点到直线的距离公式的七种推导方法
点到直线的距离公式空间向量推导过程
点到直线的距离公式空间向量推导过程点到直线的距离公式是数学中一个比较基础的概念。
我们可以通过向量的方法来推导这个公式。
一、点到直线距离公式的定义点到直线的距离是指从一点到直线所在平面的最短距离。
数学中,点到直线距离的公式可以表示为:d = |(P0 - P) × n| / |n|其中,P0是该直线上的某一点,P是要计算的点,n是该直线的方向向量。
d表示点到直线的距离。
二、点到直线距离公式的向量推导过程1. 对于直线上的一点P0和任意一点P,向量P0P可以表示为:P0P = P - P02. 这个向量可以分解为垂直于n的投影和平行于n的向量。
垂直于n的投影可以表示为:projnP0P = ((P - P0) · n / |n|²) * n其中,·表示点积。
这个向量与n垂直,因为它是n的一个标量倍,所以它在n的方向上。
可以通过代入P0P来进行验证。
projnP0P · n = ((P - P0) · n / |n|²) * n · n = ((P - P0) · n / |n|²) * |n|² = (P -P0) · n3. 平行于n的向量为点P到直线所在平面上的一个向量Q。
Q就是P0P 减去垂直于n的投影projnP0P:Q = P0P - projnP0P = P0P - ((P - P0) · n / |n|²) * n4. Q的模长就是点到直线的距离:d = |Q| = |P0P - ((P - P0) · n / |n|²) * n|5. 展开计算可以得到:d = |P0P · n / |n|² * n| = |(P0 - P) × n| / |n|这就是点到直线距离公式。
总结:通过向量的方法可以推导出点到直线的距离公式,公式可以帮助我们计算从一个点到一条直线的距离,是数学中一个比较基础的概念。
点到直线的距离公式的七种推导方法
点到直线的距离公式的七种推导方法(转载)很有用哦已知点 00(,)P x y 直线:0(0,0)l Ax By C A B ++=≠≠求点P 到直线 l 的距离。
(因为特殊直线很容易求距离,这里只讨论一般直线) 一、 定义法证:根据定义,点P 到直线 l 的距离是点P 到直线 l 的垂线段的长,如图1, 设点P 到直线l 的垂线为 'l ,垂足为Q ,由 'l l ⊥可知 'l 的斜率为B A解得交点2200002222(,)B x ABy AC A y ABx BCQ A B A B ----++2222200000022222222000022222222200000022222222||()()()()()()()()()B x ABy AC A y ABx BC PQ x y A B A B A x ABy AC B y ABx BC A B A BA Ax By CB Ax ByC Ax By C A B A B A B ----=-+-++------=+++++++++=+=+++|PQ ∴=二、 函数法证:点P 到直线 l 上任意一点的距离的最小值就是点P 到直线l 的距离。
在l 上取任意点 (,)Q x y 用两点的距离公式有,为了利用条件0Ax By C ++=上式变形一下,配凑系数处理得:222200222222220000220000220000()[()()]()B ()()B ()[()B()][()B()][()B()](B )(B 0)A B x x y y A x x y y A y y x x A x x y y A y y x x A x x y y Ax y C Ax y C +-+-=-+-+-+-=-+-+-+-≥-+-=++++=当且仅当00()B A y y x -=-(x )时取等号所以最小值就是d =三、不等式法证:点P 到直线 l 上任意一点Q (,)x y 的距离的最小值就是点P 到直线l 的距离。
十二种方法推导点到直线的距离公式
十二种方法推导点到直线的距离公式在解析几何中,点到直线的距离是一个重要的概念。
点到直线的距离公式可通过不同的方法进行推导,下面将介绍十二种常见的方法。
方法一:利用向量法设直线上一点为A,直线上一点到点的向量为向量a,直线上一点到点的向量的单位向量为向量u,则点到直线的距离d等于向量a与向量u的叉乘的模长除以向量u的模长。
方法二:利用几何推理法一设直线的方程为Ax+By+C=0,点的坐标为(x0,y0),点到直线的距离d等于点到直线的长度沿着法向量方向的投影长度。
方法三:利用几何推理法二设直线上已知点为A,直线的斜率为k,则点到直线的距离d等于点A到点的函数值与点的坐标之间的差的绝对值除以根号下1+k^2方法四:利用向量运算法设直线上已知点为A,直线的方向向量为向量u,点的坐标为(x0,y0),点到直线的距离d等于向量PA与向量u的向量积PA*u的模长除以u的模长。
方法五:利用面积法一设直线的方程为Ax+By+C=0,点的坐标为(x0,y0),点到直线的距离d等于点A、B、C构成的三角形的面积除以AB的长度。
方法六:利用面积法二设直线的方程为Ax+By+C=0,点的坐标为(x0,y0),点到直线的距离d等于点(x0,y0)到直线方程Ax+By+C=0的距离。
方法七:利用斜率法一设直线上已知点为A,直线的斜率为k,直线的截距为b,点的坐标为(x0, y0),点到直线的距离d等于点到直线ax - y + b = 0的距离,其中a=-1/k。
方法八:利用斜率法二设直线上已知点为A,直线的斜率为k,斜率的倒数为k',直线的截距为b,点的坐标为(x0,y0),点到直线的距离d等于点(x0,y0)到直线y-k'x-b=0的距离。
方法九:利用格拉姆公式法设直线上已知点为A,直线的方向向量为向量u,点的坐标为(x0,y0),点到直线的距离d等于点A到(AP-PB)与u的向量积的模长除以u的模长,其中P为直线上任意一点。
点到直线的距离公式解析几何
点到直线的距离公式解析几何在解析几何中,点到直线的距离可以使用以下公式进行计算:假设直线方程为Ax + By + C = 0,点的坐标为(x0, y0)。
1. 首先,计算直线上任意一点P(x1, y1)到点的距离d,公式为:d = |Ax1 + By1 + C| / √(A^2 + B^2)2. 然后,将直线上任意一点P(x1, y1)替换为点(x0, y0):d = |Ax0 + By0 + C| / √(A^2 + B^2)即为点到直线的距离。
该公式的推导过程如下:点P到直线的距离可以看作点P到直线的垂足H的距离。
将垂足H的坐标设为(xh, yh)。
由于直线上的任意一点P(x1, y1)满足Ax1 + By1 + C = 0,所以垂足H的坐标应满足Axh + Byh + C = 0。
由于垂足H在直线上,所以垂足H到点P的向量与直线的方向向量垂直,即向量HP与直线的法向量垂直。
向量HP为(Px - xh, Py - yh),直线的法向量为(A, B)。
根据向量的垂直关系,有:(A, B) · (Px - xh, Py - yh) = 0化简得:A(Px - xh) + B(Py - yh) = 0展开得:APx - Axh + BPy - Byh = 0移项得:APx + BPy = Axh + Byh对比直线方程Ax + By + C = 0,可知:Axh + Byh = -C代入上式,得:APx + BPy = -C由于点P的坐标为(x0, y0),所以有:APx0 + BPy0 = -C展开得:Ax0 + By0 + C = 0移项得:Ax0 + By0 + C = 0取绝对值,得:|Ax0 + By0 + C| = 0所以,点到直线的距离为:d = |Ax0 + By0 + C| / √(A^2 + B^2)即为所求公式。
十二种方法推导点到直线的距离公式
{十二种点到直线距离公式证明方法}
用高中数学知识推导点到直线的距离公式的方法.已知点P(Xo,Yo)直线l:Ax+By+C=0 (A、B均不为0),求点P到直线I 的距离。
(因为特殊直线很容易求距离,这里只讨论一般直线) 《1.用定义法推导》
点P到直线l的距离是点P到直线l 的垂线段的长,设点P到直线l的垂线为垂足为Q,由l垂直l’可知l’的斜率为B/A
《2,用设而不求法推导》
《3,用目标函数法推导》
《4,用柯西不等式推导》
“求证:(a2 +b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc,即a/c=b/d 时等号成立。
”实为柯西不等式的最简形式,用它可以非常方便地推出点到直线的距离公式。
《5.用解直角三角形法推导》
设直线l的倾斜角为,过点P作PM∥y轴交l于G(x1 ,y1),显然X l=x。
,所以
《6,用三角形面积公式推导》
《7.用向量法推导》
《8.用向量射影公式推导》
《9.利用两条平行直线间的距离处处相等推导》
《10.从最简单最特殊的引理出发推导》
{11.通过平移坐标系推导】
【12,由直线与圆的位置关系推导】
感谢以下挚友,俺其实只是负责编辑整理了一下,证明下,感受下数学滴博大精深。
点到直线的距离公式的七种推导方法
点到直线的距离公式的七种推导方法已知点 00(,)P x y 直线:0(0,0)l Ax By C A B ++=≠≠求点P 到直线 l 的距离。
(因为特殊直线很容易求距离,这里只讨论一般直线)一、 定义法证:根据定义,点P 到直线 l 的距离是点P 到直线 l 的垂线段的长,如图1,设点P 到直线l 的垂线为 'l ,垂足为Q ,由 'l l ⊥可知 'l 的斜率为B A'l ∴的方程:00()B y y x x A-=-与l 联立方程组 解得交点2200002222(,)B x ABy AC A y ABx BCQ A B A B ----++ 2222200000022222222000022222222200000022222222||()()()()()()()()()B x ABy AC A y ABx BC PQ x y A B A B A x ABy AC B y ABx BC A B A B A Ax By C B Ax By C Ax By C A B A B A B ----=-+-++------=+++++++++=+=+++|PQ ∴= 二、 函数法证:点P 到直线 l 上任意一点的距离的最小值就是点P 到直线l 的距离。
在l 上取任意点 (,)Q x y 用两点的距离公式有,为了利用条件0Ax By C ++=上式变形一下,配凑系数处理得:222200222222220000220000220000()[()()]()B ()()B ()[()B()][()B()][()B()](B )(B 0)A B x x y y A x x y y A y y x x A x x y y A y y x x A x x y y Ax y C Ax y C +-+-=-+-+-+-=-+-+-+-≥-+-=++++=当且仅当00()B A y y x -=-(x )时取等号所以最小值就是d =三、不等式法证:点P 到直线 l 上任意一点Q (,)x y 的距离的最小值就是点P 到直线l 的距离。
【免费下载】十二种方法推导点到直线的距离公式
《6,用三角形面积公式推导》
6
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
点到直线的距离推导方法
点到直线的距离推导方法点到直线的距离可以通过向量和投影的方法来推导。
假设直线的方程为Ax + By + C = 0,点的坐标为(x0, y0)。
首先,我们可以利用向量的方法来推导点到直线的距离。
设直线上一点为P(x1,y1),则直线的法向量为N=(A, B)。
现在我们连接点P和点Q(x0,y0),其中Q为直线上的垂足点。
连接向量PQ,记为向量v,则v=(x0-x1, y0-y1)。
由于直线的法向量N与向量v垂直,因此点到直线的距离d可以表示为d=|N·v|/|N|,其中|N·v|表示N和v的点积,|N|表示N的模长。
将N=(A, B),v=(x0-x1, y0-y1)代入公式,可以得到点到直线的距离d=|Ax0 + By0 + C|/√(A^2 + B^2)。
另一种推导方法是利用点到直线的投影来求距离。
我们知道,点P到直线的垂直距离就是点P到直线的投影长度。
设直线上一点为P(x1, y1),则直线的法向量为N=(A, B)。
点P到直线的投影点为Q(xq, yq),则向量PQ与直线的法向量N垂直。
利用向量的投影公式,可以得到点到直线的距离d=|PQ|·cosθ,其中θ为PQ与N的夹角。
将PQ的长度表示为|PQ|=|N·v|/|N|,其中v为PQ的方向向量,代入公式可以得到d=|Ax0 + By0 + C|/√(A^2 + B^2)。
这与向量方法推导的结果一致。
综上所述,点到直线的距离可以通过向量和投影的方法来推导,最终的结果都是d=|Ax0 + By0 + C|/√(A^2 + B^2)。
这两种方法都是常用且有效的推导方式,可以根据具体情况选择合适的方法来求解点到直线的距离。
点到直线距离公式的十种推导方法
点到直线距离公式的十种推导方法一、点到直线距离公式的介绍与基础证法点到直线距离公式是高中解析几何中的基础公式,通过点到直线距离这一几何关系的代数化,我们可以使用代数方法描述或者证明更多的几何问题。
而在这一公式的证明层面,实际上价值十分深厚,其推导方法所涉及范围之广,是令人惊叹的,同时也处处生动地表现着数学的连贯性与灵活度,是值得中学生研究的问题。
点到直线距离公式表述:设直线 L 的方程为 Ax+By+C=0 ,点 P 的坐标为(x0,y0),则点 P 到直线 L 的距离为:同理可知,当 P(x0,y0),直线 L 的解析式为 y=kx+b 时,则点 P 到直线 L 的距离为:在人教新版教材中,课本对于该公式的介绍依旧占有很大的篇幅,提到了两种证法,分别是十分直截的垂线段法和结合前面所学的向量方法。
这两种方法具有很强的象征,体现了不同流派的不同处理思路。
我们首先介绍简洁明了的垂线段方法,虽然计算量交大,但思维难度可以说是极小的。
法一:垂线段法①首先解出直线 AB 的方程;②联立 L 与直线 AB,解出垂足 B 的坐标;③利用两点间距离公式得到 AB 距离,即点到直线距离下面我们来探索一下向量的方法,实际上在空间向量章节我们已经学习过如何求一个点到一条直线的距离,主要方法和点到平面距离思路一致,法向量都是十分关键的一点,这也是中学阶段空间向量部分的核心。
法二:向量法①首先求出直线 L 的方向向量,再求出其法向量;②在直线上任取一点 M,求出向量 MP 与法向量的夹角;③利用模长公式即可求解。
二、其余方法展示接下来采用的额外七种方法,分别从面积、设而不求、函数、几何等视角加以展开,每一种方法都可以提炼出不同的核心思路。
等面积的方法和法一十足相似,主要是计算量都偏大,但都比较容易想到;当我们看到高的时候,最能直接想到的或许就是面积了。
法三:等面积法①由点 P 向两坐标轴分别作平行线交直线 L 于点 R、S;②分别利用两点间距离公式得到 PR、PS 的距离;③利用等面积方法求出三角形 PRS 的高,即点到直线的距离下面的方法应该说是解析几何味道十分浓重的,考虑到圆锥曲线中常用的设而不求想法,我们巧妙地构造对称点来解决这个问题。
十二种方法推导点到直线的距离公式.docx
十二种点到直线距离公式证明方法用高中数学知识推导 点到直线的距离公式 的方法.已知点 P(X o ,Y o )直线I : Ax+By+C=0 (A 、B 均不为0),求点P 到直线I 的 距离。
(因为特殊直线很容易求距离,《1.用定义法推导》 点P 到直线I 的距离是点P 到直线 I 的垂线为垂足为Q 由I 垂直I 'ZlA二f 的方⅛ :y-y 0-^ (X-XO 15X∩ 方程组 解紹交点O (虽竺孕欝.A Lr 4 D JA⅛tcΔθV 卫 CjA= B 3IPQ 岸 t B%世百FAC -Xo jj(A⅛{r*-ABX C - BC U <.2[A 铀 VO)Nf X U 严卑(TAC -ABx⅛-BC F_ A'(A 査 + BYQ ∙÷ CF ★ B'(A>⅛+B⅛]+CF皿B 爭(Ax⅛+By 0+O p 一 A 7+B 7二IPcI I 』冷唱√A J V B r这里只讨论一般直线 ) I 的垂线段的长,设点P 到直线可知I '的斜率为B/A«2,用设而不求法推导》过已知点P (x0,y c>作已知直线上Ax+By⅜C⅛O ES垂线,设垂足Q(X t y)»则IyH i Xy-¼>j-AJ=S-I×->⅛ B ,化简得Ax⅛By+C≈OA{y-y(j)—B(X-Xe)=O',A(X-X C⅛+ B(y*y c)⅛ - (Ax0÷By0÷C} 由上式衔:(A⅛ B j>[0t-xJ1+{y-y∏p]^(AX0+By(I+CF 二h SSFGv卩JAdBY叮CL«3?用目标函数法推导》点P(XoY fi)到育线/:A^BPC=O 上圧尊一点的距离的最小値就是总P到亘线/的左f上取圧意点M(K,y),爲两点的距离公式有IPMl i≡(x-x0}≈+Cy-VJ I 为了利用条件AX起卅OS将上式变形一下,配凑系数愛理需,(A3÷B j}[k-+(V-Vn)1I=A a(X-XJ?(v *y⅛j÷A2(y-y0)j+ B:<x-xj? ={A{χ-xJ+B(y-y⅛P+IA(y-γJ*B(x- XJ l? ⅛ ∣A(χ-χ0) 4 B(y-y0)Γ=(AX c+Bvo+C)7 ∖t(Ax o+BVβ+C^O)Λ√{^¾⅛<γ-v^ ⅛B⅛tBy tt±C∣V z A j÷B2当旦仅当AW-旳-BOC-Z=O旳取等号斷以最小值就是d=∣A3⅛*¾⅛÷¾VA2*B34,用柯西不等式推导》“求证:(a2 +b2 )(c 2+d2) ≥(ac+bd) 2 ,当且仅当ad=bc,即a∕c=b∕d 时等号成立。
点到直线的距离公式的七种推导法一--法7
点到直线的距离公式的12种推导方法已知点 00(,)P x y 直线:0(0,0)l Ax By C A B ++=≠≠求点P 到直线 l 的距离。
(因为特殊直线很容易求距离,这里只讨论一般直线) 一、 定义法证:根据定义,点P 到直线 l 的距离是点P 到直线 l 的垂线段的长,如图1, 设点P 到直线l 的垂线为 'l ,垂足为Q ,由 'l l ⊥可知 'l 的斜率为B A'l ∴的方程:00()B y y x x A-=-与l 联立方程组 解得交点2200002222(,)B x ABy AC A y ABx BCQ A B A B ----++ 2222200000022222222000022222222200000022222222||()()()()()()()()()B x ABy AC A y ABx BC PQ x y A B A BA x ABy ACB y ABx BC A B A B A Ax By C B Ax By C Ax By C A B A B A B ----=-+-++------=+++++++++=+=+++|PQ ∴= 二、 函数法证:点P 到直线 l 上任意一点的距离的最小值就是点P 到直线l 的距离。
在l 上取任意点 (,)Q x y 用两点的距离公式有,为了利用条件0Ax By C ++=上式变形一下,配凑系数处理得:222200222222220000220000220000()[()()]()B ()()B ()[()B()][()B()][()B()](B )(B 0)A B x x y y A x x y y A y y x x A x x y y A y y x x A x x y y Ax y C Ax y C +-+-=-+-+-+-=-+-+-+-≥-+-=++++=≥当且仅当00()B A y y x -=-(x )时取等号所以最小值就是d三、不等式法证:点P 到直线 l 上任意一点Q (,)x y 的距离的最小值就是点P 到直线l 的距离。
十二种方法推导点到直线的距离公式
十二种方法推导点到直线的距离公式推导点到直线的距离公式有多种方法,下面将介绍其中十二种方法。
方法一:使用向量法推导点到直线的距离公式。
1.设直线的方程为Ax+By+C=0,点P的坐标为(x0,y0)。
2.由直线上的任意一点P(x,y),与垂直于直线的向量u=(A,B)构成一个直角三角形。
3.点P到直线的距离为直角三角形的斜边长度,即为向量u与向量v=(x-x0,y-y0)的叉乘的模除以向量u的模。
方法二:使用向量法推导点到直线的距离公式。
1.设直线的方程为Ax+By+C=0,点P的坐标为(x0,y0)。
2.将直线方程化为标准形式,即Ax+By+C=d,其中d为点P到直线的距离。
3.将点P带入直线方程,得到Ax0+By0+C=d。
4.点P到直线的距离为,Ax0+By0+C,/√(A^2+B^2)。
方法三:使用线段法推导点到直线的距离公式。
1.设直线的方程为Ax+By+C=0,点P的坐标为(x0,y0)。
2.在直线上找到一点Q,使得线段PQ与直线垂直。
3.点P到直线的距离为线段PQ的长度。
4. 设直线与x轴的夹角为α,则线段PQ的长度为,(x0 - x)cosα + (y0 - y)sinα。
方法四:使用垂直距离法推导点到直线的距离公式。
1.设直线的方程为Ax+By+C=0,点P的坐标为(x0,y0)。
2. 将直线方程转换为斜截式方程y = kx + b。
3.直线的斜率为k=-A/B。
4. 直线上任意一点Q(x, y)到点P的距离为,kx + b - y, /√(k^2 + 1)。
方法五:使用点到点法推导点到直线的距离公式。
1.设直线的方程为Ax+By+C=0,点P的坐标为(x0,y0)。
2.直线上任意一点Q(x,y)到点P的距离为√((x-x0)^2+(y-y0)^2)。
3. 将直线方程转换为斜截式方程y = kx + b。
4. 将点P(x0, y0)带入直线方程得到b = y0 - kx0。
5. 点P到直线的距离为√((x0 - x)^2 + (y0 - kx0 - y)^2)。
点到直线的距离公式
点到直线的距离公式直线是平面几何中的基本概念,我们可以通过两点来确定一条直线。
而点到直线的距离是指从给定点到直线上最近的点之间的距离。
一、向量法设直线的方程为Ax+By+C=0,点P(x0,y0)离直线的距离为d,直线上任意一点Q(x1,y1)离点P的向量为v。
过点P的垂线与直线相交于点Q,向量v与直线垂线的向量w垂直,所以v·w=0。
(其中·表示向量的点乘)点P在直线上,所以Ax0+By0+C=0,所以垂线的方程为Bx-Ay+Bx0-Ay0=0,即Bx-Ay+D=0(其中D=Bx0-Ay0)。
根据向量的表达式,可以得到点Q相对于P的向量v=(x1-x0)i+(y1-y0)j。
(其中i和j分别为x方向和y方向的单位向量)直线垂线的向量w=Ai+Bj。
所以v·w=(x1-x0)A+(y1-y0)B=0。
解得A(x1-x0)+B(y1-y0)=0,即Ax1+By1+C=0,所以点Q也在直线上。
因此,直线上任意一点Q与向量v相乘的结果为0,即v·w=0。
展开等式可得(A(x1-x0)+B(y1-y0))-AD-BD=0,所以(A(x0-x1)+B(y0-y1))=AD+BD。
根据向量的定义可得,A(x0-x1)+B(y0-y0),=,D(A^2+B^2)^(1/2),即,Ax0+By0+C,/√(A^2+B^2)=d。
所以点到直线的距离公式为:d=,Ax0+By0+C,/√(A^2+B^2)。
二、坐标法设直线的方程为y = mx + n,点P的坐标为(x0, y0)。
点P到直线的距离可以通过点到直线的垂线和点到垂足的距离来表示。
直线的斜率为m,所以垂线的斜率为-1/m。
过点P的直线的方程为y - y0 = (-1/m)(x - x0),即mx + y0 = x0 + y。
垂线和直线相交的点的坐标为(x1,y1),代入垂线的方程可以得到y1=(-1/m)x1+(x0/m+y0)。
点到直线距离公式的七种推导方法
点到直线距离公式的七种推导方法点到直线的距离公式是解析几何中常用的公式之一,它可以通过多种推导方法得到。
本文将介绍七种推导方法,包括直线的一般方程法、直线的截距法、垂直平分线法、斜率法、向量法、几何法和矢量法。
1.一般方程法:设直线的一般方程为Ax+By+C=0,点的坐标为(x0,y0)。
将点坐标代入直线方程得到点到直线的距离公式:d=,Ax0+By0+C,/√(A^2+B^2)2.截距法:设直线与x轴和y轴的截距分别为a和b,点的坐标为(x0,y0)。
根据截距的几何意义,可以得到点到直线的距离公式:d=,Ax0+By0+C,/√(A^2+B^2)3.垂直平分线法:设直线的方程为y = kx + c,其中k为斜率,c为截距,点的坐标为(x0,y0)。
垂直平分线的斜率为-1/k,过点(x0,y0)的垂直平分线方程为y = (-1/k)(x - x0) + y0。
将垂直平分线方程与直线方程联立,解方程组得到交点的坐标(xp, yp),然后计算点到交点的距离:d = √((x0 - xp)^2 + (y0 - yp)^2)4.斜率法:设直线的斜率为k,截距为c,点的坐标为(x0,y0)。
设直线上一点为(x,y),则有y - y0 = k(x - x0)。
将直线方程和垂直平分线方程联立,解方程组得到交点的坐标(xp, yp),然后计算点到交点的距离:d = √((x0 - xp)^2 + (y0 - yp)^2)5.向量法:设直线上一点为M(a,b),点的坐标为(x0,y0)。
可以用向量来表示直线上的点,直线的方向向量为v=(p,q)。
设点M到点的向量为u=(x0-a,y0-b),则直线上的点满足u∙v=0。
将向量点积的几何意义应用到点M和点的向量u上,得到点到直线的距离公式:d = ,pu + qv,/ √(p^2 + q^2)6.几何法:根据几何意义,点到直线的距离等于点到直线所在直角三角形的高。
d=h=√(l1^2-h^2)7.矢量法:设直线上一点为M(a,b),点的坐标为(x0,y0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知点 P(x0 , y0 ) 直线 l : Ax By C 0(A 0, B 0) 求点 P 到直线 l 的距离。(因为特殊直线很容易求距离,这里只讨
论一般直线) 一、 定义法
证:根据定义,点 P 到直线 l 的距离是点 P 到直线 l 的垂线段的长,如图 1,
n (1, B) , Q A
d
|
n
PQ
|
|x1x0源自B A( y1y0 )
|
|
A( x1
x0 )
B( y1
y0 )
|
|n|
1
B2 A2
A2 B2
附:
P点在直线l上,
Ax1
By1
C
0, 从而d
|
Ax1
By1 Ax0 A2 B2
By0
|
|
Ax0
By0 C A2 B2
|
方案一:
设点 P 到直线 l 的垂线段为 PQ,垂足为 Q,由 PQ 斜率为 B (A≠0),根据点斜式写出直线 PQ 的方程,
公式有,为了利用条件 Ax By C 0 上式变形一下,配凑系数处理得:
当且仅当
A( y
y0 )
B(x
x0)时取等号所以最小值就是 d
|
Ax0
By0 C A2 B2
|
三、不等式法
证 : 点 P 到 直 线 l 上 任 意 一 点 Q (x, y) 的 距 离 的 最 小 值 就 是 点 P 到 直 线 l 的 距 离 。 由 柯 西 不 等 式 :
由
A1 x1 Ax0
By0 By2
C C
0 0
得
x1
By0 C A
,
y2
Ax0 B
C
.
所以,|PR|=| x0
x1 |=
Ax0
By0 A
C
|PS|=| y0
y2 |=
Ax0
By0 B
C
|RS|=
PR2 PS2
A2 B2 AB
×| Ax0
By0
C
|由三角形面积公式可知: d
·|RS|=|P
五、三角形法
证:P 作 PM∥ y 轴交 l 于 M,过点 P 作 PN∥ x 轴交 l 于 N(图 4)
y
由解法三知| PM || Ax0 By0 C | ;同理得 | PN || Ax0 By0 C |
B
A
在 Rt△MPN 中,PQ 是斜边上的高
l
六、参数方程法
证:过点
P(x0 ,
y0 ) 作直线
l'
:
x
y
x0 t cos y0 t sin
交直线 l
于点
Q。(如图
1)
由直线参数方程的几何意义知| t || PQ | ,将 l' 代入 l 得 Ax0 At cos By0 Bt sin C 0
P
N
Q
M
x
图4
整理后得 | t || Ax0 By0 C | ...........(1) Acos B sin
设点 P 到直线 l 的垂线为 l' ,垂足为 Q,由 l' l 可知 l' 的斜率为 B A
l'
的方程:
y
y0
B (x A
x0 ) 与 l
联立方程组
解得交点
Q(
B2
x0
ABy0 A2 B2
AC
,
A2
y0
ABx0 A2 B2
BC
)
二、 函数法
yP l Q l' x
图1
证:点 P 到直线 l 上任意一点的距离的最小值就是点 P 到直线 l 的距离。在 l 上取任意点 Q(x, y) 用两点的距离
A 出点 Q 的坐标;由此根据两点距离公式求出|PQ|, d 距离为 新疆
王新敞 学案
方案二:设 A≠0,B≠0,这时 l 与 x 轴、 y 轴都
y
R
d
P( x0,y0)
Q
o
S
x l
⊥ l 可知,直线 PQ 的 并由 l 与 PQ 的方程求 得到点 P 到直线 l 的
相交,过点 P 作 x 轴
的平行线,交 l 于点 R(x1, y0 ) ;作 y 轴的平行线,交 l 于点 S (x0 , y2 ) ,
y
P
显然
x1 x0
所以
y1
Ax0 b
C
M
l Q
x
ly P QM
(x1, y1) x
|
PM
||
y0
Ax0 C B
||
Ax0
By0 B
C
|
图2
图3
易得∠MPQ= (图 2)或∠MPQ=1800 (图 3)
在两种情况下都有 tan2
MPQ
tan2
A2 B2
所以
cos MPQ
1
1 tan2
|B| A2 B2
| Ax0 By0 C | A2 B2
| Ax0 By0 C |
|
A2 B2
A2 B2 A2 B2
七、向量法
yP
Q
x l
证 : 如 图 五 , 设 直 线 l : Ax By C 0(A 0, B 0) 的 一 个 法 向 量
图五
直线上任意一点,则 PQ (x1 x0, y1 y0) 。从而点 P 到直线的距离为:
当 l' l 时,我们讨论 与 l 的倾斜角 的关系: 当 为锐角时 ( tan A 0,不妨令A>0,B<0 )有 900 (图 2)
B
当 为钝角时 ( tan A 0,不妨令A>0,B>0 )有 900 (图 3) B
得到的结果和上述形式相同,将此结果代入①得
| t | |
( A2 B2 )[(x x0 )2 ( y y0 )2 ] [ A(x x0 ) B( y y0 )]2 ( Ax0 By0 C)2
当且仅当
A( y
y0 )
B(x
x0)时取等号所以最小值就是 d
|
Ax0
By0 C A2 B2
|
四、转化法
证:设直线 l 的倾斜角为 过点 P 作 PM∥ y 轴交 l 于 M
R|·|PS| 新疆 王新敞 学案
所以 d Ax0 By0 C A2 B2
可证明,当 A=0 时仍适用新疆 王新敞 学案