实验3射极跟随器

合集下载

射级跟随电路实验报告资料

射级跟随电路实验报告资料

射级跟随电路实验报告资料一、实验目的:1. 了解晶体管射级跟随电路的基本原理和特性;2. 学会使用电路实验箱、示波器等仪器,测量信号的幅度、相位等,提高实验操作技能;3. 加深对AC信号放大器、集电极跟随电路的理解和认识。

二、实验原理:1. 晶体管的结构和工作原理:晶体管是一种三极管,由集电极、基极、发射极等结构组成。

它的工作原理是通过基极电流控制发射极电流,从而控制集电极电流,实现信号放大的目的。

2. AC信号放大器:AC信号放大器是指能够对交流信号进行放大的电路,常用的有共发射极放大器、共基级放大器、共集极放大器等。

其中,射级跟随电路就是一种典型的共发射极电路。

3. 射级跟随电路:射级跟随电路是由一个共发射极级和一个接在其后的共集极级组成的放大器电路。

其主要原理是前一级的输出信号直接作为后一级的输入信号,实现两级级联的放大。

三、实验器材:实验器材主要有信号源、示波器、实验箱、万用表等。

四、实验步骤:1. 连好实验电路。

将晶体管、电阻器等连接起来,接入电源线,注意极性。

2. 连接示波器。

在射级输出端和采用探头的共集极输出端分别接上示波器。

3. 调节电路。

依照电路图依次调整电阻的数值,使电路正常工作。

4. 测量电路参数。

使用万用表检测电脑的电压和电流,使用示波器测量信号幅度、相位等参数。

五、实验结果和分析:1. 实验结果:通过实验测量得到的输出波形如下所示。

2. 分析:从输出波形可以看出,当输入信号增大时,输出信号也会相应增大。

同时,在集电极输出端接入电阻,来限制集电极输出电压的幅度,并避免输出负载对电路产生干扰。

六、实验结论:通过本次实验,了解了晶体管射级跟随电路的基本原理和特性;熟悉了使用电路实验箱、示波器等仪器,测量信号的幅度、相位等;并深化了对AC信号放大器、集电极跟随电路的理解和认识。

实验 射极跟随器

实验 射极跟随器
Ro=(Uo/Uo-1)RL
实验步骤1. 测量电压放大倍数和跟随特性
• 测量电压放大倍数 在信号发生器上获得 uipp=1V、f=1kHz的正 弦信号,输入放大器; 在放大器输出端连接 示波器,测量输出电 压uopp,记录于右表。 • 测量跟随特性 改变输入电压的幅度, 记录输出电压峰峰值。
表格1 次数 1 2 3 uipp (mV) 1000 uopp (mV) Au
表格3 Uspp (mV) uipp (mV)
Ri=Ui/(Us-Ui)R
2K R
实验步骤2:观察饱和失真和截至失真
• RP调到0时易出现饱和失真。将RP调到0, 增加输入信号幅度,可以观察到饱和失真 现象,记录输出的失真波形。 • RP调到最大值时易出现截止失真。更换 Rp=1M调整最大,然后增加输入信号幅度, 可以观察到截至失真现象,记录输出的失 真波形。
实验步骤3. 测量输出电阻Ro
• 测量空载输出电压(无负 载电阻) 输入uipp=1V、f=1kHz的 正弦信号;放大器输出端 连接示波器,不失真时记 录空载输出电压uopp,记 录于右表。
表格2
Uopp (mV) Uopp (mV)
(同表1 第一次 数据)
Ro=(Uo/Uo-1)RL
实验步骤4. 测量输入电阻Ri
• 输入端接入2K电阻R A点输入uspp=1V、 f=1kHz的正弦信号;B点 接入示波器,记录uipp, 记录于右表。
实验:共集电极放大器(射极跟随器)
一、实验目的
• 1、掌握射极跟随器的特性及测试方法。 • 2、观察饱和失真和截至失真。
二、实验仪器(1)示波Βιβλιοθήκη (2)函数信号发生器实验电路
信号发射器从50Ω输出
示波器: measure 和 autoset

实验三 共集电极放大电路射极跟随器 重庆邮电大学

实验三 共集电极放大电路射极跟随器  重庆邮电大学

实验三共集电极放大电路射极跟随器重庆邮电大学实验三 共集电极放大电路——射极跟随器一、实验目的1.研究射极跟随器的性能。

2.进一步掌握放大器性能指标的测量方法。

3.了解“自举”电路在提高射极输出器输入电阻中的作用。

二、实验电路及使用仪表1.实验电路2.实验仪表 (1)直流稳压电源 (2)函数信号发生器 (3)双路示波器 (4)双路毫伏表 (5)万用表 三、实验内容及步骤1.按图4.3.1搭好电路。

调整和测量静态工作点(调w R ,使EQ I =2mA ),并将测量结果填入表4-10。

表 4-10CC UEQ U (V)EQ I (mA )CEQ U (V)BEQ U (V)2.测量放大倍数u A ,观察输入电压和输出电压的相位关系。

条件:CC U =9V ,EQ I =2mA ,输入正弦频率调在中频段,i u =30mV 。

(1)输入电阻(i R )的测量由于射极跟随器输入阻抗高,在电压表的内阻不是很高时,电压表的分流作用不可忽视,它将使实际测量结果减小。

为了减小测量误差,提高测量精度,测量方法如图。

在信号源和被测放大器之间串入一个已知电阻S R =24 k Ω。

A .先把开关K 合上(即S R 不接入时),调节信号源频率f 为中频段,输入信号幅度s u 为300mV ,测量此时的输出电压o1u 。

B .保持s u 不变,打开K (即接入S R ),测量此时的输出电压o2u ,然后根据公式求出输入电阻。

S R u u u R o2o1o1i -=(2)输出电阻(o R )的测量测量方法同一般放大器,如图4.3.3所示。

调节信号源使s u =300mV ,输入正弦频率调在中频段。

在放大器无外接负载时输出电压o u ,然后接上负载时测出输出电压为ou ',根据下式求出输出电阻:L ooo )1(R u u R -'= 3.验证自举电路对提高射极跟随器输入电阻的作用,按图4.3.4接好电路测量。

实验三:电子实做实验(射极跟随器)

实验三:电子实做实验(射极跟随器)

实验三 射极跟随器实验1. 实验目的(1)熟悉射极跟随器的工程估算,掌握射极跟随器静态工作点的调整与测试方法。

(2)熟悉电路参数变化对静态工作点的影响;熟悉静态工作点对放大器性能的影响。

(3)掌握放大器电压放大倍数、输入电阻、输出电阻及频率特性的测试方法。

(4)了解自举电路在提高射极跟随器的输入电阻中的作用。

2. 实验仪表及器材 (1)双踪示波器(2)双路直流稳压电源 (3)函数信号发生器 (4)数字万用表(5)双路晶体管毫伏表3. 实验电路图4. 知识准备(1)复习共集电极放大器的相关理论知识。

(2)根据理论知识对实验电路的静态工作点、电压增益、输入电阻、输出电阻进行工程估算。

5. 实验原理 (1)基本原理共集放大器又称射极输出器,它的输出信号取自于发射极,其电压放大倍数小于且接近于1,图1-1 射极跟随器输入信号与输出信号是同相的,即输出信号基本上是随输入信号变化而变化,因此它又称为射极跟随器。

由于射极跟随器的输入电阻高,向信号源索取的电流小;输出电阻小,有较强的带负载能力;因此它可以作为信号源或低阻负载的缓冲级,也可以在多级放大电路中作为输入级,以提高输入电阻,向信号源索取较小的电流,保证放大精度;同时也可以作为多级放大电路的输出级,用以增大带负载的能力。

但由于基极偏置电阻的存在使输入电阻降低,从而发挥不出输入电阻高的优点;通常采用自举电路来起到大大提高输入电阻的作用;在使用射极跟随器的时候,要注意最大不失真输出电压的幅度,即跟踪范围。

为了尽可能增大跟踪范围,应当把静态工作点安排在交流负载线的中点。

(2)静态工作点的调整实验电路通过调节电位器R p 来调节静态工作点。

(3)静态工作点的测量放大器的静态工作点是指当放大器的输入端短路时,流过三极管的直流电流I CQ 、I EQ 及三极管极间直流电压V CEQ 、V BEQ 。

静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。

实验三 射极同向跟随电路

实验三 射极同向跟随电路

实验三 射极同向跟随电路一、实验目的1.掌握射极跟随器的工作原理及测量方法。

2.进一步学习放大器各性能参数的测量方法。

二、实验仪器示波器;信号发生器;毫伏表;数字万用表; 三、预习要求1.计算实验电路的静态工作点。

2.计算实验电路的Au 、Ri 和Ro 。

3.根据实验内容要求设计测量数据记录表格。

四、实验原理及测量方法下图为共集电极放大器的实验电路,负载Rl 接在发射极上,输出电压Uo 从发射极和集电极两端取出,所以集电极是输入输出电路的共同端点。

电路的静态工作点:BQ I =EBBEQ)R+(1+RβU -VccBQ CQ I I β=E CQ CEQ R I -Vcc U =电路的电压放大倍数:,be LI O U )1(r R 1U U A LR ββ+++==,)(其中L R //R R E L =,一般be r 》,L R β,故射极放大器的电压放大倍数接近于1而略小于,且输出电压和输入电压同相,所以称同相放大器或射极跟随器。

电路的输入、输出电阻:ββ++=++=1////])1(//[,be B SE o L be B i r R R R r R r R r与单管共设放大器比较,射极输出器的输入电阻比较高,输出电阻比较低,所以常用在多级放大器的第一级或最后一级。

五、实验内容与步骤1.按图在试验箱上连接电路。

2.静态工作点的调整将直流电源+12V 接上,在输入端加f=1KHZ 的正弦信号,幅值自定,调节电位器Rp 及信号发生器的输出幅度,用示波器观测放大器的输出信号,使输出幅度在示波器屏幕上得到一个最大不失真波形,然后断开输入信号,用数字万用表测量晶体管各级对地的直流电位和电流及该放大器的静态工作点,将记录数据填入下表,并计算Q C I : Ui Ue(V) Ub(V) Uc(V) Ube(V) Ic(mA) Ib(uA)Ie(mA) 08.158.7211.990.664.26244.29电压测量电流法:Ic=Ie=Ue/Re=4.1mA既有直接测量的电流值与电压测量电流法的值有一定的误差,误差值为3.9%。

三极管射极跟随器 实验报告 课程设计

三极管射极跟随器 实验报告 课程设计
所以当设计电路时要根据实际要求设计 的大小,或者采用推挽型射极跟随器。
注意:
1.该文档是个人重要的学习材料和经验积累,希望大家认真完成这份文档后,把它与对应的实验资料打包存储,这对以后有重大好处。
2.实验的目的是消化理论,希望大家重视理论分析的同时,养成良好的应用习惯。如广泛查阅资料、合理安排进度、正确使用仪器、规范绘制图表、及时讨论问题等。祝各位日有所长!
1.92
0.096
50000
1.92
0.096
70000
1.92
0.096100ຫໍສະໝຸດ 001.920.096
200000
1.9
0.095
300000
1.9
0.095
500000
1.9
0.095
700000
1.9
0.095
1000000
1.9
0.095
频幅特性曲线:
实际:
仿真:
4、输入输出电阻:
输入电阻测量电路
1.99
0.0995
200
1.96
0.098
300
1.96
0.098
400
1.96
0.098
500
1.94
0.097
600
1.94
0.097
800
1.94
0.097
1000
1.94
0.097
2000
1.94
0.097
3000
1.94
0.097
5000
1.94
0.097
10000
1.94
0.097
30000
1、设定电路参数:
本次试验中选用三极管为9013, =200;

实验3.3 射极跟随器

实验3.3  射极跟随器

实验3.3 射极跟随器96实验3.3 射极跟随器一、实验目的(1)掌握射极跟随器的特性及测试方法。

(2)进一步学习放大器各项性能指标的测试方法。

二、实验仪器及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。

三、实验原理图3.3.1为共集电极放大电路,输出取自发射极,由于其电压放大倍数近似等于1,故称之为射极跟随器。

射极跟随器的主要特点有:1、输入电阻R i 高R i =R B || [ r be +(1+β)(R E || R L )] (3-3-1)其中: R B = (R W +R 1) || R 2 ; R E = R 3 (3-3-2) 由式(3-3-1)可知射极跟随器的输入电阻R i 比共射极基本放大器的输入电阻R i =R B || r be 要高得多。

输入电阻的测试方法同共射极基本放大器,实验电路如图3.3.1所示。

(3-3-3)即只要测得A 、A1两点的对地电位即可。

2、输出电阻R o 小(3-3-4)图3.3.1 射极跟随器实验电路S iS ii i i R U U U I U R -==βrR βr R beE be o ≈||1+=图3.3.1 射极跟随器实验电路第3章 低频电子线路实验97如考虑信号源内阻R S ,则:βR R r R βR R r R )||(≈||1)||(B S beE B S be o +++=(3-3-5) 由上式可知射极跟随器的输出电阻R o 比共射极基本放大器的输出电阻R o =R C 低得多。

三极管的β愈高,输出电阻愈小。

输出电阻R o 的测试方法亦同基本放大器,即先测出空载输出电压U ∞,再测接入负载R L 后的输出电压U L ,根据(3-3-6)即可求出R o(3-3-7)3、电压放大倍数近似等于1 对图3.3.1电路(3-3-8)上式说明射极跟随器的电压放大倍数小于近似1且为正值。

这是深度电压负反馈的结果。

射极跟随器实验报告完整版

射极跟随器实验报告完整版

射极跟随器实验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】肇庆学院实验二射极跟随器实验报告班别:学号:姓名:指导老师:一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验仪器DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干三、实验原理射极跟随器的原理图如图1所示。

它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。

图1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。

1、输入电阻Ri图1电路Ri =rbe+(1+β)RE如考虑偏置电阻RB 和负载RL的影响,则Ri =RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri=RB∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。

输入电阻的测试方法同单管放大器,实验线路如图2所示。

图2 射极跟随器实验电路(其中,RL 的测量值为ΩK,取ΩK;R的测量值为ΩK)即只要测得A、B两点的对地电位即可计算出Ri。

2、输出电阻RO图1电路如考虑信号源内阻R S ,则由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。

三极管的β愈高,输出电阻愈小。

输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O3、电压放大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。

这是深度电压负反馈的结果。

射极跟随器实验报告(打印版)

射极跟随器实验报告(打印版)

实验二 射极跟随器 实验报告一、实验目的1、 掌握射极跟随器的特性及测试方法2、 进一步学习放大器各项参数测试方法 二、实验原理射极跟随器的原理图如图5-1所示。

它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。

射极跟随器的输出取自发射极,故称其为射极输出器。

1、输入电阻R i 图5-1电路R i =r be +(1+β)R E如考虑偏置电阻R B 和负载R L 的影响,则R i =R B ∥[r be +(1+β)(R E ∥R L )]由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。

输入电阻的测试方法同单管放大器,实验线路如图5-2所示。

图5-1 射极跟随器 图5-2 射极跟随器实验电路即只要测得A 、B 两点的对地电位即可计算出R i 。

2、输出电阻R O图5-1电路如考虑信号源内阻R S ,则由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。

三极管的β愈高,输出电阻愈小。

输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据即可求出 R O3、电压放大倍数图5-1电路上式说明射极跟随器的电压放大倍数小于近于1,且为正值。

这是深度电压负反馈的结果。

但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。

4、电压跟随范围电压跟随范围是指射极跟随器输出电压u O 跟随输入电压u i 作线性变化的区域。

当u i 超过一定范围时,u O 便不能跟随u i 作线性变化,即u O 波形产生了失真。

为了使输出电压u O 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取u O 的峰峰值,即电压跟随范围;或用交流毫伏表读取u O 的有效值,则电压跟随范围U 0P -P =2U O三、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、频率计7、3DG12×1 (β=50~100)或9013 电阻器、电容器若干。

射极跟随器实验总结

射极跟随器实验总结

射极跟随器实验总结一、实验目的本实验旨在了解射极跟随器的工作原理和特点,掌握射极跟随器的电路设计方法和调试技巧,并通过实验验证射极跟随器的性能和稳定性。

二、实验原理射极跟随器是一种常用的电压放大电路,其主要特点是输入电阻大、输出阻抗小、增益稳定。

在实际应用中,射极跟随器常用于信号放大、滤波等方面。

射极跟随器由三个基本元件组成:晶体管、负载电阻和输入电容。

其中,晶体管起到放大信号的作用;负载电阻起到限流作用;输入电容起到滤波作用。

在射极跟随器中,晶体管的基极接地,集电极接负载电阻,发射极接输入信号。

当输入信号加入时,发射极会产生一个反向信号,从而抵消掉基极和集电极之间的偏置电压。

这样就能够保证集电极处始终处于正常工作状态。

三、实验步骤1. 按照图1所示连接好电路,其中晶体管型号为9018,负载电阻为1kΩ,输入信号频率为1kHz。

2. 调节可变电阻,使得输出波形幅度达到最大。

3. 测量输出波形的幅度和相位,并记录在实验报告中。

4. 分别改变输入信号的频率和幅度,观察输出波形的变化,并记录在实验报告中。

5. 将负载电阻改为2kΩ和500Ω,重复步骤2-4。

6. 拆下晶体管,测量其参数(包括hfe、Vbe、Vce等),并记录在实验报告中。

四、实验结果通过实验可以得到如下结论:1. 射极跟随器具有较高的输入电阻、较低的输出阻抗和稳定的增益特点。

2. 在射极跟随器中,晶体管起到放大信号的作用;负载电阻起到限流作用;输入电容起到滤波作用。

3. 输入信号频率对射极跟随器的性能影响较小,而输入信号幅度对射极跟随器的性能影响较大。

当输入信号幅度过大时,会导致晶体管工作不稳定。

4. 改变负载电阻的大小可以改变射极跟随器的输出电压和输出电流,但会对增益特性产生影响。

5. 晶体管参数的不同会对射极跟随器的性能产生影响,因此在设计射极跟随器时需要根据具体情况选择合适的晶体管。

五、实验总结通过本次实验,我们深入了解了射极跟随器的工作原理和特点,掌握了射极跟随器的电路设计方法和调试技巧,并通过实验验证了射极跟随器的性能和稳定性。

射极跟随器实验报告

射极跟随器实验报告

射极跟随器 实验报告一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二:实验仪器:1.示波器2.信号发生器3.交流毫伏表4.万用表5.直流稳压电源三:实验原理:射极跟随器的原理图如图1所示。

它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。

射极跟随器的输出取自发射极,故称其为射极输出器。

1、输入电阻RiRi =rbe +(1+β)RE如考虑偏置电阻RB 和负载RL 的影响,则Ri =RB ∥[rbe +(1+β)(RE ∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri =RB ∥rbe 要高得多,但由于偏置电阻RB 的分流作用,输入电阻难以进一步提高。

R U U U I U R is i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。

2、输出电阻R Oβr R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则β)R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。

三极管的β愈高,输出电阻愈小。

输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据O LO L L U R R R U +=即可求出 R O L LO O 1)R U U (R -=3、电压放大倍数)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。

这是深度电压负反馈的结果。

但它的射极电流仍比基流大(1+β)倍,所以它具有一定的电流和功率放大作用。

低频电子线路 硬件实验报告 射极跟随器

低频电子线路 硬件实验报告 射极跟随器

实验三射极跟随器一、实验目的1.掌握射极跟随器的特性及测试方法。

2.进一步学习放大器各项参数测试方法。

二、实验原理1.射极跟随器(1)射极跟随器的原理图:图1 射极跟随器(2)射极跟随器特点:①电压串联负反馈放大电路;②输入电阻高,输出电阻低;③电压放大倍数接近于1;④输出电压能够在较大范围内跟随输入电压作线性变化;⑤输入、输出信号同;⑥射极跟随器的输出取自发射极,故称其为射极输出器。

(3)输入电阻(Ri)①Ri=rbe+(1+β)RE考虑偏置电阻RB和负载RL的影响:Ri=RB∥[rbe+(1+β)(RE∥RL)]OββE由上式可知射极跟随器的输出电阻R0比共射极单管放大器的输出电阻RO≈RC低得多。

三极管的β愈高,输出电阻愈小。

②输出电阻RO的测试方法输出电阻RO 的测试方法亦同单管放大器,即先测出空载输出电压UO ,再测接入负载RL 后的输出电压UL ,根据:OL O LL U R R R U +=即可求出 RO :LLOO 1)R U U (R -=(5) 电压放大倍数≤1射极跟随器的电压放大倍数小于近于1,且为正值。

这是深度电压负反馈的结果。

但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。

(6) 电压跟随范围电压跟随范围:射极跟随器输出电压Uo 跟随输入电压Ui 作线性变化区域。

当ui 超过一定范围时,uO 便不能跟随ui 作线性变化,即uO 波形产生了失真。

为了使输出电压uO 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取uO 的峰峰值,即电压跟随范围;或用交流毫伏表读取uO 的有效值,则电压跟随范围U0P -P =22UO 。

三、实验设备与器件1、+12V 直流电源2、函数信号发生器+=++E L V be E L (1β)(R ∥R )A r (1β)(R ∥R )3、双踪示波器4、交流毫伏表5、直流电压表6、频率计7、3DG12×1(β=50~100)或9013电阻器、电容器若干。

射极跟随器实验报告

射极跟随器实验报告

一、实验目的1. 掌握射极跟随器的基本原理和电路结构。

2. 了解射极跟随器的输入阻抗、输出阻抗和电压放大倍数等主要特性。

3. 学习使用电子仪器对射极跟随器进行测试和分析。

4. 通过实验加深对模拟电子技术中放大器原理的理解。

二、实验原理射极跟随器(Emitter Follower)是一种常用的电压放大电路,其特点是输入阻抗高、输出阻抗低、电压放大倍数接近于1。

射极跟随器主要由晶体管、偏置电阻、负载电阻等组成。

其工作原理是:输入信号通过晶体管的基极输入,经过放大后,从发射极输出,从而实现电压放大的目的。

三、实验器材1. 晶体管(如2N3904)2. 偏置电阻(如R1、R2)3. 负载电阻(如RL)4. 信号源5. 示波器6. 数字万用表7. 基准电源8. 连接线四、实验步骤1. 按照实验电路图连接电路,确保连接正确无误。

2. 将信号源输出设置为正弦波,频率为1kHz,幅度为1V。

3. 使用示波器观察输入信号和输出信号的波形,并调整偏置电阻R1和R2,使输出信号不失真。

4. 使用数字万用表测量晶体管各电极的电压,并记录数据。

5. 改变负载电阻RL的值,观察输出信号的变化,并记录数据。

6. 使用示波器观察输出信号的相位,并与输入信号进行比较。

五、实验结果与分析1. 输入阻抗测量:通过测量输入信号和基极电压,可以计算出射极跟随器的输入阻抗。

实验结果表明,射极跟随器的输入阻抗较高,有利于信号源与放大电路之间的匹配。

2. 输出阻抗测量:通过测量空载输出电压和接入负载后的输出电压,可以计算出射极跟随器的输出阻抗。

实验结果表明,射极跟随器的输出阻抗较低,有利于驱动负载。

3. 电压放大倍数测量:通过测量输入信号和输出信号的幅度,可以计算出射极跟随器的电压放大倍数。

实验结果表明,射极跟随器的电压放大倍数接近于1,说明其具有电压跟随特性。

4. 相位测量:通过观察输入信号和输出信号的相位,可以判断射极跟随器的相移情况。

实验结果表明,射极跟随器的输入信号和输出信号同相,说明其具有较好的相移特性。

实验三射极跟随器

实验三射极跟随器

实验三射极跟随器实验三、射极跟随器⼀、实验⽬的1、进⼀步理解射极跟随器的⼯作原理。

2、掌握射极跟随器的特性及测试⽅法3、进⼀步学习放⼤器各项参数测试⽅法⼆、实验仪器与器件1、直流稳压电源 1台2、函数信号发⽣器 1台3、双踪⽰波器 1台4、交流毫伏表 1台5、直流电压表 1台6、万⽤表 1台7、频率计 1台8、三极管 1只9、电阻器、电容器、电位器若⼲三、实验原理射极跟随器的电路如图3-1所⽰。

它是⼀个电压串联负反馈放⼤电路,具有输⼊电阻⾼,输出电阻低,电压放⼤倍数接近于1,输出电压能够在较⼤范围内跟随输⼊电压作线性变化以及输⼊、输出信号同相等特点。

由于射极跟随器的输出取⾃发射极,故称其为射极输出器。

1、静态⼯作点的设置射极跟随器的电路如图3-1所⽰。

其静态⼯作点计算如下:CC BEQ BQ B EQ BQ CEQ CC EQ (1)(1)EEV U I R R I I U V I R ββ-=++=+=-2、性能指标与测试⽅法图3-1射极跟随器电路(1)输⼊电阻i R在图1电路中,如考虑偏置电阻B R 和负载L R 的影响,则 i be [(1)()]B E L R R r R R β=++∥∥由上式可知射极跟随器的输⼊电阻⽐共射放⼤电路的输⼊电阻要⾼得多,但由于偏置电阻B R 的分流作⽤,输⼊电阻难以进⼀步提⾼。

输⼊电阻的测试⽅法同共射放⼤器,如图1所⽰。

可得i iiSiS iU URRU U I==-即只要测得A 、B 两点的对地电位即可计算出i R 。

(2)输出电阻o R在图3-1电路中,如考虑信号源内阻S R ,则输出电阻为s b be s b beo e ()()11R R r R R r R R ββ++=≈++∥∥∥由上式可知射极跟随器的输出电阻⽐共射放⼤器的输出电阻低得多。

三极管的β愈⾼,输出电阻愈⼩。

输出电阻o R 的测试⽅法亦同共射放⼤器,即先测出空载输出电压o U ,再测接⼊负载L R 后的输出电压L U ,可得O O(1)U RR U(3)电压放⼤倍数在图3-1电路中,电压放⼤倍数为L be L (1)()(1)()E u E R R A r R R ββ+=++∥∥上式说明射极跟随器的电压放⼤倍数⼩于近于1,且为正值,这是深度电压负反馈的结果。

射极跟随器实验报告

射极跟随器实验报告

射极跟随器实验报告班级:姓名:学号:一、实验目的(1)掌握射极跟随器的特性及测试方法。

(2)进一步学习放大器各项参数的测试方法。

二、实验原理射极跟随器的原理图如图(1)所示。

它是一个电压串联负反馈放大电路,具有输入电阻高、输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。

由于射极跟随器的输出取自发射极,故也称其为射极输出器。

1、输入电阻i R根据图(1)电路所示,有R rR E bei)1(β++=如考虑偏置电阻B R 和负载L R 的影响,则]//)(1(//[R R rR R L E beBiβ++=图 (1) 射极跟随器由上式可知,射极跟随器的输入电阻 i R 比共射极单管放大器的输入电阻be B i r R R //=的阻值要高的多。

但由于偏置电阻B R 的分流作用,输入电阻的阻值难以进一步提高。

输入电阻的测试方法与单管放大器的相同,试验线路如图(2)所示。

R UU UIU R isiii i -==即只要测得A 、B 两点的对地电位即可计算出i R 。

2、输出电阻O R根据图(1)电路所示,有ββr R r Rbe E be O≈=//如考虑信号源内阻S R ,则ββ)//(//)//(R R r R R R r R B S beE B S be O+≈+=由上式可知,射极跟随器的输出电阻O R 比共射极单管放大器的输出电阻C O R R ≈低得多。

三极管的β值愈高。

输出电阻O R 的测试方法亦与单管放大器的相同,即先测出空载输出电压O U ,再测接入负载L R 后的输出电压L U ,根据URR RUOLOLL+=即可求出R UU R LLO O )1(-=3、电压放大倍数 根据图(1)电路所示,有1)//)(1()//)(1(≤+++=R R r R R AL E be L E Uββ上式说明射极跟随器的电压放大倍数10≤≤U A ,这是深度电压负反馈的结果。

射极跟随器 模拟电子技术实验实验报告

射极跟随器 模拟电子技术实验实验报告

射极跟随器一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验原理射极跟随器的原理图如图3-1所示。

它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。

图3-1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。

1、输入电阻Ri图3-1电路Ri =rbe+(1+β)RE如考虑偏置电阻RB 和负载RL的影响,则Ri =RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri=R B ∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。

输入电阻的测试方法同单管放大器,实验线路如图3-2所示。

图3-2 射极跟随器实验电路R U U U I U R is ii i i -==即只要测得A 、B 两点的对地电位即可计算出R i 。

2、输出电阻R O 图3-1电路βr R ∥βr R be E be O ≈=如考虑信号源内阻R S ,则 β)R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+=由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。

三极管的β愈高,输出电阻愈小。

输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据O LO LL U R R R U +=即可求出 R OL LOO 1)R U U (R -= 3、电压放大倍数图3-1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E V +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。

这是深度电压负反馈的结果。

但它的射极电流仍比基流大(1+β)倍,所以它具有一定的电流和功率放大作用。

射极跟随器测试

射极跟随器测试

射极跟随器的测试一、测试目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、测试原理射极跟随器的原理图如图1所示。

它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。

图1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。

1、输入电阻Ri图1电路Ri =rbe+(1+β)RE如考虑偏置电阻RB 和负载RL的影响,则Ri =RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri=R B ∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。

输入电阻的测试方法同单管放大器,测试线路如图2所示。

图2 射极跟随器测试电路R U U U I U R is ii i i -==即只要测得A 、B 两点的对地电位即可计算出R i 。

2、输出电阻R O 图1电路βr R ∥βr R beE be O ≈=如考虑信号源内阻R S ,则β)R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+=由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。

三极管的β愈高,输出电阻愈小。

输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据O LO LL U R R R U +=即可求出 R OL LOO 1)R U U (R -=3、电压放大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E V +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。

这是深度电压负反馈的结果。

但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。

4、电压跟随范围电压跟随范围是指射极跟随器输出电压u O 跟随输入电压u i 作线性变化的区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
验内容及步骤
静态工作点的测量
加+12V电源和地线; 用直流电压表测量 UB、UC (12V) 、 UE。
注意:静态工作点是针对直流通路而言,只加电源,不加交流信号!
4 实验内容及步骤
放大倍数的测量
接线,加入直流电源和交流信号; 用示波器观察输出波形,看是否失真。
输入交流信号:
幅值:100mV
射极跟随器
特点:输出取自发射极,输入电阻大,输出电阻小,电 压放大倍数接近1 ,电流信号放大,总功率变大 基极供电方式:基极偏置电路 应用:电压跟随特性,可用于放大电路的输入级,功率 输出级等。
2 实验原理
静态工作点
实验原理图
直流通路时:
VCC VBE IB RB (1 ) RE I C I E I B VCE VCC I C RE
进入实验室的几点要求和希望
1、要像上理论课一样,积极准备,认真实验;
2、要像到自己家里一样,保持实验环境整洁;
3、要像爱护自己一样,爱护我们的实验设备。
实验前的准备工作
1、检查实验台和相关设备是否供电正常; 2、检查实验所用到的电线是否完好无损; 3、输入设备与测试设备不要随意开关; 4、完成后要关设备电源,整理实验台。
频率:1kHz
4 实验内容及步骤
放大倍数的测量
接线,加入直流电源和交流信号; 用示波器观察输出波形,看是否失真。
输入交流信号:
幅值:100mV
频率:1kHz
4 实验内容及步骤
放大倍数的测量
示波器和毫伏表观察输入输出信号,计算放大倍数。
X/Y:50mV
扫描开关:0.2ms
X:50mV(输出)
模拟电子技术实验
实验三 射极跟随器
主要内容 1、实验目的 2、实验原理 3、实验设备与器件 4、实验内容及步骤 5、实验报告要求
1 实验目的
掌握射极跟随器的特性及测试方法;
进一步学习放大器各项参数测试方法。
2 实验原理
射极跟随器
实验模块
2 实验原理
射极跟随器
实验原理图
2 实验原理
2 实验原理
输入、输出电阻的测量
Ui Ui Ui Ri R Ii U R R U S Ui RL UL U0 R0 RL U0 R0 ( 1) RL UL
3 实验设备及器件
1)双踪示波器1台;
2)模拟电路实验装置;
3)函数信号发生器; 4 )双通道交流毫伏表 1 台
Y:0.1V(输入)
Au U 0 Ui
扫描开关:0.2ms
4 实验内容及步骤
放大倍数的测量
示波器和毫伏表观察输入输出信号,计算放大倍数。
X/Y:50mV
扫描开关:0.2ms
X:50mV(输出)
Y:0.1V(输入)
Au U 0 Ui
扫描开关:0.2ms
4 实验内容及步骤
放大倍数的测量
示波器和毫伏表观察输入输出信号,计算放大倍数。
量程均为:100mV
5 实验报告要求
每个实验一份实验报告; 整理实验数据;
分析射极跟随器的性能和特点。
认真仔细、整洁干净、内容充实、数据准确
谢谢!
相关文档
最新文档