一元二次方程应用题(含答案)九年级(上)

合集下载

人教版九年级上第21章《一元二次方程》实际应用题练习含答案

人教版九年级上第21章《一元二次方程》实际应用题练习含答案

《一元二次方程》实际应用题专项练习(一)1.今年国庆中秋双节同庆,某店推出了莲蓉蛋黄月饼和流心芝士月饼两种月饼,其中莲蓉蛋黄月饼每盒成本15.5元售价40元,流心芝士月饼每盒成本18元售价48元.两种月饼均为整盒出售,不售散装.中秋节前,莲蓉蛋黄月饼和流心芝士月饼共销售了400盒,销售总额为17440元.(1)中秋节前,莲蓉蛋黄月饼卖了多少盒?(2)为迎接双节,中秋当日该店大促销,莲蓉蛋黄月饼“买一送一”(买一盒送一盒)但销售单价不变,其当日销量(不算赠品)达到中秋前售卖的莲蓉蛋黄月饼总销量的;流心芝士月饼每盒销售单价减少,其当日销量比中秋节前流心芝士月饼总销量增加了5a%.中秋当日两种月饼的销售利润为2736元,求a的值.2.某商场销售一批衬衫,平均每天可售出30件,每件盈利50元.为了扩大销售,增加盈利,商场采取了降价措施.经调查发现,衬衫的单价每降1元,商场平均每天可多售出2件.(1)若某天该衬衫每件降价5元,则当天该衬衫的销量为件,当天可获利元;(2)设每件衬衫降价x元,则商场日销售量增加件,每件衬衫盈利元(用含x的代数式表示);(3)如果商场销售这批衬衫要保证每天盈利200元,同时尽快减少库存,那么衬衫的单价应降多少元?3.随着现代互联网技术的广泛应用和快递行业的高速发展,网上购物的人越来越多,“双十一”当天更是成为了全民狂欢的网购节.据统计,某天猫官方旗舰店在2017年和2019年“双十一”当天的订单量分别为20万件和45万件,现假设该旗舰店每年“双十一”当天的订单量增长率相同.(1)求该旗舰店“双十一”当天订单量的年平均增长率;(2)如果该旗舰店的客服平均每人每天最多可以处理0.2万件订单,那么该旗舰店现有的250名客服能否当天完成2020年“双十一”网购节的所有订单?如果不能,请问至少还需要增加多少名客服?4.“新冠”疫情蔓延全球,口罩成了人们的生活必需品.某药店销售普通口罩和N95口罩,今年3月份的进价如表:普通口罩N95口罩进价(元/包)8 20(1)计划N95口罩每包售价比普通口罩售价贵16元,7包普通口罩和3包N95口罩总售价相同,求普通口罩和N95口罩每包售价;(2)按(1)中售价销售一段时间后,发现普通口罩的日均销售量为120包,当每包售价降价1元时,日均销售量增加20包.该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天的利润为320元,求此时普通口罩每包售价.5.“疫情”期间,某小区准备搭建一个面积为12平方米的矩形临时隔离点ABCD,如图所示,矩形一边利用一段已有的围墙(可利用的围墙长度仅有5米),另外三边用9米长的建筑材料围成,为方便进出,在与围墙平行的一边要开一扇宽度为1米的小门EF,求AB的长度为多少米?6.今年某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件.为了促进疫情期间的市民消费,从而扩大销售,商场决定采取适当降价的方式促销.经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?7.如图,在Rt△ABC中,∠B=90°,AB=8cm,BC=10cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,AP=CQ?(2)经过几秒后,△PBQ的面积等于15cm2?8.10月份,是柚子上市的季节,柚子味酸甜,略带苦味,含有丰富的维生素c和大量的营养元素.有健胃补血,降血糖等功效,百果园大型水果超市的红心柚与沙田柚这两种水果很受欢迎,红心柚售价12元/千克,沙田柚售价9元/千克.(1)若第一周红心柚的销量比沙田柚的销量多200千克,要使这两种水果的总销售额不低于6600元,则第一周至少销售红心柚多少千克?(2)若该水果超市第一周按照(1)中红心柚和沙田柚的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周红心柚售价降低了a%,销量比第一周增加了a%,沙田柚的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了%,求a的值.9.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.世界卫生组织提出:如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为”超级传播者”.如果某地区有1人不幸成为新冠肺炎病毒的携带者,假设一个病毒携带者每轮传染的人数相同,经过两轮传染后共有81人成为新冠肺炎病毒的携带者.(1)请判断最初的这名病毒携带者是”超级传播者”吗?求他每轮传染的人数;(2)若不加以控制传染渠道,经过3轮传染,新冠肺炎病毒的携带者共有多少人?10.如图,有一道长为10m的墙,计划用总长为54m的篱笆,靠墙围成由六个小长方形组成的矩形花圃ABCD.若花圃ABCD面积为72m2,求AB的长.参考答案1.解:(1)设中秋节前,莲蓉蛋黄月饼卖了x盒,则流心芝士月饼卖了(400﹣x)盒,依题意得:40x+48(400﹣x)=17440,解得:x=220.答:中秋节前,莲蓉蛋黄月饼卖了220盒.(2)依题意得:(40﹣2×15.5)×220×+[48(1﹣)﹣18]×(400﹣220)(1+5a%)=2736,整理得:3a2+25a﹣148=0,解得:a1=4,a2=﹣(不合题意,舍去).答:a的值为4.2.解:(1)30+2×5=40(件),(50﹣5)×40=1800(元).故答案为:40;1800.(2)设每件衬衫降价x元,则商场日销售量增加2x件,每件衬衫盈利(50﹣x)元.故答案为:2x;(50﹣x).(3)设衬衫的单价应降m元,则每件衬衫盈利(50﹣m)元,商场日销售量为(30+2m)件,依题意得:(50﹣m)(30+2m)=2000,整理得:m2﹣35m+250=0,解得:m1=10,m2=25,又∵要尽快减少库存,∴m=25.答:衬衫的单价应降25元.3.解:(1)设该旗舰店“双十一”当天订单量的年平均增长率为x,依题意得:20(1+x)2=45,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:该旗舰店“双十一”当天订单量的年平均增长率为50%.(2)45×(1+50%)=67.5(万件).∵0.2×250=50(万件),50<67.5,∴该旗舰店现有的250名客服不能当天完成2020年“双十一”网购节的所有订单. 设需要增加m 名客服,依题意得:0.2×(250+m )≥67.5,解得:m ≥87,又∵m 为正整数,∴m 的最小值为88.答:该旗舰店现有的250名客服不能当天完成2020年“双十一”网购节的所有订单,至少还需要增加88名客服.4.解:(1)设普通口罩每包的售价为x 元,N 95口罩每包的售价为y 元.依题意得:,解得:. 答:普通口罩每包的售价为12元,N 95口罩每包的售价为28元.(2)设普通口罩每包的售价降低m 元,则此时普通口罩每包的售价为(12﹣m )元,日均销售量为(120+20m )包.依题意得:(12﹣m ﹣8)(120+20m )=320,整理得:m 2+2m ﹣8=0,解得:m 1=2,m 2=﹣4(不合题意,舍去),∴12﹣m =10.答:此时普通口罩每包的售价为10元.5.解:设AB =x 米,则BC =(9+1﹣2x )米,根据题意可得,x (10﹣2x )=12,解得x 1=3,x 2=2,当x =3时,AD =4<5,当x =2时,AD =6>5,∵可利用的围墙长度仅有5米,∴AB 的长为3米.答:AB 的长度为3米.6.解:设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由题意,得(360﹣x﹣280)(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.7.解:(1)设经过x秒后,AP=CQ,则AP=xcm,CQ=(10﹣2x)cm,依题意,得:x=10﹣2x,解得:x=.答:经过秒后,AP=CQ.(2)设经过y秒后,△PBQ的面积等于15cm2,则BP=(8﹣y)cm,BQ=2ycm,依题意,得:(8﹣y)×2y=15,化简,得:y2﹣8y+15=0,解得:y1=3,y2=5.答:经过3秒或5秒后,△PBQ的面积等于15cm2.8.解:(1)设第一周销售红心柚x千克.则沙田柚(x﹣200)千克,根据题意得:12x+9(x﹣200)≥6600,解得:x≥400.答:第一周至少销售红心柚400千克;(2)根据题意得:12(1﹣a%)×400(1+a%)+9×200(1+a%)=6600(1+%),∴a1=45,a2=0(舍去).答:a的值为45.9.解:(1)设每人每轮传染x人,依题意,得:1+x+(1+x)•x=81,解得:x1=8,x2=﹣10(不合题意,舍去),∵8<10,∴最初的这名病毒携带者不是“超级传播者”;(2)81×(1+8)=729(人),答:若不加以控制传染渠道,经过3轮传染,共有729人成为新冠肺炎病毒的携带者.10.解:设AB的长是xm,则BC的长是(18﹣x)m.根据题意,得x(18﹣x)=72,解这个方程,得x1=6,x2=12,当x=6时,18﹣x=12>10(不合题意,舍去).当x=12时,18﹣x=6符合题意.答:AB的长是12m.《一元二次方程》实际应用题专项练习(二)1.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?2.全球疫情爆发时,医疗物资极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天.①现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产口罩15000万件,若能,应该增加几条生产线?若不能,请说明理由.3.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).4.某村计划建造如图所示的矩形蔬菜温室,要求长为24m,宽为12m,在温室内,沿前侧内墙保留2m宽的空地,其它三侧内墙各保留等宽的通道.当通道的宽为多少时,蔬菜种植区域的面积是210m2?5.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递总件数分别为10万件和14.4万件,现假定该公司每月投递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投0.5万件,那么该公司现有的29名快递投递员能否完成今年6月份的快递投递任务?如果不能,请问需要至少增加几名业务员?6.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.7.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.8.为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?9.草根学堂院内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)10.今年8月双福国际农贸市场某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计3月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额﹣总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了%,售价下降了a%;“红富士”的销售量下降了a%,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等.求a的值.参考答案1.解:(1)设y与x的函数关系式为y=kx+b(k≠0),将(22,36),(24,32)代入y=kx+b,得:,解得:,∴y与x的函数关系式为y=﹣2x+80(20≤x≤28).故答案为:y=﹣2x+80(20≤x≤28).(2)依题意,得:(x﹣20)(﹣2x+80)=150,整理,得:x2﹣60x+875=0,解得:x1=25,x2=35(不合题意,舍去).答:每本纪念册的销售单价是25元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)①设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25,又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线;②设增加a条生产线,则每条生产线的最大产能为(1500﹣50a)万件/天,依题意,得:(1+a)(1500﹣50a)=15000,化简得:a2﹣29a+270=0,∵△=(﹣29)2﹣4×1×270=﹣239<0,方程无解.∴不能增加生产线,使得每天生产口罩15000万件.3.解:(1)设甲商品的出厂单价是x元/件,则乙商品的出厂单价是x元/件,根据题意得:3x﹣2×x=150,解得:x=90,∴x =60.答:甲、乙商品的出厂单价分别是90、60元.(2)由题意得:, 解得:a 1=0(舍去),a 2=15.答:a 的值为15.4.解:设通道的宽为xm ,则蔬菜种植区域为长(24﹣2﹣x )m ,宽(12﹣2x )m 的矩形, 依题意,得:(24﹣2﹣x )(12﹣2x )=210,整理,得:x 2﹣28x +27=0,解得:x 1=1,x 2=27(不合题意,舍去).答:当通道的宽为1m 时,蔬菜种植区域的面积是210m 2.5.解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意,得10(1+x )2=14.4解得x 1=0.2,x 2=﹣2.2(不符合题意,舍去),答:该快递公司投递总件数的月平均增长率为20%.(2)由(1)得,14.4×1.2=17.28(万件),29×0.5=14.5,14.5<17.28,故不能完成任务.因为(17.28﹣14.5)÷0.5=5.56,所以还需要至少增加6名业务员.答:需要至少增加6名业务员.6.解:(1)设购进x 台A 型号暖风机,则购进(900﹣x )台B 型号暖风机, 依题意,得:600x +900(900﹣x )≥690000,解得:x ≤400.答:至多购进400台A 型号暖风机.(2)依题意,得:600(1﹣a %)×400(1+a %)+900(1﹣a %)×(900﹣400)(1+a %)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.7.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.8.解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.9.解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.10.(1)设象牙芒有5x箱,则红富士有3x箱,根据题意得:5x+3x=400,解得x=50,则象牙芒有250箱,红富士有150箱.设每箱象牙芒y元,则250(2y﹣10)+150y﹣22000≥8000.解得:y≥50,∴2y﹣10≥90答:每箱“象牙芒”至少卖90元;(2)根据题意得:250(1﹣a%)•90(1﹣a%)=150(1﹣a%)•50,令t=a%,整理,得:4t2﹣5t+1=0,……(7分)解得:t=1(不合题意,舍去)或t=0.25,∴a=25.答:a的值为25.。

人教版九年级上册数学第21章一元二次方程利润问题应用题(含答案)

人教版九年级上册数学第21章一元二次方程利润问题应用题(含答案)

一元二次方程利润问题应用题1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价6、一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)7、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元8、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。

一元二次方程应用题(含答案)九年级(上)

一元二次方程应用题(含答案)九年级(上)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?3一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)4.一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。

画出这个长方体的展开图,及其过程(设未知数)5.用一个白铁皮做罐头盒,每张铁皮可制作25个盒身,或制作盒底40个,一个盒身和两个盒底配成一套罐头盒。

现在有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身和盒底正好配套?6用含30%和75%的两种防腐药水,配置含药50%的防腐药水18kg,两种药水各需取多少?”7.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?8.某厂经过两年体制改革和技术革新,生产效率翻了一番,求平均每年的增长率(精确到0.1%)9.学校组织一次兵乓球比赛,参赛的每两个选手都要比赛一场,所有比赛一共有36场,问有多少名同学参赛?用一元二次方程,化成一般形式。

10.一拖拉机厂,一月份生产出甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐月递增,又知二月份甲、乙两型的产量之比为3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月增长率及甲型拖拉机一月份的产量。

11.用长为100cm的金属丝做一个矩形框.李明做的矩形框的面积为400平方厘米,而王宁做的矩形框的面积为600平方厘米,你知道这是为什么吗?12某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元13.一张桌子的桌面长6米宽为4米。

人教版数学九年级上册《一元二次方程》应用题专项训练(含答案)

人教版数学九年级上册《一元二次方程》应用题专项训练(含答案)

《一元二次方程》应用题专项训练1.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10%B.19%C.9.5%D.20%2.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.2x x5050(1)50(1)182++++=50(1)182+=B.2xC.50(12)182++++=x x+=D.5050(1)50(12)182x3.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2017年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2019年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2019年底共建设了多少万平方米廉租房.4. 某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为()A.(10)200x x+-=x x-= B.22(10)200C.(10)200++=x x+= D.22(10)200x x5. 由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/2米,通过连续两次降价%a 后,售价变为2000元/2米,下列方程中正确的是( ) A .22400(1)2000a -= B .22000(1)2400a -= C .22400(1)2000a += D .22400(1)2000a -=6. 乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2016年市政府对农牧区校舍改造的投入资金是5786万元,2018年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x ,则根据题意可列方程为 .7. 某商场在促销活动中,将原价36元的商品,连续两次降价%m 后售价为25元.根据题意可列方程为 .8. 某种药品原价为100元,经过连续两次的降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是___________.9. 如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m 2,求道路宽为多少?设道路宽为x m ,从图(2)的思考方式出发列出的方程是__________.10. 某校团委准备举办学生绘画展览,为美化画面,在长为30cm、宽为20的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),求彩纸的宽度.11. 通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)(030x<<)存在下列关系:x(元/千克) 5 10 15 20y(千克)4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:400z x=(030x<<).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;5 10 15 20 25 x元/千克)y(千克)50004500400035003000O(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x 的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?12. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2 100元,每件衬衫应降价多少元?13. 云南省2017年至2018年茶叶种植面积......与产茶面积....情况如表所示,表格中的、y分别为2017年和2018年全省茶叶种植面积:年份种植面积(万亩)产茶面积(万亩)(1)请求出表格中x、y的值;(2)在2017年全省种植的产茶面积中,若平均每亩产茶52千克,为使我省2019年全省茶叶种植产茶总产量达到22万吨,求2017年至2019年全省年产茶总产量的平均增长率(精确到0.01).(说明:茶叶种植面积=产茶面积+未产茶面积)14. 某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件.两批玩具的售价均为2.8元.问第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)15.国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择;①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?参考答案1. A2. B3. 解:(1)设每年市政府投资的增长率为x , 根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x -1.75=0, 解之,得:x =275.1493⨯+±-,∴x 1=0.5 x 2=-0.35(舍去), 答:每年市政府投资的增长率为50%;(2)到2012年底共建廉租房面积=9.5÷3882=(万平方米). 4. C 5. D6. 25786(1)8058.9x +=7. 236(1%)25m -=8. 20%9. (322)(2)570x x x --= 10. 解:设彩纸的宽为x cm ,1分 根据题意,得(302)(202)23020x x ++=⨯⨯, 4分 整理,得2251500x x +-=,5分 解之,得15x =,230x =-(不合题意,舍去),7分答:彩纸的宽为5cm . 8分11. (1)描点略.1分 设y kx b =+,用任两点代入求得1005000y x =-+, 3分 再用另两点代入解析式验证. 4分(2)y z =,1005000400x x ∴-+=,10x ∴=.6分 ∴总销售收入10400040000=⨯=(元) 7分∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元.8分(3)设这时该农副产品的市场价格为a 元/千克, 则(1005000)4000017600a a -+=+, 10分解之得:118a =,232a =.030a <<,18a ∴=.11分∴这时该农副产品的市场价格为18元/千克.12分12. 解:设每件衬衫应降价x 元,可使商场每天盈利2100元. 1分 根据题意,得(45)(204)2100x x -+=. 5分 解得:110x =,230x =.6分 因尽快减少库存,故30x =. 7分答:每件衬衫应降价30元. 8分13. 解:(1)据表格,可得792.7154.2298.6565.8x y y +=⎧⎨-+=⎩,解方程组,得371.3421.4.x y =⎧⎨=⎩,3分(2)设2006年至2008年全省茶叶种植产茶年总产量的平均增长率为p ,∵2006年全省茶叶种植产茶面积为267.2万亩,从而2006年全省茶叶种植产茶的总产量为267.20.05213.8944⨯=(万吨).5分据题意,得213.8944(1)22p +=,解方程,得1 1.26p +±≈, ∴0.26p = 或 2.26p =-(舍去),从而增长率为26%p =.答:2006年至2008年全省年产茶总产量的平均增长率为26%. 8分14. 解法一:设第二次采购玩具x 件,则第一次采购玩具(10)x -件,由题意得1001150102x x+=- 整理得 211030000x x -+= 解得 150x =,260x =.经检验150x =,260x =都是原方程的解.当50x =时,每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去;当60x =时,每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.解法二:设第一次采购玩具x 件,则第二次采购玩具(10)x +件,由题意得1001150210x x +=+ 整理得 29020000x x -+= 解得 140x =,250x =.经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次购401050+=件,批发价为150503÷=(元)不合题意,舍去;第一次采购50件时,第二次购501060+=件,批发价为15060 2.5÷=(元)符合题意,因此第二次采购玩具60件.15. 解:(1)设平均每次下调的百分率为x ,根据题意得:()2500014050x -=解此方程得:121191010x x ==,(不符合题意,舍去) 10x ∴=%答:平均每次下调的百分率为10%. (2)方案一:100405098%396900⨯⨯=(元) 方案二:1004050 1.5100122401400⨯-⨯⨯⨯=(元)∴方案一优惠.。

人教版九年级上册第21章 《一元二次方程应用》专项练习

人教版九年级上册第21章 《一元二次方程应用》专项练习

《一元二次方程》应用题1.合肥百货大楼服装柜在销售中发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装每降价2元,那么平均每天就可多售出4件.若要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?2.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y=kx+b的图象上,如图.(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?3.甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元,(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?4.前阶段国际金价大幅波动,在黄金价格涨至每克360元时,大批被戏称为“中国大妈”的非专业人士凭满腔热情纷纷入场买进黄金,但十分遗憾的是国际金价从此下跌,在经历了二轮大幅下跌后,日前黄金价格已跌至每克291.60元,大批“中国大妈”被套,这件事说明光有热情但不专业也是难办成事的;同学们:你们现在14、15岁,正值学习岁月,务必努力学习.下面请你用你已学的知识计算一下这二轮下跌的平均跌幅和反弹回买进价所需的涨幅.(精确到1%)5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.(1)设销售单价为每千克a元,每天平均获利为y元,请解答下列问题:①每天平均销售量可以表示为;②每天平均销售额可以表示为;③每天平均获利可以表示为y=;(2)该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元?6.如图1是一块长为60cm的正方体薄铁片制作的一个长方体盒子,如果要做一个没有盖的长方体盒子,可先在薄铁片的四个角上截去四个相同的小正方形(如图2),然后把四边折合起来.(1)求做成的盒子底面积y(cm2)与截去小正方形边长x(cm2)之间的函数关系式;(2)当做成的盒子的底面积为900cm2时,试求该盒子的容积.7.如图,有总长为24米的篱笆,一面利用墙(墙的最大可用长度为10米)围成中间隔有一道篱笆的长方形花圃ABCD.(1)如果设花圃的宽AB=x米,则BC长多少米?(用含x的代数式表示);(2)如果要使花圃的面积为45平方米,那么花圃的宽AB应为多少米?(3)如果要在两个矩形的BC一边各开一个1.5米宽的门(做门材料不占用篱笆),且花圃的总面积为54平方米,那么花圃的宽AB应为多少米?8.已知△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0有两个实数根,第三边BC的长为5.(1)求证:无论k为何值,关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0都有两个不相等的实数根;(2)当k为何值时,△ABC是直角三角形;(3)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.9.如图,在△ABC中,∠B=90°,AB=6,BC=8.点P从点A开始沿边AB向点B以1cm/s 的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.设P、Q分别从A、B同时出发,运动时间为t,当其中一点先到达终点时,另一点也停止运动.解答下列问题:(1)经过几秒,△PBQ的面积等于8cm2?(2)是否存在这样的时刻t,使线段PQ恰好平分△ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.10.经市场调查发现,某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个,某商场计划购进一批这种书包.当商场每月有10000元的销售利润时,(1)书包的售价应为多少元?(2)书包的月销售量为多少个?(3)为体现“薄利多销”的销售原则,你认为销售价格应定为多少?11.某商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的零售单价分别为元和元.(直接写出答案)(2)该商店平均每天卖出甲商品500件和乙商品1200件.经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件.为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润共1700元?12.某商店经销一种进价为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答一下问题:(1)当销售单价定位每千克55元时,计算月销售量和月销售利润;(2)商店要使月销售利润为8000元,销售单价应定为多少?13.中秋节来临之前,某超市以每盒80元的价格购进了1000盒月饼,第一周以每盒168元的价格销售了300盒,第二周如果单价不变,预计仍可售出300盒,该超市经理为了增加销量,决定降价,据调查,单价每降低1元,可多售出10盒,但最低每盒要赢利30元,第二周结束后,该超市将对剩余的月饼一次性赔钱甩卖,此时价格为70元/盒.(1)若设第二周单价降低x元,则第二周的单价是,销量是;(2)经两周后还剩余月饼盒;(3)若该超市想通过销售这批月饼获利51360元,那么第二周的单价应是多元?参考答案1.解:设每件童装应降价x 元,则平均每天可售出(20+)件,依题意,得:(40﹣x )(20+)=1200, 整理,得:x 2﹣30x +200=0,解得:x 1=10,x 2=20.∵要求尽快减少库存,∴x =20.答:每件童装应降价20元.2.解:(1)依题意有, 解得. 故y 与x 的函数关系式是y =﹣10x +80;(2)设该设备的销售单价为x 万元/台,依题意有(x ﹣2)(﹣10x +80)=80,整理方程,得x 2﹣10x +24=0.解得x 1=4,x 2=6.∵此设备的销售单价不高于5万元,∴x 2=6(舍),所以x =4.答:该设备的销售单价是4万元.3.解:(1)设这种商品平均降价率是x ,依题意得:40(1﹣x )2=32.4,解得:x 1=0.1=10%,x 2=1.9(舍去);故这个降价率为10%;(2)设降价y 元,根据题意得(40﹣20﹣y )(500+50y )=10000解得:y =0(舍去)或y =10,原售价40元降价10元时,应为:40一10=30元,∵现价为每件32.4元,∴32.4﹣30=2.4,答:在现价的基础上,再降低,2.4元.4.解:设平均每次下跌的幅度为x .则依题意,得360(1﹣x )2=291.6,解得x 1=0.1,x 2=﹣1.9(不合题意,舍去),取x =0.1即平均每次跌幅为10%;360÷291.6≈1.234,即反弹回买进价所需的涨幅约为24%(此处用进一法)答:这二轮下跌的平均跌幅和反弹回买进价所需的涨幅分别是10%、24%.5.解:(1)由题意,得①(1400﹣400a )千克②(1400﹣400a )a 元③y =(a ﹣2)(1400﹣400a )﹣24(元)故答案为:(1400﹣400a )千克,(1400﹣400a )a 元,(a ﹣2)(1400﹣400a )﹣24(元)(2)当y =200时,(a ﹣2)(1400﹣400a )﹣24=200整理得:a 2+5.5a ﹣7.56=0解得:a 1=2.7,a 2=2.8当a =2.7时,降价为:3﹣a =0.3元当a =2.8时,降价为:3﹣a =0.2元∴应将每千克小型西瓜的售价降低0.2元或0.3元.6.解:(1)由题意可得y =(60﹣2x )2=4x 2﹣240x +3600(0<x <30);(2)当y =900时,(60﹣2x )2=900,解得x =15,x =45(不合题意舍去). 因此盒子的容积应该是900×15=13500(立方厘米).答:该盒子的容积式13500立方厘米.7.解:(1)(24﹣3x )(2)由(1)题结合题意得x (24﹣3x )=45,解得x 1=3 x 2=5当x =3时,24﹣3x =15>10(不合,舍去)当x =5时,24﹣3x =9<10 符合题意所以AB 的长应为5米(3)依题意得x (24﹣3x +1.5×2)=54,解得x 1=3 x 2=6当x =3时,24﹣3x +1.5×2=18>10(不合,舍去)当x =6时,24﹣3x +1.5×2=9<10,符合题意所以这时AB 的长应为6米.8.解:(1)因为△=b 2﹣4ac =[﹣(2k +3)]2﹣4×1×(k 2+3k +2)=1>0, 所以方程总有两个不相等的实数根.(2)解:x 2﹣(2k +3)x +k 2+3k +2=0的解为x =,∴x 1=k +2,x 2=k +1,设AB =k +2,AC =k +1,当AB 2+AC 2=BC 2,即(k +2)2+(k +1)2=52,解得:k 1=﹣5,k 2=2,由于AB =k +2>0,AC =k +1>0,所以k =2;当AB 2+BC 2=AC 2,即(k +2)2+52=(k +1)2,解得:k =﹣14,由于AB =k +2>0,AC =k +1>0,所以k =﹣14舍去;当AC 2+BC 2=AB 2,即(k +1)2+52=(k +2)2,解得:k =11,由于AB =k +2=13,AC =12,所以k =11,∴k 为2或11时,△ABC 是直角三角形.(3)若AB =BC =5时,5是方程x 2﹣(2k +3)x +k 2+3k +2=0的实数根,把x =5代入原方程,得k =3或k =4.由(1)知,无论k 取何值,△>0,所以AB ≠AC ,故k 只能取3或4.根据一元二次方程根与系数的关系可得:AB +AC =2k +3,当k =3时,AB +AC =9,则周长是9+5=14;当k =4时,AB +AC =8+3=11.则周长是11+5=16.9.解:(1)设经过x 秒,△PBQ 的面积等于8cm 2则:BP =6﹣x ,BQ =2x ,所以S △PBQ =×(6﹣x )×2x =8,即x 2﹣6x +8=0,可得:x =2或4,即经过2秒或4秒,△PBQ 的面积等于8cm 2.(2)设经过y 秒,线段PQ 恰好平分△ABC 的面积,△PBQ 的面积等于12cm 2,S △PBQ =×(6﹣y )×2y =12,即y 2﹣6y +12=0,因为△=b 2﹣4ac =36﹣4×12=﹣12<0,所以△PBQ 的面积不会等于12cm 2,则线段PQ 不能平分△ABC 的面积.10.解:(1)设书包的售价应定为x 元,则有(x ﹣30)[600﹣10(x ﹣40)]=10000. 解得x 1=50,x 2=80.所以书包的售价应定为50元或80元.(2)当售价为50元时,销售量为500个;当售价为80元,销售量为200个.(3)∵当x =50时候,销售量为500个,最多,∴销售价格应定为50元.11.解:(1)假设甲、乙两种商品的进货单价各为x ,y 元, 根据题意得:, 解得:, ∴甲、乙零售单价分别为2元和3元;故答案为:2,3;(2)根据题意得出:即2m2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1700元.12.解:(1)根据题意得:月销售量是:500﹣(55﹣50)×10=450(千克);销售利润:450×(55﹣40)=450×15=6750(元);(2)设销售单价定为每千克x元时,则月销售量为:[500﹣(x﹣50)×10]=(1000﹣10x)千克,每千克的销售利润是:(x﹣40)元,则(x﹣40)(1000﹣10x)=8000,解得:x1=60,x2=80.答:月销售利润达到8000元销售单价应定为60元或80元;13.解:(1)由题意得:第二周降价x元,故第二周的售价为(168﹣x)元,销量为(300+10x)盒;(2)第一周的销量为300盒,第二周的销量为(300+10x)盒,故经两周后还剩余月饼:1000﹣300﹣(300+10x)=(400﹣10x)盒;(3)因为最低每盒要赢利30元,故168﹣x﹣80≥30,解得:x≤58,当0≤x≤58时,获利W=(168﹣80)×300+(168﹣80﹣x)(300+10x)+(﹣10)×(400﹣10x)=51360,解得:x1=4,x2=64,因为x≤58,故x取4.答:该超市想通过销售这批月饼获利51360元,那么第二周的单价应是164元.。

(完整word版)初三(九年级)数学一元二次方程应用题专项练习(带答案)

(完整word版)初三(九年级)数学一元二次方程应用题专项练习(带答案)

一元二次方程应用题专项练习题(带答案)一、面积问题m的矩形苗圃,它的长比宽多2 m. 苗圃的长和宽各是多少?01、一个面积为120 2m的矩形?若能,则矩形02、有一条长为16 m的绳子,你能否用它围出一个面积为15 2的长、宽各是多少?03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两m,条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850 2道路的宽应为多少?04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽?05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m,宽为5 m. 如果地毯中m,那么花边有多宽?央长方形图案的面积为18 206、在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?m的长方形,将它的一边剪短5 m,另一边剪短2 m,恰好变成一个07、有一面积为54 2正方形,这个正方形的边长是多少?08、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.09、如图,在Rt△ACB中,∠C=90°,AC=8 m,BC=6 m,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动(到点C为止),它们的速度都是1 m/s. 经过几秒△PCQ的面积是Rt△ACB面积的一半?二、体积问题dm,求这个木箱的长和宽.10、长方体木箱的高是8 dm,长比宽多5 dm,体积是528 311、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.cm,求原铁皮的边长.已知盒子的容积是400 3三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是 ( )A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税48.4万元,该公司缴税的年平均增长率为多少?18、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份月销售额的平均增长率.五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

人教版 九年级数学上册 第21章 一元二次方程相关的应用题和几何题

人教版 九年级数学上册 第21章 一元二次方程相关的应用题和几何题

第21章 一元二次方程相关的应用题和几何题(含答案)1. 一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系式是()()125+--=t t h ,则运动员起跳到入水所用的时间是( )A. -5秒B. 1秒 C . -1秒 D. 2秒 【答案】 D2. 某种出租车的收费标准时:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的最大值是( ) A. 11 B. 8 C . 7 D.5 【答案】 B3. 如图,菱形ABCD 的边长为a ,O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a =( ) A .215+ B . 215- C . 1 D .2 【答案】 A第3题图4. 某工厂把500万元资金投入新产品生产,第一年获得了一定的利润,在不抽调资金和利润(即将第一年获得的利润也作为生产资金)的前提下,继续生产,第二年的利润率(即所获利润与投入生产资金的比)比第一年的利润率增加了8%.如果第二年的利润为112万元,为求第一年的利润率,可设它为x ,那么所列方程为_______________. 【答案】 500(1+x )(x +8%)=1125. 如图,在长为10cm 、宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下阴影部分面积是原矩形面积的80%,则所截去的小正方形的边长是_________. 【答案】 2cmA第5题图6. 有一旅客携带了30千克行李从南京禄口国际机场乘飞机去天津. 按民航规定,旅客最多可免费携带20千克行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客买了120元的行李票,则他的飞机票价格应是________. 【答案】 800元7. 乙两地分别在河的上、下游,每天各有一班船准点以匀速从两地对开,通常它们总在11时于途中相遇,一天乙地的船因故晚发了40分钟,结果两船在上午11时15分在途中相遇,已知甲地开出的船在静水中的速度数值为44千米/时,而乙地开出的船在静水中的速度为水流速度ν千米/时数值的平方,则ν的值为___________. 【答案】68. 如图,在平面直角坐标系中,直线1+=x y 与343+-=x y 交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1) 求点A ,B ,C 的坐标;(2) 当△CBD 为等腰三角形时,求点D 的坐标.【答案】 (1)B (-1,0),C (4,0),,由1,33,4y x y x =+⎧⎪⎨=-+⎪⎩得8,7157x y ⎧=⎪⎪⎨⎪=⎪⎩,∴A (87,157) (2)设点D 的坐标为(x ,y ),BC =5., ①当BD 1=D 1C 时,过点D 1作D 1M 1⊥x 轴于M 1,则BM 1=52,OM 1=32,x =32,∴y =-34×32+3=158,∴D 1(32,158)..②当BC =BD 2时,过点D 2作D 2M 2⊥x 轴于M 2,则222D M +22M B =22D B ,.∵M 2B =-x -1,D 2M 2=-34x +3,D 2B =5. ③当CD 3=BC 或CD 4=BC 时,同理,可得D 3(0,3),D 4(8,-3),故点的坐标为D 1(32,158),D 2(-125,245),D 3(0,3),D 4(8,-3).9. 如图,已知在Rt △ABC 中,∠C =90°,AC =3,BC =4,点E 在直角边AC 上(点E 与A ,C 两点均不重合). (1)若点F 在斜边AB 上,且EF 平分Rt △ABC 的周长,设AE =x ,试用x 的代数式表示S AEF ; (2)若点F 在折线ABC 上移动,试问:是否存在直线EF 将Rt △ABC 的周长和面积同时平分?若存在直线EF ,则求出AE 的长;若不存在直线EF ,请说明理由.【答案】(1)S △AEF =25x (6-x ) (2)假设存在直线E F 将△ABC 的周长和面积同时平分,AE =x .①若点F 在斜边AB 上,则由(1)知25x (6-x )=12×6,解得x 1=3x 2=3AF =6-(33 5.,②若点F 和B 重合,不满足题设要求的直线EF ;③若点F 在BC 上,由AE =x ,得CE =3-x ,CF =3+x ,S △CEF =12(3-x )(3+x )=12×6,解得x 1,x 2,由于3+x 3>4,故不存在直线EF 满足题设要求.10. 某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? 【答案】(1)24间(2)设每间商铺的年租金增加x 万元,则(30+0.5x )×(10+x )-(30-0.5x )×1-0.5x×0.5=275,解得x 1=0.5,x 2=5,故设每间商铺的年租金定为15万元或10.5万元.11. 我市向民族地区的某县赠送一批计算机,首批270台将于近期起运. 经与某物流公司联系,得知用A 型汽车若干辆刚好装完;用B 型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满. (1)已知B 型汽车比A 型汽车每辆车可多装15台,则A ,B 两种型号的汽车各能装计算机多少台? (2)已知A 型汽车的运费是每辆350元,B 型汽车的运费是每辆400元。

初三(九年级)数学一元二次方程应用题专项练习(带答案)

初三(九年级)数学一元二次方程应用题专项练习(带答案)

一元二次方程应用题专项练习题(带答案)一、面积问题m的矩形苗圃,它的长比宽多2 m. 苗圃的长和宽各是多少?01、一个面积为120 2m的矩形?若能,则矩形02、有一条长为16 m的绳子,你能否用它围出一个面积为15 2的长、宽各是多少?03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两m,条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850 2道路的宽应为多少?04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽?05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m,宽为5 m. 如果地毯中m,那么花边有多宽?央长方形图案的面积为18 206、在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?m的长方形,将它的一边剪短5 m,另一边剪短2 m,恰好变成一个07、有一面积为54 2正方形,这个正方形的边长是多少?08、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.09、如图,在Rt△ACB中,∠C=90°,AC=8 m,BC=6 m,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动(到点C为止),它们的速度都是1 m/s. 经过几秒△PCQ的面积是Rt△ACB面积的一半?二、体积问题dm,求这个木箱的长和宽.10、长方体木箱的高是8 dm,长比宽多5 dm,体积是528 311、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.cm,求原铁皮的边长.已知盒子的容积是400 3三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是 ( )A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税48.4万元,该公司缴税的年平均增长率为多少?18、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份月销售额的平均增长率.五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

人教版九年级数学上册一元二次方程应用题(含答案)

人教版九年级数学上册一元二次方程应用题(含答案)

一元二次方程应用题1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?解:设边长x则(19-2x)(15-2x)=774x^2-68x+208=0x^2-17x+52=0(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=45.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。

人教版九年级上册 第21章《一元二次方程》 实际应用题专项练习(四)

人教版九年级上册 第21章《一元二次方程》 实际应用题专项练习(四)

《一元二次方程》实际应用题专项练习(四)1.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.2.如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?3.已知在数轴上有A,B两点,点A表示的数为4,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B表示的数为,P所表示的数为(用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距3个单位长度?(3)若点P,Q分别从A,B两点同时出发,分别以BQ和AP为边,在数轴上方作正方形BQCD和正方形APEF如图2所示.求当t为何值时,两个正方形的重叠部分面积是正方形APEF面积的一半?请直接写出结论:t=秒.4.一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.(1)若将这种水果每千克的售价降低x元,则每天销售量是多少千克?(结果用含x的代数式表示)(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?5.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?6.阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,…,n 个点,其中任意三个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们设计了如表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线) 点数 2345… n示意图…直线条数 1 2+1=3+2+1=4+3+2+1=…请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有n 个点时,直线条数为 ; (2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点?7.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已经成为国内外游客最喜欢的旅游目的地城市之一,在著名“网红打卡地”磁器口,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经过测算知,该小面成本为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天可多售30碗.(1)若该小面店每天至少卖出360碗,则每碗小面的售价不超过多少元?(2)为了更好的维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元.8.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A 1、A 2、A 3…A 48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x 与通电话次数y 之间的关系用如图模型表示:(1)填写上图中第四个图中y 的值为 ,第五个图中y 的值为 . (2)通过探索发现,通电话次数y 与该班级人数x 之间的关系式为 ,当x =48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?9.幸福水果店计划用12元/盒的进价购进一款水果礼盒以备销售.(1)据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?(2)在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了m%,月销量比(1)中最低月销量800盒增加了m%,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.10.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?参考答案1.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.2.解:当运动时间为t秒时,PB=(16﹣3t)cm,CQ=2tcm.(1)依题意,得:×(16﹣3t+2t)×6=33,解得:t=5.答:P,Q两点从出发开始到5秒时,四边形PBCQ的面积为33cm2.(2)过点Q作QM⊥AB于点M,如图所示.∵PM=PB﹣CQ=|16﹣5t|cm,QM=6cm,∴PQ2=PM2+QM2,即102=(16﹣5t)2+62,解得:t1=,t2=(不合题意,舍去).答:P,Q两点从出发开始到秒时,点P和点Q的距离第一次是10cm.3.解:(1)因为点B在点A的左边,AB=12,点A表示4,则点B表示的数为4﹣12=﹣8;动点P从数轴上点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,则点表示的数为4﹣t;故答案为:﹣8;4﹣t.(2)依题意得,点P表示的数为4﹣t,点Q表示的数为﹣8+2t,①若点P在点Q右侧时:(4﹣t)﹣(﹣8+2t)=3,解得:t=3②若点P在点Q左侧时:(﹣8+2t)﹣(4﹣t)=3,解得:t=5 综上所述,点P运动3秒或5秒时与Q相距3个单位长度(3)①如图1,P、Q均在线段AB上∵两正方形有重叠部分∴点P在点Q的左侧,PQ=(﹣8+2t)﹣(4﹣t)=3t﹣12∵PE=AP=4﹣(4﹣t)=t∴重叠部分面积S=PQ•PE=(3t﹣12)•t∵重叠部分的面积为正方形APEF面积的一半,∴,解得:t1=0(舍去),t2=4.8.②如图2,P、Q均在线段AB外∴AB=12,AF=AP=t,∴重叠部分面积S=AB•AF=12t ∴,解得:t1=0(舍去),t2=24.故答案为:4.8或24.4.解:(1)每天的销售量是100+×20=100+200x(千克).故每天销售量是(100+200x)千克;(2)设这种水果每斤售价降低x元,根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x1=0.5,x2=1,当x=0.5时,销售量是100+200×0.5=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每千克的售价降低1元.5.解:设应将每个口罩涨价x元,则每天可售出(200﹣10×)件,依题意,得:(1+x)(200﹣10×)=480,化简,得:x2﹣9x+14=0,解得:x1=2,x2=7.又∵要让顾客得到实惠,∴x=2.答:应将每个口罩涨价2元时,才能让顾客得到实惠的同时每天利润为480元.6.解:(1)由表格数据的规律可得:当平面内有n个点时,直线条数为:故答案为:.(2)设该平面内有 x 个已知点. 由题意,得=28解得x 1=8,x 2=﹣7(舍) 答:该平面内有8个已知点. 7.解:(1)设每碗小面的售价为x 元, 依题意,得:300+30(25﹣x )≥360, 解得:x ≤23.答:每碗小面的售价不超过23元.(2)设每碗售价定为y 元时,店家才能实现每天利润6300元, 依题意,得:(y ﹣6)[300+30(25﹣y )]=6300, 整理,得:y 2﹣41y +420=0, 解得:y 1=20,y 2=21.∵店家规定每碗售价不得超过20元, ∴y =20.答:当每碗售价定为20元时,店家才能实现每天利润6300元.8.解:(1)观察图形,可知:第四个图中y 的值为10,第五个图中y 的值为15. 故答案为:10;15. (2)∵1=,3=,6=,10=,15=,∴y =,当x =48时,y ==1128.故答案为:y =;1128.(3)依题意,得:=190, 化简,得:x 2﹣x ﹣380=0,解得:x 1=20,x 2=﹣19(不合题意,舍去). 答:该班共有20名女生.9.解:(1)设每盒售价应为x 元, 依题意,得:980﹣30(x ﹣14)≥800, 解得:x ≤20.答:每盒售价应不高于20元. (2)依题意,得:[20(1﹣m %)﹣12×(1+25%)]×800(1+m %)=4000,整理,得:m 2﹣25m =0,解得:m 1=25,m 2=0(不合题意,舍去). 答:m 的值为25.10.解:(1)设口罩日产量的月平均增长率为x ,根据题意,得 20000(1+x )2=24200解得x 1=﹣2.1(舍去),x 2=0.1=10%, 答:口罩日产量的月平均增长率为10%. (2)24200(1+0.1)=26620(个). 答:预计4月份平均日产量为26620个.。

一元二次方程应用题(含答案 )九年级(上)

一元二次方程应用题(含答案    )九年级(上)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?3一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)4.一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。

画出这个长方体的展开图,及其过程(设未知数)5.用一个白铁皮做罐头盒,每张铁皮可制作25个盒身,或制作盒底40个,一个盒身和两个盒底配成一套罐头盒。

现在有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身和盒底正好配套?6 用含30%和75%的两种防腐药水,配置含药50%的防腐药水18kg,两种药水各需取多少?”7.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?8. 某厂经过两年体制改革和技术革新,生产效率翻了一番,求平均每年的增长率(精确到0.1%)9.学校组织一次兵乓球比赛,参赛的每两个选手都要比赛一场,所有比赛一共有36场,问有多少名同学参赛?用一元二次方程,化成一般形式。

10. 一拖拉机厂,一月份生产出甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐月递增,又知二月份甲、乙两型的产量之比为3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月增长率及甲型拖拉机一月份的产量。

11.用长为100cm的金属丝做一个矩形框.李明做的矩形框的面积为400平方厘米,而王宁做的矩形框的面积为600平方厘米,你知道这是为什么吗?12某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元13.一张桌子的桌面长6米 宽为4米。

北师大版九年级数学上一元二次方程与实际应用题带答案

北师大版九年级数学上一元二次方程与实际应用题带答案

北师大版九年级数学上一元二次方程与实际应用题带答案一元二次方程的应用(带答案)满分100,测试时间45分钟一、选择题(每小题6分,共30分)1.若两个连续整数的积是56,则它们的和为()A.11B.15C.-15D.±152.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销量不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价的百分率为()A.8%B.18%C.20%D.25%3.商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台.为了促销,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使消费者得到更多实惠,每台冰箱应降价()A.100元B.200元C.300元D.400元3.某旅行社为鼓励市民组团去天水湾风景区旅游,推出了如下收费标准:(1)如果人数不超过25人,人均旅游费用为1000元;(2)如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元某单位组织员工去天水湾风景区旅游,共支付旅游费用27000元,该单位去天水湾风景区旅游的共有()A.45人B.30 人C.45人或30人D.以上都不对5.如图2所示,在Rt△ABC中,∠C=90°,点P,Q同时由A,B 两点出发,分别沿AC,BC方向向C点匀速运动,其速度均为2m/s,若△PCQ的面积是△ABC面积的一半,则运动时间为()B.9s D.10s6.有一人患流感,经过两轮传染后共有81人患了流感,则每轮传染中平均一人传染了_____________人7.一辆新车购买价为20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.若第三年年末这辆车折旧后价值为11.56万元,则第二、三年的年折旧率为______________8.已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图3所示若正方形AENM与四边形EFDB的面积相等,则AE的长为________________________三、解答题(共52分)9.(12分)将一条长为40cm的铁丝剪成两段,并以每段铁丝的长度为周长做成两个正方形. (1)要使这两个正方形的面积之和等于52cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于48cm2吗?若可能,求出两段铁丝的长度;若不可能,请说明理由.10.(12分)现代互联网技术的广泛应用,催生了快递行业的高速发展.某快递公司,今年三月份与五月份完成投递的快递总件数分别为4万件和4.84万件.现假定该公司每月投递的快递总件数的增长率相同(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.4万件,那么该公司现有10名快递投递业务员,能否完成今年6月份的快递投递任务?如果不能,那么至少需要增加几名业务员?11.(14分)某淘宝网店销售台灯,成本为每个30元销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每上涨1元,则其月销售量就减少20个;若售价每下降1元,则其月销售量就增加200个(1)若售价上涨x元(x>0),则每月能售出个台灯;(2)为迎接“双十一”,该网店决定降价促销,在库存为1210个台灯的情况下,预计月获利恰好为8400元,求每个台灯的售价;(3)在库存为1000个台灯的情况下,预计月获利恰好为8000元,直接写出每个台灯的售价12.(14分)如图4所示,△ABC中,∠B=90°,AB=6 cm,BC=8 cm.(1)点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动,若一点到达终点,则另一点也随之停止运动.如果P,Q分别从A,B同时出发,那么线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能,说明理由(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,几秒时△PBQ的面积为1cm2?答案1. D2. C3.B4.B5.A6.87.15%58.19.解:(1)两段铁丝的长度分别为16cm和24cm(2)不能10.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意,得4(1+x)2=4.84,解得x=0.1,x2=-2.1(不合题意,舍去).答:该快递公司投递总件数的月平均增长率为10%,(2)今年6月份的快递投通任务是4.84×(110%)=5.324(万件),而10名投递业务员能完成的快递投递任务是0.4×10=4(万件),4万件<5.324万0件,该公司现有的10名投递业务员不能完成今年6月份的快递投3÷递任务.平均每人每月最多可投递0.4万件,∵需要增加业务员(5.324-4)÷0.4=3.31(名),即至少需要增加4名业务员11.解:(1)(600-20x)(2)设每个台灯降价x元.根据题意,得(40一x30)(200x+600)=8400,解得x1=3,x2=4.当x=3时,40-3=37,3×200+600=1200,1200<1210;当ェ=4时,40-4=36,4×200+600=1400,1400>1210,不合题意,舍去.答:每个台灯的售价为37元.(3)每个台灯的售价为38元或50元.12.解:(1)线段PQ不能将△ABC分成面积相等的两部分.(2)(5-2)s、5s或(5+2)s。

人教版九年级上册 第21章《一元二次方程》 实际应用题专项练习(二)

人教版九年级上册 第21章《一元二次方程》 实际应用题专项练习(二)

《一元二次方程》实际应用题专项练习(二)1.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?2.全球疫情爆发时,医疗物资极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天.①现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产口罩15000万件,若能,应该增加几条生产线?若不能,请说明理由.3.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).4.某村计划建造如图所示的矩形蔬菜温室,要求长为24m,宽为12m,在温室内,沿前侧内墙保留2m宽的空地,其它三侧内墙各保留等宽的通道.当通道的宽为多少时,蔬菜种植区域的面积是210m2?5.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递总件数分别为10万件和14.4万件,现假定该公司每月投递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投0.5万件,那么该公司现有的29名快递投递员能否完成今年6月份的快递投递任务?如果不能,请问需要至少增加几名业务员?6.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.7.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.8.为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?9.草根学堂院内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)10.今年8月双福国际农贸市场某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计3月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额﹣总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了%,售价下降了a%;“红富士”的销售量下降了a%,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等.求a的值.参考答案1.解:(1)设y与x的函数关系式为y=kx+b(k≠0),将(22,36),(24,32)代入y=kx+b,得:,解得:,∴y与x的函数关系式为y=﹣2x+80(20≤x≤28).故答案为:y=﹣2x+80(20≤x≤28).(2)依题意,得:(x﹣20)(﹣2x+80)=150,整理,得:x2﹣60x+875=0,解得:x1=25,x2=35(不合题意,舍去).答:每本纪念册的销售单价是25元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)①设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25,又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线;②设增加a条生产线,则每条生产线的最大产能为(1500﹣50a)万件/天,依题意,得:(1+a)(1500﹣50a)=15000,化简得:a2﹣29a+270=0,∵△=(﹣29)2﹣4×1×270=﹣239<0,方程无解.∴不能增加生产线,使得每天生产口罩15000万件.3.解:(1)设甲商品的出厂单价是x 元/件,则乙商品的出厂单价是x 元/件, 根据题意得:3x ﹣2×x =150, 解得:x =90, ∴x =60.答:甲、乙商品的出厂单价分别是90、60元.(2)由题意得:,解得:a 1=0(舍去),a 2=15. 答:a 的值为15.4.解:设通道的宽为xm ,则蔬菜种植区域为长(24﹣2﹣x )m ,宽(12﹣2x )m 的矩形, 依题意,得:(24﹣2﹣x )(12﹣2x )=210, 整理,得:x 2﹣28x +27=0,解得:x 1=1,x 2=27(不合题意,舍去).答:当通道的宽为1m 时,蔬菜种植区域的面积是210m 2.5.解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意,得 10(1+x )2=14.4解得x 1=0.2,x 2=﹣2.2(不符合题意,舍去), 答:该快递公司投递总件数的月平均增长率为20%. (2)由(1)得,14.4×1.2=17.28(万件), 29×0.5=14.5, 14.5<17.28, 故不能完成任务.因为(17.28﹣14.5)÷0.5=5.56, 所以还需要至少增加6名业务员. 答:需要至少增加6名业务员.6.解:(1)设购进x 台A 型号暖风机,则购进(900﹣x )台B 型号暖风机, 依题意,得:600x +900(900﹣x )≥690000,解得:x≤400.答:至多购进400台A型号暖风机.(2)依题意,得:600(1﹣a%)×400(1+a%)+900(1﹣a%)×(900﹣400)(1+a%)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.7.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.8.解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.9.解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.10.(1)设象牙芒有5x箱,则红富士有3x箱,根据题意得:5x+3x=400,解得x=50,则象牙芒有250箱,红富士有150箱.设每箱象牙芒y元,则250(2y﹣10)+150y﹣22000≥8000.解得:y≥50,∴2y﹣10≥90答:每箱“象牙芒”至少卖90元;(2)根据题意得:250(1﹣a%)•90(1﹣a%)=150(1﹣a%)•50,令t=a%,整理,得:4t2﹣5t+1=0,……(7分)解得:t=1(不合题意,舍去)或t=0.25,∴a=25.答:a的值为25.。

初三(九年级)数学一元二次方程应用题专项练习(带标准答案)

初三(九年级)数学一元二次方程应用题专项练习(带标准答案)

初三(九年级)数学一元二次方程应用题专项练习(带答案)————————————————————————————————作者:————————————————————————————————日期:2一元二次方程应用题专项练习题(带答案)一、面积问题01、一个面积为120 2m的矩形苗圃,它的长比宽多2 m. 苗圃的长和宽各是多少?02、有一条长为16 m的绳子,你能否用它围出一个面积为15 2m的矩形?若能,则矩形的长、宽各是多少?03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850 2m,道路的宽应为多少?04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽?34 05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m ,宽为5 m. 如果地毯中央长方形图案的面积为18 2m ,那么花边有多宽?06、在一幅长90 cm 、宽40 cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?07、有一面积为54 2m 的长方形,将它的一边剪短5 m ,另一边剪短2 m ,恰好变成一个正方形,这个正方形的边长是多少?5 08、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.09、如图,在Rt △ACB 中,∠C =90°,AC =8 m ,BC =6 m ,点P 、Q 同时由A 、B 两点出发分别沿AC 、BC 方向向点C 匀速移动(到点C 为止),它们的速度都是1 m/s. 经过几秒△PCQ 的面积是Rt △ACB 面积的一半?二、体积问题10、长方体木箱的高是8 dm ,长比宽多5 dm ,体积是528 3dm ,求这个木箱的长和宽.11、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.cm,求原铁皮的边长.已知盒子的容积是400 3三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是 ( )A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税48.4万元,该公司缴税的年平均增长率为多少?618、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份月销售额的平均增长率.五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

一元二次方程应用题(含答案)

一元二次方程应用题(含答案)

一元二次方程应用题1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x 元,依题意x≤10∴(44-x)(20+5x)=16002.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x(8+x)(12+x)=96+69x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m?(2)从开始加速到行驶64m处是用多长时间?4解:(0+10)除2为平均增加为5(0+5a)除2乘a5解:2.5*8=20100-20=80 80/8=10100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=106.1一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。

一元二次方程应用题(含答案)

一元二次方程应用题(含答案)
解:衬衫降价 x 元
2100=(50-x)(30+2x)=1 500+70x-x^2
21. 在一块面积为 888 平方 厘米的矩形材料的四角, 各剪掉 一个大小相同的正方形 (剪掉的 正方形作废料处理, 不再使用), 做成一个无盖的长方体盒子, 要 求盒子的长为 25cm ,宽为高的 2 倍,盒子的宽和高应为多少?
30%*X+75%Y=50%*18
6X+15Y=180
X+Y=18
X=18-Y
6*18-6Y+15Y=180
Y=8 X=10
9. 印度古算术书中有这样 一首诗:“一群猴子分两队,高 高兴兴在游戏,八分之一再平 方,蹦蹦跳跳树林里;其余使二 叽喳喳,伶俐活泼又调皮,告我 总数共多少, 两队猴子在一起。”
8. 用含 30% 和 75% 的两种防 腐药水,配置含药 50% 的防腐 药水 18kg ,两种药水各需取多 少?
பைடு நூலகம்
7 、解:设用 X 张制罐身 用 Y
张制罐底 则 X+Y=36
X=36-Y
25X=40Y/2
X=4Y/5
4Y/5=36-Y Y=20 X=16
8 、解:设 30% 的取 X 75%
的取 Y 则
解:设第一次倒出 x 升,则 第二次为 x ( 20-x )/20.( 此处 为剩下的酒精占总体积 20 升的 多少即比率然后乘上倒出的升 数即为倒出的纯酒精数
则 20-x-x(20-x)/20=5
解得 x=10
6.1 一个长方体的长与宽的 比为 5 :2 ,高为 5 厘米,表面 积为 40 平方厘米。画出这个长 方体的展开图,及其过程(设未 知数)
12. 某企业 2007 年利润为 50 万元,如果以后每年的利润 都比上年的利润增长 x% 。那么 2009 年的年利润将达到多少万 元?

九年级数学一元二次方程测试卷【含答案】

九年级数学一元二次方程测试卷【含答案】

九年级数学一元二次方程测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列方程中,属于一元二次方程的是:A. 2x + 3 = 5B. x^2 4x + 4 = 0C. 3x + 2y = 6D. x^3 8 = 02. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式是:A. b^2 4acB. a^2 4bC. a^2 + b^2D. b^2 ac3. 方程x^2 5x + 6 = 0的解是:A. x = 2 或 x = 3B. x = -2 或 x = -3C. x = 1 或 x = 6D. x = -1 或 x = -64. 若一元二次方程有两个相等的实数根,则判别式的值是:A. 大于0B. 等于0C. 小于0D. 无法确定5. 下列方程中,解为x = 4的是:A. x^2 8x + 16 = 0B. x^2 6x + 8 = 0C. x^2 + 8x + 16 = 0D. x^2 + 6x + 8 = 0二、判断题(每题1分,共5分)6. 任何一元二次方程都有两个解。

()7. 一元二次方程的解可能是两个实数,也可能是两个虚数。

()8. 若一元二次方程的判别式小于0,则方程无实数解。

()9. 一元二次方程的解可以通过因式分解法求得。

()10. 一元二次方程的解可以通过配方法求得。

()三、填空题(每题1分,共5分)11. 一元二次方程的标准形式是______。

12. 一元二次方程的解可以通过______求得。

13. 若一元二次方程的判别式大于0,则方程有两个______实数解。

14. 若一元二次方程的判别式等于0,则方程有两个______实数解。

15. 一元二次方程的解可以通过______求得。

四、简答题(每题2分,共10分)16. 请简述一元二次方程的定义。

17. 请说明一元二次方程的解的意义。

18. 请解释一元二次方程的判别式的意义。

19. 请列举一元二次方程的解法。

九上数学一元二次方程应用题

九上数学一元二次方程应用题

1.已知关于x 的一元二次方程.012=-+kx x(1)求证:方程有两个不相等的实数根;(2)设方程的两根分别为z ,,X 。

,且满足,2121x x x x ⋅=+求k 的值2.党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。

在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,求每个十年的国民生产总值的平均增长率.3.如图1,有一面积为2150m 的长方形鸡场,鸡场的一边靠墙(墙长m 18),另三边用竹篱笆围成,如果竹篱笆的长为m 35,求鸡场的长与宽各为多少米?4.阅读下列材料:关于x 的方程:c c x x 11+=+的解是cx c x 1,21==; 的解是(即)1111c c x x c c x x -+=-+-=-cx c x 1,21-==; c c x x 22+=+的解是cx c x 2,21==; c c x x 33+=+的解是cx c x 3,21==. (1)请观察上述方程与解的特征,比较关于x 的方程)0(≠+=+m c m c x m x 与它们的关系,猜想它的解是什么,并用“方程的解”的概念进行验证;(2)由上述的观察、比较、猜想、验证可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边的完全相同,只是把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用结论解关于x 的方程:1212-+=-+a a x x .5.“坡耕地退耕还林还草”是国家为解决西部地区水土流失生态问题及帮助广大农民脱贫致富提出的一项战略措施,•某村村长为带领全村群众自觉投入“坡耕地退耕还林还草"行动,率无垂范,2001年将自家的耕地全部退耕,并于当年承包20亩耕地的还林还草及管护任务,而实际完成的亩数比承包亩数增加的百分率为x ,•并保持这一增长率不变,2002年村长完成了28.8亩耕地还林还草任务.求:(1)增长率x 为多少?(2)该村有30户人家,每户均以村长2002年完成亩数为准,国家按每亩地230元给予补助,则国家将对该村投入补助资金多少万元?6.某电厂规定:该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月每户只要交10元用电费,如果超过A度,则这个月除了仍要交10元用电费,超过部分还要按每度元交费.(1)该厂某户居民王东2月份用电90度,超过了规定的A度,•则超过部分应交电费_______元(用A表示).(27.新中国成立后,社会安定,我国人口数量逐年增加,人均资源不足的矛盾日益突出,为实施可持续发展战略,我国把实行计划生育作为一项基本国策,•如果是我国人口数量增长图,试根据图象信息,回答下列问题.(1)1950年到1990年我国人口增加了_______亿,2000•年我国人口数量为______亿人;(2)实行计划生育政府前我国人口平均每5年增长10%,由于实行了计划生育,•我国从1990年2000年这十年间就少出生了_________亿人;(3)1990年到2000年这十年间,我国人口平均每5年增长的百分率是多少?(•要求只列方程,不求解).100A8.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上再投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元. (1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?9.某商店以16元/支的价格进了一批钢笔,如果以20元/支的价格售出,每月可以卖200支,而且如果每支上涨1元就少卖10支。

人教版九年级上册数学第21章一元二次方程利润问题应用题(含答案)

人教版九年级上册数学第21章一元二次方程利润问题应用题(含答案)

一元二次方程利润问题应用题1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价6、一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)7、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元8、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?
2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?
3一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)
4.一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。

画出这个长方体的展开图,及其过程(设未知数)
5.用一个白铁皮做罐头盒,每张铁皮可制作25个盒身,或制作盒底40个,一个盒身和两个盒底配成一套罐头盒。

现在有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身和盒底正好配套?
6 用含30%和75%的两种防腐药水,配置含药50%的防腐药水18kg,两种药水各需取多少?

7.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?
8. 某厂经过两年体制改革和技术革新,生产效率翻了一番,求平均每年的增长率(精确到0.1%)
9.学校组织一次兵乓球比赛,参赛的每两个选手都要比赛一场,所有比赛一共有36场,问有多少名同学参赛?用一元二次方程,化成一般形式。

10. 一拖拉机厂,一月份生产出甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐月递增,又知二月份甲、乙两型的产量之比为3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月增长率及甲型拖拉机一月份的产量。

11.用长为100cm的金属丝做一个矩形框.李明做的矩形框的面积为400平方厘米,而王宁做的矩形框的面积为600平方厘米,你知道这是为什么吗?
12某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元
13.一张桌子的桌面长6米宽为4米。

长方形台布的面积是桌面面积的两倍。

若将台布铺在桌子上四边(四个角除外)垂下的长度相同,求这块台布的长和宽。

14.参加一次聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会?
15参加一次足球联赛的每两个队之间都进行两次比赛,共要比赛90场,共有多少个队参加比赛?
16.要组织一次篮球联赛,赛制为单循环形式(每两个队之间赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?
17.在某场象棋比赛中,每位选手和其他选手赛一场,胜者记2分,败者记0分,平局各记1分,今有四位统计员统计了全部选手的得分之和分别是2025分、2027分、2070分、2085分,经核实,只有一位统计员的结果是正确的,问这场比赛有几位选手参加?
18.为一副长20CM 宽16CM的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的二分之一,镜框边的宽度应为多少
19.将进货单价为40元的商品按50元出售时,能卖出500个,已知该商品每涨价1元,其销售量就要减少10个,为了赚8000元利润,售价应定为多少?这时进货应为多少个?
20.每件商品的成本是120元,在试销阶段发现每件售价(元)与产品的日销售量(件)始终存在下表中的数量关系,但每天的盈利(元)却不一样。

为找到每件产品的最佳定价,商场经理请一位营销策划员通过计算,在不改变每件售价(元)与日销售量(件)之间的数量关系的情况下,每件定价为m元时,每日盈利可以达到最佳值1600元。

请你做营销策划员,m的值应为多少?
21.某商店如果将进货价8元的商品按每件10元出售,每天可销售200件,现采用提高售价,减少进货量的方法增加利润,已知这种商品每涨0.5元,其销售量就可以减少10元,问应将售价定为多少时,才能使所赚利润最大,并求出最大利润
1. 解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,
依题意x≤10
∴(44-x)(20+5x)=1600
展开后化简得:x²-44x+144=0
即(x-36)(x-4)=0
∴x=4或x=36(舍)
即每件降价4元
要找准关系式
2解:设增加x (8+x)(12+x)=96+69 x=3
增加了3行3列
3. 解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精
占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数
则20-x-x(20-x)/20=5
解得x=10
4. 解:设宽为2x,长为5x。

2*(2x*5x+2x*5+5x*5)=40
10x的平方+35x-20=0
x=1/2
5.解:设用 X 张制罐身用 Y 张制罐底则X+Y=36 X=36-Y 25X=40Y/2 X=4Y/5 4Y/5=36-Y Y=20 X=16
6、解:设30%的取 X 75%的取 Y 则 30%*X+75%Y=50%*18 6X+15Y=180
X+Y=18 X=18-Y
6*18-6Y+15Y=180
Y=8 X=10
7.解:设边长x
则(19-2x)(15-2x)=77
4x^2-68x+208=0
x^2-17x+52=0
(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去
故x=4
8解:设平均每年的增长率x
(x+1)^2=2
x=0.414
9.解:设有X名同学参赛,X*(X-1)/2=36,
一般形式: X方-X-72=0
答案: X=9
10.解:设乙的增长率为X,那么二月乙就是16(1+X)台,甲就是16(1+X)×3÷2;三月乙就是16(1+X)²台,甲就是16(1+X)×3÷2+10台,所以列出算式16(1+X)²+16(1+X)×3÷2+10=65求解,然后可以分别算出一月二月乙的产量,然后就可以解得甲的产量了17.
11.解:设矩形一边长为X厘米,则相邻一边长为1/2(100-2X)厘米,即(50-X)厘米,依题意得:
X*(50-X)=400 解之得:X1=40,X2=10;
X*(50-X)=600 解之得:X1=20,X2=30;
所以李明做的矩形的长是40厘米,宽是10厘米;
王宁做的矩形的长是30厘米,宽是20厘米
12.解:衬衫降价x元
2100=(50-x)(30+2x)=1500+70x-x^2
x^2-70x+600=0
(x-10)(x-60)=0
x-60=0 x=60>50 舍去
x-10=0 x=10
13.解:设垂下的长度为a,
则:(6+a)*(4+a)=2*4*6
解得:a=2或a=-12(舍去),
台布的长、宽分别为8、6
14解: n(n-1)\2=10
n=5
15、x(x-1)\2*2=90
x=10
16、y(y-1)\2=15
y=6
17解:无论如何,每一局两人合计都应得2分,所以最终的总得分一定是偶数,由于2025、2027、2085都是奇数,所以都不符合题意,所以正确的是第三个记分员设有x人参加,则一共比了x(x-1)/2局
x(x-1)/2=2070/2
x²-x-2070=0
(x-46)(x+45)=0
x1=46,x2=-45(舍)
答:一共有46位选手参加.
18解:镜框边的宽度为xcm,照片长加两个宽度,宽加两个宽度,外部变成一个大长方形,故大长方形的长为(20+2x)cm,宽为(16+2x)cm,大长方形面积减去照片(小长方形)面积就是镜框的面积。

(20+2x)(16+2x)-20*16=20*16/2
4x^2+72x-160=0
x^2+18x-40=0
(x+20)(x-2)=0
x=2,x=-20(舍去)
镜框边的宽度应为2cm
19解:利润是标价-进价
设涨价x元,则:
(10+x)(500-10x)=8000
5000-100x+500x-10x^2=8000
x^2-40x+300=0
(x-20)^2=100
x-20=10或x-20=-10
x=30或x=10
经检验,x 的值符合题意
所以售价为80元或60元
20.解:若定价为m 元时,售出的商品为[70-(m -130)]件
列方程得
[]1600)120()130(70=-⋅--m m
整理得025*******=+-m m
0)160(2=-m
∴m 1=m 2=160
答:m 的值是160
21.以应进8000/(10+x)=200个或400个46解:设售价定为x 元,则每件的利润为
(x -8)元,销售量为]105.010200[⨯--
x 件,列式得(x -8)]105.010200[⨯--x 整理得,
720)14(20)
16028(2022+--=+--x x x 即当x =14时,所得利润有最大值,最大利润是720元。

相关文档
最新文档