得△ POG 面积为定值及△ PKO 和△ OBG 的关系,只需△ CGB 的面积有最大值时,则四边形 PKBG 的面积就最大,设 OB=a,BG=b,由勾股定理可用 b 表示出 a,则可用 a 表示出△ CBG 的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG 面积的最大值.21·世纪*教育网【解答】解:(1)①若ON 过点D,则OA >AB ,OD>CD,∴ OA2>AD 2,OD2> AD 2,∴ OA2 +OD2>2AD 2≠ AD 2,∴∠ AOD ≠90°,这与∠ MON=90°矛盾,∴ ON 不能够能过 D 点,故答案为:不能够能;②∵ EH⊥CD,EF⊥ BC,∴∠ EHC=∠ EFC=90°,且∠HCF=90°,∴四边形 EFCH 为矩形,∵∠ MON=90°,∴∠ EOF=90°﹣∠ AOB ,在正方形 ABCD 中,∠ BAO=90° ﹣∠ AOB ,∴∠ EOF=∠ BAO ,在△ OFE 和△ ABO 中∴△ OFE≌△ ABO (AAS ),∴EF=OB,OF=AB ,又OF=CF+OC=AB=BC=BO +OC=EF+OC,∴ CF=EF,∴四边形 EFCH 为正方形;(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△ PKO∽△ OBG,∵ S△PKO=4S△OBG,∴=()2=4,∴OP=2,∴S△POG= OG?OP= × 1× 2=1,设OB=a,BG=b,则 a2+b2=OG2=1,∴ b=,∴ S△OBG=ab= a==,∴当 a2时,△OBG 有最大值,此时△ PKO△ OBG,=S=4S=1∴四边形PKBG 的最大面积为 1 1 =.+ +24.已知抛物线 y=ax2+bx+c,此中 2a=b>0>c,且 a+b+c=0.(1)直接写出对于 x 的一元二次方程 ax2+bx+c=0 的一个根;(2)证明:抛物线 y=ax2+bx+c 的极点 A 在第三象限;(3)直线 y=x+m 与 x,y 轴分别订交于 B, C 两点,与抛物线 y=ax2+bx+c 订交于A ,D 两点.设抛物线 y=ax2+bx+c 的对称轴与 x 轴订交于 E.假如在对称轴左边的抛物线上存在点 F,使得△ ADF 与△ BOC 相像,而且 S△ADF= S△ADE,求此时抛物线的表达式.【考点】 HF:二次函数综合题.【分析】(1)依据 a+b+c=0,联合方程确立出方程的一个根即可;(2)表示出抛物线的对称轴,将 2a=b 代入,并联合 a+b+c=0,表示出 c,判断极点坐标即可;( 3)依据表示出的 b 与 c,求出方程的解确立出抛物线分析式,由直线y=x+m与x,y 轴交于 B,C 两点,表示出 OB=OC= | m| ,可得出三角形 BOC 为等腰直角三角形,确立出三角形三角形 ADE 面积,依据三角形 ADF 等于三角形 ADE面积的一半求出 a 的值,即可确立出抛物线分析式.【根源:21·世纪·教育·网】【解答】解:( 1)∵抛物线 y=ax2+bx+c, a+b+c=0,∴对于 x 的一元二次方程 ax2+bx+c=0 的一个根为 x=1;(2)证明:∵ 2a=b,∴对称轴 x=﹣ =﹣1,把b=2a 代入 a+b+c=0 中得: c=﹣3a,∵a>0,c<0,∴△ =b2﹣4ac>0,∴<0,则极点 A(﹣ 1,)在第三象限;( 3)由 b=2a,c=﹣ 3a,获得 x==,解得: x1=﹣3,x2=1,二次函数分析式为y=ax2+2ax﹣3a,∵直线 y=x+m 与 x, y 轴分别订交于点B,C 两点,则 OB=OC=| m| ,∴△ BOC 是以∠ BOC 为直角的等腰直角三角形,即此时直线y=x+m 与对称轴x=﹣1 的夹角∠ BAE=45°,www-2-1-cnjy-com∵点 F 在对称轴左边的抛物线上,则∠ DAF > 45°,此时△ ADF 与△ BOC 相像,极点 A 只可能对应△ BOC 的直角极点 O,即△ ADF 是以 A 为直角极点的等腰直角三角形,且对称轴为 x=﹣1,设对称轴 x=﹣ 1 与 OF 交于点 G,∵直线 y=x+m 过极点 A (﹣ 1,﹣ 4a),∴m=1﹣4a,∴直线分析式为 y=x+1﹣4a,联立得:,解得:或,这里(﹣1,﹣ 4a)为极点 A ,(﹣ 1,﹣4a)为点D 坐标,点 D 到对称轴x=﹣1 的距离为﹣1﹣(﹣ 1) =, AE=|﹣4a| =4a,∴ S△ADE =××4a=2,即它的面积为定值,这时等腰直角△ ADF 的面积为 1,∴底边 DF=2,而x=﹣ 1 是它的对称轴,此时 D、C 重合且在 y 轴上,由﹣1=0,解得: a=1,此时抛物线分析式为 y=x2+2x﹣3.2017 年 7 月 5 日。

湖北省宜昌市中考数学真题试题(含解析)(1)

湖北省宜昌市中考数学真题试题(含解析)(1)

湖北省宜昌市2017年中考数学真题试题一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有理数15-的倒数为()A. 5 B.15C.15- D.5-【答案】D 【解析】试题分析:根据倒数的定义:乘积为1的两数互为倒数,可知:﹣15的倒数为﹣5.故选:D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.考点:倒数2.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.【答案】A考点:轴对称图形3.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美 B.丽 C.宜 D.昌【答案】C【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点可知,有“爱”字一面的相对面上的字是宜.故选:C.考点:正方体相对两个面上的文字4.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器 B.直尺 C. 三角板 D.圆规【答案】D考点:数学常识5.5月18 日,新平社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实观了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【答案】A【解析】试题分析:利用精确数和近似数的区别,可知27354为准确数,4000、50000、1200都是近似数.故选:A.考点:近似数和有效数字6.九一(1)班在参加学校4100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A. 1 B.12C.13D.14【答案】D【解析】试题分析:根据概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数,可得甲跑第一棒的概率为14. 故选:D . 考点:概率公式7.下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方8.如图,在AEF ∆中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于,G H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分 EAF ∠B .AO 垂直平分EF C. GH 垂直平分EF D .GH 平分AF 【答案】C 【解析】试题分析:根据线段垂直平分线的作法可得,GH 垂直平分线段EF . 故选:C .考点:1、作图—基本作图;2、线段垂直平分线的性质9.如图,要测定被池塘隔开的,A B 两点的距离.可以在AB 外选一点C ,连接,AC BC ,并分别找出它们的中点,D E, 连接E D.现测得304024,,,则AB=()AC m BC m DE m===A.50m B.48m C.45m D.35m【答案】B考点:三角形中位线定理10.如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C. ②④ D.③④【答案】B【解析】试题分析:根据多边形的内角和定理可知:①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;因此可知①③剪开后的两个图形的内角和相等,故选:B.考点:多边形内角与外角11.如图,四边形ABCD内接Oe,AC平分BAD∠,则下列结论正确的是()A .AB AD = B .BC CD = C.»»AB AD = D .BCA DCA ∠=∠ 【答案】B考点:圆心角、弧、弦的关系12.今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品 手串 中国结 手提包 木雕笔筒 总数量(个) 200 100 80 70 销售数量(个)1901007668A .手串B .中国结 C. 手提包 D .木雕笔筒 【答案】B 【解析】试题分析:根据图表可知:手串的销售率=19019=20020<1;中国结的销售率=100100=1;手提包的销售率=7619=8020<1;木雕笔筒的销售率=6834=7035<1,比较可知销售率最高的是中国结.故选:B .考点:1、有理数大小比较;2、有理数的除法13.ABC ∆在网格中的位置如图所示(每个小正方体边长为1),AD BC ⊥于D ,下列选项中,错误..的是( )A .sin cos αα=B .tan 2C = C. sin cos ββ=D .tan 1α= 【答案】C③∵sinβ=5CD AC =,cosβ=25, ∴sinβ≠cosβ,故C 错误. 故选:C .考点:1、锐角三角函数,2、等腰直角三角形的判定和性质,3、勾股定理 14.计算()()224x y x y xy+--的结果为( )A .1B .12 C.14D .0 【答案】A【点评】本题考查了约分.. 考点:约分15.某学校要种植一块面积为1002m 的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A .B . C. D .【答案】C 【解析】试题分析:由草坪面积为100m 2,可知x 、y 存在关系y=100x,然后根据两边长均不小于5m ,可得x ≥5、y ≥5,则x ≤20, 故选 :C .考点:反比例函数的应用二、解答题 (本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.计算:31210.54⎛⎫⨯-⨯ ⎪⎝⎭【答案】3 【解析】试题分析:原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.试题解析:原式=8×34×12=3.考点:有理数的混合运算17.解不等式组122(1)43 xx x ⎧≥-⎪⎨⎪--⎩<【答案】﹣2≤x<2考点:解一元一次不等式组18.YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00-8:00 :需要租用公共自行车的人数是多少?【答案】(1)1300(2)2000【解析】试题分析:(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;考点:1、中位数;2、用样本估计总体19.“和谐号”火车从车站出发,在行驶过程中速度y (单位:/m s )与时间x (单位:s )的关系如图所示,其中线段//BC x 轴.(1)当010x ≤≤,求y 关于x 的函数解析式; (2)求C 点的坐标.【答案】(1)y=5x (2)(60,90) 【解析】试题分析:(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.试题解析:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx , 10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ; (2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,10502580a b a b +=⎧⎨+=⎩,得230a b =⎧⎨=⎩,即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30, 当x=30时,y=2×30+30=90, ∵线段BC ∥x 轴,∴点C 的坐标为(60,90). 考点:一次函数的应用20.阅读:能够成为直角三角形三条边长的三个正整数,,a b c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:()()22221,2,1.2a m n b mn c m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中0m n >>,mn 是互质的奇数. 应用,当1n =时,求有一边长为5的直角三角形的另外两条边长. 【答案】直角三角形的另外两条边长分别为12,13或3,4 【解析】试题分析:由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.考点:1、勾股数;2、勾股定理21.已知,四边形ABCD 中,E 是对角线AC 上一点,DE EC =,以AE 为直径的O e 与边CD 相切于点D .B 点在O e 上,连接OB .(1)求证:DE OE;(2)若//CD AB,求证:四边形ABCD是菱形.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴▱ABCD是菱形.考点:1、切线的性质;2、菱形的判定22.某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3: 2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【答案】(1)36(2)35亿元(3)50%【解析】试题分析:(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得. 试题解析:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(3)由x=5得,2015年初搬迁安置的投资为20亿元, 设从2016年初开始,搬迁安置投资逐年递减的百分数为y , 由题意,得:20(1﹣y )2=5, 解得:y 1=0.5,y 2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%. 考点:1、一元二次方程的应用;2、分式方程的应用23. 正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与,B C 不重合),以O 为顶点在BC 所在直线的上方作90MON ∠=︒. (1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE OA =,过E 点作EF 垂直于直线BC ,垂足为点F ,册EH CD ⊥于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且1OG =.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得4PKO OBG S S ∆∆=,连接GP ,求四边形PKBG 的最大面积.【答案】(1)①不可能②证明见解析(2)9 4试题解析:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中EOF BAO EFO BOE AO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OFE ≌△ABO (AAS ), ∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC , ∴CF=EF ,∴四边形EFCH 为正方形;设OB=a ,BG=b ,则a 2+b 2=OG 2=1, ∴b=21a -, ∴S △OBG =12ab=12a 21a -=1242a a -+=122211()24a --+,∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1, ∴四边形PKBG 的最大面积为1+1+14=94.考点:1、矩形的判定和性质,2、全等三角形的判定和性质,3、相似三角形的判定和性质,4、三角形的面积,5、二次函数的性质,6、方程思想24.已知抛物线2y ax bx c =++,其中20a b c =>>,且0a b c ++=. (1)直接写出关于x 的一元二次方程20ax bx c ++=的一个根; (2)证明:抛物线2y ax bx c =++的顶点A 在第三象限;(3)直线y x m =+与,x y 轴分别相交于,B C 两点,与抛物线2y ax bx c =++相交于,A D 两点.设抛物线2y ax bx c =++的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.【答案】(1)x=1(2)证明见解析(3)y=x 2+2x ﹣3试题解析:(1)∵抛物线y=ax 2+bx+c ,a+b+c=0, ∴关于x 的一元二次方程ax 2+bx+c=0的一个根为x=1; (2)证明:∵2a=b , ∴对称轴x=﹣2ba=﹣1, 把b=2a 代入a+b+c=0中得:c=﹣3a , ∵a >0,c <0, ∴△=b 2﹣4ac >0,∴244ac b a-<0,则顶点A (﹣1,244ac b a-)在第三象限;设对称轴x=﹣1与OF 交于点G , ∵直线y=x+m 过顶点A (﹣1,﹣4a ), ∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a , 联立得:21423y x a y ax ax a=+-⎧⎨=+-⎩,解得:14x y a =-⎧⎨=-⎩或1114x ay a a ⎧=-⎪⎪⎨⎪=-⎪⎩,这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a ﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a,AE=|﹣4a|=4a ,∴S △ADE =12×1a×4a=2,即它的面积为定值,这时等腰直角△ADF 的面积为1, ∴底边DF=2,而x=﹣1是它的对称轴,此时D 、C 重合且在y 轴上,由1a﹣1=0,解得:a=1,此时抛物线解析式为y=x2+2x﹣3.考点:1、二次函数的图象与性质,2、二次函数与一次函数的关系,3、待定系数法求函数解析式。

宜昌市2017年中考数学试题

宜昌市2017年中考数学试题

数学试题卷 第1页(共6页)机密★启用前2017年湖北省宜昌市初中毕业生学业考试数学试题本试卷共24小题,卷面满分120分,考试时间120分钟.注意事项:1.本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效.2.考试结束,请将本试题卷和答题卡一并上交.3.参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44,2(2ab ac a b --. 一、选择题 (下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置,填涂符合要求的选项前面的字母代号. 每小题3分,计45分) 1.有理数51-的倒数为(■).A .5B .51C .51-D . 5-2.如下字体的四个汉字中,是轴对称图形的是(■).3.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是(■).A .美B .丽C .宜D .昌4. 谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转. 打一数学学习用具,谜底为(■).A .量角器B .直尺C .三角板D .圆规5.5月18日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采. 据介绍,“蓝鲸1号”拥有27 354台设备,约40 000根管路,约50 000个MCC 报验点,电缆拉放长度估计1 200千米. 其中准确数是(■). A .27 354B .40 000C .50 000D .1 200昌宜丽美爱我(第3题)A.B.C.D.数学试题卷 第2页(共6页)6.九(1)班在参加学校4×100 m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为(■). A .1B .21C .31 D .41 7.下列计算正确的是(■). A .a 3+a 2=a 5B .a 3∙a 2=a 5C .(a 3)2=a 5D .a 6÷a 2= a 38.如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心, 大于12 EF 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是(■). A .AO 平分∠EAF B .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF9.如图,要测定被池塘隔开的A ,B 两点的距离,可以在AB 外选 一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接DE .现测得AC =30 m ,BC =40 m ,DE =24 m ,则AB =(■).A .50 mB .48 mC .45 mD .35 m10.如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是(■).A .①②B .①③C .②④D .③④11. 如图,四边形ABCD 内接于⊙O ,AC 平分∠BAD , 则下列结论正确的是(■). A .AB =ADB .BC =CDC .⌒AB=⌒AD D .∠BCA =∠DCA COABD(第11题)(第9题)EDBCA (第8题)(第10题)① ④③ ②数学试题卷 第3页(共6页)12.今年5月21日是全国第27个助残日, 某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动. 长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是(■).手工制品 手串 中国结 手提包 木雕笔筒 总数量(个) 200 100 80 70 销售数量(个)1901007668A .手串B .中国结C .手提包D .木雕笔筒13.△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列四个选项中,错误..的是(■). A .sin α=cos α B .tan C = 2 C .sin β=cos βD .tan α=114.计算xyy x y x 4)()(22--+的结果为(■).A .1B .21 C .41D .015.某学校要种植一块面积为100 m 2的长方形草坪,要求两边长均不小于5 m ,则草坪的一边长y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是(■).二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分)16.(6分)计算:5.0)411(23⨯-⨯.B.D.A.C.xy Oxy Oxy 205Oxy5O (第13题)数学试题卷 第4页(共6页)17.(6分)解不等式组 1,22(1)43.xx x ⎧-⎪⎨⎪-<-⎩18.(7分)YC 市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现将随机抽取的某五天在同一时段的调查数据汇成如下表格.时间第一天 7:00-8:00第二天 7:00-8:00 第三天 7:00-8:00 第四天 7:00-8:00 第五天 7:00-8:00 需要租用自行车却未租到车的人数(人) 1 5001 2001 3001 3001 200请回答下列问题:(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00-8:00需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s)与时间x (单位:s)的 关系如图所示,其中线段BC ∥x 轴.请根据图像提供的信息解答下列问题:(1)当0≤x ≤10,求y 关于x 的函数解析式; (2)求C 点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:⎪⎪⎩⎪⎪⎨⎧+==-=).(21,),(212222n m c mn b n m a 其中0>>n m ,n m ,是互质的奇数. 应用:当1=n 时,求有一边长为5的直角三角形的另外两条边长.≥ (第19题)21.(8分)已知,在四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O 与边CD相切于点D. B点在⊙O上,连接OB.(1)求证:DE=OE ;(2)若CD∥AB,求证:四边形ABCD是菱形.(第21题)22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线. 轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成. 从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍. 随后两年, 线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年年初开始逐年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.数学试题卷第5页(共6页)数学试题卷 第6页(共6页)23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON =90°. (1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析) ②如图2,在ON 上截取OE =OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过A 点时,设OM 交边AB 于G ,且OG= 1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线c bx ax y ++=2,其中0,02=++>>=c b a c b a 且. (1)直接写出关于02=++c bx ax x 的一元二次方程的一个根; (2)证明: 抛物线c bx ax y ++=2的顶点A 在第三象限;(3)直线m x y +=与y x ,轴分别相交于B ,C 两点,与抛物线c bx ax y ++=2相交于A ,D 两点.设抛物线c bx ax y ++=2的对称轴与x 轴相交于E , 如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =21S △ADE ,求此时抛物线的表达式.(第23题图1) (第23题图2) (第23题备用图)(第24题参考用图)。

2017年湖北宜昌市中考数学试题及答案定稿

2017年湖北宜昌市中考数学试题及答案定稿

根管路,约 50 000 个 MCC 报验点,电缆拉放长度估计 1 200 千米. 其中准确数是(■).
A.27 354
B.40 000
C.50 000
D.1 200
6.九(1)班在参加学校 4×100 m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺
数学试题卷 第 1页(共 6 页)
序由抽签随机决定,则甲跑第一棒的概率为(■).
A.AB=AD
B.BC=CD
C.A⌒B =A⌒D
D.∠BCA=∠DCA
(第 11 题)
数学试题卷 第 2页(共 6 页)
12.今年 5 月 21 日是全国第 27 个助残日, 某地开展“心手相连,共浴阳光”为主题的手工
制品义卖销售活动. 长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木
雕笔筒的相关销售信息汇总如下表,其中销售率最高的是(■).
A.1
B. 1 2
C. 1 3
7.下列计算正确的是(■).
D. 1 4
A.a3+a2=a5
B.a3∙a2=a5
C.(a3)2=a5
D.a6÷a2= a3
8.如图,在△AEF 中,尺规作图如下:分别以点 E,点 F 为圆心, 大于 1 EF 的长为半径作弧,两弧相交于 G,H 两点,作直线 GH, 2 交 EF 于点 O,连接 AO,则下列结论正确的是(■).
第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:
a
1 2
(m2
n2 ),
b mn,
其中 m n 0 , m, n 是互质的奇数.
c
1
(m2
n2 ).
2
应用:当 n 1时,求有一边长为 5 的直角三角形的另外两条边长.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共28页)2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣的倒数为( )15A .5B .C .D .﹣515-152.(3分)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是( )A .美B .丽C .宜D .昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为( )A .量角器B .直尺C .三角板D .圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC 报验点,电缆拉放长度估计1200千米.其中准确数是( )A .27354B .40000C .50000D .12006.(3分)九一(1)班在参加学校4×100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1B .C .D .121314第2页(共28页)7.(3分)下列计算正确的是( )A .a 3+a 2=a 5B .a 3•a 2=a 5C .(a 3)2=a 5D .a 6÷a 2=a 38.(3分)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于EF 的长为12半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF9.(3分)如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接ED .现测得AC=30m ,BC=40m ,DE=24m ,则AB=( )A .50mB .48mC .45mD .35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A .①②B .①③C .②④D .③④11.(3分)如图,四边形ABCD 内接⊙O,AC 平分∠BAD,则下列结论正确的是( )l th i n g s第3页(共28页)A .AB=ADB .BC=CDC .D .∠BCA=∠DCAAB =AD12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串中国结手提包木雕笔筒总数量(个)2001008070销售数量(个)1901007668A .手串B .中国结C .手提包D .木雕笔筒13.(3分)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D ,下列选项中,错误的是( )A .sinα=cosαB .tanC=2C .sinβ=cosβD .tanα=114.(3分)计算的结果为( )(x +y)2-(x -y)24xy A .1B .C .D .0121415.(3分)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )ar eg oo d第4页(共28页)A .B .C .D .二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣)×0.5.1417.(6分)解不等式组.{x 2≥-12(1-x)<4-3x.18.(7分)YC 市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)15001200130013001200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s )与时间x (单第5页(共28页)位:s )的关系如图所示,其中线段BC∥x 轴.(1)当0≤x≤10,求y 关于x 的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m >n >0,m ,n 是互质的奇数.{a =12(m 2-n 2)b =mnc =12(m 2+n 2).应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD 中,E 是对角线AC 上一点,DE=EC ,以AE 为直径的⊙O 与边CD 相切于点D .B 点在⊙O 上,连接OB .(1)求证:DE=OE ;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b 亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O 为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON (可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点12F,使得△ADF与△BOC相似,并且S△ADF=S△ADE,求此时抛物线的表达式.第6页(共28页)第7页(共28页)第8页(共28页)2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•宜昌)有理数﹣的倒数为( )15A .5B .C .D .﹣515-15【考点】17:倒数.【分析】根据倒数的定义,找出﹣的倒数为﹣5,此题得解.15【解答】解:根据倒数的定义可知:﹣的倒数为﹣5.15故选D .【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键. 2.(3分)(2017•宜昌)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .【考点】P3:轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A 为轴对称图形.故选:A .【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017•宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有字一面的相对面上的字是( )“爱”A.美B.丽C.宜D.昌【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017•宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为( )A.量角器B.直尺C.三角板D.圆规【考点】1O:数学常识.【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是( )第9页(共28页)第10页(共28页)A .27354B .40000C .50000D .1200【考点】1H :近似数和有效数字.【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A .【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些. 6.(3分)(2017•宜昌)九一(1)班在参加学校4×100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1B .C .D .121314【考点】X4:概率公式.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为.14故选:D .【点评】本题考查了概率公式.随机事件A 的概率P (A )=事件A 可能出现的结果数所有可能出现的结果数.7.(3分)(2017•宜昌)下列计算正确的是( )A .a 3+a 2=a 5B .a 3•a 2=a 5C .(a 3)2=a 5D .a 6÷a 2=a 3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A 、a 3+a 2=a 5.不正确;B 、a 3•a 2=a 5正确;第11页(共28页)C 、(a 3)2=a 6≠a 5,不正确;D 、a 6÷a 2=a 4≠a 3,不正确;故选:B .【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017•宜昌)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于EF的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下12列结论正确的是( )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF【考点】N2:作图—基本作图;KG :线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH 垂直平分线段EF .故选C .【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键. 9.(3分)(2017•宜昌)如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接ED .现测得AC=30m ,BC=40m ,DE=24m ,则AB=( )第12页(共28页)A .50mB .48mC .45mD .35m【考点】KX :三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m .【解答】解:∵D 是AC 的中点,E 是BC 的中点,∴DE 是△ABC 的中位线,∴DE=AB ,12∵DE=24m,∴AB=2DE=48m,故选B .【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017•宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A .①②B .①③C .②④D .③④【考点】L3:多边形内角与外角.【分析】根据多边形的内角和定理即可判断.i第13页(共28页)【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B .【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理. 11.(3分)(2017•宜昌)如图,四边形ABCD 内接⊙O,AC 平分∠BAD,则下列结论正确的是( )A .AB=ADB .BC=CDC .D .∠BCA=∠DCAAB =AD【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本选项错误;B 、∵AC 平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C 、∵∠ACB 与∠ACD 的大小关系不确定,∴与不一定相等,故本选项错误;AB AD D 、∠BCA 与∠DCA 的大小关系不确定,故本选项错误.故选B .【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017•宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )g 第14页(共28页)手工制品手串中国结手提包木雕笔筒总数量(个)2001008070销售数量(个)1901007668A .手串B .中国结C .手提包D .木雕笔筒【考点】18:有理数大小比较;1D :有理数的除法.【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率==<1;中国结的销售率==1;手提包的销售率1902001920100100==<1;木雕笔筒的销售率==<1,7680192068703435∴销售率最高的是中国结.故选B .【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017•宜昌)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D ,下列选项中,错误的是( )A .sinα=cosαB .tanC=2C .sinβ=cosβD .tanα=1【考点】T1:锐角三角函数的定义.【分析】观察图象可知,△ADB 是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=2,利用锐角三角函数一一计算即可判断.5【解答】解:观察图象可知,△ADB 是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,25∴sinα=cosα=,故①正确,22h 第15页(共28页)tanC==2,故②正确,ADCD tanα=1,故D 正确,③∵sinβ==,cosβ=,CDAC 55255∴sinβ≠cosβ,故C 错误.故选C .【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 14.(3分)(2017•宜昌)计算的结果为( )(x +y)2-(x -y)24xy A .1B .C .D .01214【考点】66:约分.【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:===1.(x +y)2-(x -y)24xy (x +y +x -y)(x +y -x +y)4xy 4xy4xy 故选:A .【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017•宜昌)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )第16页(共28页)A .B .C .D.【考点】GA :反比例函数的应用.【分析】易知x 、y 是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m 2,∴x、y 存在关系y=,100x ∵两边长均不小于5m ,∴x≥5、y≥5,则x≤20,故选 C .【点评】反比例函数确定y 的取值范围,即可求得x 的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017•宜昌)计算:23×(1﹣)×0.5.14【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.第17页(共28页)【解答】解:原式=8××=3.3412【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 17.(6分)(2017•宜昌)解不等式组.{x2≥-12(1-x)<4-3x.【考点】CB :解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,{x 2≥-1①2(1-x)<4-3x②由①得:x≥﹣2,由②得:x <2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017•宜昌)YC 市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)15001200130013001200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【考点】W4:中位数;V5:用样本估计总体.【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017•宜昌)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;点的坐标.(2)求C【考点】FH:一次函数的应用.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x≤10,y关于x的函数解析式;(2)根据函数图象可以得到当10≤x≤30时,y关于x的函数解析式,然后将x=30代入求出相应的y值,然后线段BC∥x轴,即可求得点C的坐标.【解答】解:(1)当0≤x≤10时,设y关于x的函数解析式为y=kx,第18页(共28页)第19页(共28页)10k=50,得k=5,即当0≤x≤10时,y 关于x 的函数解析式为y=5x ;(2)设当10≤x≤30时,y 关于x 的函数解析式为y=ax+b ,,得,{10a +b =5025a +b =80{a =2b =30即当10≤x≤30时,y 关于x 的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC∥x 轴,∴点C 的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017•宜昌)阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m >n >0,m ,n 是互质的奇数.{a =12(m 2-n 2)b =mnc =12(m 2+n 2).应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT :勾股数;KQ :勾股定理.【分析】由n=1,得到a=(m 2﹣1)①,b=m②,c=(m 2+1)③,根据直角三角形有一边长1212为5,列方程即可得到结论.【解答】解:当n=1,a=(m 2﹣1)①,b=m②,c=(m 2+1)③,1212∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m 2﹣1)=5,解得:m=(舍去),12±11Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m 2+1)=5,解得:m=±3,12∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017•宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;是菱形.(2)若CD∥AB,求证:四边形ABCD【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;第20页(共28页)第21页(共28页)(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC ,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D 是平行四边形,∴∠DAE=∠DOE=30°,12∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE 是解本题的关键.22.(10分)(2017•宜昌)某市总预算a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.第22页(共28页)2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b 亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD :一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x 、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);23(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据题意,得:,{2x +2x +b +2x +2b =54x +(1+1.5b2x)x +x +(1+ 1.5b2x )x +4=36解得:,{x =5b =8∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017•宜昌)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C 不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON 不可能 (可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P点作PK垂的最大面积.直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,第23页(共28页)第24页(共28页)∴OA 2+OD 2>2AD 2≠AD 2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON 不可能过D 点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH 为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD 中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE 和△ABO 中{∠EOF =∠BAO ∠EFO =∠BOE =AO∴△OFE≌△ABO(AAS ),∴EF=OB,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S △PKO =4S △OBG ,∴=()2=4,S△PKO S△OBG OPOG ∴OP=2,∴S △POG =OG•OP=×1×2=1,1212n d Al h g第25页(共28页)设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=,1-a 2∴S △OBG =ab=a==,12121-a212-a 4+a 212-(a 2-12)2+14∴当a 2=时,△OBG有最大值,此时S △PKO =4S △OBG =1,1214∴四边形PKBG 的最大面积为1+1+=.1494【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF 是解题的关键,在(2)中确定出△OBG 面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017•宜昌)已知抛物线y=ax 2+bx+c ,其中2a=b >0>c ,且a+b+c=0.(1)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y=x+m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =S △ADE ,求此时抛物线的表达式.12第26页(共28页)【考点】HF :二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b 代入,并结合a+b+c=0,表示出c ,判断顶点坐标即可;(3)根据表示出的b 与c ,求出方程的解确定出抛物线解析式,由直线y=x+m 与x ,y 轴交于B ,C 两点,表示出OB=OC=|m|,可得出三角形BOC 为等腰直角三角形,确定出三角形三角形ADE 面积,根据三角形ADF 等于三角形ADE 面积的一半求出a 的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax 2+bx+c ,a+b+c=0,∴关于x 的一元二次方程ax 2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣=﹣1,b2a 把b=2a 代入a+b+c=0中得:c=﹣3a,∵a>0,c <0,∴△=b 2﹣4ac>0,∴<0,4ac -b 24a 则顶点A (﹣1,)在第三象限;4ac -b 24a。

相关文档
最新文档