Comparison of removal efficiencies for ammonia and amine gases between woo
高速涡轮牙科手机的不良事件分析与维护工程
维修工程181①北京大学口腔医院医学装备处 北京 100081作者简介:王翌晨,女,(1994- ),硕士,助理工程师,从事医学装备维修及管理工作。
中国医学装备2021年3月第18卷第3期 China Medical Equipment 2021 March V ol.18 No.3[文章编号] 1672-8270(2021)03-0181-03 [中图分类号] R197.39 [文献标识码] BAnalysis and maintenance of adverse events of high-speed (air turbine) dental handpiece/WANG Yi-chen, WU Shu-bin, ZHANG Dong-sheng, et al//China Medical Equipment,2021,18(3):181-183.[Abstract] Studied two cases of adverse events of high-speed (air turbine) dental handpiece back cover falling off in a stomatology hospital and analysed the possible causes and proposed solutions of adverse events of high-speed (air turbine) dental handpieces by querying relevant literature and consulting relevant clinical use and maintenance personnel. Measures such as standardized high-speed (air turbine) dental handpieces repair procedures, routine maintenance, and safety inspections before and after using can effectively avoid the occurrence of adverse events, thereby reducing potential safety hazards.[Key words] Medical device; Adverse event; High-speed (air turbine) dental handpiece; Handpiece back cover; Maintenance engineering[First-author’s address] Department of Medical Equipment, Peking University Hospital of Stomatology, Beijing 100081, China.[摘要] 分析两例高速涡轮牙科手机后盖脱落不良事件,通过相关文献资料查询及调研相关临床使用和维修人员,分析可能造成高速涡轮牙科手机后盖脱落不良事件的原因,并制定维护工程解决方案。
亚氯酸钠溶液同时脱硫脱硝的热力学研究(1)
Thermodynamical Studies on Simultaneous Desulfurization and Denitrification by NaClO2 Solution
ZHAO, Yi* LIU, Feng ZHAO, Yin GUO, Tian-Xiang
(School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003)
摘要 在自行设计的小型鼓泡反应器中, 以亚氯酸钠溶液作为吸收剂, 进行了模拟烟气同时脱硫脱硝实验研究, 得到 反应的最佳实验条件以及在此条件下同时脱硫脱硝效率. 分析了反应产物, 推导出了亚氯酸钠溶液与硫氧化物、氮氧 化物的反应历程以及总化学反应方程式. 利用热力学原理计算出亚氯酸钠溶液同时脱硫脱硝的摩尔反应吉布斯函数、 摩尔反应焓变、化学反应平衡常数以及化学反应达到平衡时 SO2 和 NO 的分压力. 结果表明: 亚氯酸钠溶液同时脱硫 脱硝是可行的, 且可以几乎 100%的脱除烟气中的 SO2 和 NO. 关键词 亚氯酸钠; 氧化吸收; 脱硫脱硝; 热力学
亚氯酸钠溶液用于脱硫及脱硝的研究始于 20 世纪
70 年代. 在反应温度为 25 ℃条件下, Teramoto 等[1]在半 间歇搅拌釜中进行了 NaClO2/NaOH 溶液吸收 NO 的动 力学研究; Sada 等[2~4]利用平板式气液界面的搅拌釜详 细研究了 NaClO2 溶液浓度、pH 及气相中 NO 浓度对反 应速率的影响; Hsu 等[5]在温度为 30 ℃时, 实验研究了 NaClO2 溶液吸收低浓度 NO 的动力学过程, 得到 NO 和 NaClO2 的反应级数分别为 2 和 1, 反应速率常数为 6.55×108 (L•mol-1)2•s-1. NO 的氧化和脱除效率分别达
育种模拟的原理和遗传模拟工具QuLine
第四届“QTL作图和育种模拟研讨会”,2009年8月18-20日,山东泰安育种模拟的原理和遗传模拟工具QuLineCIMMYT’s headquarter in MexicoDr. Borlaug and green revolution ¾¾¾¾¾¾¾Mexico CityEl BatanToluca, 19º N, 2640 masl.High rainfall (800-900 mm)Cd. Obregon, 27º N, 39 masl. 8-11 t/ha under irrigation; 1-2t/ha under reduced irrigationCIMMYT’s Shuttle breedingMay to NovemberBreeding methods with self-pollinated cropsBreeding methods in CIMMYT’s wheat breeding program¾¾¾About 40% ofafter F7About 30% of the crosses are discarded in F1About 20% ofof yield trialsWhy do we need tools in breeding?¾¾¾••••Why do we need tools in breeding?¾¾Questions that can be studied by QuLine: A genetic and breeding simulation tool 1.2.3.4.Questions that can be studied by QuLine (mainly for inbred line development) 5.6.QuLine: A simulation tool for genetics and breeding¾QU-GENE (QUantitative GENEtics)A simulation platform for quantitative analysis of genetic models, developed byThe University of Queensland, Australia¾QuCim (funded by GRDC 2000-2004)A QU-GENE application breeding simulation module, specifically designed forCIMMYT’s wheat breeding programsSimulate most breeding programs for developing inbred linesVersion 1.1 released on July, 2003 (Workshop in Brisbane, Australia)More than 100 global requests for QuCim 1.1¾Renamed as QuLine (currently funded by GCP, H+, and Research Programs of China, i.e. 973, 863, and NSF)Landscape representation of a complex GE system (the real GE system is multi-dimensional)What can QuLine do?¾¾¾¾In genetics(implemented by the QU-GENE engine)¾¾¾¾In breeding (implemented by the QuLine module)How does QuLine work?¾•(= input for QuLine•(= input for QuLine(= input for QuLineDefine the QMP file for the selected bulk selection method: an exampleGeneral simulation parameters¾¾¾¾General simulation parameters ¾¾¾¾¾The number of models in the GE system and the number of runs for breeding strategy¾•9»¾Parameters to describe aset of breeding strategies¾¾Definition of a generation ¾¾¾Practical breeding small plot evaluation atVirtual breedingF6F7F8 (T), F8 (B)F8 (YT)F8 small plotFamilies selected14,760 3,8683,868 2,163 1,9741,974 779779An example for seed source indicator 0Bulk in F3 PYEI, F4PYEII, F5Pedigree in F4Families selected 4000 12001200 600600 100100 1000An example (LRC, Toowoomba, Australia) for seed source indicator 1Definition of each selection round¾¾Definition of each selection round ¾pedigree:bulk:Definition of each selection round¾••Definition of each selection round ¾•••9T for top, e.g. yield, tillering, grains per spike and 1000-kernel weight9B for bottom, e.g. lodging and rusts9M for middle, e.g. height and heading9R for random, for some special studies9Roundsof selectionSeedsourceindicatorGenerationtitleSeedpropagationtypeGenerationadvancemethodReplicationsPlotsizeTestlocationsEnvironmenttype10F6self pedigree175012, Toluca 40F7self bulk17011, Obregon F8(T)self bulk17012, TolucaF8(B)self bulk17013, El BatanF8(YT)self bulk110011, Obregon 10F8(SP)self bulk13011, Obregon An example of generation definitionTraitYieldLodg-ingStem rustLeaf rustStripe rustHeightTilleringHeadingGrains per spike1000 kernel weightTotalSelection mode T B B B B M T M T TF6, among 0.990.960.950.90F6, within 0.900.700.900.950.980.100.05F7, among 0.850.700.980.850.960.700.750.25F8(T), among 0.550.700.990.980.990.900.55F8(B), among 0.900.90F8(YT), among 0.400.40Traits, their selection modes andselected proportionsSteps to run QuLineBreeding strategiesGE systemPopulationInput information about the GxE system and populationsQUGENEQuLine*.fit*.var*.fre*.ham*.cro*.his*.rog*.pou *.fixMajor outputs from QuLineWhat has been done using QuLine?¾Crop Science(2003)¾Crop Science(2004)¾Aust. J. Agri. Sci.(2005)¾Crop Science(2007)Comparison of two breeding strategies: modified pedigree (MODPED) andselected bulk (SELBLK)Breeding methods with self-pollinated cropsBreeding methods in CIMMYT’s wheat breeding program¾¾¾methodsTrait, segregating gene number, gene effects and trait heritabilityTrait Genes Gene effecttypeAA Aa aa Trait range h b2(Indiv. plant)Yield20, 40E0, E1, E2Random value from UD (0, 1)0.05 Lodging3additive05100-300.10 Stem rust5additive00.510-50.30 Leaf rust5additive05100-500.30 Yellow rust5additive05100-500.30 Height3additive403020120-600.45 Tillers/plant 3additive53115-30.35 Heading5additive201612100-600.30 Grains/spike5additive1410670-300.35Trait correlation and pleiotropyTraitYieldLodgingStem rustLeaf rust YellowrustHeightTillers/plantHeadingGrains/spikeSeed weightYield-0.50-0.20-0.10-0.10-0.500.400.300.500.40Lodging-0.56Stem rust-0.25Leaf rust-0.05Yellow rust-0.09Height-0.62Tillers/plant-0.08-0.20-0.40Heading0.60Grains/spike 0.09-0.17-0.30Seed weight-0.07-0.30-0.07Estimated by CIMMYT breedersEstimated from the defined genetic modelExperiment design¾12 Genotype and environment (GE) systems¾Initial population¾¾Result 1: Genetic gain in yield from SELBLK is 3.3% higher than MODPED. SELBLK is slightly more efficient.For gains per spike and 1000-kernel weight, SELBLK has a faster genetic gain. For tillers/plant, MODPED has a faster genetic gain.Result 2: SELBLK retained 25% more crosses in the final selected population (more genetic diversity retained)Result 3: SELBLK required 1/3 less land from F1 to F8 than MODPED. SELBLK is more cost-effective.Result 4: SELBLK produced 40% less families (plots) to be planted from F1 to F8 (less labor required)Modeling of the Single Backcrossing Breeding Strategy(SBBS)(Theor. Appl. Genet., 2009, 118: 683-694)Category% favorablegenes Example% totalparentallinesElite adapted lines (EAL)80-85Major released cultivars in targeted mega-environments (MEs) either developed byCIMMYT or by partners10Adapted lines (AL)75-80Elite advanced lines from CIMMYT’sInternational Nursery and Yield Trials60Intermediate adapted lines (IAL)65-75Advanced lines from CIMMYT’s Yield Trialsin Ciudad Obregón and Toluca, Mexico10Un-adapted (or non-adapted) lines (UAL)20-40Land races 2Second generation of re-synthesized wheat (SYNII)40-60Derived lines between the first generation ofre-synthesized wheat derivatives andadapted lines10First generation of re-synthesized wheat (SYNI)20-40Derived lines between primary re-synthesized wheat and adapted lines5Estimated percentages of favourable alleles or gene combinations in different parental lines in wheat breeding at CIMMYTTwo traits defined in QU-GENE •––––•–––。
3种挺水植物对污水的净化效果及生理响应
3种挺水植物对污水的净化效果及生理响应孙瑞莲;刘健【摘要】为了探明宽叶香蒲(Typha latifolia L.)、茭白(Zizania latifolia Turcz.)及黄花鸢尾(Iris pseudacorus L.)在人工湿地污水处理系统中的抗逆性和适应性,采用人工模拟方法,设置4个处理,分别为:T0(15 mg·L-1COD,0.2 mg·L-1TN,0.02 mg·L-1TP)、T1(80 mg·L-1COD,15 mg·L-1TN,2 mg·L-1TP)、T2(160 mg·L-1COD,30 mg·L-1TN,4 mg·L-1TP)和T3 (320 mg·L-1COD,60 mg·L-1TN,8 mg·L-1TP),研究这3种植物对不同浓度污水的净化能力及其抗性生理特征.结果表明,宽叶香蒲、茭白及黄花鸢尾对 T1、T2、T3污水中的 COD、TN 和 TP 均有较高的净化率.同一浓度污水处理下,各植物对COD的去除效果均无显著差异,黄花鸢尾对TP的去除效果最好,茭白对TN的去除效果表现最佳.T1污水处理没有增加3种植物的丙二醛(MDA)含量,随着污水浓度的升高,T2、T3污水处理下3种植物MDA含量明显上升,表明污水浓度的增加引起3种植物体内膜脂过氧化加剧.此外,污水胁迫也导致了3种植物体内的抗氧化酶活性和脯氨酸含量的变化.茭白的超氧化物歧化酶(SOD)和宽叶香蒲的过氧化物酶(POD)可能在其自由基的清除中发挥重要作用,SOD 和过氧化氢酶(CAT)的协同作用代表了宽叶香蒲和黄花鸢尾抵抗污水胁迫的一种防御策略,黄花鸢尾体内脯氨酸的积累可能在其抵抗污水胁迫中扮演着重要角色.综上,宽叶香蒲、茭白和黄花鸢尾对不同污染负荷水体均有较高的净化效果,通过调节抗氧化酶系统和脯氨酸的合成来减少逆境胁迫引起的氧化伤害,高污染负荷水体对3种植物有胁迫作用.%In order to study the ability of hydrophytes in purifying polluted water and plant responses to oxidative stress induced by chemical oxygen demand(COD),nitrogen and phosphorus,three macrophytes species(Zizania latifolia Turcz.,Iris pseudacorus L. and Typhalatifolia L.) were treated with various concentrations of COD/TN/TP (T0:15/0.2/0.02 mg·L-1, T1: 80/15/2 mg·L-1, T2:160/30/4 mg·L-1and T3:320/60/8 mg·L-1). The results showed that vegetated microcosms were more effective at reducing concentrations of COD, total nitrogen (TN) and total phosphorus (TP) than unvegetated. There is a differential species effect on the potential to reduce TN and tifolia was most effective in terms of TN removal,while I.pseudacorus showed the highest TP removal efficiency. However, there was no significant difference between vegetated microcosms for COD removal efficiencies. The MDA levels of I.pseudacorus and tifolia were not increased exposed to sewage,which was associated with significantly higher SOD and CAT activities in plants treated withT1.POD in tifolia,SOD in tifolia and free proline in I.pseudacorus might play important roles against oxidative stress. However, treatment with high COD/N/P (T2, T3) significantly increase the MDA levels of three hydrophytes. It can be concluded that the antioxidative defense system and free proline accumulation were activated but could not resist the oxidative stress in plants exposed to high concentrations of COD/N/P (≥160/30/4 mg·L-1).【期刊名称】《生态环境学报》【年(卷),期】2018(027)005【总页数】7页(P926-932)【关键词】宽叶香蒲;茭白;黄花鸢尾;抗性生理;净化效果【作者】孙瑞莲;刘健【作者单位】山东大学环境研究院,山东济南 250100;山东大学环境研究院,山东济南 250100【正文语种】中文【中图分类】X173;X52水体污染已经成为当前环境污染治理中的重大难题,水体生态系统和水功能受到阻碍和破坏,对中国正在实施的水资源可持续利用战略造成了严重的负面影响。
人工湿地_氧化塘工艺组合对氮和磷去除效果研究
・试验研究・人工湿地-氧化塘工艺组合对氮和磷去除效果研究 摘要:、磷的去除效果,。
四种的硝化能力,NO 3关 键 词:The Performance of Several Integrated Systems of Constructed Wetland and OxidationPond for Nitrogen and Phosphorus R emovalCHEN De 2qiang 1,2,WU Zhen 2bin 2,CHEN G Shui 2ping 2,FU Gui 2ping 2,HE Feng 2(11College of Environmental Science and Engineering ,HoHai U niversity ,N anjing 210098,China ;21S tate Key L aboratory of Freshw ater Ecology and Biotechnology ,Institute of Hydrobiology ,Chinese Academy of Science ,W uhan 430072,China )Abstract :The removal efficiencies of nitrogen and phosphorus by four experimental small 2scale integrated systems of constructedwetland and oxidation pond ,consisting of horizontal 2flow wetland ,vertical wetland or oxidization pond ,were compared.The concentration of dissolved oxygen of effluent increased in the systems of both vertical wetland plus oxidation pond and horizontal 2flow wetland located in the end.The four integrated systems showed no difference for TP and IP removal.The addition of oxidation pond to constructed wetland displayed better nitrification ,but the concentration of NO -32N of effluent may increase.K ey w ords :Constructed wetland ;oxidation pond ;integrated system ;nitrogen and phosphorus ;removal efficiency 随着经济和社会的发展,人类活动的不断增加,使水体的氮、磷污染日趋严重。
溶剂气浮法分离水中的Zn离子的研究
但采用 5 mL 有 机 溶 剂 时,去 除 率 明 显 下 降。 这是由于气浮时间为 1 1,需 时 较 长,此 过 程 中 有 机溶 剂 部 分 发 生 乳 化,部 分 挥 发,导 致 有 机 溶 剂 被损 耗,在 气 浮 的 后 半 时 间 段,有 机 溶 剂 的 量 已 不能覆盖溶 液 的 表 面,同 时 还 受 到 气 流 速 率 的 影 响,有 机 层 受 扰 动 厉 害,从 而 导 致 了 去 除 率 的 下 降。 2.4 共存物质的影响
PHS3—C 酸度计(上海伟业仪器厂),CS501 型 超级恒温水浴(上 海 浦 东 荣 丰 科 学 仪 器 厂),Unico PC2100 UV/VIS 光谱仪(日本岛津)。
! 收稿日期:2006-02-10;修订日期:2006-03-31 基 金 项 目 :广 东 省 自 然 科 学 基 金(04300883)及 深 圳 市 科 技 计 划(200502)项 目 资 助 作者简介:吕玉娟(1971 - ),女,副教授
剂气浮的回收速率,计算了该过程中的气浮表观活化能为 9 . 037 kJ/moI。
关键词:溶剂气浮;Zn 离子;动力学;热力学
中图分类号:0652 . 6 文献标识码:A
文 章 编 号 :1000-0720(2006)07-050-04
溶剂 气 浮(SoIvent SubIation)是 一 种 水 中 微 量、 痕量组分分离与富集同时完成的新型气浮分离方 法。它最早是由 Sebba[1]作为 一 种 离 子 气 浮 技 术 的 改进方法而 提 出 来 的,即 水 中 具 有 表 面 活 性 的 待 气 浮 分 离 组 分( 或 外 加 表 面 活 性 剂 作 为 捕 集 剂 使 得 待 气 浮 分 离 组 分 具 有 表 面 活 性 )吸 附 在 水 中 形 成 的 微小气泡表 面,随 着 气 泡 的 上 升 而 被 带 入 气 浮 柱 的顶 部,溶 解 于 与 水 不 相 混 溶 的 有 机 溶 剂 中,或 者是悬浮 于 两 相 界 面 之 间[2]。溶 剂 气 浮 作 为 具 有 分离与富集 同 时 完 成 的 新 型 气 浮 分 离 技 术,它 比 溶剂萃取技术更有优势。在 20 世纪 80 年代,它和 其它气浮技术曾被列入美国十大化工新技术之一。 几十 年 来,溶 剂 气 浮 在 痕 量 金 属 元 素、非 金 属 元 素的分离与富集及有机污染物的去除方面作了不 少工作。溶剂 气 浮 光 度 法 是 一 种 有 效 的 分 离 富 集 及测定痕量 金 属 离 子 的 方 法,选 择 适 当 的 螯 合 剂 与待测离子形成疏水的中性螯合物或金属离子与 染料形成复杂结构的离子缔合物而具有气浮性能, 从而将溶 剂 气 浮 与 光 度 分 析 结 合 起 来。至 90 年 代,则着重于有机物去除的研究[3 ~ 。 10]
利用人工湿地处理污水的研究进展_英文_
Received date :2007-03-04B iography :Yunhui D U(1981-),Female,Mas ter,Lectarer.Her res earch interests lie in the areas of molecular biotechnology and gene engi neering.2007年5月吉林师范大学学报(自然科学版) .2第2期Journal of Jilin Normal University(Natural Science Edition)May.2007Recent Advances in Constructed Wetlands forTreatment WastewaterDU Yun Hui(Marine College,Shandong Uni versity at Weihai,Weihai 264209,China)Abstract :Constructed wetlands are efficient technologies for waste water treatment.They are low cost and are easily constructed,operated and maintained,compared to the conventional waste water treatment systems.The aim of this critical review is to introduce and compare three different types of constructed wetlands:free -floating plants,subsurface flow syste ms and hybrid systems.Further evaluations in choosing constructed wetlands as waste water systems are given.Key words :constructed wetlands;waste water treatment;free -floating plants;subsurface flow systems.CLC number :X171 Document code :A Article ID :1000-1840-(2007)02-0034-031 IntroductionSewa ge,urban runoff,industrial effluent and agri cultural farmland leachate are major forms of waste water.With the rapid growth of population,urbanization,industry and agriculture,wastewater generation is increasing.However,the conventional waste water treatment systems are not suitable in most urban centres,towns and institut ions,as their treatment efficiency is heavily compromised by overloading,breakages and or lack of spares.There fore,a ne w approach that is technologically affordable and friendly for the envir onment is very essential [1].Constructed wetlands for treatment of wastewater are a new approach to remove the pollutants from waste water,which also offers a technologically economical and envir onmentally safe alternative to wastewater recycling and re using [1].Constructed (man-made,engineered or artifi cial)wetlands are terrestrial environments that have been construc ted to utilize the natural processes including wetland vegetation,soils and wetlands flora and fauna to re move pollution from wastewater [2].Through a complexprocess of biology,chemistry and physics,the pollutants can be removed from waste water.This review aims to compare three different types of construc ted wetlands,free -floating plants,subsurface flow systems and hybrid syste ms.2 Methods 2.1 Constructed wetlands with free -floating plants Floating plants release oxygen above the water sur face,effectively restricting aerobic processes to the plant root zone near the water rge plants with the ex tensive root system such as water hyacinth and small sur face floating plants with little or no roots such as duckweed are both included in constructed wetlands with free-floating plants [4].This section will focus on constructedwetlands with water hyacinth.Generally,the ra w waste water,primary or secondary effluents,even tertiary treatment can be treated by water hyacinth syste ms [2].The process of disposing wastewatercan be achieved by the removal of suspended solids,ni trogen and phosphorus,and decomposition of organic compounds.There are two approaches to remove the sus pended solids.One is by gravity sedimentation in the plant root zone;another is the suppression of algae growth.A huge surface area for attached microorganisms can be provided by the vast root syste m of the water hya34cinth,thus increasing the potential for dec omposition of organic matter[3].Therefore,in order to improve the effi ciency of decomposition of organic matter,a relatively shallo w reactor and an appropriate low flow velocity are necessary[2].Plant uptake,ammonia volatilization and nitrifica tion denitrification are used to remove nitrogen, and removal of phosphorus may be implemented by plant uptake[4].2.2 Constructed wetlands with sub-surface flow 2.2.1 Sub-surface flow systemsSub-surface flow(SSF)wetlands are generally en gineered with a porous material such as soil,sand,or gravel for a substrate.In SSF wetlands syste ms,microbial populations grow on the surfaces of the gravel media and on the plant roots.Basically,the majority of the gravel bed is anaerobic.Except anaerobic gravel bed,however, it is likely for e mergent wetland plants to transport oxygen from the air to their roots[2].Recently,it was found that SSF systems could plant with ornamental plant,or even fresh cutting flowers other than plants like reed.It can enhance removal efficiencies of total nitrogen and phos phorus.Again,it also can improve aesthetic value and gained some income[5].There are two basic types of SSF we tlands horizontal flow(HSF)and vertical flow(VSF), according to the direction of flow[3].This section will fo cus on HSF systems.2.2.2 Horizontal flow systemsIn HSF systems,there are two approac hes to degrade organic matters.One is by aerobic bacteria attached to the roots and rhizomes of plants and media surface;another is using anoxic anaerobic bacteria.If the first approach is used for degradation,the oxygen can be attained from the air by diffusion or from the plants roots by leakage. However,anoxic and anaerobic decomposition are more popular approaches in HSF constructed wetlands,since the oxygen transport ability of the plants is inadequate. Filtration and settlement in HSF systems are used to re move the suspended solids that are not disposed in pre-treatment system.E xcept organic c ompounds and sus pended solids,in HSF constructed wetlands,the ap proaches that are used to remove nitrogen contain nitrifica tion denitrification,volatilization,adsorption,and plant uptake.Of these methods,nitrification denitrification, plays a more significant role.The removal of phosphorus is implemented by ligand exchange reactions[2].2.3 Constructed wetlands with hybrid system sHybrid systems can be implemented through combin ing various types of constructed wetlands.Ho wever,hy brid systems consisting of vertical flow(VF)systems and horizontal flow(HSF)systems are the most frequent[3].In hybrid systems,vertical flo w beds are more aero bic and have a much greater oxygen transfer capacity,so they are more proper for nitrification.However,the abili ty of the removal suspended solids is limited[3].When it comes to horizontal flo w beds,because of their limited ox ygen transfer capacity,they are only effective for second ary treatment and cannot dispose tertiary treatment.Hori zontal flow beds are good for the removal of suspended solids.At the same time,the removal of phosphorus is non-effective in both horizontal flo w beds and vertical flow beds,which needs a medium to bind the phosphorus[2].3 Results and DiscussionWater hyacinth wastewater treatment systems have been successfully applied in the tropics and subtropics. However,because the optimum growing temperature of water hyacinth ranges from20to30 [4],the systems are limited to use in temperate regions or colder areas where water hyacinth systems may only be used in summer. Again,the cost for c onstructing water hyacinth systems is enormous for the following reasons:Firstly,a huge land area should be purchased and construc ted for the systems. Secondly,water hyacinth systems require an anaerobic di gestion system,so the cost fac tor to construct,operate and maintain it should be considered.Another factor that ma y restrict the use of syste ms is that the treatment sys tems may need a long time to produce apparent effects.It is also possible to arouse pest problems.Given these rea sons,water hyacinth treatment systems may not be an ap propriate approach to treat wastewater,particularly in de veloping countries.However,if a balance can be estab lished between the effects and the disadvanta ges,water hyacinth syste ms may be an effective method.Subsurface flow systems are more efficient,c om pared to water hyacinth systems.They may produce fewer pest problems,so the risk for humans and wildlife to toxic can be reduced.The advantages of HSF syste ms are more obvious.Nitrification and denitrification,which play a significant role in the re moval of nitrogen,are possible in35HSF systems.Again,there are more approaches to de grade organic compounds in HSF systems,and they are better for settlement and suspended solids removal.HSF systems tend to have a longer life cycle,need low capital and maintenance cost,and can be constructed easily. HSF systems have been e mployed for a long time and much experience has been acquired,so they are more so phisticated types of constructed wetlands.On the other hand,because of the limited oxygen transfer ability of HSF systems,they are not satisfactory for tertiary treat ment.Another disadvantage is tha t HSF syste ms demand higher area of land.Despite these drawbacks of HSF sys tems,they are still used widely in the world,especially in Europe.The hybrid systems may have the highest treatment effect,especially for nitrogen,since both VF syste ms and HSF systems are good for the removal of nitrogen.In hy brid systems,the advanta ges and disadvanta ges of the HSF and VF systems can be c ombined to complement each other.Again,there are various types of hybrid sys tems,so it is possible to design different syste ms depend ing on which kinds of waste water requires treating.How ever,since combining various types of constructed wet lands forms hybrid syste ms,a huge area of land is essen tial and the c ost for construction,operation and mainte nance of systems are more enormous.At the same time, hybrid systems may not be effective for phosphorus remov al,o wing to the limited phosphorus re move capacity of HSF and VF systems.There has been a growing interest in hybrid syste ms over the past five years,and a little knowledge about them.Therefore,using hybrid systems ma y produce more trouble.4 C onclusionConstructed wetlands are appropriate approaches for purification of waste water,so that waste water can be recy cled and reused.Water hyacinth systems are effectively used in tropical and subtropical areas.Because of their dra wbacks,however,the research and use are limited. Hybrid systems are new and the most effective types of construc ted wetlands.Therefore,more research need to be conducted,in order to overcome their shortcomings, improve their efficiency and reduce the c pared to water hyacinth and hybrid syste ms,horizontal flo w sys tems are the best.They are suitable for different regions and have produced positive impacts.References[1]Nzengy a D.M.&B.E.L Wishi te mi,The performance of constructed wetlands for was tewater treatment:a case study of Splash wetland in Nairobi Kenya[J].Hydrological Process es,2001,15:3239~3247.[2]Cooper P.F.,Bri x H.,Green M.B.,Vymazal J.&Haberl R.,Cons tructed Wetlands for Was tewater Treatment in Europe[M].Backhuys Publisher:Leiden,1997.[3]Vymazal J.,Trans formations of Nutrients in Natural and Constructed Wetlands.[M]Backhuys Publis her:Lei den,2001.[4]Kivaisi A.K.,The potential for constructed wetlands for was tewater treatment and reuse in developing countries:a revie w.[J]Ecological Engi neering,2001,16:545~560.[5]CUI Li-hua,LUO Shi-ming,ZHU Xi-zhen&LIU Ying-hu,Treatment and utiliz ation of septic tank effluent using vertical-flow cons truc ted wetlands and vege table hydroponics[J].Journal of Environmental Sciences,2003,15,75~82.利用人工湿地处理污水的研究进展杜芸辉(山东大学威海分校海洋学院,山东威海,264209)摘 要:人工湿地污水处理系统是一项新兴的技术.该技术以自然生态为原理,使污水处理达到工程化、实用化的目的.与传统的污水处理方法相比较,人工湿地污水处理系统具有成本低廉、效率高、易建造、方便使用并对环境无伤害等优点,因此该项技术已经得到了广泛的应用.本文详细综述和评价了三种类型的人工湿地污水处理系统:漂浮植物人工湿地污水处理系统、潜流型人工湿地污水处理系统以及混杂系统.关键词:人工湿地;污水处理;漂浮植物人工湿地污水处理系统;潜流型人工湿地污水处理系统36。
aao同步脱氮除磷工艺流程可能存在的问题
aao同步脱氮除磷工艺流程可能存在的问题The problem you mentioned about the AAO synchronous denitrification and phosphorus removal process includes several potential issues.Firstly, one possible problem could be inefficient nutrient removal. The AAO process relies on the activity of microorganisms to remove nitrogen and phosphorus from wastewater. However, if the microorganisms are not properly acclimated or if their activity levels decrease, it can lead to lower removal efficiencies. This can result in a higher concentration of nitrogen and phosphorus in the effluent, which is not desirable from an environmental perspective.其一,可能会存在的问题是养分去除效率低下。
AAO工艺依赖微生物的活性来将氮和磷从废水中去除。
如果微生物未经适当适应或其活性水平降低,将导致较低的去除效率。
这将导致出流水中氮和磷的浓度较高,这在环境角度来看并不理想。
Secondly, another issue that may arise is sludge bulking. Sludge bulking refers to the excessive growth of filamentous bacteria in the treatment system, resulting in poor settling characteristics and decreased biomass retention. This can lead to reduced overall treatment efficiency and increased operational costs due to the need for more frequent sludge wasting and disposal.其二,可能出现的问题是污泥絮凝。
不同氨氮浓度对混凝_超滤组合工艺水质处理效果及膜通量的影响
1. 1 试剂与实验水样
混凝-超滤组合工艺实验的具体流程是先加 50
污染 物: 腐 殖 酸 为 上 海 试 剂 二 厂 生 产; mg / L 絮凝剂( 最佳投量,以 FeCl3 计) 混凝,混凝后的
( NH4 ) 2 SO4 为 成 都 市 科 龙 化 工 试 剂 厂 生 产; CaCl2 为成都市 科 龙 化 工 试 剂 厂 生 产。絮 凝 剂: FeCl3 · 6H2 O 为广东西陇化工厂生产。其他试剂: NaOH 为 成都市科龙化工试剂厂生产; HCl 为成都市科龙化
( m) ,根据公式( 1) 计算得到膜通量( J) :
m( g)
J= V =
( )kg
1000 m3
t·A 650( h) ·848. 23( cm2 )
= 0. 1415m( L / ( m2 ·h) )
( 1)
式中: V 为出水体积( L) ; t 为时间( h) ; A 为膜 表面积( m2) ; m 为出水质量( g) 。
实验装置如图 1 所示。实验中采用的膜装置由 量采用 TOC 分析仪( Liqui TOCII,德国 elementar 公
海南立昇公司提供的 2 组中空纤维超滤膜组件,包 司) 测总有机物含量。
括 2 个聚氯乙烯 PVC、2 个聚偏氟乙烯 PVDF 组件, 1. 4 膜的分析方法
为 实 验 室 的 小 型 膜 过 滤 装 置,有 效 过 滤 面 积 为 1. 4. 1 膜通量的计算
水不 经 过 沉 淀 直 接 进 入 UF 膜 组 件,依 靠 蠕 动 泵 ( BT100-2 J,保定兰格恒流泵有限公司) 抽吸进行过滤。
运行 PVDF、PVC 膜组件时参考 Li 等[19]的标准 方法,先压缩: 用纯水过滤组件,直至通量稳定; 再调
氨水与MEA喷雾捕集CO_2能力的比较
2010 年 6 月 Journal of Chemical Engineering of Chinese Universities June 2010文章编号:1003-9015(2010)03-0514-04氨水与MEA喷雾捕集CO2能力的比较牛振祺, 郭印诚, 林文漪(清华大学工程力学系, 北京 100084)摘要:为了研究喷雾捕集CO2技术的可行性,并比较新型吸收剂——氨水与传统吸收剂——MEA喷雾捕集CO2的能力,用微细雾化喷头将氨水与MEA溶液雾化,在喷雾塔中与模拟烟气逆向接触。
研究了不同的氨水与MEA浓度、氨水与MEA流量、气体总流量、温度对CO2脱除率的影响。
实验结果表明,喷雾捕集CO2技术可达很高的CO2脱除率(96.0%以上);CO2脱除率随着氨水、MEA浓度和流量的提高而增大,其中流量提高时MEA吸收CO2的脱除率增大幅度较大,可由36.9%增加到63.2%;随烟气流量的增大,MEA和氨水吸收CO2的脱除率分别下降16.5%和17.3%。
在可比条件下,与相同浓度的MEA溶液相比,氨水脱除CO2的能力较强。
关键词:CO2;喷雾;吸收;氨水;一乙醇胺(MEA)中图分类号:X 701.7;TQ028.14 文献标识码:AComparison of Capture Efficiencies of Carbon Dioxide by Fine Spray of AqueousAmmonia and MEA SolutionNIU Zhen-qi, GUO Yin-cheng, LIN Wen-yi(Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China)Abstract: In order to investigate the feasibility of using fine spray method to capture CO2 and compare the CO2 capturing capabilities of new absorbent—aqua ammonia and conventional absorbent —MEA, experimental studies on CO2 capture were carried out in a spray scrubber, in which the fine spray of MEA and ammonia solution respectively contacted reversely with the artificial flue gas. The effects of different operation parameters, such as absorbent concentration, liquid flow rate, total gas flow rate and initial temperature, on CO2 removal efficiency were investigated. The experimental results show that using fine spray method to capture CO2 can reach a very high CO2 removal efficiency (above 96.0%), and the higher concentration and flow rate of the aqueous ammonia or MEA solution are beneficial to promote the CO2 removal efficiency. With the increase of the absorbent flow rate, the CO2 removal efficiency of using MEA can increase from 36.9% to 63.2%, this increment is higher than that of using aqueous ammonia as absorbent. On the other hand, with increasing the total gas flow rate, the CO2 removal efficiencies of using MEA solution and aqueous ammonia decrease 16.5% and 17.3%, respectively. However, under comparable conditions and with the same absorbent concentration, the CO2 removal efficiency of using aqueous ammonia is higher than that of using MEA solution.Key words: carbon dioxide; spray; absorption; aqueous ammonia; MEA1 引言碳捕获与封存技术是实现碳减排的重要途径之一[1]。
无创产前筛查技术在胎儿性染色体异常筛查中的应用
564·论著·中国医刊 2021 年 第56卷 第5期[9]白永颖, 朱波, 朱宇宁, 等. 血清α-羟基丁酸脱氢酶表达水平在卵巢癌辅助诊断中的应用[J]. 中华检验医学杂志, 2019, 42(7):529-534.[10] AKHTER M Z, SHARAWAT S K, KUMAR V, et al. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM +CD45+ phenotype[J]. Oncogene, 2018, 37(16):2089-2103.[11] 陈春莹, 刘小乐, 程丽琴, 等. 沉默间皮素基因对可溶性间皮素相关蛋白表达及对上皮性卵巢癌生长转移的影响[J]. 广东医学, 2019, 40(10):1376-1380.[12] 李霞, 孔为民, 陈娇, 等. 卵巢浆液性、黏液性腺癌的临床特点与预后对照分析[J]. 中国临床医生杂志, 2018, 46(5):610- 612.[13] CHEN J, MIRANDA G, CAI J, et al. MP78-11 oncological outcomes with neoadjuvant chemotherapy and cystectomy for male patients with ct4a urothelial bladder cancer[J]. Journal of Urology,2018, 199(4):e1041.[14] 李静, 孔为民. 卵巢黏液性癌和浆液性癌的临床病理特点及生存比较[J]. 中国临床医生杂志, 2016, 44(10):78-81.[15]柯星, 张良, 沈立松. CD4+CD25highCD127low 调节性T 细胞促进上皮性卵巢癌转移机制的初步探讨[J]. 检验医学, 2019, 34(2):110-115.[16] TAJIK P, VAN DE VRIE R, ZAFARMAND M H, et al. The FIGO stage ⅣA versus ⅣB of ovarian cancer: prognostic value and predictive value for neoadjuvant chemotherapy[J]. Int J Gynecol Cancer, 2018, 28(3):453-458.[17]张娟娟, 张春莲, 张志军, 等. 基于CD133及上皮间质转化相关因子的列线图模型对上皮性卵巢癌预后的预测价值[J]. 安徽医药, 2019, 23(8):1600-1603.(收稿日期:2020-08-13;修回日期:2021-03-04)(本文编辑:杨倩)无创产前筛查技术在胎儿性染色体异常筛查中的应用冼诗瑶,潘焯仪,王加,赵强,梁雪梅,冯穗华,黄泳华(广东省江门市中心医院 产科,广东 江门 529000)摘 要:目的 探讨无创产前筛查技术(non-invasive prenatal screening ,NIPS )在性染色数目异常筛查中的应用。
三种类型农田排水沟渠氮磷拦截效果比较
万方数据
第6期
王岩等:三种类型农f11_排水沟渠氮磷拦截效果比较
903
浓度:4.02~40.5 men.;P浓度:0.1l~1.24 medL),4 天一周期,分别于停留时间为HRT=0、6、24、48、 72h时采集水样,每个浓度重复3次。动态试验:在 水体流动条件下,选择高低两个流速采集水样,每种 流速重复3次。沟渠进水N、P浓度仿照农田排水中 的N、P浓度范围进行配制。 1.2样品采集与测定 静态试验的采样方法:在每条沟渠的前、中、后3 处分别设置水样采样点,结果取平均值。 动态试验的采样方法:在水体流动条件下,同时 在沟头和沟尾采集水样。 试验结束后对沟底和沟壁的植物进行取样并统计 生物量。 水样主要分析项目为总N、总P,取样及常规处
h时生态沟渠对
TN的去除相对于混凝土沟渠和土质沟渠的显著性概 率分别达到0.017和0.03,差异显著;对TP的去
万方数据
第6期
王岩等:三种类型农田排水沟渠氮磷拦截效果比较
905
物开始吸收N,表现为N去除率的逐渐提高;由于沟
O.8 0.7 0.6
渠中的植物数量是有限的,当植物对N的吸收吸附饱 和后,就表现为N去除率不变。③生态沟渠:对比图 中3种沟渠N去除率曲线可以看出,生态沟渠曲线可 由混凝土和土质沟渠两条曲线叠加而成,即生态沟渠 N去除率基本上是混凝土和土质沟渠去除率之和。这
2.1.1
进水浓度对3种沟渠N去除率的影响
在
态沟渠对TN的去除率一直保持最高,但随着进水 TN浓度的增加,其对TN的去除率出现降低的趋势: 混凝土沟渠除第一个浓度外,对TN的净化效果不足 生态沟渠的三分之一,是净化效果最差的沟渠;土质 沟渠的TN去除率则表现为随进水浓度的增加先升 高再降低的变化趋势。 上述结果,可能由下列原因所致:对于生态沟渠
不同剂量盐酸氨溴索辅助治疗老年人肺炎的疗效对比
不同剂量盐酸氨溴索辅助治疗老年人肺炎的疗效对比目的探讨不同剂量盐酸氨溴索辅助治疗老年人肺炎的临床疗效。
方法选取2010年1月~2013年12月我院呼吸科收治的老年肺炎患者160例,随机分为盐酸氨溴索小剂量组[3mg/(kg·d)]、盐酸氨溴索中剂量组[9mg/(kg·d)]、盐酸氨溴索大剂量组[15mg/(kg·d)]及16mg盐酸溴已新组(对照组),记录治疗后各组患者的临床症状(痰液性质、咳痰量及咳嗽程度)变化情况,以及中剂量盐酸氨溴索组与盐酸溴已新组治疗后痰液中白介素-8(IL-8)、肿瘤坏死因子α(TNF-α)及血中的C反应蛋白(CRP)水平。
结果在不同剂量组盐酸氨溴索治疗后的单项症状改善情况比较中,大剂量组的对痰液性质、咳痰量及咳嗽程度的有效率分别为97.5%、92.5%与95.0%,高于其他两组,差异具有统计学意义(P<0.05);不同剂量盐酸氨溴索组的治疗后的综合临床疗效为55.0%、72.5%及90.0%,大剂量组明显高于其他两组,差异有统计学意义(P<0.05);中剂量盐酸氨溴索组改善三项症状的有效率分别为82.5%、82.5%与77.5%,高于盐酸溴已新组,差异具有统计学意义(P<0.05);中剂量盐酸氨溴索组的痰IL-8、TNF-α及血液中的CRP水平均低于盐酸溴已新组,差异具有统计学意义(P<0.05)。
结论盐酸氨溴索在辅助治疗老年人肺炎方面临床疗效显著,且其用量与治疗效果呈正相关。
[Abstract] Objective To discuss the clinical effect of different dosages of ambroxol HCL in adjuvant treatment for pneumonia in the elderly. Methods 160 elderly patients with pneumonia in respiratory department of our hospital from January 2010 to December 2013 were chosen and randomly divided into small dosage of ambroxol HCL group [3mg/(kg·d)], medium dosage of ambroxol HCL group [9mg/(kg·d)], large dosage of ambroxol HCL group [15mg/(kg·d)] and 16mg bromhexime HCL group (control group). Changes of clinical symptoms (sputum nature, sputum volume and cough degree) of patients after treatments and levels of IL-8, TNF-α and CRP in sputum of medium dosage of ambroxol HCL group and bromhexime HCL group after treatments were recorded. Results On comparison of developments of individual symptoms of different dosages of ambroxol HCL groups after treatment, effective rates of large dosage group towards sputum nature, sputum volume and cough degree were separately 97.5%, 92.5% and 95.0% obviously higher than the other 2 groups (P<0.05); Comprehensive clinical efficiencies of different dosages of ambroxol HCL group were 55.0%, 72.5% and 90.0%, the large dosage group was obviously higher than the other 2 groups(P<0.05). Effective rates of medium dosage of ambroxol HCL group in improving 3 symptoms were separately 82.5%, 82.5% and 77.5% higher than bromhexime HCL group (P<0.05); IL-8 and TNF-α level in sputum and CRP level in blood of medium dosage of ambroxol HCL group were lower than bromhexime HCL group(P<0.05). Conclusion Ambroxol HCL has significant clinical effect in adjuvant treatment for pneumonia in the elderly and there is a positive correlation between its dosage and clinical effect.[Key words] Ambroxol HCL; Different dosages; Pneumonia in the elderly老年肺炎是指發生于60岁以上老年人的肺泡、肺间质及终末气道的炎症,临床症状多不典型,病情较重,常需进行住院治疗[1]。
钠碱双碱法工艺流程
钠碱双碱法工艺流程The sodium bicarbonate dual-alkali process is an important technology for removing sulfur dioxide from flue gas. 钠碱双碱法是从烟气中去除二氧化硫的重要技术。
It is widely used in industries such as power plants, waste incineration plants, and industrial boilers. 这种技术被广泛应用于发电厂、垃圾焚烧厂和工业锅炉等行业。
By utilizing both sodium bicarbonate and sodium carbonate as the absorbents, this process can achieve high removal efficiency of sulfur dioxide. 通过利用小苏打和重苏打作为吸收剂,这种工艺可以实现高效去除二氧化硫。
The process involves a series of chemical reactions, absorption, and regeneration steps to continuously remove sulfur dioxide from the flue gas. 这个过程涉及到一系列的化学反应、吸收和再生步骤,以持续地从烟气中去除二氧化硫。
The efficiency, operating cost, and environmental impact of the sodium bicarbonate dual-alkali process are key considerations for its application. 钠碱双碱法的效率、运营成本和环境影响是其应用的关键考虑因素。
脱硫再生塔尾气处理方法
脱硫再生塔尾气处理方法英文回答:Sulfur dioxide (SO2) is a harmful gas that is produced during the combustion of fossil fuels, particularly coal and oil. It is one of the main contributors to airpollution and can cause respiratory problems and acid rain. In order to reduce the emissions of SO2, desulfurization processes are employed in industries such as power plants and refineries.One common method of treating the flue gas from desulfurization units is through the use of a regenerative tower. The regenerative tower is a type of scrubber that uses a liquid absorbent to remove the SO2 from the gas stream. The absorbent, usually a solution of sodium hydroxide or lime, reacts with the SO2 to form a solid waste product that can be easily disposed of.The regenerative tower works by passing the flue gasthrough a series of packed beds or trays where the absorbent is sprayed or trickled down. The SO2 in the gas stream reacts with the absorbent, forming sulfite or sulfate compounds. The treated gas then exits the tower, while the spent absorbent is collected at the bottom.Once the absorbent is saturated with the SO2, it needs to be regenerated in order to continue the desulfurization process. This is done by heating the absorbent in a separate regeneration unit, which drives off the SO2 and converts it back into a gaseous form. The regenerated absorbent is then returned to the regenerative tower for further use.There are several advantages to using a regenerative tower for tail gas treatment. Firstly, it is a highly efficient method of removing SO2 from the flue gas, with removal efficiencies of up to 99%. Secondly, the tower can handle large volumes of gas, making it suitable for industrial-scale applications. Finally, the solid waste produced during the process can often be reused or sold as a byproduct, providing additional economic benefits.中文回答:脱硫再生塔是一种常用的尾气处理方法,用于减少二氧化硫(SO2)的排放。
紫外过硫酸盐高级氧化降解典型有机微污染物效能及作用机制
摘要饮用水中的有机微污染物化学结构稳定,难以被常规饮用水处理工艺有效去除,严重影响水环境质量和饮用水安全。
基于硫酸根自由基(SO4−•)的高级氧化技术对大部分污染物有很好的去除效果,紫外催化过硫酸盐(UV/PDS)可以有效的产生SO4−•,在饮用水处理领域有良好的应用前景,但是目前对于其氧化污染物的内在机制研究还不充分。
本研究围绕水体背景成分对UV/PDS氧化工艺降解莠去津(ATZ)、三氯生(TCS)和2,4,6-三氯苯甲醚(TCA)这三种典型污染物效能影响展开一系列研究,利用动力学模型研究该氧化体系中各活性成分对污染物降解贡献,对比考察UV/PDS和传统紫外催化过氧化氢工艺(UV/H2O2)去除污染物效能及其降解污染物路径的异同,最后研究ATZ的主要氧化产物产率受水体背景成分影响规律,探究高级氧化体系中二级自由基如有机自由基、碳酸根自由基(CO3−•)和活性氯自由基的性质。
UV/PDS高级氧化体系可以有效降解ATZ、TCA和TCS,其降解这三种污染物效能随PDS投加量增加而增强,而增加污染物和天然有机物(NOM)浓度会降低UV/PDS降解这几种污染物的效能。
碳酸根/重碳酸根(CO32-/HCO3-)对UV/PDS降解ATZ和TCA效率有明显的抑制作用,但是其对TCS的降解效率影响不大。
氯离子(Cl−)对UV/PDS降解ATZ和TCS效率有明显抑制作用,但是对TCA降解效率基本没有影响。
UV/PDS氧化ATZ和TCA的效率随pH增加而降低,当pH从4增加到8时,UV/PDS降解TCS效率逐渐降低,但是当pH>8时,UV/PDS降解TCS的效率又有明显的升高。
通过自由基稳态假设建立UV/PDS氧化体系降解污染物的动力学模型,结果表明该动力学模型能够很好的拟合不同PDS投加量、目标物浓度和pH条件下UV/PDS降解三种污染物的表观速率。
通过计算得到UV/PDS氧化体系中SO4−•和HO•的稳态浓度随PDS投加量增大而增加,NOM、Cl-和CO32-/HCO3-会捕获SO4−•和HO•从而导致其稳态浓度显著降低,pH增大导致磷酸根形态的变化使得水体背景成分捕获SO4−•能力增大,从而降低体系中SO4−•和HO•的稳态浓度。
英语作文-水污染防治与生态修复技术创新
英语作文-水污染防治与生态修复技术创新Water pollution has become a major environmental issue in recent years, posing a serious threat to human health and the ecosystem. In order to effectively prevent and control water pollution, as well as restore the ecological balance, innovative technologies are essential.One of the key approaches to preventing water pollution is to implement advanced wastewater treatment technologies. Traditional methods such as sedimentation, filtration, and disinfection have limitations in removing certain pollutants, such as heavy metals and organic compounds. Therefore, innovative technologies such as membrane bioreactors, advanced oxidation processes, and electrochemical treatment have been developed to achieve higher removal efficiencies for various pollutants. These advanced technologies not only improve the quality of treated wastewater but also reduce the environmental impact of discharge.In addition to wastewater treatment, the development of eco-friendly materials and techniques for pollution control is also crucial. For example, the use of natural adsorbents such as activated carbon, zeolites, and biochar can effectively remove pollutants from water bodies. Furthermore, the application of phytoremediation, which utilizes plants to absorb and accumulate pollutants, has shown great potential in restoring contaminated water and soil. These innovative approaches not only provide sustainable solutions for pollution control but also contribute to the conservation of natural resources.Moreover, the integration of smart monitoring and management systems plays a significant role in water pollution prevention and control. Real-time monitoring of water quality parameters, such as pH, dissolved oxygen, and nutrient levels, enables early detection of pollution incidents and prompt response measures. Furthermore, the use of remote sensing technology and geographic information systems allows for the assessment of water pollution sources and the identification of critical areas for targeted interventions. By leveraging the power of data and technology, decision-makers can make informed choices and implement effective measures to address water pollution issues.Furthermore, ecological restoration and habitat conservation are essential for the sustainable management of water resources. Wetland restoration, riverbank stabilization, and reforestation are effective measures to improve water quality, enhance biodiversity, and mitigate the impacts of pollution. By restoring natural ecosystems and creating green infrastructure, the resilience of aquatic environments can be strengthened, providing long-term benefits for both humans and wildlife.In conclusion, the prevention and control of water pollution, as well as the restoration of ecological balance, require continuous innovation and the application of advanced technologies. By integrating cutting-edge wastewater treatment, eco-friendly materials, smart monitoring systems, and ecological restoration practices, we can effectively combat water pollution and safeguard the health of our planet. It is imperative for stakeholders to collaborate and invest in innovative solutions to address the challenges of water pollution and ensure a sustainable future for generations to come.。
三氯化铁和硫酸亚铁除砷的比较研究
三氯化铁和硫酸亚铁除砷的比较研究蒋明磊;郭莉;杜亚光;曹龙文;杜冬云【期刊名称】《硫酸工业》【年(卷),期】2012(000)005【摘要】A comparative study of treating waste water with high-concentration arsenic (V) by FeCl3 and FeSO4 respectively is carried out. Arsenic removal efficiencies by FeC13 and FeSO4 were 99.92% and 99.97% , respectively. In case of FeCl3 , the dosage of treatment agent and amountof arsenic precipitates were less, but the residue Cl^ - in filtrate was higher than the discharge limit. So FeSO4 is more suitable for treating industrial waste water with high-concentration arsenic%分别采用三氯化铁和硫酸亚铁作为化学沉淀除砷药剂,比较研究了三氯化铁和硫酸亚铁处理高浓度模拟含砷(V)废水的工艺条件。
试验结果表明,在最佳条件下三氯化铁砷去除率为99.92%,硫酸亚铁的砷去除率为99.97%;三氯化铁的用量少且产生的含砷沉淀物也较少。
但由于三氯化铁中氯离子较高,导致滤液中氯离子严重超标,不利于废水的达标排放。
因此,硫酸亚铁更适合处理工业高浓度含砷废水。
【总页数】4页(P45-48)【作者】蒋明磊;郭莉;杜亚光;曹龙文;杜冬云【作者单位】中南民族大学环境科学与工程研究所,中南民族大学化学与材料科学学院/催化材料科学国家民委-教育部共建重点试验室,湖北武汉430074;中南民族大学环境科学与工程研究所,中南民族大学化学与材料科学学院/催化材料科学国家民委-教育部共建重点试验室,湖北武汉430074;中南民族大学环境科学与工程研究所,中南民族大学化学与材料科学学院/催化材料科学国家民委-教育部共建重点试验室,湖北武汉430074;大冶有色金属集团控股有限公司冶炼厂,湖北黄石435005;中南民族大学环境科学与工程研究所,中南民族大学化学与材料科学学院/催化材料科学国家民委-教育部共建重点试验室,湖北武汉430074【正文语种】中文【中图分类】TQ110.9【相关文献】1.三氯化铁除砷的工艺研究 [J], 叶恒朋;杜亚光;严立爽2.三氯化铁除砷和镉的机理 [J], 郭莉;赵燕鹏;杜冬云3.三氯化铁除砷(Ⅲ)机理 [J], 李娜;孙竹梅;阮福辉;杜冬云4.液态三氯化铁代替硫酸亚铁处理含砷废水的研究 [J], 鄢红艳;贺杨;胡晖5.聚合氯化铁与三氯化铁吸附电中和特征的比较研究 [J], 王红宇;陈福泰;王亚宜;栾兆坤因版权原因,仅展示原文概要,查看原文内容请购买。
answer_ronggang
I. General comments1.As a BES-III internal analysis MEMO, the authors should mention which version of the BOSS software is used in the analysis in the text.Answer: Thank you for reminding me of this. It has been added at the end of introduction section.2.Do the authors know whether the barrel and end cap of the muon counter works smoothly during the J/psi data taking and the psi(3770) data taking? If a portion of the J/psi or psi(3770) data suffer from some problems with the muon counter hardware, how did the authors deal with these data in your analysis?Answer: According to MUC experts, Some of the channels were dead in MUC during jpsi and psi(3770) data taking, but these problems with hardware have been taken into account in MC simulation. MUC performance check has been added in section 5 for further analysis. These dead channels are listed below:3.When you plot the distribution of E/p ratio for electron candidates, did you found some anomalously large value of the ratio (such as the ratio E/p>1.5 or E/p>2.0) in the data analysis and MC simulation (in your analysis MEMO dated 14 October, 2011)? If the reconstructed data samples suffer from some problems with data offline calibration and data reconstruction, the E/p ratio would be in the range greater than 1.5 GeV.Answer: Yes, we did observe some large values of electron E/P ratio. If abnormally large value of E/P ratio is caused by problems with data offline calibration and data reconstruction, we can remove this effect by setting upper limit on electron’s E/P ratio. We require that the upper limit for electron’s E/P ratio is 1.5.These two pictures show greater than 1 part of the distributions of E/P ratio in MC and data:MC data4.Have you considered the difference of the efficiencies for reconstruction of muon between the data and the Monte Carlo sample?Answer: Yes, we considered this difference. It has been added to section 6.7.4 Tracking efficiency.5.In data analysis, you used the cuts of |cos_theta|<0.93, |Vxy|<1 cmand |Vz|<10 cm, which are shown in page 5 of your analysis MEMO dated on 14 October, 2011. However, when you estimate the systematic uncertainty of muon (electron) identification, you only select the events satisfying the cuts of |cos_theta|<0.75 (0.80), |Vxy|<1 cm and |Vz|<5 cm as muon (electron) samples for muons (electrons) selection. With these cuts you may underestimate the uncertainties of muon (electron) identification, since the simulations of these particles in the Endcaps are worse than in the Barrels. If the simulations in the Endcaps are not very reliable at present, I think we should only use the events satisfying the cut of |cos_theta|<0.80 in the data analysis.Answer: Thank you, the vertex cut has been updated according to your suggestion. |cos_theta|<0.93 has been changed to <0.8.6.The systematic uncertainty of Electron identification seems to be too large. When you report the PID efficiency for electron, you should mention how you define the denominator, and how you get the numerator. Have you considered the statistical error of the data and MC?Answer: The electron identification uncertainty has been updated. Wedecided to replace psi(3770) with continuum 365 data for more pure electron sample selection, and the uncertainty now is down to 0.7%. We have added more details in Section 6.7.2 about the how to calculate the electron identification efficiency. The statistical error is mentioned in section 6.5, about 0.37%. It has been added to the table 4, summary of systematic errors.7.You’d better provide the comparisons of tracking efficiencies for electrons and muons vs. momentum and costheta.Answer: The comparison of tracking efficiencies for electrons and muons vs. momentum and costheta have been added in secton 6.7.4II.Some specific comments:a) Page 2, Introduction, the last sentence, the author should address that the BES-II upper limit on this decay branching fraction is obtained at 90% C.L. or some other.Answer: it has been updated.b) Page 3, Data samples, third paragraph, ‘…the measurements atBEPCII.’ should be ‘…the measurements at the BEPCII’. ‘TheJ/psi inclusive events’ is better than ‘The inclusive J/psievents’.Answer: It has been updated.c) Page 5, For your event selection, do you require that the charged track must hit TOF counter? In the current analysis MEMO, you did not mention this.Answer: Yes, the charged tracks are required to hit the TOF counter. It is actually included in the TOF selection which is in section 5.1 : to reject cosmic rays, the TOF difference of the two charged tracks must be less than 1.0 ns.d) Does figure 3 shows distribution of the energy of the photo satisfying the T_{TDC} cut?Answer: Yes, figure 3 shows the distribution of photon’s energy satisfying the TDC cut.e) Why you select 20 degree as the angle to distinguish the photosfrom a neutral shower or from a fake photo splitting from a charged track? Do you have some specific distribution of this angle? Please add a figure for this distribution into your analysis MEMO.Answer: The cut of 20 degree for photons was referred according to the paper “Searching for new boson A0 via psi(2S)->pi+pi-J/psi, J/psi->gam mu+mu-“ which can be found at/HyperNews/get/AUX/2011/11/02/00.13-801 2-a0draft_v8_a0draft_v8.pdf.The distribution of dang has been added to figure 6.f) Please change the order of the figure 2 and figure 3 in the text ofthe analysis MEMO.Answer: It has been updated.g) The figure 2(a) shows the distributions of the numbers of hits for muon, pion and kaon in the MUC. Where do these pure muon, pion and Kaon come from? What is the purity of the samples?Answer: These are MC samples which are mentioned in section 3 last paragraph and listed in table 1.h) Please make your figures in correct order. The figure which is mentioned in the text earlier should be assigned a smaller number of thecaption of the figure.Answer: Thanks for pointing it out. The order of figures has been corrected.i) Page 12, The authors do not clearly mention what is the theta_1 and theta_2Answer: More detailed definition of theta_1 and theta_2 have been added in section 6.4.1 in the updated memo.j) Page 17, 2% of systematic error for the tacking efficiency for electron and muon with momentum around 1.5% probably is not correct. You should use more pure electron and muon samples to measure these uncertainties.Answer: The estimation of error tacking efficiency has been updated in section 6.7.4.k) Page 18, 3.6% of systematic error of electron identification efficiency probably is not correct. You should use more pure electron sample to measure this uncertainty. As an analysis MEMO, authors should give detailed descriptions to mention how they select the pure electron and muon samples to measure these tracking and particle identification efficiencies and systematic uncertainties.Answer: The uncertainty has been updated, and more details about how to select electron samples for identification efficiency and tracking efficiency study have been added in section 6.7.2, 6.7.3 and 6.7.4.l) Page 5, 5.2, Neutral-track selection, ‘…the natural tracksshould…’ should be ‘…the natural tracks should satisfy…’Answer: it has been updated.m) Page 18, the last sentence, “…e+e to mu+mu- ..”, should be “…e+e- to mu+mu- …”.Answer: it has been updated.。
工业污染源产排污核算模型及参数量化方法
第34卷㊀第9期2021年9月环㊀境㊀科㊀学㊀研㊀究ResearchofEnvironmentalSciencesVol.34ꎬNo.9Septemberꎬ2021收稿日期:2021 ̄02 ̄03㊀㊀㊀修订日期:2021 ̄04 ̄14作者简介:白璐(1984 ̄)ꎬ女ꎬ新疆昌吉人ꎬ高级工程师ꎬ博士ꎬ主要从事产业生态学与工业污染防治研究ꎬbailu@craes.org.cn.∗责任作者ꎬ乔琦(1963 ̄)ꎬ女ꎬ甘肃兰州人ꎬ研究员ꎬ博士ꎬ博导ꎬ主要从事产业生态学㊁清洁生产与循环经济研究ꎬqiaoqi@craes.org.cn基金项目:中央级公益性科研院所基本科研业务专项(No.2020YSKY ̄012)ꎻ第二次全国污染源普查工业污染源产排污核算SupportedbyCentralPublic ̄InterestScientificInstitutionBasalResearchFundofChineseResearchAcademyofEnvironmentalSciences(No.2020YSKY ̄012)ꎻIndustrialPollutionSourcesDischargeAccountingintheSecondNationalCensusofPollutionSourcesꎬChina工业污染源产排污核算模型及参数量化方法白㊀璐1ꎬ乔㊀琦1∗ꎬ张㊀玥1ꎬ李雪迎1ꎬ刘景洋1ꎬ许㊀文1ꎬ孙园园1ꎬ21.中国环境科学研究院ꎬ国家环境保护生态工业重点实验室ꎬ北京㊀1000122.同济大学环境科学与工程学院ꎬ上海㊀200092摘要:工业污染源产排污核算方法及产排污系数是我国工业污染源产排污定量数据获取的重要工具.为进一步提升核算方法的适用性和准确性ꎬ基于工业代谢分析理论ꎬ针对我国工业污染源类型多样㊁工艺复杂㊁产排污环节多的特点ꎬ考虑当前工业生产活动中区域分工和专业化生产的现状与趋势ꎬ建立了 分类核算㊁提取共性㊁突出个性 的可拆分㊁可组合的产排污模块化核算模型.针对该模型的主要参数 产污系数㊁污染治理技术去除率㊁污染治理设施实际运行率分别提出参数量化方法.利用该模型对我国工业行业产排污核算方法及参数制定进行实践ꎬ结果表明:①41个工业行业划分为29个流程型行业和12个离散型行业.②41个大类工业行业核算参数包括940个核算环节㊁1291种主要产品㊁1575种原料㊁1521个工艺的31219个废水和废气污染物的产污系数以及101358种污染治理技术去除率.③核算参数的最终核定应经过多级检验和校核.④核算参数受工业生产技术和污染治理技术变动影响ꎬ应及时进行修订或动态更新ꎻ在参数量化方法研究方面需不断深入挖掘产污系数影响因素组合的定量分析技术并扩展其应用ꎬ同时不断完善治理设施实际运行率的表征方式.研究显示ꎬ以工业代谢分析为理论依据建立的产排污模块化核算模型及参数量化方法符合我国工业污染源代谢规律和特征ꎬ已在第二次全国污染源普查㊁排放源统计调查中全面应用.由于工业生产体系具有动态变化性ꎬ核算模型及参数也应与之同步变化.关键词:工业污染源ꎻ产排污系数ꎻ核算参数ꎻ污染治理技术去除率ꎻ污染治理设施实际运行率中图分类号:X51㊀㊀㊀㊀㊀文章编号:1001 ̄6929(2021)09 ̄2273 ̄12文献标志码:ADOI:10 13198∕j issn 1001 ̄6929 2021 04 30PollutantGenerationandDischargeAccountingModelandParametersQuantificationMethodinIndustrialSectorBAILu1ꎬQIAOQi1∗ꎬZHANGYue1ꎬLIXueying1ꎬLIUJingyang1ꎬXUWen1ꎬSUNYuanyuan1ꎬ21.StateEnvironmentalProtectionKeyLaboratoryofEco ̄IndustryꎬChineseResearchAcademyofEnvironmentalSciencesꎬBeijing100012ꎬChina2.CollegeofEnvironmentalScienceandEngineeringꎬTongjiUniversityꎬShanghai200092ꎬChinaAbstract:TheaccountingmethodandgenerationanddischargecoefficientsofindustrialpollutionsourcesareimportanttoolsfordataacquisitionofindustrialpollutionsourcesinChina.InordertofurtherimprovetheapplicabilityandaccuracyoftheaccountingmethodꎬthePollutantGenerationandDischargeModularAccountingModel(PGDMAModel)wassetupbasedontheanalysisofthetheoryofindustrialmetabolism.Themodelꎬwhichisof classifiedaccountingꎬextractingcommonnessandhighlightingindividuality andwithdifferentmodulesabletosplitandcombineꎬwasestablishedaccordingtothecharacteristicsofvarioustypesꎬcomplexprocessesandmultiplelinksofpollutantgenerationanddischargeofindustrialpollutionsourcesꎬandconsideringthecurrentsituationandtrendofregionallabordivisionandspecializedproductionintheindustrialproductionactivitiesinChina.Thequantificationmethodsofthemainparametersofthemodelꎬsuchasthepollutantgenerationcoefficientꎬtheremovalrateofpollutantend ̄of ̄pipe(EOP)treatmenttechnologyꎬandtheoperationrateoftreatmentfacilitiesꎬwereputforward.ThismodelwasusedtostudytheaccountingmethodandcoefficientsofpollutantgenerationanddischargeinChinaᶄsindustrialsector.Theresultsshowthat:(1)Amongthe41majorindustriesꎬ29areprocess ̄typeindustriesand12arediscrete ̄typeindustries.(2)Thereareatotalof940accountingunitsꎬ1ꎬ291mainproductsꎬ1ꎬ575rawmaterialsand1ꎬ521processesꎬwithaccountingparametersof31ꎬ219wastewaterandwastegaspollutantgenerationcoefficients㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第34卷and101ꎬ358removalefficienciesoftreatmenttechnologiesinthe41industries.(3)Thefinalapprovaloftheaccountingparametersshallbesubjecttomultiplelevelsofinspectionandverification.(4)Theparametersshouldbeupdatedintimeꎬastheaccountingparametersareaffectedbythechangesofindustrialproductiontechnologyandpollutioncontroltechnology.Itisnecessarytofurtherexplorethequantitativeanalysistechnologyforthecombinationofinfluencingfactorsofpollutantgenerationcoefficientꎬexpanditsapplicationsꎬandimprovethecharacterizationmethodsoftheoperationrateofthetreatmentfacilities.TheresearchshowsthatPGDMAModelandparameterquantificationmethodbasedonindustrialmetabolismanalysisconformtothemetabolicrulesandcharacteristicsofindustrialpollutionsourcesinChina.TheresultshavebeenfullyappliedinthesecondnationalpollutionsourcecensusanddischargesourcestatisticalsurveysystemofChina.Becauseofthedynamicchangeofindustrialproductionsystemꎬtheaccountingmodelandparametersshouldalsokeepupdating.Keywords:industrialpollutionsourcesꎻpollutantgeneration&dischargecoefficientsꎻaccountingparametersꎻaverageremovalrateoftreatmenttechnologyꎻactualoperationrateofterminaltreatmentfacilities㊀㊀工业污染源产排污量的获取是工业污染防治管理体系的基础性工作ꎬ对掌握我国工业污染源的数量㊁行业和地区分布情况ꎬ以及制定相关的环境管理政策有重要意义[1 ̄5].工业污染源产排污系数法是污染源产排污量获取的主要方法和重要工具.我国的工业污染源产排污系数研究工作起步于20世纪90年代ꎬ在污染源清单编制㊁环境统计及历次污染源普查和调查中发挥了重要作用[6 ̄10].1996年至今ꎬ国内先后开展过三次大规模产排污系数的制修订[11]ꎬ产排污核算方法和系数制定方法也随着对工业生产认识程度的深入而逐步改进.我国工业化发展阶段的变化[12]决定了不同时期工业生产的工艺技术水平㊁产品结构及污染治理水平的同步发展ꎬ具体表现在以下4个方面:①工业体系完整度高ꎬ与国际标准产业分类(ISICRev 4)相比ꎬ我国的国民经济行业分类不仅行业全覆盖ꎬ在制造业分类方面比ISICRev 4更为详细[13]ꎻ②工业生产链条化ꎬ区域分工和专业化生产趋势愈加明显ꎬ传统长流程工艺逐渐模块化ꎻ③技术革新快ꎬ以合成氨生产为例ꎬ由于原料㊁工艺路线的改进升级ꎬ2017年采用烟煤㊁加压气化制氨工艺生产合成氨ꎬ每吨合成氨石油类产生量比2007年下降了82 3%[14]ꎻ④随着生态环境执法及监管力度的不断加强ꎬ企业治污能力整体提升ꎬ但同一治理技术在同行业不同区域㊁不同企业间运行状态可能有所不同ꎬ同类型排污企业排放量的个体差异明显.工业代谢是工业生产中将原材料(生物质㊁燃料㊁矿物质㊁金属等)转化为产品ꎬ并产生废物的物理化学转换过程的集合[15 ̄18].开展工业代谢研究ꎬ通过识别和追踪转化过程中某一研究对象(物质或能量)的变化(代谢)ꎬ以定量反映其所在工业体系的运行机制ꎬ利用该运行机制进一步调节和优化代谢关系ꎬ以达到保护生态环境㊁实现可持续发展的目的[19 ̄24].工业生产和代谢过程异常复杂ꎬ从污染物产生到排放涉及输入㊁转化㊁治理和输出等几个基本过程.借助物质流分析等研究工具对工业污染物来源及代谢途径的定性定量分析结果显示ꎬ产排污规律因工业生产过程的不同而有较大差异[25 ̄33].排放量核算方法的建立是基于对不同生产过程产排污规律的认知并对其量化的过程ꎬ即在对工业生产及污染物的产生㊁排放路径识别的基础上开展代谢量(产生量及排放量)的定量化研究过程.从工业代谢角度看ꎬ污染物的最终排放经历了从产生到去除的过程ꎬ排放量取决于产生量与去除量2个变量.产生量一般由污染源的主要活动水平ꎬ如产品㊁工艺㊁原料㊁规模等决定.污染物的去除量则主要受治理技术去除率以及污染治理设施运行状态等双因素影响ꎬ由此建立去除量核算的 双因素法 .由于企业的生产负荷状态㊁管理水平㊁对环保的重视程度等原因导致同一种治理技术在同一行业不同企业内的处理效果㊁运行状态会有所差异.这种差异应通过对治理设施运行状态的量化以实现对企业实际污染物去除率的动态校正ꎬ从而体现企业排放量的个性化差异.该研究以工业代谢为理论基础ꎬ在深入分析我国当前工业生产特征和产排污规律的基础上ꎬ提出并构建了符合工业生产和运营实际的产排污模块化核算模型ꎬ重点针对核算单元的判定㊁产污水平影响因素组合识别㊁核算参数的量化制定ꎬ建立了工业污染源产排污核算方法ꎬ以期为排污个体在开展产排污量统计时提供一套统一的㊁标准化的核算工具奠定基础.1㊀工业污染源产排污模块化核算模型构建1 1㊀产排污模块化核算模型工业生产和污染治理既是一个有机整体ꎬ又是存在上下游物质能量代谢关系的2个相互耦合(关联)的独立过程.研究污染物产排量的核算与产排污系数制定方法时ꎬ需根据研究对象(不同行业)的代谢4722第9期白㊀璐等:工业污染源产排污核算模型及参数量化方法㊀㊀㊀特征ꎬ建立具有高度适应性的核算方法.工业污染源产排污模块化核算模型是一个分类核算模型ꎬ其通过提取生产活动的共性以及突出不同生产过程和治理过程的个性ꎬ将工业生产和治理过程中的显著性要素与污染物的产生和排放建立关联.核算模型的建立应遵循以下5个原则:①实用性原则ꎬ应满足和服务于产排污量核算的基本需求ꎻ②科学性原则ꎬ应能够反映出各类行业㊁不同生产情况污染物的产排污规律ꎻ③代表性原则ꎬ应能代表行业产污和治理的平均水平ꎻ④全面性原则ꎬ应覆盖所有工业行业以及各行业产生㊁排放污染物的所有环节ꎻ⑤可操作性原则ꎬ核算方式的表达(公式)应简洁明了ꎬ便于理解和使用.通过核算单元的筛选与产污水平影响因素及治理技术的识别ꎬ确定某一行业的影响因素组合ꎬ在此基础上建立该行业的产排污模块化核算模型(PollutantGenerationandDischargeModularAccountingModelꎬ简称 PGDMA模型 ).核算单元指生产工艺中可独立生产运行且产生排放污染物的生产工序的集合(也称为产污工段)ꎬ是工业污染源产排污量核算的最基本单元ꎬ计算公式:PG=ðni=1PWDi+ðnj=1PFDj(1)PWDi=f(xpꎬxmꎬxtꎬxsꎬxa)WDi(2)PFDj=f(xpꎬxmꎬxtꎬxsꎬxa)WDj(3)PE=PGˑkˑη(4)PD=PG-PE=PG(1-kˑη)(5)式中:PG为污染物产生量ꎬt∕kgꎻPWDi为某一行业核算单元i的产污量ꎬ是该行业核算单元i的产品㊁原料㊁工艺㊁规模和其他条件的函数ꎬt∕kgꎻPFDj为通用核算单元j(如锅炉等)的产污量ꎬ是通用核算单元j的产品㊁原料㊁工艺㊁规模和其他条件的函数ꎬkg或tꎻxp为产品ꎻxm为原料ꎻxt为工艺ꎻxs为规模ꎻxa为其他条件(如地质条件等)ꎻPE为污染物去除量ꎬkg或tꎻk为污染治理设施实际运行率ꎬ%ꎻη为污染治理技术平均去除率ꎬ%ꎻPD为污染物排放量ꎬkg或t.1 2㊀产排污模块组建方法1 2 1㊀核算单元的判定方法1 2 1 1㊀基于工业代谢的行业类型划分我国工业体系门类全㊁产品种类多ꎬ生产工艺类型多样且复杂.依据GB∕T4754 2017«国民经济行业分类»ꎬ工业行业包含41个大类㊁666个小类行业.以往按照小类行业逐一制定产排污系数的方法虽然能实现行业全覆盖ꎬ但由于部分行业产排污规律存在一致性或相似性必然造成核算体系的冗余.在研究建立产排污核算方法时ꎬ更宜关注生产活动对产排污的影响而非工艺或产品本身.为提高核算效率㊁降低系数冗余度ꎬ应对工业行业通过进一步的识别和归类ꎬ实现 提取共性㊁分类核算 .按照生产过程中加工方式的不同ꎬ该研究将工业行业依据工业生产及产排污规律的一致性或相似性划分为流程型生产和离散型生产(见图1).其中ꎬ流程型生产是通过对原材料采用物理或化学方法以批量或连续的方式进行生产的过程ꎻ离散型生产是对多个零件装配组合的加工生产过程ꎬ主要发生物料物理性质(形状㊁组合)的变化.流程型生产与离散型生产的产排污特征对比如表1所示.以物质代谢规律为视角ꎬ流程型和离散型行业的分类更适合于工业生产过程与污染物产排污规律之间的相关性分析.1 2 1 2㊀核算单元的多重筛选准则图1㊀流程型生产与离散型生产的代谢特征示意Fig.1Schematicdiagramofindustrialmetabolismcharacteristicsofprocessproductionanddiscreteproduction㊀㊀目前国内三版产排污系数按照其制定的基准年ꎬ可分为 96版 (即1996年出版的«工业污染物产生和排放系数手册»)系数㊁ 07版 (即2007年第一次全国污染源普查制定发布和使用的 一污普版 )系数和 17版 (即2017年第二次全国污染源普查制定发布和使用的 二污普版 )系数.将 96版 07版5722㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第34卷㊀㊀表1㊀流程型生产与离散型生产的产排污特征对比Table1Comparisonofcharacteristicsofpollutantsgenerationanddischargebetweenprocessproductionanddiscreteproduction项目流程型生产离散型生产代谢特征长流程ꎬ生产工序多且以物理化学反应为主短流程ꎬ生产工序少且以物理变化为主产排污环节产排污环节因行业㊁产品㊁工艺和原料不同而差异较大存在大量通用㊁共性的产排污环节(如喷涂㊁电镀等)主要工艺过程提炼㊁提纯㊁合成等改变物料形状和尺寸ꎬ包括车㊁钳㊁铣㊁刨㊁磨㊁铸造㊁锻压㊁焊接㊁吹塑等过程ꎻ提高物料物理性能ꎬ包括热处理㊁电镀㊁涂装(喷涂)等表面处理过程污染物污染物种类相对较多ꎬ废水和废气污染物偏多涉及的污染物种类相对较少ꎬ固体废物偏多代表性行业化工㊁有色金属行业机械加工㊁电子产品制造行业17版 系数进行比较发现ꎬ目前我国工业生产活动逐渐体现出区域分工和专业化生产的趋势ꎬ细化的㊁符合企业实际生产情况的核算需求日益凸显[11].以往多数行业在系数制定时对影响因素中 工艺 的识别筛选仅考虑典型的全流程工艺ꎬ但实际上存在部分工序由独立生产运行的企业完成的情况[34 ̄35].因此ꎬ建立符合专业化分工背景下的模块化核算方法ꎬ是产排污核算方法优化的重要方向.PGDMA模型可以满足不同核算单元按照实际生产状况 可组合㊁可拆分 的核算需求.该研究通过综合评估我国工业生产活动中区域分工和专业化生产的现状与趋势ꎬ根据流程型和离散型生产代谢特点ꎬ分别建立了多准则核算单元筛选方法.其中ꎬ流程型行业核算单元的判定旨在符合产品生产过程与企业运营状态的一致性ꎬ离散型核算单元的判定旨在提取共性产污环节ꎬ以满足不同产品相似生产过程的核算需求.流程型生产核算单元判定准则:①可测量准则.核算单元需具备污染物采样和测量的条件.②现实性准则.核算单元须涵盖现实中运营的企业或企业内部独立运行的车间.对于没有污染物产生的工艺过程ꎬ无需作为核算单元.理论上ꎬ核算单元数ɤ工艺过程数.③适度性准则.减少冗余度ꎬ避免核算单元拆分过细导致参数获取难度增加ꎬ保障核算单元的完整性.当不同工艺过程之间具有水循环㊁能量梯级利用等关联代谢关系时不可拆分.流程型生产过程核算单元判定如图2所示.图2㊀流程型行业核算单元判定示意Fig.2Schematicdiagramofseparationofaccountingunitforprocessindustry㊀㊀离散型生产核算单元提取准则:①目的性准则.基于污染物产生量核算对核算单元进行提取ꎬ重点关注产污量或环境影响较大的工艺ꎬ如表面处理㊁涂装㊁焊接㊁注塑等.②完整性准则.提取后的核算单元应能覆盖生产该产品所需的所有产生污染物的工艺过程.③通用性准则.所提取的核算单元在同行业不同产品产排污特征及产排污量方面应具有相似性或一致性ꎬ满足通用核算需求.1 2 2㊀影响因素组合的识别与确定影响因素组合指某一核算单元内对污染物产生与排放有显著性影响的因素(如产品㊁原材料㊁生产工艺㊁生产规模㊁治理技术等)的组合.通过影响因素组合ꎬ能反映一个独立核算单元中主要的产污环节㊁产品㊁工艺㊁原料和治理技术等基本信息.同一组合6722第9期白㊀璐等:工业污染源产排污核算模型及参数量化方法㊀㊀㊀中不同企业相同核算单元的产污强度接近ꎬ排放强度则根据企业治理设施的实际运行状况有所不同.最终确立的某一行业影响因素组合是在对行业生产活动及产排污现状充分了解的基础上ꎬ基于统计学理论并综合权衡技术与经济可行性的结果.1 2 2 1㊀产污水平影响因素一般情况下生产过程中污染物产生量是产品㊁工艺㊁原料㊁规模等因素的函数 见式(2)(3) .对于任意2个企业中相同的核算单元ꎬ只要其产污影响因素组合相同ꎬ就可以认为这2个企业相同核算单元产生的污染物量大致相同ꎬ可将它们视为同一核算单元进行分析.1 2 2 2㊀基于多元统计分析的产污影响因素组合量化确定对污染物产生的影响因素识别是工业污染源产排污核算体系确立的核心内容ꎬ也是核算参数量化研究中的重点和难点.在 07版 系数制造时除个别行业采用物料衡算法计算产污系数(如火电行业的二氧化硫和颗粒物的产污系数)外ꎬ其他行业的影响因素组合识别多以定性判断为主ꎬ即由对该行业产排污情况掌握和熟悉的专业技术人员根据经验判断划分组合ꎬ再咨询相关行业及环保专家确定.受基础数据等条件限制ꎬ 17版 系数仍沿用了 07版 系数的定性判断方式ꎬ但对其进行了改进:一方面通过开展 07版 系数影响因素组合的适用性评估ꎬ为 17版 系数组合的确定提供借鉴ꎻ另一方面ꎬ开发了基于多元统计分析的产污系数影响因素组合定量识别技术ꎬ并在部分数据积累较好的行业开展了探索性应用.在核定㊁量化产污系数时ꎬ通过回归分析建立污染物产生量与某些关键影响因素的相关性及敏感性分析ꎬ确立影响因素组合.基于此ꎬ运用改良后的方差分析法(阈值逼近法)和决策树方法建立了工业行业产污水平影响因素组合判定方法ꎬ并在制糖行业(行业代码134)及非专业视听设备制造业(行业代码395)开展了应用.1 3㊀PGDMA模型核算参数量化方法根据式(1)可知ꎬ相比传统核算方法ꎬPGDMA模型沿用了采用产污系数计算产生量的核算方式ꎬ而与治理技术和治理水平变化密切相关的排污系数则改用污染治理技术平均去除率和污染治理设施实际运行率双因素表征.由于系数法的构成较之前发生了变化(不再有排污系数)ꎬ因此该研究中的核算参数包括产污系数㊁污染治理技术去除率㊁污染治理设施实际运行率等.核算参数的制定既需要遵循不同工业行业污染物产生和排放规律ꎬ又要实现各行业系数表达与核算体系的统一ꎬ因此建立明确的流程和方法十分必要.核算参数的量化流程包括:①依据行业分类结果(流程型∕离散型)ꎬ在对行业发展现状及产排污现状充分了解和掌握的基础上ꎬ基于多重准则方法筛选主要核算单元(产污工段)ꎬ识别确定产污系数主要影响因素以及主要的治理技术ꎬ初步建立核算模型框架.②针对不同行业的生产特征和属性ꎬ依据行业内企业数量㊁产排污现状信息等ꎬ运用数理统计方法合理确定不同调查组合的样本量并开展调研实测ꎬ获取样本数据.③进行数据处理ꎬ分别得到个体产污系数及行业平均产污系数㊁治理技术平均去除率ꎬ研究确定污染治理设施实际运行率的核定公式.④开展核算参数的验证ꎬ依据验证结果进一步校核修订ꎬ最终确定参数数值.1 3 1㊀产污系数量化产污系数是指在一定的技术经济和管理等条件下生产单位产品(或使用单位原料)所产生的污染物量.产污系数量化是将核算单元内某污染物产生量通过单位产品或原料进行表达的过程.通过对某行业㊁某影响因素组合条件下不同样本企业核算单元个体产污系数的处理(加权平均或统计中位数)ꎬ得到该影响因素组合条件下的平均产污系数.个体产污系数(Rβ)和平均产污系数(RG)之间的关系如图3所示.1 3 1 1㊀个体产污系数通过对某一组合条件下某样本企业核算单元不同来源㊁不同批次样本数据的处理(加权平均或算数平均)ꎬ得到该组合条件下样本企业的个体产污系数.个体产污系数的计算公式:Rβ=ðye=1Weˑ(Ge∕Me)(6)式中:Ge为某一批次采集(或调查)时间内样本污染物的产生量ꎻMe为某一批次样本采集时间内产品的总量(或原料总量)ꎬ单位一般为长度㊁质量㊁体积㊁面积单位等ꎻWe为不同批次样本产污系数的权重ꎬ若不同批次样本数据来源不同(实测数㊁历史实测数㊁模拟数据)ꎬ则权重可由不同来源数据的原始样本数目比例㊁数据差异性和质量保证等确定ꎬ各批次权重之和为1ꎻy为总样本数.1 3 1 2㊀平均产污系数某一影响因素组合条件下ꎬ平均产污系数的建议表达式见式(7)~(9).7722㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第34卷图3㊀个体产污系数与平均产污系数的关系Fig.3Schematicdiagramofrelationshipbetweenindividualpollutiongenerationcoefficientandaveragepollutiongenerationcoefficient加权平均法计算公式:RG=ðfp=1WpˑRβ(7)式中:Wp为不同样本企业个体产污系数的权重ꎬ一般根据样本企业的代表性确定ꎬ权重之和为1ꎻf为总样本数.中位数法计算公式:RG=Rβ+12()ꎬβ为奇数12Rβ2()+Rβ+12()[]ꎬβ为偶数ìîíïïïï(8)㊀㊀函数法计算公式:RG=f(x1ꎬx2ꎬ .xl)㊀lȡ1(9)式中ꎬxl为与污染物产生量存在函数关系的相关参数.1 3 2㊀治理技术平均去除率量化在某影响因素组合条件下ꎬ对某一污染治理技术的样本企业内不同批次的污染物去除率数据进行加权平均或算术平均ꎬ得到该污染治理技术的个体污染去除率.个体去除率指单个样本企业某一污染物在治理设施处理前㊁后的质量差值与处理前质量的比值ꎬ以百分数表示ꎬ计算公式:ηβ=ηcˑQSˑCS-QEˑCEQSˑCSˑ100%(10)式中:ηβ为个体去除率ꎬ%ꎻQS㊁QE为治理设施进㊁出口废水流量或标准状态下气体流量ꎬm3∕d或L∕min等ꎻCS㊁CE为治理设施进㊁出口污染物浓度ꎬmg∕m3ꎻηc为无组织排放污染物(如无组织排放的颗粒物或挥发性有机物)治理设施对该污染物的收集效率ꎬ%.1 3 3㊀治理设施实际运行率表征污染治理设施实际运行率(k)是表征在相同产污水平条件下ꎬ采用相同污染治理技术和设施的不同企业污染物去除效果不同的参数.通过明确污染治理设施的实际运行率ꎬ有利于提升企业实际污染排放量统计时的准确性.k值反映的是污染治理设施运行的状态ꎬ运行越稳定㊁运行时间越长ꎬ值越高.在k取值上ꎬ如果连续稳定运行的理想状态定义为1ꎬ则非连续稳定运行的状态在0~1之间.实际运行率一般并不能直接测量ꎬ而是通过能够反映治理设施运行状态的参数计算得出.例如ꎬ将环保设施运行时长与对应产污工段生产时长进行对比 见式(11) ꎬ或通过对治理设施运行期间的耗电量进行核定 见式(12) 等.k=sd∕ssd(11)k=Dt∕(GrˑTr)(12)式中:sd为环保设施运行时长ꎬh∕aꎻssd为对应产污工段生产的时长ꎬh∕aꎻDt为治理设施耗电量ꎬkW hꎻGr为治理设施额定功率ꎬkWꎻTr为治理设施运行时间ꎬh.2㊀结果与讨论2 1㊀产排污模块组建结果2 1 1㊀行业类型划分根据离散型及流程型生产的定义及代谢特点ꎬGB∕T4754 2017的41个大类行业中有29个属于流程型行业ꎬ12个属于离散型行业(见图4).实际生产中ꎬ流程型行业中也有部分离散型生产过程ꎬ如医药制造业中的药剂分装环节ꎻ离散型行业中也存在流程型工艺ꎬ如表面处理工艺等.在行业分类时以行业的主导代谢类型划分ꎬ即以离散型生产为主的行业划分为离散型行业ꎬ以流程型生产为主的行业划分为流程型行业.2 1 2㊀核算单元判定与冗余度分析根据该研究提出的流程型和离散型行业核算单8722第9期白㊀璐等:工业污染源产排污核算模型及参数量化方法㊀㊀㊀元的识别和筛选准则ꎬ41个行业产排污核算单元制定结果如图4所示.由图4可见ꎬ流程型行业核算单元数量远多于离散型行业.一方面ꎬ因为流程型行业产品类型多㊁工艺流程长.例如ꎬ核算单元最多的2个行业代码分别为26(化学原料和化学制品制造)和25(石油加工㊁炼焦和核燃料加工)ꎬ前者包含了有机化工产品和无机化工产品生产ꎬ企业规模多样㊁生产方式多样㊁原料众多且难以统计ꎬ生产工艺因产品不同而变化ꎬ而后者生产流程长㊁下游产品发散.另一方面ꎬ按专业化分工生产的现状ꎬ传统长流程工艺实现了模块化核算ꎬ以水泥行业为例ꎬ按照流程型行业拆分准则ꎬ根据我国水泥生产现状ꎬ全流程水泥工艺可拆分为熟料生产环节㊁水泥生产环节㊁粉磨站环节ꎬ符合当前水泥行业粉磨站独立运营的现状.注:06代表煤炭开采与洗选业ꎻ07代表石油和天然气开采业ꎻ08代表黑色金属矿采选业ꎻ09代表有色金属矿采选业ꎻ10代表非金属矿采选业ꎻ11代表开采专业及辅助性活动ꎻ12代表其他采矿业ꎻ13代表农副食品加工业ꎻ14代表食品制造业ꎻ15代表酒㊁饮料和精制茶制造业ꎻ16代表烟草制品业ꎻ17代表纺织业ꎻ18代表纺织服装㊁服饰业ꎻ19代表皮革㊁毛皮㊁羽毛及其制品和制鞋业ꎻ20代表木材加工和木㊁竹㊁藤㊁棕㊁草制品业ꎻ21代表家具制造业ꎻ22代表造纸和纸制品业ꎻ23代表印刷和记录媒介复制业ꎻ24代表文教㊁工美㊁体育和娱乐用品制造业ꎻ25代表石油加工㊁炼焦和核燃料加工业ꎻ26代表化学原料和化学制品制造业ꎻ27代表医药制造业ꎻ28代表化学纤维制造业ꎻ29代表橡胶和塑料制品业ꎻ30代表非金属矿物制品业ꎻ31代表黑色金属冶炼和压延加工业ꎻ32代表有色金属冶炼和压延加工业ꎻ33代表金属制品业ꎻ34代表通用设备制造业ꎻ35代表专用设备制造业ꎻ36代表汽车制造业ꎻ37代表铁路㊁船舶㊁航空航天和其他运输设备制造业ꎻ38代表电气机械和器材制造业ꎻ39代表计算机㊁通信和其他电子设备制造业ꎻ40代表仪器仪表制造业ꎻ41代表其他制造业ꎻ42代表废弃资源综合利用业ꎻ43代表金属制品㊁机械和设备修理业ꎻ44代表电力㊁热力生产和供应业ꎻ45代表燃气生产和供应业ꎻ46代表水生产和供应业.下同.图4㊀工业行业核算单元数量判定结果Fig.4Theresultsoftheaccountingunitsinvariousindustries㊀㊀在 17版 系数之前ꎬ产排污系数制定一般按照«国民经济行业分类»标准分行业开展.而基于行业代谢特征分类的模块化产排污核算系数体系的建立ꎬ不仅增强了系数的适用性ꎬ更提升了系数的覆盖度ꎬ特别是对于产品规格不一㊁功能不同且升级换代相对频繁的离散型行业而言ꎬ不仅可实现各种产品生产过程产污量的核算ꎬ也便于产污系数的动态更新和调整.以机械加工类行业(行业代码为33~37)为例ꎬ根据该行业生产加工的特点和主要产排污特征ꎬ共筛选提取了17个产污环节ꎬ包括铸造㊁锻造㊁粉末冶金㊁下料㊁冲压㊁预处理㊁机械加工㊁树脂纤维加工㊁焊接㊁粘接㊁转化膜处理㊁热处理㊁装配㊁涂装㊁检验测试㊁热浸锌㊁表面处理.以离散型行业音响设备制造和影视录放设备制造为例ꎬ 17版 系数所提取的6个共性产污工段覆盖了该行业的全部产污环节ꎬ比 07版 系数的核算单元减少了57 14%ꎬ大幅减少了产污系数的冗余.该研究结果在第二次全国污染源普查工业企业产排污量核算中的应用表明ꎬ产污环节划分符合行业特点ꎬ适用于我国现阶段工业企业实际生产情况.2 1 3㊀影响因素组合识别影响不同行业产污水平的因素不同ꎬ需区分对待.表2列举了部分行业产污水平的主要影响因素.对于流程型行业(如采矿业)ꎬ其产污系数与自然条件关系密切ꎬ如煤炭开采行业不同矿区矿井水的产排量差别较大ꎬ产污系数核算需将区域作为分类主要因素[36]ꎻ石油开采业中不同油田含水率对水污染物的产排量影响较大ꎬ产污系数核算时需考虑油田含水率9722。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
148Journal of Health Science, 50(2)148–153 (2004)INTRODUCTIONAir pollutants such as malodorous and volatile organic compounds cause various health disorders.Ammonia (NH 3) and trimethylamine [(CH 3)3 N] are emitted from industrial facilities such as carcass-pro-cessing plants, and sewage-treatment plants.1) They are major chemicals of malodorous components like H 2S, CH 3SH and (CH 3)2S. They have pungent, urin-ous odor, followed by the irritation of the eyes and respiratory tract and nausea. With increasing con-cern for public health and environmental quality,more stringent regulations have come into effect on the acceptable levels of these compounds.A number of studies related to the removal of NH 3 and (CH 3)3N by adsorbents have been con-ducted using zeolite and silicate,2,3) activated car-bon,1,4) activated carbon fiber,5) and charcoal.6,7) Re-moval efficiencies over various temperature ranges would be important for practical use, however, most experiments have been designed to at room tempera-ture (ca . 20°C).Activated carbon is known to have a heteroge-neous physical and chemical structure. It is charac-terized by the existence of micro, meso, macro pores of different sizes, while its surface indicates non-polar and hydrophobic characteristics. The activated carbon has a high adsorption performance for vola-tile organic carbon (VOC), while it is poor for polar chemicals (e.g., NH 3 and H 2S) with a high adsorp-tion potential.7,8) Woody charcoal is used partly as an adsorbent, and its specific surface area is smaller than that of activated carbon.9) Many investigators have found that charcoal changes structurally and chemically as a result of manufacturing tempera-tures.7,10) Asada et al .7) have clarified that the bam-boo charcoal carbonized at 500°C possess as a higher absorbability for NH 3 gas than those at 700°C and 1000°C. These implies that the acidic functional groups on the woody charcoal surface are forming with increasing carbonized temperature, and in con-sequence the ammonia adsorption effect of the bam-boo charcoal at 500°C is higher than that of 700°CComparison of Removal Efficiencies for Ammonia and Amine Gases between Woody Charcoal and Activated CarbonTsutomu Iyobe,*, a Takashi Asada,b Kuniaki Kawata,a and Kikuo Oikawa aaDepartment of Environmental and Safety Sciences, Niigata University of Pharmacy and Applied Life Science, Faculty of Applied Life Sciences, Higashijima 265–1, Niitsu, Niigata 956–0841, Japan and b Nagaoka University of Technology, Kamitoioka-cho 1603–1,Nagaoka, Niigata 940–2188, Japan(Received November 10, 2003;Accepted January 8, 2004;Published online January 14, 2004)The removal efficiency of NH 3, (CH 3)NH 2, (CH 3)2NH and (CH 3)3N into woody charcoal carbonized at 500°C and activated carbon was determined by the attenuation of their concentrations in the 5l bags at cool (5°C) and room temperature (20°C). A discussion follows on the deodorization performance against four gases with attention to the physical and chemical characteristics of adsorbent surfaces. It was found that the high acidity of woody charcoal surface was more suitable for the adsorption of NH 3 and (CH 3)NH 2 gases than the activated carbon under both temperatures, and the activated carbon having larger micro, meso pore volumes following an increase in specific surface area showed higher capacity for (CH 3)3N gas adsorption than the woody charcoal. Also the activated carbon is more suitable for (CH 3)2NH gas adsorption than the woody charcoal at 5°C, but its removal efficiency using the activated carbon is lower than the woody charcoal at 20°C. Much acidic functional groups on the adsorbent has high adsorption potential just like chemical adsorption is necessary to enhancement of (CH 3)2NH gas at 20°C.Key words —–— removal efficiency, ammonia, amine gases, woody charcoal, activated carbon*To whom correspondence should be addressed: Department of Environmental and Safety Sciences, Niigata University of Phar-macy and Applied Life Science, Faculty of Applied Life Sci-ences, Higashijima 265–1, Niitsu, Niigata 956–0841, Japan. Tel.:+81-250-25-5163; Fax: +81-250-25-5161; E-mail: iyotsuto@149 No. 2(or 1000°C).Similarly to NH3, methylamine [(CH3)NH2],dimethylamine [(CH3)2NH], and trimethylamine(CH3)3N are also major alkaline and malodorousgases. Abe et al.6) pointed out that (CH3)3N gas ad-sorption is suitable for the adsorbent with well de-veloped pore structure, a larger specific area and pore volume, rather than an acidic or a basic group on the adsorbent surface. We assume that activated carbonis a suitable adsorbent for (CH3)3N gas adsorptionbecause of including a large specific area and pore volume. However, the adsorption process of amine gases has not yet been fully investigated, especiallyfor (CH3)NH2and (CH3)2NH.In general, an equalization amount of molecular adsorption becomes large at low temperature because of occurring adsorption exothermic of the molecule on the adsorbent surface. On the other hand, physi-cal adsorption of the adsorbate is kept by weak po-tential due to ‘van der Waals attraction’ that gives high heat energy to the molecule may break off the weak adsorption potential. Therefore, the removal efficiency of the amine gases on the adsorbent might be different between low and high temperature, re-spectively.In this paper, we attempted to clarify the removal efficiencies for major alkaline gases, like NH3,(CH3)NH2, (CH3)2NH and (CH3)3N, on the activatedcarbon and woody charcoal carbonized at 500°C at two temperatures (5°C and 20°C). The dominant mechanism between each adsorbates and adsorbent was discussed.MATERIALS AND METHODSWe prepared two adsorbents; i.e., the woody charcoal and granulated activated carbon. Woody charcoal was made from Cryptomeria Japonica in the kiln. For carbonizing the wood, the temperature of the kiln was increased automatically at the rate of 1°C/min up to 500°C and maintained for 3hr with-out exposure to air. Thereafter woody charcoal was cooled naturally in the kiln and removed to a desic-cator. The granulated activated carbon was made from woody material using a chemical activation process with ZnCl2solution, as chemical activation agents, at 700°C (Wako Pure Chemical Industries Ltd., Japan). These two adsorbents in their manu-facturing process, however, both the activated car-bon depends on physical adsorption and the woody charcoal depends on chemical adsorption is the most suitable adsorbents on the comparison with the domi-nant adsorption mechanism. These two adsorbents for adsorption experiments were grounded by a wooden hammer and sieved to make particle diam-eters in the 25–125 mm range. The adsorbents were degassed at 115°C in an oven prior to analysis.To evaluate the surface properties of the two adsorbents, specific surface area, the total pore vol-ume, and the micro, meso pore volume were deter-mined by the adsorption isotherms of nitrogen. An automated adsorption apparatus (Autosorb-1MP, Quantachrome, U.S.A.) was employed for these measurements. Adsorption of N2was performed at 77.4 K at the relative pressure from 10–3 to 1 after degassing for 3hr at 200°C. The specific surface areas and total pore volume were determined from application of the BET method and the adsorption volume of 0.95 relative pressure. The micro pore volume was determined by Dubinin-Radushkevich (D-R) equations, and the meso pore volume by the BJH method.Titration followed using the method proposed by Boehm et al.11) to determine the total surface acid-ity of the charcoal is as follows: a charcoal sample of 1.0 g was added to 100ml of 0.1mol/l NaOH solution, and residual NaOH was determined by ti-tration with 0.1 M HCl after 67hr.Ammonia, (CH3)NH2, (CH3)2NH and (CH3)3N were employed as the adsorbates in the gas phase adsorption experiments. The concentrations of the commercial adsorbates, supplied by Wako Pure Chemical Industries Ltd., were as follows: 40% methylamine solution, abt. 50% dimethylamine so-lution, 30% trimethylamine solution, 28% ammo-nia solution. Therefore, the gases used in the adsorp-tion experiments were prepared by mixing each ofthe vaporized adsorbates into the pure N2gas (>99.99%) of a 5l TEDLAR bag (GL Science Ltd, Japan) up to the required concentrations.The initial gas concentration in the bag was made in advance, and was defined as the initial concen-tration. To mix the adsorbate and adsorbent in the bag, 0.05 g of the adsorbent was enclosed. Blank test (without adsorbents) was also conducted for the control experiment. The adsorption temperatures in the incubators were kept at 5°C and 20°C without any lights.The concentration of NH3gas was measured using a Kitagawa’s detector tube (Komyo RikagakuKogyo Ltd., Japan; 105SC for NH3). The concen-trations of (CH3)NH2, (CH3)2NH and (CH3)3N gases in the bag were measured by a portable-type odor150Vol. 50 (2004)sensor XP-329 (COSMOS Ltd., Japan), which con-sisted of the semiconductor made by metal oxide.This apparatus expressed the value as the intensity of the smell when a certain amount of gas from the bag was injected into the odor sensor using a gastight syringe. To clarify the differences of adsorption ef-ficiencies among 0.05 g of adsorbents, the initial NH 3concentrations in the bags were fixed at 150ppm (5°C) and 100ppm (20°C), The difference in the initial NH 3 concentrations in the bags at 5 and 20°C was accounted by that the NH 3 concentration in the bag reached at 0ppm after 8hr if the initial NH 3concentrations in the bags at 5°C was fixed at 100ppm, same concentration at 20°C. As a result of preliminary experiments, it is necessary that the ini-tial gas concentration in the bags should be fix at high because both two adsorbents adsorbed these gases completely at the low concentrations. There-fore, to clarify the difference in the adsorption effi-ciencies of the gases between two adsorbents, the initial indicated values of (CH 3)NH 2, (CH 3)2NH and (CH 3)3N gases in the bag were fixed at 500, corre-sponding to 4580, 650, 730ppm, respectively.Comparing with blank test, removal efficiencies of experimental gases, i.e., RE (%) was calculated as follows:RE (%)=iv blk −iv smpliv blk×100(1)where iv blk is the indicated value of the blank test,and iv smpl is the indicated value of the adsorption ex-periments.The results of preliminary experiments showed that the adsorption had attained equilibrium during 24hr for all adsorbents. Following the measurement of gaseous concentrations in the bag at the 0hr, the adsorbent and gas were mixed by opening the seal-ing clip. The concentration of the gas in the bag was measured at 2, 4, 8 and 24hr. Adsorption experi-ments were conducted in eight replications, and data were represented as the averaged values of the rep-lications.RESUL TSSurface Properties of Two AdsorbentSurface properties of pore structures and chem-istries are summarized in Table 1. The specific sur-face area of the pore volume in the activated carbon is ca . four times larger than that in woody charcoal carbonized at 500°C. This tendency coincided with the relationship of the micro and meso pore volume between the activated carbon and woody charcoal.The activated carbon has a larger pore volume: ca .five times in micro pore, and ca . two times in meso pores, than those of woody charcoal. The consump-tion amount of NaOH of the woody charcoal, acidic is two times greater than that of the activated car-bon.Time Course Changes of Removal EfficienciesFigure 1 shows the time course changes of re-moval efficiencies of (CH 3)NH 2, (CH 3)2NH, (CH 3)3N and NH 3 gases in the 5 l bags at 5°C. The (CH 3)NH 2and NH 3 adsorption on the woody charcoal wereTable 1.Speci fic Surface Area,Micro-,Meso-Pore V olumes of Woody Charcoal Carbonized at 500◦C and Activated Carbon,and theConsumption amount of NaOH Absorbed on them Carbon typeSpeci fic surface Micro pore Meso pore Consumption amount area (m 2/g)V olume (ml/g)V olume (ml/g)of NaOH (mmol/g)Woody charcoal carbonized at 500◦C 330.20.110.07 1.27Activated carbon1255.90.510.170.52Fig.1.Time Course Changes of Removal Efficiencies of NH 3,(CH 3)NH 2, (CH 3)2NH, (CH 3)3N Gases in the Bags at 5°CData in the graph show mean values, and the vertical bars show the S.D. among eight replications.151No. 2more effective than those of the activated carbon. In contrast to these gases, the (CH 3)2NH and (CH 3)3N adsorption of the activated carbon were more effec-tive than those of the woody charcoal.Figure 2 shows the time course changes of (CH 3)NH 2, (CH 3)2NH, (CH 3)3N and NH 3 concentra-tions in the bags at 20°C, respectively. The (CH 3)NH 2, (CH 3)2NH and NH 3 adsorption on the woody charcoal were more effective than those of activated carbon. The adsorption efficiencies of (CH 3)3N gas on the activated carbon was constantly higher than that of woody charcoal. Although it in-dicated exceptionally low value at the 8hr, its small S.D. guaranteed the value that is not an error.DISCCUSIONDifference in the Surface Properties between Woody Charcoal and Activated CarbonThe carbonization temperature for preparing the charcoal is well known as a factor that determines the pore structure.10) As shown in Table 1, woody charcoal carbonized at 500°C and activated carbon were different in the specific surface area and pore volumes. Activated carbon showed that the specific surface area (m 2/g) and micro pore volume (ml/g,pore diameter; <2nm) were 3.8, and 4.8 times larger than those of woody charcoal, while the differencein meso pore volume (pore diameter; >2nm) was small. These results showed that a carbonization tem-perature is higher than 500°C resulting in the devel-opment of the pore structure in the micro pore class,following the specific surface area.The acidity of the woody charcoal surface was ca . two times higher than that of activated carbon,although the woody charcoal did not develop suffi-ciently for surface pore structures (Table 1). In gen-eral, thermolysis of cellulose or lignin, which are the main components of wood, occurred actively when the carbonization temperature reached up to 400–500°C. A consequence of thermolysis, acidic functional groups, such as carboxyl and phenolic hydroxyl groups, were formed on the charcoal sur-face.12–14) The relationship between the carboniza-tion temperature of Cryptomeria Japonica and the amounts of acidic functional groups on the charcoal,the charcoal prepared at 400°C possesses a maxi-mum absorbability for base as like ammonia gas while the specific surface area is not well developed.Moreover, the amounts of acidic functional groups on the charcoal at 500°C and after 600°C decreased up to one third, and one tenth of 400°C, respec-tively.10) The difference in the amounts of acidic groups between two adsorbents could be caused by the difference of carbonization temperature between two adsorbents.Adsorption Efficiencies at 5°C and 20°CFrom the results of the time course changes (Figs.1 and 2), adsorption efficiencies of NH 3,(CH 3)NH 2, (CH 3)2NH, and (CH 3)3N at 5°C and 20°C are summarized as follows: ammonia and (CH 3)NH 2are removed more effectively by woody charcoal than activated carbon at 5°C and 20°C, dimethyl-amine is removed more effectively by activated car-bon than woody charcoal at 5°C, by woody char-coal at 20°C, trimethylamine is removed more ef-fectively by activated carbon than woody charcoal at 5°C and 20°C.Our results showed that the acidity of woody charcoal surface was higher than that of activated carbon surface, which suggests the existence of acidic functional groups on the surface. These re-sults are in agreement with Asada et al .7) who con-firmed that many acidic functional groups remained on the surface of bamboo charcoal carbonized at 500°C by using ESR spectra measurements. Many authors have reported there is a correspondence be-tween the compatibility of ammonia gas and the amounts of acidic groups on the surface.10)As a con-Fig.2.Time Course Changes of Removal Efficiencies of NH 3,(CH 3)NH 2, (CH 3)2NH, (CH 3)3N Concentrations in the Bags at 20°CData in the graph show mean values, and the vertical bars show the S.D. among eight replications.152Vol. 50 (2004)sequence of the reaction between an acid and a base,therefore, the woody charcoal at 500°C has greater number of acidic functional groups, which lead to the higher removal efficiencies of NH 3 and (CH 3)NH 2 gases than those of activated carbon.Compared with NH 3 and (CH 3)NH 2 gases, the removal efficiency of (CH 3)3N gas using two adsorbents is inverted (Figs.1 and 2). A larger amount of the (CH 3)3N molecule impregnates into the porous on the activated carbon than those on the woody charcoal carbonized at 500°C, resulting the development of larger specific surface area and pore volume as shown in Table 1. The adsorption capac-ity of adsorbents depends on the integrated pore volume which the adsorbate can enter.1,15) Moreover,the adsorption potential increases with decreasing the distance between adsorbate and pore walls.6) The molecule size of (CH 3)3N is lager than that of NH 3,which explain the adsorption potential of (CH 3)3N gas is higher than that of the NH 3 gas on the acti-vated carbon surface. This is due to the fact that the removal efficiency of (CH 3)3N gas against the acti-vated carbon was higher than this the woody char-coal. This can be concluded by physical adsorption,where was slight acidic functional groups was present on the activated carbon surface.Concerning (CH 3)2NH gas adsorption, its re-moval efficiency using the activated carbon is higher than the woody charcoal at 5°C, and lower at 20°C (Figs.1 and 2). An equalization amount of molecu-lar adsorption becomes large at low temperature because the presence of adsorption exothermic of the molecule on the adsorbent surface. The (CH 3)2NH gas adsorption at 5°C could be based on physical adsorption which activated carbon has the large specific surface area and pore volume. At higher temperature, however, high heat energy to the molecule enables to break off the week adsorption potential. Much acidic functional groups on the ad-sorbent has high adsorption potential just like chemi-cal adsorption is necessary to enhancement of (CH 3)2NH gas adsorption at 20°C.The four gases tested in our study, (CH 3)NH 2,(CH 3)2NH, (CH 3)3N and NH 3, are similar chemicals in terms of alkalinity. The main conclusions that the four gases were effectively adsorbed against the ac-tivated carbon and woody charcoal carbonized at 500°C are presented using the physical or chemical characteristics of the adsorbent surface. Moreover,the most suitable adsorbents against a chemical de-pended on temperature, just like (CH 3)2NH. Thepresent work suggests that the temperature range during practical use can be changed accordingly on good or poor performances of the adsorbents.REFERENCES1)Tanada, S., Boki, K. and Nakamura, T. (1988) ad-sorption behavior of ammonia and trimethylamine binary mixtures in pores of plasma-treated activated carbon. Eisei Kagaku , 34, 156–160.2)Liu, Chuan-Hsia and Lo, K. V . (2001) Ammonia removal from composting leachate using zeolite. I.Characterization of the zeolite. J. Environ. Sci.Health , A36, 1671–1688.3)Miyoshi, T., Tanada, S. and Boki, K. (1977) Proper-ties of thirteen kinds of adsorbents for removal of hydrogen sulfide, methanethiol, methyl sulfide, tri-methylamine, and ammonia. Sangyo Igaku , 19, 2–7.4)Tanada, S., Boki, K., Ohtani, N. and Yamasaki, R.(1985) Steric effect in the adsorption of ammonia and trimethylamine into micropores of activated carbon. Chem. Pharm. Bull ., 33, 837–841.5)Oya, A. and Iu, W. G. (2002) Deorization perfor-mance of charcoal particles loaded with orthophos-phoric acid against ammonia and trimethylamine.Carbon , 40, 1391–1399.6)Abe, I., Iwasaki, S., Maruyama, J. and Fukuhara, T.(2000) Deodorization performance of charcoal.Kagaku to kogyo , 74, 106–111.7)Asada, T., Ishihara, S., Yamane, T., Toba, A.,Yamada, A. and Oikawa, K. (2002) Science of bam-boo charcoal: Study on carbonizing temperature of bamboo charcoal and removal capability of harm-ful gases. J. Health Sci ., 48, 473–479.8)Maruyama, K., Takagi, H., Kodama, M., Hatori, H.,Yamada, Y ., Asakura, R., Izumida, H. and Morita,M. (2003) Ammonia adsorption on porous carbons with acidic functional groups. TANSO , 208, 109–113.9)Abe, I., Iwasaki, S., Iwata, Y ., Kominami, H. and Kera, Y. (1998) Relationship between production method and adsorption property of charcoal. TANSO ,84, 277–284.10)Hitomi, M., Kera, Y., Tatsumoto, H., Ikuta, N.,Kawafune, I. and Abe, I. (1993) Evalution of ad-sorption property of porous carbon materials (II).TANSO , 156, 22–28.11)Boehm, H. P. (1966) Chemical identification of sur-face groups. Adv. catal ., 16, 179–274.12)Nishimiya, K., Hata, T., Imamura, Y . and Ishihara,S. (1998) Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. Wood153 No. 2Sci., 44, 56–61.13)Ishihara, S. (1999) Wood charcoal as functional car-bon materials. J. Mater. Sci. Soc. Jpn., 48, 473–482 (in Japanese).14)Asada, T., Oikawa, K., Kawata, K., Iyobe, T. andYamada, A. (2004) Ion chromatographic determi-nation of ammonia in air using a sampling tube of porous carbon carbonized at 500°C. Anal. Sci., 20, 125–128.15)Kitagawa, H. (1972) Preparation of active carbonfrom phenol-formaldehyde resin. Nippon kagaku Kaishi, 6, 1144–1150.。