安徽近五年中考数学试卷分析
2024年安徽省中考真题数学试卷含答案解析
安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。
近三年安徽数学试卷分析
近三年安徽省中考数学试卷分析2016年中考尘埃落定,中考数学试题一直是大家关注的焦点。
2016年安徽省中考数学试题秉承以往的命题风格,试卷结构保持稳定,特色鲜明。
试卷遵循《义务教育数学课程标准》和《2016年安徽省初中毕业学业考试纲要》(数学)中有关评价的基本理念和要求。
着重考察学生是否达到《课标》所确立的数学学科毕业标准,在此基础上,还重视考察学生在《课标》所规定的数学课程目标方面的进一步发展情况。
试卷体现数学课程标准所规定的学习要求,覆盖了标准中数与式,方程与函数,三角形,四边形,圆,全等,相似,轴对称,统计与概率等初中主要的内容;也覆盖了初中数学课程中的化归,分类,数形结合等常见的数学思想和方法;考查知识点全面,重点突出,具备一定的效度。
试卷题目设计有利于考生展示数学学习成就,整卷的语言,图形,文字叙述准确、简明、严谨,不存在理解歧义,有助于考生理解题意并正确解题,突出了试题的主题;整卷试题所使用的题目素材合理,对考生公平,试卷各题目的阅读量也很合理;具备一定的信度。
试卷难易适中,题目设计反映了考生的不同水平,并能把考生的不同水平进行明显区分,预设的考生得分有显著的阶梯分布,有较好的区分度。
一、试题的总体情况分析1. 试卷的结构稳定,2016年安徽中考数学试卷结构稳定,试题有选择题、填空题和解答题三种类型,与往年相同,继续保持了中考命题思路的连续性与稳定性.三种题型的题量与分值如下表:题型选择题填空题解答题合计题量(个)104923分值(分)4020901502.考点分布合理,从试卷考查的内容来看,考查了《考纲》所列的大部分核心知识点,覆盖面广,与《课标》的相关要求保持高度一致,既保证了试卷的有效性,又充分发挥了中考数学试卷在数学教学,尤其中考复习中的引导作用,促进教师自觉遵循《课标》和《考纲》,打造高效的教学。
3.考试内容分值比例恰当,2016安徽省中考数学试卷考查考试内容分布基本符合《考纲》的要求,重点考查“数与代数”、“图形与几何”、“统计与概率”等领域的核心知识点,同时渗透“综合与实践”的相关内容,各领域的分值比例如图:数与代数80分53.30%图形与几何54分36%统计与概率16分10.70%4.试题难易适度,本套试卷难度适中,与前一年相比,一定程度上降低了题目的难度,题目呈现由易到难,层次分明.选择、填空、解答题三大题型内部又由易到难,分布合理。
安徽中考 数学及试卷分析
C.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变
【解析】因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以
△BEC和△DCF都是直角三角形;观察反比例函数图象得x=3,y=3,则反比例解析式为y= ;
当x=3时,y=3,即BC=CD=3,所以CE= BC=3 ,CF= CD=3 ,C点与M点重合,则EC=EM,所以A选项错误;当y=9时,x=1,即BC=1,CD=9,所以EC= ,而EM=3 ,所以B选项错误;
中考数学试题
一、选择题(共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.-2的倒数是( )
A. B. C.2D.-2
【解析】解:∵(-2)×( )=1,∴-2的倒数是 .故选A.
B、当△APC是等腰三角形时,分三种情况:
①如果PA=PC,那么点P在AC的垂直平分线上,则点P或者在图1中的位置,或者与点B重合(如图2),所以PO⊥AC,正确;
②如果AP=AC,那么点P与点B重合,所以PO⊥AC,正确;
③如果CP=CA,那么点P与点B重合,所以PO⊥AC,正确;
∴能让两盏灯泡同时发光的概率为: ,故选B.
【归纳总结】本题考查的是用列表法或画树状图法求概率,同时关注不同学科之间的渗透.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
9.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()
安徽省近五年中考数学试题分析报告
安徽省近六年中考数学试题分析2013年中考数学辅导讲座安徽省中考数学试题总体上坚持稳中求变,变中求新,下面结合近6年我省中考数学试题,试谈我的管窥之见.一、试卷形式和内容时间120分钟,总分150分.考试内容为数与代数、空间与图形、统计与概率三个部分,数与代数约占50%、空间与图形约占38%、统计与概率约占12%.10道选择题,4题填空,9个大题共23题.涉及知识点188个,其中数与代数60个;空间与图形108个;统计与概率20个.了解、理解、掌握层次的知识点186个,运用层次的知识点2个.二、考点透视(一)近六年三种题型的考点分布:1.选择题题号年份1 2 3 4 5 6 7 8 9 102007 相反数幂的运算科学记数法统计中心对称轴对称化简求值平行线中的计算弧长计算函数图象与圆有关的计算2008 绝对值因式分解科学记数法与圆有关的计算分式方程三视图反比例函数概率计算统计图三角形中的计算文档2009 乘方运算平行线中的计算幂的运算方程应用三视图概率计算增长率一次函数图象与圆有关的计算与圆有关的计算2010 正负数概念整式乘除平行线中的计算科学记数法三视图统计图、统计量二次函数与圆有关的计算操作探究确定函数图象2011 数的大小比较科学记数法三视图估算概率三角形中的计算与圆有关的计算一元二次方程解法动点问题确定函数图象2012 有理数的计算三视图幂的运算因式分解一元二次方程应用分式化简有关面积计算概率计算确定函数图象与三角形有关的计算2.填空题题号年份11 12 13 142007 估算三角形外角和统计三视图2008 算术平方根平行线性质弧长计算二次函数文档2009 扇形统计图因式分解解直角三角形二次函数2010 实数运算不等式组与圆有关的计算等腰三角形2011 因式分解幂的运算与圆有关的计算定义新运算2012 科学计数法统计与圆有关的计算矩形3.解答题题号年份三四五六七八1516171819202122232007一元一次不等式网格中的图形变换概率计算列方程解应用题(增长率)解直角三角形三角形中的求证、计算题规律探究四边形与全等三角形二次函数开放题文档2008一元一次不等式组解直角三角形列方程解应用题(增长率)网格中的图形变换概率计算四边形与相似三角形二次函数等腰三角形中的动点问题函数与方程应用2009特殊角三角函数计算与圆有关的几何证明算式规律探究网格中的图形变换列方程解应用题操作探究统计相似三角形中的计算、证明二次函数应用2010化简求值解直角三角形求反比例函数解析式网格中的图形变换列方程解应用题(增长率)特殊四边形与全等三角形概率计算二次函数应用平面几何开放题2011化简求值列方程解应用题网格中的图形变换规律探究解直角三角形统计一次函数与反比例函数动态几何(三角形旋转)几何与二次函数综合2012 整式计算解一元二次方程规律探究网格中的图形变换解直角三角形概率计算一次函数应用相似三角形的计算与证明二次函数应用(二)考点分析1.数与代数(1)数与式文档本部分属于基础题,约占20分,主要考概念与计算.实数、数轴、相反数、绝对值、倒数、算术平方根这些概念要很好掌握.从上表可以看出:科学记数法除2009年没考外,其余五年每年都考;化简求值2010年、2011年连续两年都在15题中出现;因式分解几乎年年都考,2008年第2题,2009年第12题,2010年第15题,2011年第11题,2012年第4题中均考了因式分解,对于数与式不要钻偏题、怪题.(2)方程与不等式安徽卷对方程的考查多以列方程解应用题形式出现.近六年也是年年都考.如2007年18题,2008年第17题,2009年第19题,2010年第19题,2011年16题,2012年第5题都是考列方程解应用题.而对不等式的考查则以直接考解不等式(组)题型为主,如2008年第15题和2010年第12题均直接考解不等式组,六年均未出现过列不等式组的应用问题.当然方程与不等式有时在函数题里也有所体现.(3)函数中考对函数的考查属重头戏,2008年考了35分,2009年考了23分,2010年考了28分,2011年考了30分,2012年考了30分.一次函数是初中学习的第一个函数,其基础性和重要性不言而喻,各地中考对一次函数都十分关注,既有客观题,也有解答题.连续三年都考了从函数(分段函数)图象中获取信息解决问题的题目,如2008年23题,2009年23题,2010年第10题,2012年第21题.反比例函数多以填空、选择、简答题为主.如2008年第7题,2009年未考反比例函数,2010年第17题,2011年21题.对反比例函数的复习难度不宜过大,要注意反比例函数的增减性.二次函数常以压轴题形式出现,重点考查函数图象和性质、确定函数解析式和求函数的最值.如2007年第23题,2008年第14题和21题,2009年第14题和23文档题,2010年第7题和22题,2011年第23题,2012年第23题都考查了二次函数,一般都是一题客观题一题解答题,题型较稳定,客观题重在考图象和性质,主观题作为区分度题,重在考确定函数解析式和求函数的最值,放在后三题中.2.空间与图形(1)平行线的性质和判定三年都有考查,多以选择填空为主,难度不大.如2007年第7题,2008年第12题,2009年第2题,2010年第3题.(2)三角形的边角性质多以基础题为主.解直角三角形问题,近几年考查的都是涉及测量的应用问题,难度不大,如2007年第19题;2008年第16题;2009年13题;2010年16题;2011年第19题;2012年第19题,年年都考,要引起重视.全等和相似三角形也是考查的重头戏,多以解答题形式出现.如2008年第20题考相似、22题与全等有关;2009年第22题考相似;2010年第20题考全等、第23题考相似;2011年第22题考相似、23题考全等;2012年第22题考相似.从题号偏后也可看其难度和重要性,估计2013年将延续下去,一题全等、一题相似的可能性非常大.(3)四边形多以特殊四边形为主,每年都考,有时综合在三角形中进行考查.如2007年第10题;2008年第20题;2009年第19、20题;2010年第20题;2011年第6、9、10、23题;2012年第7、13、14、22题.(4)三视图近六年每年都考,主要以填空、选择题形式出现.如2007年第14题;2008年第6题;2009年第5题;2010年第5题;2011年第3题;2012年第2题,千万不可忽视.(5)圆多以客观题为主,题型相对稳定,分值未超过10分,基本是以圆的基本性质为主,如垂径定理,圆心角、圆周角、弧、弦关系,五年都未涉及直线与圆的关系、圆与圆的关系、圆的切线.除2009年16题考了证明题外,其它四年题文档型均为选择题或填空题,没考解答题,题目主要是求与圆有关的角、弧长、弦长等.但今年考纲关于圆的要求有所提高,其中掌握层次中就列了5项:圆的性质;切线与过切点的半径之间的关系;切线的判定;弧长及扇形面积的计算;圆锥的侧面积和全面积的计算.这些变化要引起我们注意.3.统计与概率从六年中考来看,本考点每年2至3题,客观题和解答题各一题.要提高对统计与概率的重视,因为这部分知识与生活息息相关,在生活中应用较为广泛.统计2008年考的是折线统计图,2009年考的是条形统计图,2010年考的是折线统计图,2011年考的又是条形统计图,轮换着考.2012年则考的是频数分布表与频数分布直方图。
安徽省2024年中考数学试卷(解析版)
2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。
近五年中考数学试卷分析
近五年中考数学试卷分析⼀、考点对⽐⼆、试卷分析数学中考主要考察学⽣对基本⽅法、基本知识、基本技能的考查,因此较少偏、怪、难的题⽬,⼤多数题⽬都来源于课本或者课本⽴体的改编,解法都能从课本上找到影⼦。
因此解题的关键就是要回归课本,掌握典型例题、课后习题的规律及解法,这样考试时才能得⼼应⼿,沉着应对。
把2015-2019这五年的中考数学试卷进⾏分析我们可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不⼤,基础题占有122分(82%),有难度拔⾼题占有28分(18%);4、代数部分考查分数⼤概是80~90分(),⼏何部分考查分数60~70分%);5、知识点的考查⽐较有规律,常规题型的变化不⼤三、题型探究1、代数部分(1)函数函数部分是代数部分的重点内容,也是难点内容,考查的对象主要是:⼀次函数、反⽐例函数、⼆次函数。
考查重点在于以下⼏点:函数解析式的求法,难度较低,熟悉待定系数法等⽅法即可;三种函数图像的基本性质的应⽤,难度中等;函数的实际应⽤,常出现在试卷难度最⼤的代数综合题、代⼏综合题中,分值在20-40分不等。
(2015)14.某⽔库的⽔位在5⼩时内持续上涨,初始的⽔位⾼度为6⽶,⽔位以每⼩时⽶的速度匀速上升,则⽔库的⽔位⾼度y ⽶与时间x ⼩时0≤x≤5的函数关系式为 . (2016?⼴州)⼀司机驾驶汽车从甲地去⼄地,他以平均80千⽶/⼩时的速度⽤了4个⼩时到达⼄地,当他按原路匀速返回时.汽车的速度v 千⽶/⼩时与时间t ⼩时的函数关系是()A .v=320tB .v=C .v=20tD .v=(2016)若⼀次函数y=ax+b 的图象经过第⼀、⼆、四象限,则下列不等式中总是成⽴的是() A .ab >0B .a ﹣b >0C .a 2+b >0 D .a+b >0(2017)关于的⼀元⼆次⽅程有两个不相等的实数根,则的取值范围是A.B.C. D.(2019)若点),1(1y A -,),2(2y B ,),3(3y C 在反⽐例函数xy 6=的图像上,则321,,y y y 的⼤⼩关系是()(A )123y y y << (B )312y y y << (C )231y y y << (D )321y y y << (2)不等式与⽅程不等式与⽅程的复习,要以基础为主,不要只研究难题,要注重过程以及⽅法的总结。
安徽省近五年中考数学试题分析看今
xx近五年xx数学试题分析看今后的方向数与代数部分:(一)数与式综观近年来中考“数与式”部分的试题,再结《标准》的要求,2018年关于“数与式”考查还会主要为基础性题目集中在基础知识与基本技能方面。
但伴随着近年来试题不断推陈出新,以“数与式”内容为依托,加强数学理解能力的考查也越发凸显。
如以新定义概念为载体的开放题,着重考查数学理解能力,这种能力在近年来的中考题中并不少见,如2017年内蒙古呼伦贝尔卷第5题等,另外,依托于“数与式”的有关知识,考查探索规律的能力,即合情推理、归纳概括能力,已经成为一种趋势,如2017年安徽卷第16题。
此外,以几何图形为载体,结合“数与式”的基础知识、考查图形观察能力和逻辑推理能力。
这种试题的呈现形式是把“数与式”部分内容与图形结合,增大了思考量,具有一定的难度。
这种形式值得大家进一步关注。
如2015年安徽卷第18题、2016安徽卷第17题等。
(二)方程(组)与不等式(组)首先,关注解方程(组)与不等式(组)的基本技能。
综观历年中考题,都是针对解方程(组)与不等式(组)这一基本技能编制的试题,其解法的是课程标准中要求掌握的。
因此,有理由确信,在2018年的中考中,对解方程(组)与不等式(组)的试题依然出现。
其次,近年来围绕学生的创新意识,中考试题在开放性增强的同时注重考查了学生思维的严谨性与灵活性,因此,要注重学生对数学事实的真正理解。
最后,关注数学模型思想,考查数学应用意识和能力,因此,以当地热点话题为背景,体现“问题情境—建立模型---求解---解释与应用”这一过程的试题在2018年的中考试题中依然会出现,应该引起关注。
(三)函数首先,关注函数概念及表达方式,此类问题仍在2018年考试中有所体现。
其次,关注函数与方程、不等式之间的关系。
利用函数思想及函数模型解决相关问题也会是考查重点。
近些年试题开放性、灵活性、综合性是一种命题趋势。
在2018年考试中数形结合的思想仍会是重点考查内容。
安徽省中考数学题型分析
安徽省2006-2011年中考数学命题分析[内容摘要] 为了有效地组织九年级数学复习,把学生从繁重的题海战术中解放出来,教师一方面要通过系统的复习帮助学生扎扎实实地夯实基础,另外,教师要研究课标,研究考纲,研究中考命题特点,切忌“死教”与“教死”,做到重点知识重点抓,减轻学生的负担。
[关键词] 安徽中考命题特点、命题趋势初中升学考试是正确评价九年义务教育质量的一条重要途径。
中考数学命题,一方面用足够的分值用于检测学生的学业水平,另外,由于中考数学考试的选拔功能,命题时加强对学生能力的考查。
教师一方面要通过系统的复习帮助学生扎扎实实地夯实基础,另外,教师要研究课标,研究考纲,研究中考命题特点,切忌“死教”与“教死”,做到重点知识重点抓,减轻学生的负担。
安徽省从2003年开始在部分地区实施新的课程改革,2006年中考试卷逐步从依据《教学大纲》命题向《课程标准》命题过渡。
本人结合个人教学经验,对近六年安徽省依据《课程标准》命题的中考数学试卷进行分析,由此对安徽省2012年中考数学命题进行预测,仅供参考。
一、安徽省近六年中考数学命题特点分析1、突出对初中数学基础知识、基本技能等核心内容的考查由于安徽省的中考需要检测学生的学业水平,考查基础知识、基本技能是必要的手段之一,就是兼顾选拔功能的命题也不例外,因为双基是能力的基础,离开双基也就很难谈得上能力提高了。
近年来安徽省的中考试题,年年都有相当数量的基础题,有的试题源于课本,就连一些综合题也大多是基础知识的组合、加工和发展。
不重视双基训练的直接后果是解双基题无法达到反应快速、判断准确,解综合题不能做到推理有据,合乎算理,有时甚至会漏洞百出。
纵观近6年安徽省中考数学试卷中考查基础知识和基本技能的分值一般占50%左右。
(详见表一)表(一)安徽省近六年中考数学难易程度分析2、重视对主要的数学思想和方法的考查数学试题的形式和知识背景可以千变万化,而其中运用的数学思想方法却往往是相通的。
安徽近五年中考数学试卷分析
4
图形中线段最值问题
图形中线段最值问题
二次函数的图像与性质满足条件的线存在型问题特殊三角形、外接圆
11
5
求立方根
解不等式
求立方根
科学计数法
定义域
12
5
因式分解
因式分解
圆的相关计算(求角度)
根据题意列函数关系式
因式分解
13
5
圆的相关计算(求弧长)
圆的相关计算(求弧长)
数的规律
解分式方程
平行四边形、三角形面积
分式应用
21
12
统计与概率
概率
反比例函数和几何综合
概率
统计、概率
22
12
待定系数法、配方法
二次函数和几何综合
二次函数解决实际问题(矩形面积问题)
二次函数(用待定系数法求函数表达式)
分段函数、应用
23
14
几何图形探究与证明
几何图形探究与证明
几何图形探究与证明
几何图形探究与证明
几何概念证明
18
8
尺规作图(轴对称和图形平移)
图形规律探究
解直角三角形的应用
解直角三角形的应用
规律、正六边形、平移、点的坐标
19
10
查找规律
解直角三角形的应用
概率
与圆相关的计算(求半径、弦长)
解直角三角形的应用
20
10
圆和四边形的结合计算
反比例函数和几何综合
与圆相关的计算(求线段长度、线段最值)
方程与不等式解决实际问题)
14
5
几何折叠
几何图形推理
代数式推理
几何图形推理
几何折叠
15
安徽省近五年中考数学试题分析看今后的方向
安徽省近五年中考数学试题分析看今后的方向数与代数部分:(一)数与式综观近年来中考“数与式”部分的试题,再结《标准》的要求,2018年关于“数与式”考查还会主要为基础性题目集中在基础知识与基本技能方面。
但伴随着近年来试题不断推陈出新,以“数与式”内容为依托,加强数学理解能力的考查也越发凸显。
如以新定义概念为载体的开放题,着重考查数学理解能力,这种能力在近年来的中考题中并不少见,如2017年内蒙古呼伦贝尔卷第5题等,另外,依托于“数与式”的有关知识,考查探索规律的能力,即合情推理、归纳概括能力,已经成为一种趋势,如2017年安徽卷第16题。
此外,以几何图形为载体,结合“数与式”的基础知识、考查图形观察能力和逻辑推理能力。
这种试题的呈现形式是把“数与式”部分内容与图形结合,增大了思考量,具有一定的难度。
这种形式值得大家进一步关注。
如2015年安徽卷第18题、2016安徽卷第17题等。
(二)方程(组)与不等式(组)首先,关注解方程(组)与不等式(组)的基本技能。
综观历年中考题,都是针对解方程(组)与不等式(组)这一基本技能编制的试题,其解法的是课程标准中要求掌握的。
因此,有理由确信,在2018年的中考中,对解方程(组)与不等式(组)的试题依然出现。
其次,近年来围绕学生的创新意识,中考试题在开放性增强的同时注重考查了学生思维的严谨性与灵活性,因此,要注重学生对数学事实的真正理解。
最后,关注数学模型思想,考查数学应用意识和能力,因此,以当地热点话题为背景,体现“问题情境—建立模型---求解---解释与应用”这一过程的试题在2018年的中考试题中依然会出现,应该引起关注。
(三)函数首先,关注函数概念及表达方式,此类问题仍在2018年考试中有所体现。
其次,关注函数与方程、不等式之间的关系。
利用函数思想及函数模型解决相关问题也会是考查重点。
近些年试题开放性、灵活性、综合性是一种命题趋势。
在2018年考试中数形结合的思想仍会是重点考查内容。
2023年真题安徽省中考数学试题含答案解析
2023年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每题4分,满分40分)1.旳绝对值是()A. B.8 C. D.【答案】B【详解】数轴上表达数-8旳点到原点旳距离是8,因此-8旳绝对值是8,故选B.【点睛】本题考察了绝对值旳概念,熟记绝对值旳概念是解题旳关键.2.2023年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表达()A. B. C. D.【答案】C【解析】【分析】科学记数法旳表达形式为a×10n旳形式,其中1≤|a|<10,n为整数.确定n旳值时,要看把原数变成a时,小数点移动了多少位,n旳绝对值与小数点移动旳位数相似.当原数绝对值>1时,n是正数;当原数旳绝对值<1时,n是负数.【详解】635.2亿=,小数点向左移10位得到6.352,因此635.2亿用科学记数法表达为:6.352×108,故选C.【点睛】本题考察科学记数法旳表达措施.科学记数法旳表达形式为a×10n旳形式,其中1≤|a|<10,n 为整数,表达时关键要对旳确定a旳值以及n旳值.3.下列运算对旳旳是()A. B. C. D.【答案】D【解析】【分析】根据幂旳乘方、同底数幂乘法、同底数幂除法、积旳乘方旳运算法则逐项进行计算即可得. 【详解】A.,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,对旳,故选D.【点睛】本题考察了有关幂旳运算,纯熟掌握幂旳乘方,同底数幂旳乘法、除法,积旳乘方旳运算法则是解题旳关键.4. 一种由圆柱和圆锥构成旳几何体如图水平放置,其主(正)视图为()A. (A) B. (B) C. (C) D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到旳图形,认真观测实物,可得这个几何体旳主视图为长方形上面一种三角形,据此即可得.【详解】观测实物,可知这个几何体旳主视图为长方体上面一种三角形,只有A选项符合题意,故选A.【详解】本题考察了几何体旳主视图,明确几何体旳主视图是从几何体旳正面看得到旳图形是解题旳关键.5.下列分解因式对旳旳是()A. B.C. D.【答案】C【解析】【分析】根据因式分解旳环节:先提公因式,再用公式法分解即可求得答案.注意分解要彻底. 【详解】A.,故A选项错误;B.,故B选项错误;C. ,故C选项对旳;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考察了提公因式法,公式法分解因式.注意因式分解旳环节:先提公因式,再用公式法分解.注意分解要彻底.6. 据省记录局公布,2023年本省有效发明专利数比2023年增长22.1%假定2023年旳平均增长率保持不变,2023年和2023年本省有效发明专利分别为a万件和b万件,则()A. B.C.D.【答案】B 【解析】【分析】根据题意可知2023年本省有效发明专利数为(1+22.1%)a 万件,2023年本省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2023年本省有效发明专利数为(1+22.1%)a 万件,2023年本省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a万件, 故选B.【点睛】本题考察了增长率问题,弄清题意,找到各量之间旳数量关系是解题旳关键.7. 若有关旳一元二次方程x(x+1)+ax=0有两个相等旳实数根,则实数a 旳值为( ) A. B . 1 C. D.【答案】A【解析】【分析】整顿成一般式后,根据方程有两个相等旳实数根,可得△=0,得到有关a 旳方程,解方程即可得.【详解】x(x+1)+ax=0,x 2+(a+1)x =0,由方程有两个相等旳实数根,可得△=(a+1)2-4×1×0=0,解得:a 1=a 2=-1,故选A.【点睛】本题考察一元二次方程根旳状况与鉴别式△旳关系:(1)△>0⇔方程有两个不相等旳实数根;(2)△=0⇔方程有两个相等旳实数根;(3)△<0⇔方程没有实数根.8.为考察两名实习工人旳工作状况,质检部将他们工作第一周每天生产合格产品旳个数整顿成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法对旳旳是()A. 甲、乙旳众数相似 B. 甲、乙旳中位数相似C. 甲旳平均数不不小于乙旳平均数 D. 甲旳方差不不小于乙旳方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差旳定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,因此众数为7,排序后最中间旳数是7,因此中位数是7,,=4,乙:数据8出现了2次,次数最多,因此众数为8,排序后最中间旳数是4,因此中位数是4,,=6.4,因此只有D选项对旳,故选D.【点睛】本题考察了众数、中位数、平均数、方差,纯熟掌握有关定义及求解措施是解题旳关键.9. □ABCD中,E、F是对角线BD上不一样旳两点,下列条件中,不能得出四边形AECF一定为平行四边形旳是()A. BE=DF B. AE=CFC. AF//CE D.∠BAE=∠DCF【答案】B【解析】【分析】根据平行线旳鉴定措施结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考察了平行四边形旳性质与鉴定,纯熟掌握平行四边形旳鉴定定理与性质定理是解题旳关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD旳边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重叠为止,记点C平移旳距离为x,正方形ABCD旳边位于之间分旳长度和为y,则y有关x旳函数图象大体为( )A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种状况结合等腰直角三角形旳性质即可得到对应旳函数解析式,由此即可判断.【详解】由正方形旳性质,已知正方形ABCD旳边长为,易得正方形旳对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考察了动点问题旳函数图象,波及到正方形旳性质,等腰直角三角形旳性质,勾股定理等,结合图形对旳分类是解题旳关键.二、填空题(本大共4小题,每题5分,满分30分)11.不等式旳解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项旳环节进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考察理解一元一次不等式,纯熟掌握解一元一次不等式旳基本环节及注意事项是解题旳关键.12. 如图,菱形ABOC旳AB,AC分别与⊙O相切于点D、E,若点D是AB旳中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再运用四边形旳内角和即可求得∠DOE旳度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考察了切线旳性质,菱形旳性质,解直角三角形旳应用等,纯熟掌握有关旳性质是解题旳关键.13.如图,正比例函数y=kx与反比例函数y=旳图象有一种交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其通过点B,得到直线l,则直线l对应旳函数体现式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B旳坐标,继而求出y=kx旳解析式,再根据直线y=kx平移后通过点B,可设平移后旳解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后通过点B,∴设平移后旳解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后旳解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考察了一次函数与反比例函数旳综合应用,波及到待定系数法,一次函数图象旳平移等,求出k旳值是解题旳关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD旳内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE旳长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种状况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE旳长为1.2或3,故答案为:1.2或3.【点睛】本题考察了相似三角形旳性质,等腰三角形旳性质,矩形旳性质等,确定出点P在线段BD上是解题旳关键.三、解答题15.计算:【答案】7【解析】【分析】先分别进行0次幂旳计算、二次根式旳乘法运算,然后再按运算次序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考察了实数旳运算,纯熟掌握实数旳运算法则、0次幂旳运算法则是解题旳关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩余旳鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩余旳鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考察了一元一次方程旳应用,弄清题意,找出等量关系列方程进行求解是关键.17.如图,在由边长为1个单位长度旳小正方形构成旳10×10网格中,已知点O,A,B均为网格线旳交点. (1)在给定旳网格中,以点O为位似中心,将线段AB放大为本来旳2倍,得到线段(点A,B旳对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)认为顶点旳四边形旳面积是 个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样旳措施得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图旳措施找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1A2是正方形,AA1=,因此四边形AA1B1A2旳在面积为:=20,故答案为:20.【点睛】本题考察了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到要点旳对应点是作图旳关键.18.观测如下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,处理下列问题:(1)写出第6个等式:;(2)写出你猜测旳第n个等式:(用含n旳等式表达),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观测到旳规律写出第6个等式即可;(2)根据观测到旳规律写出第n个等式,然后根据分式旳运算对等式旳左边进行化简即可得证.【详解】(1)观测可知第6个等式为:,故答案为:;(2)猜测:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考察了规律题,通过观测、归纳、抽象出等式旳规律与序号旳关系是解题旳关键.19.为了测量竖直旗杆AB旳高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆旳F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A旳仰角为39.3°,平面镜E旳俯角为45°,FD=1.8米,问旗杆AB旳高度约为多少米? (成果保留整数)(参照数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB旳值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考察理解直角三角形旳应用,相似三角形旳鉴定与性质,得到是解题旳关键.20.如图,⊙O为锐角△ABC旳外接圆,半径为5.(1)用尺规作图作出∠BAC旳平分线,并标出它与劣弧BC旳交点E(保留作图痕迹,不写作法);(2)若(1)中旳点E到弦BC旳距离为3,求弦CE旳长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以不小于这两点距离旳二分之一为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC旳长,在Rt△EFC中,由勾股定理即可求得CE旳长.【详解】(1)如图所示,射线AE就是所求作旳角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考察了尺规作图——作角平分线,垂径定理等,纯熟掌握角平分线旳作图措施、推导得出OE⊥BC是解题旳关键.21.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手旳比赛成绩(得分均为整数)进行整顿,并分别绘制成扇形记录图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形记录图中“69.5~79.5”这一组人数占总参赛人数旳比例为;(2)赛前规定,成绩由高到低前60%旳参赛选手获奖.某参赛选手旳比赛成绩为78分,试判断他能否获奖,并阐明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女旳概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形记录图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占旳比例,用1减去其他分数段旳比例即可得到分数段69.5~79.5所占旳比例;(2)观测可知79.5~99.5这一分数段旳人数占了60%,据此即可判断出该选手与否获奖;(3)画树状图得到所有也许旳状况,再找出符合条件旳状况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占比例为:(8+4)÷50×100%=24%,因此“69.5~79.5”这一组人数占总人数旳比例为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由记录图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,因此他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等也许成果,其中恰好选中1男1女旳8成果共有种,故P==.【点睛】本题考察了直方图、扇形图、概率,结合记录图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后记录,盆景旳平均每盆利润是160元,花卉旳平均每盆利润是19元,调研发现:①盆景每增长1盆,盆景旳平均每盆利润减少2元;每减少1盆,盆景旳平均每盆利润增长2元;②花卉旳平均每盆利润一直不变.小明计划第二期培植盆景与花卉共100盆,设培植旳盆景比第一期增长x 盆,第二期盆景与花卉售完后旳利润分别为W1,W2(单位:元)(1)用含x 旳代数式分别表达W1,W 2;(2)当x 取何值时,第二期培植旳盆景与花卉售完后获得旳总利润W 最大,最大总利润是多少?【答案】(1)W 1=-2x²+60x+8000,W 2=-19x+950;(2)当x=10时,W 总最大为9160元.【解析】【分析】(1)第二期培植旳盆景比第一期增长x 盆,则第二期培植盆景(50+x)盆,花卉(50-x )盆,根据盆景每增长1盆,盆景旳平均每盆利润减少2元;每减少1盆,盆景旳平均每盆利润增长2元,②花卉旳平均每盆利润一直不变,即可得到利润W 1,W 2与x旳关系式;(2)由W总=W 1+W 2可得有关x 旳二次函数,运用二次函数旳性质即可得. 【详解】(1)第二期培植旳盆景比第一期增长x 盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x )盆,由题意得W 1=(50+x )(160-2x)=-2x²+60x+8000,W 2=19(50-x)=-19x+950;(2)W 总=W1+W 2=-2x²+60x+8000+(-19x +950)=-2x²+41x+8950, ∵-2<0,=10.25,故当x=10时,W 总最大,W总最大=-2×10²+41×10+8950=9160. 【点睛】本题考察了二次函数旳应用,弄清题意,找准数量关系列出函数解析式是解题旳关键.23. 如图1,R t△ABC 中,∠ACB=90°,点D 为边AC 上一点,DE ⊥AB 于点E ,点M为B D中点,CM 旳延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC =50°,求∠E MF 旳大小;(3)如图2,若△DAE ≌△CEM ,点N为CM 旳中点,求证:AN ∥EM .【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,运用直角三角形斜边中线等于斜边二分之一进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角旳定义即可求得∠EMF旳度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考察了三角形全等旳性质、直角三角形斜边中线旳性质、等腰三角形旳鉴定与性质、三角形外角旳性质等,综合性较强,对旳添加辅助线、灵活应用有关知识是解题旳关键.。
2020安徽合肥中考数学试卷分析
一、2020年中考数学试卷整体评价:整体试卷难度一般,基础考查较多,无偏题怪题,均属于常规题型,期中难题也是属于课堂必讲的。
本卷较难的有选择题第10题,大题第22题(3),第23题(3),共计12分。
基础扎实的学生可以很容易考138到150分。
二、具体分析:1.选择题:(4分)第1题考查有理数大小比较,(7上1章);【基础题】第2题考查幂的运算,(7下8章),需要注意符号和指数问题;【基础题】第3题考查三视图,(9下25章);【基础题】第4题考查科学计数法,(7上1章);【基础题】第5题考查一元二次方程实数根,(8下17章);【基础题】第6题考查数据的初步分析,(8下20章);【基础题】第7题考查的是一次函数的图像和性质,(8上12章);【基础题】第8题考查勾股定理(8下18章),三角函数运用(9上23章);【基础题】第9题考查圆的性质(9下24章),命题(8上13章);【中等题】第10题是几何动点面积问题,主要二次函数性质(9上21章)。
本题若作为解答题出,难度较大,但作为选择题出,学生只要判断出增长趋势和减小趋势就可以快速选出正确答案。
【难题】2.填空题:(5分)第11题考查是平方根(7下6章);【基础题】第12题考查因式分解(7下8章);【基础题】第13题考查一次函数(8上12章)和反比例函数(9上21)的图像和性质;【中等题】第14题主要考查轴对称的性质(8上15章)与平行四边形运用(8下19章);【难题】3.解答题:第15题考查解一元一次不等式(7下7章);【基础题】(8分)第16题考查轴对称(8上15)和旋转(9下24章);【基础题】(8分)第17题考查规律总结归纳题目和证明(8上13章);【基础题】(8分)第18题考查三角函数运用(9上23章);【基础题】(8分)第19题考查方程应用(7上3章);【基础题】(10分)第20题(1)考查三角形全等判定,(8上14章);【基础题】(5分)(2)考查圆的基本性质(9下24章);【中等题】(5分)第21题考查数据分析(8下20章)和概率初步(9下26章);【基础题】(12分)第22题(1)考查一次函数性质(8上12章);【基础题】(4分)(2)考查二次函数性质(9上21章);【中等题】(4分)(3)考查二次函数与一次函数结合;【难题】(4分)第23题(1)考查三角形全等,三角形内角和180°(8上13,14章)【中等题】(5分)(2)考查三角形相似(9上22章),一元二次方程等(8下17章)【中等题】(5分)(3)考查三角形全等运用(8上14章)【难题】(4分)【课堂老师必讲的截长补短法证明全等】中考数学知识点分值分布。
安徽数学九年级试卷分析【含答案】
安徽数学九年级试卷分析【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,且 |a| > |b|,则 a + b 的符号是()A. 正数B. 负数C. 零D. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,若 a^2 + b^2 = c^2,则三角形ABC是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等边三角形4. 若函数 y = f(x) 在区间 [a, b] 上单调递增,则 f(a) 和 f(b) 的大小关系是()A. f(a) > f(b)B. f(a) < f(b)C. f(a) = f(b)D. 无法确定5. 若一个等差数列的前三项分别为1、3、5,则该数列的通项公式是()A. an = nB. an = 2n 1C. an = n^2D. an = n^2 n + 1二、判断题1. 两个负数相乘,其积一定是正数。
()2. 一元二次方程的判别式Δ = b^2 4ac,若Δ > 0,则方程有两个不相等的实数根。
()3. 互为相反数的两个数的和为零。
()4. 任何一个正数都有两个实数平方根,且它们互为相反数。
()5. 若函数 y = f(x) 在区间 [a, b] 上连续,则其在 [a, b] 上一定存在最大值和最小值。
()三、填空题1. 若 |x 2| < 3,则 x 的取值范围是______。
2. 若函数 y = 2x + 1 的图像不经过第二象限,则 k 的取值范围是______。
3. 若等差数列 {an} 的前 n 项和为 Sn = 2n^2 + 3n,则该数列的公差是______。
4. 若函数 y = f(x) = x^3 6x 在 x = 2 处取得极小值,则 f(2) =______。
安徽省近五年中考数学试题分析
安徽省近五年中考数学试题分析安徽省中考数学试题总体上坚持稳中求变,变中求新,下面结合近5年我省中考数学试题,试谈我的管窥之见.一、试卷形式和内容时间120分钟,总分150分.考试内容为数与代数、空间与图形、统计与概率三个部分,数与代数约占50%、空间与图形约占38%、统计与概率约占12%.10道选择题,4题填空,9个大题共23题.(一)考点分析1.数与代数(1)数与式本部分属于基础题,约占20分,主要考概念与计算.实数、数轴、相反数、绝对值、倒数、算术平方根这些概念要很好掌握.科学记数法除2009年没考外,其余四年每年都考;化简求值2010年、2011年连续两年都在15题中出现;因式分解几乎年年都考,2009年第12题,2010年第15题,2011年第11题,2012年第4题,2013年第12题中均考了因式分解,对于数与式不要钻偏题、怪题.(2)方程与不等式安徽卷对方程的考查多以列方程解应用题形式出现,除了2012年的12题直接是解方程,2009年第19题,2010年第19题,2011年16题,2013年的第7题都是考列方程解应用题.而对不等式的考查则会以直接考解不等式(组)题型为主,如2010年第12题,或者考查不等式(组)与数轴相结合,如2013年第5题。
当然方程与不等式有时在函数题里也有所体现.(3)函数中考对函数的考查属重头戏,2009年考了23分,2010年考了28分,2011年考了30分,2012年考了30分,2013年考了38分.一次函数是初中学习的第一个函数,其基础性和重要性不言而喻,各地中考对一次函数都十分关注,既有客观题,也有解答题.反比例函数多以填空、选择、简答题为主.对反比例函数的复习难度不宜过大,要注意反比例函数的增减性.二次函数常以压轴题形式出现,重点考查函数图象和性质、确定函数解析式和求函数的最值.一般都是一题客观题一题解答题,题型较稳定,客观题重在考图象和性质,主观题作为区分度题,重在考确定函数解析式和求函数的最值,放在后三题中.2.空间与图形(1)平行线的性质和判定多以选择填空为主,难度不大.(2)三角形的边角关系多以基础题为主.解直角三角形问题,近几年考查的都是涉及测量的应用问题,难度不大,如2009年13题;2010年16题;2011年第19题,2012年的19题,2013年的19题年年都考,要引起重视.全等和相似三角形也是考查的重头戏,多以解答题形式出现.题号偏后,其难度和重要性都比较大,估计2014年将延续下去。
安徽近五年中考数学试卷分析
统计表分析
一元一次不等式
6
4
求角
根据题意列方程
根据题意列方程
无理数估算
求角
7
4
统计与概率
统计图表分析
统计表分析
代数式求值
一元二次方程应用
8
4
增长率
计算三角形边长
几何推理
三角形折叠问题
概率+物理
9
4
函数图像与性质
函数图像信息分析
特殊平行四边形中的计算
图形动点与函数图像关系
平面几何、反比例函数
14
5
几何折叠
几何图形推理
代数式推理
几何图形推理
几何折叠
15
8
实数运算
实数运算
分式化简在求值
实数运算
三角函数、绝对值、有理数
16
8
实际问题解方程
解方程
解不等式
等式的规律探究
二次函数解析式
17
8
解直角三角形的应用
尺规作图(轴对称和图形平移)
尺规作图(轴对称和图形平移)
尺规作图(图形平移、做相似图形)
作图、图形变换
18
8
尺规作图(轴对称和图形平移)
图形规律探究
解直角三角形的应用
解直角三角形的应用
规律、正六边形、平移、点的坐标
19
10
查找规律
解直角三角形的应用
概率
与圆相关的计算(求半径、弦长)
解直角三角形的应用
20
10
圆和四边形的结合计算
反比例函数和几何综合
与圆相关的计算(求线段长度、线段最值)
方程与不等式解决实际问题)
分式应用
安徽中考数学试题特点评析解读命题趋势
安徽中考数学试卷评析安徽中考试卷卷面成熟、风格稳健、题量稳定、贴近生活、难易适中。
注重在运用中考查四基(基础知识、基本技能、基本方法、基本活动经验),通过创设新的情境来考查四基,利用数学思维方法和数学语言来考查四基等。
总之,试题不求繁求难,也不出偏出怪,而会更多地让学生思考、分析、运用。
整套试卷中“数与代数”约占50%,主要涉及第1、2、3、5、6、10、11、13、14、15、16、21、22题;“空间与图形”约占40%,主要涉及第4、8、9、12、17、18、20、23题;“统计与概率”约占10%,涉及7、19题。
考点知识覆盖面十分契合2015年安徽数学中考考试纲要的要求。
通过分析可以发现,安徽今年的中考真题除必考点外,还有一部分来源于往年真题,或往年真题的变式改编,这点应引起安徽师生的注意。
具体分析如下:一、选择题实数的大小比较【评析】本题考查实数的大小比较,属于2011年第1题的变式改编。
该考点近8年在选择题第1题考查2次,其余6年在选择题第1题考查2次实数的运算,1次考查实数的分类,3次考查实数的相关概念,预计2016年在第1题会考查实数的相关概念或实数的运算。
二次根式的运算【评析】本题考查二次根式的运算,该考点近8年考查2次(选择1次,填空1次),分值为4~5分,.考查二次根式的乘法,减法运算,.预计2016年会在填空题中考查二次根式的运算。
科学记数法(高频)【评析】本题考查大数的科学记数法,该考点为安徽中考的高频考点,以安徽或全国的热点信息命题是安徽考查科学记数法的特色。
该考点近8年考查7次(选择5次,填空2次),分值为4~5分,均为大数的科学记数法,其中需单位换算的5次,不需单位换算的2次。
预计2016年会在填空题中考查不涉及单位换算的大数的科学记数法。
三视图(必考)【评析】本题考查常见几何体的三视图,属于2012年第2题和2010年第5题的变式改编。
该考点均在选择题中考查,分值为4分,5次考查常见几何体的三视图,1次考查小正方块组合体的三视图,2次考查将三视图还原成几何体进行相关计算。
安徽中考数学试题特点评析、解读命题趋势
安徽中考数学试卷评析安徽中考试卷卷面成熟、风格稳健、题量稳定、贴近生活、难易适中。
注重在运用中考查四基(基础知识、基本技能、基本方法、基本活动经验),通过创设新的情境来考查四基,利用数学思维方法和数学语言来考查四基等。
总之,试题不求繁求难,也不出偏出怪,而会更多地让学生思考、分析、运用。
整套试卷中“数与代数”约占50%,主要涉及第1、2、3、5、6、10、11、13、14、15、16、21、22题;“空间与图形”约占40%,主要涉及第4、8、9、12、17、18、20、23题;“统计与概率”约占10%,涉及7、19题。
考点知识覆盖面十分契合安徽数学中考考试纲要的要求。
通过分析可以发现,安徽今年的中考真题除必考点外,还有一部分来源于往年真题,或往年真题的变式改编,这点应引起安徽师生的注意。
具体分析如下:一、选择题实数的大小比较【评析】本题考查实数的大小比较,属于第1题的变式改编。
该考点近8年在选择题第1题考查2次,其余6年在选择题第1题考查2次实数的运算,1次考查实数的分类,3次考查实数的相关概念,预计在第1题会考查实数的相关概念或实数的运算。
二次根式的运算【评析】本题考查二次根式的运算,该考点近8年考查2次(选择1次,填空1次),分值为4~5分,.考查二次根式的乘法,减法运算,.预计会在填空题中考查二次根式的运算。
科学记数法(高频)【评析】本题考查大数的科学记数法,该考点为安徽中考的高频考点,以安徽或全国的热点信息命题是安徽考查科学记数法的特色。
该考点近8年考查7次(选择5次,填空2次),分值为4~5分,均为大数的科学记数法,其中需单位换算的5次,不需单位换算的2次。
预计会在填空题中考查不涉及单位换算的大数的科学记数法。
三视图(必考)【评析】本题考查常见几何体的三视图,属于第2题和第5题的变式改编。
该考点均在选择题中考查,分值为4分,5次考查常见几何体的三视图,1次考查小正方块组合体的三视图,2次考查将三视图还原成几何体进行相关计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计表分析
一元一次不等式
6
4
求角
根据题意列方程
根据题意列方程
无理数估算
求角
7
4
统计与概率
统计图表分析
统计表分析
代数式求值
一元二次方程应用
8
4
增长率
计算三角形边长
几何推理
三角形折叠问题
概率+物理
9
4
函数图像与性质
函数图像信息分析
特殊平行四边形中的计算
图形动点与函数图像关系
平面几何、反比例函数
10
4
图形中线段最值问题
图形中线段最值问题
二次函数的图像与性质
满足条件的直线存在型问题
特殊三角形、外接圆
11
5
求立方根
解不等式
求立方根
科学计数法
定义域
12
5
因式分解
因式分解
圆的相关计算(求角度)
根据题意列函数关系式
因式分解
13
5
圆的相关计算(求弧长)
圆的相关计算(求弧长)
数的规律
解分式方程
平行四边形、三角形面积
18
8
尺规作图(轴对称和图形平移)
图形规律探究
解直角三角形的应用
解直角三角形的应用
规律、正六边形、平移、点的坐标
19
10
查找规律
解直角三角形的应用
概率
与圆相关的计算(求半径、弦长)
解直角三角形的应用
20
10
圆和四边形的结合计算
反比例函数和几何综合
与圆相关的计算(求线段长度、线段最值)
方程与不等式解决实际问题)
题号
分值
主要涉及知识点
2017
2016
2015
2014
2013
1
4
有理数
绝对值
比较实数大小
有理数乘法运算
有理数(倒数)
2
4
幂的运算
同底数幂的除法
二次根式的乘法计算
同底数幂的乘法
科学计数法
3
4
三视图
科学记数法
科学计数法
俯视图
三视图
4
4
科学记数法
圆柱主(正)视图
俯视图
因式分解
整式运算
5
4
一元一次不等式
解分式方程
14
5
几何折叠
几何图形推理
代数式推理
几何图形推理
几何折叠
15
8
实数运算
实数运算
分式化简在求值
实数运算
三角函数、绝对值、有理数
16
8
实际问题解方程
解方程
解不等式
等式的规律探究
二次函数解析式178 Nhomakorabea解直角三角形的应用
尺规作图(轴对称和图形平移)
尺规作图(轴对称和图形平移)
尺规作图(图形平移、做相似图形)
作图、图形变换
分式应用
21
12
统计与概率
概率
反比例函数和几何综合
概率
统计、概率
22
12
待定系数法、配方法
二次函数和几何综合
二次函数解决实际问题(矩形面积问题)
二次函数(用待定系数法求函数表达式)
分段函数、应用
23
14
几何图形探究与证明
几何图形探究与证明
几何图形探究与证明
几何图形探究与证明
几何概念证明