2019年北京中考数学习题精选:统计图表

合集下载

【名师推荐】2019年北京中考数学习题精选:统计图表

【名师推荐】2019年北京中考数学习题精选:统计图表

一、选择题1、(2018北京朝阳区二模)小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人28~35次的人数最多35~42次21次的有15人其中正确的是(A)①②(B)②③(C)③④(D)④答案:B2.(2018北京通州区一模)答案:B3.(2018北京平谷区中考统一练习)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A.①③B.②③C.②④D.③④答案C4.(2018北京丰台区一模)太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理...的是(A)截至2017年底,我国光伏发电累计装机容量为13 078万千瓦(B)2013-2017年,我国光伏发电新增装机容量逐年增加(C)2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦(D)2017年我国光伏发电新增装机容量大约占当年累计装机容量的40% Array答案B5.(2018北京海淀区第二学期练习)在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.2015-2017年中国在线教育用户规模统计图12月12月6月(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理...的是A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70% 答案B6.(2018北京延庆区初三统一练习)下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》) 根据统计图提供的信息,下列推断不合理...的是 A .与2016年相比,2017年我国国内生产总值有所增长; B .2013-2016年,我国国内生产总值的增长率逐年降低; C .2013-2017年,我国国内生产总值的平均增长率约为6.7% ; D .2016-2017年比2014-2015年我国国内生产总值增长的多. 答案:C7.(2018北京西城区九年级统一测试)空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.某同学查阅资料,制作了近五年1月份北京市AQI 各类别天数的统计图如下图所示.5952446439746890527435858271222000004000006000001000000520%亿元2013-2017年国内生产总值及其增长速度国内生产总值比上年增长(%)7.87.36.96.76.9468优良轻度污染中度污染重度污染严重污染1月1月1月1月1月根据以上信息,下列推断不合理的是A.AQI 类别为“优”的天数最多的是2018年1月 B .AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别 答案:D8. (2018北京房山区一模)某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是A. 该班学生一周锻炼时间的中位数是11B. 该班学生共有44人C.该班学生一周锻炼时间的众数是10D.该班学生一周锻炼12小时的有9人 答案A9.(2018北京怀柔区一模)下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( ) A. 9月毛衣的销量最低,10月衬衫的销量最高 B.与10月相比,11月时,毛衣的销量有所增长,——毛衣的销量 ……衬衫的销量衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右 答案C10. (2018北京门头沟区初三综合练习)下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是 A .2011-2014年最高温度呈上升趋势; B .2014年出现了这6年的最高温度; C .2011-2015年的温差成下降趋势; D .2016年的温差最大. 答案C11.(2018北京市大兴区检测)自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理...的是 A .统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况 B .我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1%C .2011年我国发明专利申请量占世界发明专利申请量的比重是28%年份温度/5040302010-20-10201620152014201320122011-15.2-9.2-11.2-14.1-13.7-11.637.838.941.138.23835.9北京市2011-2016年气温变化情况最高气温最低气温D .2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长 答案C12.(2018北京市朝阳区综合练习(一)) “享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况.第六届和第八届北京国际电影节﹒电影市场“项目创投”申报类型统计表根据统计图提供的信息,下列推断合理..的是 (A )两届相比较,所占比例最稳定的是动作冒险(含战争)类(B )两届相比较,所占比例增长最多的是剧情类(C )第八届悬疑惊悚犯罪类申报数量比第六届2倍还多(D )在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类 答案A 二、填空题13、(2018北京昌平区二模)近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是2014-2017年新能源汽车生产和销售的情况:根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为 万量,你数量(万辆)152535455565758525元10元的预估理由是 .答案: 答案不唯一(只要理由合理均可给分)14、(2018北京东城区二模)每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 . 答案: 120 ;3 00015、(2018北京朝阳区二模)鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示. 根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.答案:答案不唯一,理由须支撑推断的合理性. 16、(2018北京房山区二模)某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为__________元.答案:1717.(2018北京通州区一模)答案:三、解答题18.(2018北京市朝阳区一模)北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市2012—2017年污水处理率统计表:年份2012 2013 2014 2015 2016 2017 污水处理率(%)83.0 84.6 86.1 87.9 90.0 92.0(1)用折线图将2012—2017年北京市污水处理率表示出来,并在图中标明相应的数据;(2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为%,说明你的预估理由:.北京市2012—2017年污水处理率统计图频数成绩x /分121086401009080706021416解:(1)图略. ………………………………………………………………3分 (2)预估理由须包含统计图表中提供的信息,且支撑预估的数据.……5分 19.(2018北京顺义区初三练习)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次 “汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66, 62,68,89,86,93,97,100,73,76,80, 77,81,86,89,82,85,71,68,74,98, 90,97,100,84,87,73,65,92,96,60.请根据所给信息,解答下列问题:(1)a = ,b = , c = ,d = ; (2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?解:(1)a = 14 ,b = 0.35 , c = 12 ,d =0.3 ;………… 2分(2)补全频数分布直方图如下:…………………… 4分(3)估计参加这次比赛的600名学生中成绩“优”等的约有180人.……… 5分161426070809010004681012成绩x /分频数20. (2018北京市朝阳区综合练习(一))水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据 从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲 26 32 40 51 44 74 44 63 73 74 81 54 6241 33 54 43 34 51 63 64 73 64 54 33 乙 27 35 46 55 48 36 47 68 82 48 57 66 7527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据 按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据 两组样本数据的平均数、众数和方差如下表所示:大棚 平均数 众数 方差 甲 53 54 3047 乙53573022得出结论 a .估计乙大棚产量优秀的秧苗数为 株;b .可以推断出 大棚的小西红柿秧苗品种更适应市场需求,理由为 .(至少从两个不同的角度说明推断的合理性)解:整理、描述数据 按如下分组整理、描述这两组样本数据25≤x <3535≤x <4545≤x <5555≤x <6565≤x <7575≤x <85甲5 5 5 54 1乙2462x大棚个数株数………………………………………………………………………………………………… 2分 得出结论 分 b.答案不唯一,理由须支撑推断的合理性. …………………5 分 21、 (2018 北京东城区二模)十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告 再次明确,到 2035 年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森 林的数量和质量对生态文明建设非常关键 .截止到 2013 年, 我国已经进行了八次森林资源清 查,其中全国和北京的森林面积和森林覆盖率情况如下: 表1 全国森林面积和森林覆盖率 a.估计乙大棚产量优秀的秧苗数为 84 株; …………………………3表2北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题: (1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率; (2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积 20768.73(万公顷)记为 a,全国森林覆盖率 21.63%记 为 b,到 2018 年第九次森林资源清查时,如果全国森林覆盖率达到 27.15%,那么 全国森林面积可以达到________万公顷(用含 a 和 b 的式子表示). 解:(1)四; ---------------------------------------------------------------------1 分 ---------------------------------------------------------------------3 分(2)如图:(3)543a .------------------------------------------------------5 分 2000b22、 (2018 北京丰台区二模)某校七年级 6 个班的 180 名学生即将参加北京市中学生开放性科学实践活动送 课到校课程的学习. 学习内容包括以下 7 个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与 控制, E.数据与信息, F.能源与材料, G.人文与历史. 为了解学生喜欢的课程领域, 学生会开展了一次调查研究, 请将下面的过程补全. 收集数据 学生会计划调查 30 名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是 ___________; (填序号) ① 选择七年级 1 班、2 班各 15 名学生作为调查对象 ② 选择机器人社团的 30 名学生作为调查对象 ③ 选择各班学号为 6 的倍数的 30 名学生作为调查对象 调查对象确定后,调查小组获得了 30 名学生喜欢的课程领域如下: A,C,D,D,G,G,F,E,B,G, C,C,G,D,B,A,G,F,F,A, G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图. 某校七年级学生喜欢的课程领域统计图某校七年级学生喜欢的课程领域统计表 课程领域 A B C D E F G 合计 30 人数 4 4E3 3 2A B CDA.自然与环境 C.结构与机械 E.数据与信息 G.人文与历史B.健康与安全 D.电子与控制 F.能源与材料分析数据、推断结论 请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是 __________(填 A-G 的字母代号) ,估计全年级大约有_______ __名学生喜欢这个课程领域.答案.收集数据 抽样调查对象选择合理的是③. ………………………1 分 整理、描述数据 如下: ………………………4 分 某校七年级学生喜欢的课程领域统计表 某校七年级学生喜欢的课程领域统计 图 课程领域 F G 人数G F E A D B C4 10分析数据、推断结论 G,60. ………………………6 分 23.(2018 北京西城区二模)阅读下列材料: 材料一: 早在 2011 年 9 月 25 日,北京故宫博物院就开始尝试网络预售门票,2011 年全年网络售 票仅占 1.68%.2012 年至 2014 年,全年网络售票占比都在 2%左右.2015 年全年网络售票占 17.33%,2016 年全年网络售票占比增长至 41.14%.2017 年 8 月实现网络售票占比 77%.2017 年 10 月 2 日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式, 为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后, 在北京故宫博物院的 精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验. 材料二: 以下是某同学根据网上搜集的数据制作的 2013-2017 年度中国国家博物馆参观人数及年 增长率统计表. 年度 参观人数(人次) 2013 7 450 000 2014 7 630 000 2015 7 290 000 2016 7 550 000 2017 8 060 000年增长率(%)38.72.4-4.53.66.8他还注意到了如下的一则新闻:2018 年 3 月 8 日,中国国家博物馆官方微博发文,宣布 取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作 人员担心的是:“虽然有故宫免(纸 质) 票的经验在前, 但对于国博来说 这项工作仍有新的挑战.参观故宫需 要观众网上付费购买门票, 他遵守预 约的程度是不一样的.但(国博)免 费就有可能约了不来, 挤占资源, 所 以难度其实不一样.” 尽管如此,国 博仍将积极采取技 术和服务升级, 希望带给观众一个更完美的体验方 式. 根据以上信息解决下列问题: (1)补全以下两个统计图; (2)请你预估 2018 年中国国家博物馆的参观人数,并说明你的预估理由..解: (1)补全统计图如图 3.图3 ………………………………………………………………… 4 分 ( 2 )答案不唯一,预估理由合理,支撑预估数据即可 . ……………………… 6 分。

北京市2019年中考数学试题(解析版)

北京市2019年中考数学试题(解析版)

2019年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。

1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:用量角器度量角。

解析:由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以,度数应为55°。

2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。

将28 000用科学计数法表示应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。

解析:科学记数的表示形式为10na⨯形式,其中1||10≤<,n为整数,28000=。

故选C。

a3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴比较数的大小。

解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。

4. 内角和为540的多边形是答案:c考点:多边形的内角和。

n-⨯︒,当n=5时,内角和为540°,所以,选C。

解析:多边形的内角和为(2)1805. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原几何体。

解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。

6. 如果,那么代数2()b aaa a b--的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平方差公式。

解析:2()b aaa a b--=22a b aa a b--=()()a b a b aa a b-+-=a b+=2。

7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D考点:轴对称图形的辨别。

北京市2019年中考数学试题(含答案)

北京市2019年中考数学试题(含答案)

2019年北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000 米.将439000用科学记数法表示应为(A)60.43910(B)4.39610(C)54.3910(D)4393102.下列倡导节约的图案中,是轴对称图形的是(A)(B)(C)(D)3.正十边形的外角和为(A)180°(B)360°(C)720°(D)1440°4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为(A)﹣3(B)﹣2(C)﹣1(D)15.已知锐角∠AOBP如图,M(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,AC 交射线OB于点D,连接CD;DOB(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;N(3)连接OM,MN.Q根据以上作图过程及所作图形,下列结论中错误的是(A)∠COM=∠COD(B)若OM=MN,则∠AOB=20°(C)MN∥CD(D)MN=3CD6.如果mn1,那么代数式2m2mnmn1m2m n2的值为(A)﹣3(B)﹣1(C)1(D)37.用三个不等式ab,ab0,1a1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A)0(B)1(C)2(D)38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.人数时间0≤t<1010≤t<2020≤t<3030≤t<40t≥40学生类别男73125304性别女82926328初中25364411学段高中人均参加公益劳动时间/小时30251. 4.404.4021.820151050男生学生类别女生初中生高中生下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是(A)①③(B)②④(C)①②③(D)①②③④二、填空题(本题共16分,每小题2分)9.若分式x1x的值为0,则x的值为______.210.如图,已知△A BC,通过测量、计算得△A BC的面积约为______cm.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)CP①长方体②圆柱③圆锥ABA B第10题图第11题图第12题图12.如图所示的网格是正方形网格,则PABPBA__________°(点A,B,P是网格线交点).13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y k1x上.点A关于x轴的对称点B在双曲线y k2x上,则k1k2的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.51图1图2图315.小天想要计算一组数据92,90,94,86,99,85的方差2s.在计算平均数的过程中,将这组0数据中的每一个数都减去90,得到一组新数据2,0,4,4,9,5.记这组新数据的方差为2 s,则12s______12s.(填“”,“”或“”)16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.1342sin60.434x1x218.解不等式组:x7x32xm19.关于x的方程x2210有实数根,且m为正整数,求m的值及此时方程的根.20.如图,在菱形A BCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接E F.(1)求证:A C⊥EF;B D交AC于点O,(2)延长EF交CD的延长线于点G,连接AE F若BD=4,tanG= 1,求AO的长.2BDC前21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);频数(国家个数)129862130405060708090100国家创新指数得分b.国家创新指数得分在60≤x<70这一组的是:2.62.463.665.966.468.569.169.369.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:4国家创新指数得分100 90Al1Bl280C 706050403001234567910118人均国内生产总值/万元d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a (a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.ABC 523.小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x首,i=1,2,3,4;i②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x14,x23,x34,则x4的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.CADPB小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:6(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8PC/cm3.443.303.072.702.252.252.642.83PD/cm3.442.692.001.360.961.132.002.83AD/cm0.000.781.542.303.014.005.116.00在PC,PD,AD的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;y/cm654321123456x/cmO(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.3.在平面直角坐标系xOy中,直线l:ykx1(k0)与直线xk,直线yk分别交于点A,B,直线xk与直线yk交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.726.在平面直角坐标系xOy 中,抛物线 y2 ax bx1 a 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点P (1 2 , 1 2),Q (2,2).若抛物线与线段PQ 恰有一个公共点,结合函数图象, 求a 的取值范围.27.已知∠AOB=30°,H 为射线OA 上一定点,OH31,P 为射线OB 上一点,M 为线段OH上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得 到线段PN ,连接ON . (1)依题意补全图1; (2)求证:∠OMP=∠OPN ;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有 ON=QP ,并证明.BBAOAOHH图1备用图28.在△ABC 中,D ,E 分别是△ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.ADEBC(1)如图,在Rt △ABC 中,ABAC22,D ,E 分别是AB ,AC 的中点.画出△ABC 的 最长的中内弧,并直接写出此时的长;8ADECB(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E 分别是AB,AC的中点.①若1t,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;2②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.92019年北京市中考数学答案一.选择题.题号12345678答案CCBADDDC二.填空题.4.110.测量可知11.①②12.45°4.41014.1215.=4.41①②③三.解答题.17.【答案】23+318.【答案】x221.9【答案】m=1,此方程的根为x1x2121.10【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴ABBEADDF∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO=1.21.11【答案】(1)17(2)(3)2.7(4)①②5.【答案】(1)∵BD平分ABC∴ABDCBD∴AD=CD(2)直线DE与图形G的公共点个数为1.23.【答案】(1)如下图第1天第2天第3天第4天第5天第6天第7天第1组第2组第3组x3x3x3第4组(2)4,5,6(3)2324.【答案】(1)AD,PC,PD;(2)(3)2.29或者3.98 6.【答案】(1)0,1(2)①6个②1k0或k2 7.【答案】(1)1 B(2,-);a(2)直线x=1;(3)a≤-1.28.【答案】(1)见图WORD格式(2)在△OPM中,OMP=180POMOPM150OPMOPNMPNOPM150OPMOMPOPN(3)OP=2.9.【答案】(1)如图:ADEBCln r1801180180 (2)①y1或P1 y;P2②0t2WORD格式13专业资料整理。

2019年北京市中考数学试卷-含详细解析

2019年北京市中考数学试卷-含详细解析

2019年北京市中考数学试卷-含详细解析一、选择题(本大题共8小题,共16.0分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为().A. 0.439×106B. 4.39×106C. 4.39×105D. 439×1032.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.3.正十边形的外角和为()A. 180°B. 360°C. 720°D. 1440°4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A. −3B. −2C. −1D. 15.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ⏜,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ⏜于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A. ∠COM=∠CODB. 若OM=MN.则∠AOB=20°C. MN//CDD. MN=3CD6.如果m+n=1,那么代数式(2m+nm2−mn +1m)⋅(m2−n2)的值为()A. −3B. −1C. 1D. 37.用三个不等式a>b,ab>0,1a <1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A. 0B. 1C. 2D. 38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5−25.5之间②这200名学生参加公益劳动时间的中位数在20−30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A. ①③B. ②④C. ①②③D. ①②③④二、填空题(本大题共8小题,共16.0分)9.分式x−1x的值为0,则x的值是______.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则∠PAB+∠PBA=______°(点A,B,P是网格线交点).13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=k1x 上,点A关于x轴的对称点B在双曲线y=k2x上,则k1+k2的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,−4,9,−5,记这组新数据的方差为s12,则s12______s02(填“>”,“=”或”<”)16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.三、解答题(本大题共12小题,共68.0分)17.计算:|−√3|−(4−π)0+2sin60°+(14)−1.18.解不等式组:{4(x−1)<x+2 x+73>x19.关于x的方程x2−2x+2m−1=0有实数根,且m为正整数,求m的值及此时方程的根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tanG=1,2求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7、62.4、63.6、65.9、66.4、68.5、69.1、69.3、69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.24.如图,P是AB⏜与弦AB所围成的图形的外部的一定点,C是AB⏜上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在AB⏜上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.在平面直角坐标系xOy中,抛物线y=ax2+bx−1a与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(12,−1a),Q(2,2),若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.28.在△ABC中,D,E分别是△ABC两边的中点,如果DE⏜上的所有点都在△ABC的内部或边上,则称DE⏜为△ABC的中内弧.例如,图1中DE⏜是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=2√2,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧DE⏜,并直接写出此时DE⏜的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t=1,求△ABC的中内弧DE⏜所在圆的圆心P的纵坐标的取值范围;2②若在△ABC中存在一条中内弧DE⏜,使得DE⏜所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.答案和解析1.【答案】C【解析】解:将439000用科学记数法表示为4.39×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】C【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】B【解析】【分析】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,故选B.4.【答案】A【解析】【分析】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键,属于基础题.根据CO=BO可得点C表示的数为−2,据此可得a=−2−1=−3,解之即可.【解答】解:易得点C在原点的左侧,且CO=BO,且点B表示2,∴点C表示的数为−2,∵将点A向右平移1个单位长度得到点C,∴a=−2−1=−3.故选:A.5.【答案】D【解析】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;连接ON,∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN//CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.本题主要考查作图−复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6.【答案】D【解析】【分析】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=2m+n+m−nm(m−n)⋅(m+n)(m−n)=3mm(m−n)⋅(m+n)(m−n)=3(m+n),当m+n=1时,原式=3.故选D.7.【答案】D【解析】解:①若a>b,ab>0,则1a <1b,真命题;②若ab>0,1a <1b,则a>b,真命题;③若a>b,1a <1b,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.由题意得出3个命题,由不等式的性质再判断真假即可.本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.8.【答案】C【解析】【分析】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5−25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20−30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选C.9.【答案】1【解析】【分析】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.根据分式的值为零的条件得到x−1=0且x≠0,易得x=1.【解答】解:∵分式x−1x的值为0,∴x−1=0且x≠0,∴x=1.故答案为1.10.【答案】1.9【解析】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=12AB⋅CD=12×2.2×1.7≈1.9(cm2).故答案为:1.9.过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.11.【答案】①②【解析】解:长方体主视图,左视图,俯视图都是矩形, 圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆, 故答案为:①②.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键. 12.【答案】45【解析】解:延长AP 交格点于D ,连接BD ,则PD 2=BD 2=1+22=5,PB 2=12+32=10, ∴PD 2+DB 2=PB 2, ∴∠PDB =90°,∴∠DPB =∠PAB +∠PBA =45°, 故答案为:45.延长AP 交格点于D ,连接BD ,根据勾股定理得到PD 2=BD 2=1+22=5,PB 2=12+32=10,求得PD 2+DB 2=PB 2,于是得到∠PDB =90°,根据三角形外角的性质即可得到结论.本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键. 13.【答案】0【解析】解:∵点A(a,b)(a >0,b >0)在双曲线y =k 1x上,∴k 1=ab ;又∵点A 与点B 关于x 轴对称,∴B(a,−b)∵点B 在双曲线y =k 2x上,∴k 2=−ab ;∴k 1+k 2=ab +(−ab)=0; 故答案为:0.由点A(a,b)(a >0,b >0)在双曲线y =k 1x上,可得k 1=ab ,由点A 与点B 关于x 轴对称,可得到点B 的坐标,进而表示出k 2,然后得出答案.本题考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0的性质. 14.【答案】12【解析】解:如图1所示: ∵四边形ABCD 是菱形,∴OA =OC ,OB =OD ,AC ⊥BD , 设OA =x ,OB =y , 由题意得:{x +y =5x −y =1,解得:{x =3y =2,∴AC =2OA =6,BD =2OB =4,∴菱形ABCD 的面积=12AC ×BD =12×6×4=12;故答案为:12.如图1所示:由菱形的性质得出OA =OC ,OB =OD ,AC ⊥BD ,设OA =x ,OB =y ,由题意得:{x +y =5x −y =1,解得:{x =3y =2,得出AC =2OA =6,BD =2OB =4,即可得出菱形的面积.本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键. 15.【答案】=【解析】【分析】本题考查方差的意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x −,则方差s 2=1n[(x 1−x −)2+(x 2−x −)2+⋯+(x n −x −)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据中的每一个数据都加上或减去同一个常数,方差不变.根据一组数据中的每一个数据都加上或减去同一个常数,那么这组数据的波动情况不变,即方差不变,即可得出答案. 【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,∴一组数据中的每一个数据都加上(或都减去)同一个常数后,每一个数据与平均数的差值与原来一样, ∴方差不变,∴则s 12=s 02. 故答案为=.16.【答案】①②③【解析】解:①如图,∵四边形ABCD 是矩形,连接AC ,BD 交于O ,过点O 直线MP 和QN ,分别交AB ,BC ,CD ,AD 于M ,N ,P ,Q ,则四边形MNPQ 是平行四边形,故当MQ//PN ,PQ//MN ,四边形MNPQ 是平行四边形,故存在无数个四边形MNPQ 是平行四边形;故正确;②如图,当PM =QN 时,四边形MNPQ 是菱形,故存在无数个四边形MNPQ 是矩形;故正确;③如图,当PM ⊥QN 时,存在无数个四边形MNPQ 是菱形;故正确; ④当四边形MNPQ 是正方形时,MQ =PQ , 则△AMQ≌△DQP ,∴AM =QD ,AQ =PD ,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.17.【答案】解:原式=√3−1+2×√32+4=√3−1+√3+4=3+2√3.【解析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:{4(x−1)<x+2①x+73>x②,解①得:x<2,解②得x<72,则不等式组的解集为x<2.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:∵关于x的方程x2−2x+2m−1=0有实数根,∴b2−4ac=4−4(2m−1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2−2x+1=0,则(x−1)2=0,解得:x1=x2=1.【解析】直接利用根的判别式得出m的取值范围,求出m的值,进而解方程得出答案.此题主要考查了根的判别式,正确得出m的值是解题关键.20.【答案】(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠BAD,∵BE=DF,∴AB−BE=AD−DF,∴AE=AF,∴AC⊥EF;(2)解:如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB//CD,∵AC⊥EF,∴EF//BD,∴四边形EBDG是平行四边形,∴∠G=∠EBD,∵AB=AD,∴∠ABD=∠ADB,∴∠G=∠ADO,∴tanG=tan∠ADO=OAOD =12,∴OA=12OD,∵BD=4,∴OD=2,∴OA=1.【解析】(1)由菱形的性质得出AB=AD,AC平分∠BAD,由BE=DF得出AE=AF,即可得出结论;(2)证出∠G=∠ADO,由三角函数得出tanG=tan∠ADO=OAOD =12,得出OA=12OD,由BD=4,得出OD=2,得出OA=1.本题考查了菱形的性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.21.【答案】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元;故答案为:2.7;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【解析】本题考查了频数分布直方图、统计图、近似数等知识;读懂频数分布直方图和统计图是解题的关键.(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.22.【答案】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图象G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,∴AD⏜=CD⏜,∴AD=CD;(2)如图,连接OD,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵AD⏜=CD⏜,∴OD⊥AC,∴OD//AB,∵DE⊥AB,∴OD⊥DE,又OD为半径,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.【解析】(1)利用圆的定义得到图象G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到AD⏜=CD⏜,从而由圆心角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1{4≤x1+x3+x4≤144≤x2+x4≤144≤x4≤14,若x1=4,x2=3,x3=4,∴4≤x4≤6,又x4是整数,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+2③+④得,3(x1+x2+x3+x4)≤70,∴x1+x2+x3+x4≤2313,∴7天后,小云背诵的诗词最多为23首,此时x1=5,x2=9,x3=5,x4=4满足题意,故答案为:23.【解析】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.24.【答案】解:(1)AD,PC,PD,(2)描点画出如图图象;(3)2.3或4.0【解析】【分析】(1)按照函数的概念,AD是自变量,而PC、PD随AD的变化而变化,故PC、PD都是因变量,即可求解;(2)描点画出如图图象;(3)观察图像求解即可.本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.【解答】解:(1)按照函数的概念,AD是自变量,而PC、PD随AD的变化而变化,故PC、PD 都是因变量,故答案为:AD、PC、PD;(2)见答案;(3)根据图像可得AD的长度约为2.3或4.0cm..25.【答案】解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);,−k),C(k,−k),(2)由题意,A(k,k2+1),B(−k−1k,−2),C(2,−2),①当k=2时,A(2,5),B(−32在W区域内有6个整数点:(0,0),(0,−1),(1,0),(1,−1),(1,1),(1,2);②直线AB的解析式为y=kx+1,当x=k+1时,y=−k+1,则有k2+2k=0,∴k=−2,当0>k≥−1时,W内没有整数点,∴当0>k≥−1或k=−2时W内没有整数点;【解析】(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);,−2),C(2,−2),在W区域内有6个整数点;②当(2)①当k=2时,A(2,5),B(−32x=k+1时,y=−k+1,则有k2+2k=0,k=−2,当0>k≥−1时,W内没有整数点;本题考查一次函数图象上点的特征;能够数形结合解题,根据k变化分析W区域内整数点的情况是解题的关键.),26.【答案】解:(1)A(0,−1a);点A向右平移2个单位长度,得到点B(2,−1a(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b=−2a,∴y=ax2−2ax−1,a①当a>0时,<2,当x=2时,y=−1a当y=−1时,x=0或x=2,a∴函数与PQ无交点;②a<0时,当y =2时,ax 2−2ax −1a =2, x =a+|a+1|a或x =a−|a+1|a当a+|a+1|a≤2时,a ≤−12;∴当a ≤−12时,抛物线与线段PQ 恰有一个公共点;【解析】本题考查二次函数的图象及性质,熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.(1)A(0,−1a )向右平移2个单位长度,得到点B(2,−1a );(2)A 与B 关于对称轴x =1对称;(3)①a >0时,当x =2时,y =−1a <2,当y =−1a 时,x =0或x =2,所以函数与PQ 无交点;②a <0时,当y =2时,ax 2−2ax −1a =2,x =a+|a+1|a或x =a−|a+1|a当a+|a+1|a≤2时,a ≤−12,此时抛物线与线段PQ 恰有一个公共点27.【答案】解:(1)如图1所示为所求.(2)设∠OPM =α,∵线段PM 绕点P 顺时针旋转150°得到线段PN ∴∠MPN =150°,PM =PN∴∠OPN =∠MPN −∠OPM =150°−α ∵∠AOB =30°∴∠OMP =180°−∠AOB −∠OPM =180°−30°−α=150°−α ∴∠OMP =∠OPN(3)OP =2时,总有ON =QP ,证明如下:过点N 作NC ⊥OB 于点C ,过点P 作PD ⊥OA 于点D ,如图2∴∠NCP =∠PDM =∠PDQ =90° ∵∠AOB =30°,OP =2∴PD =12OP =1∴OD =√OP 2−PD 2=√3∵OH =√3+1∴DH =OH −OD =1 ∵∠OMP =∠OPN∴180°−∠OMP =180°−∠OPN即∠PMD =∠NPC 在△PDM 与△NCP 中{∠PDM =∠NCP ∠PMD =∠NPC PM =NP∴△PDM≌△NCP(AAS) ∴PD =NC ,DM =CP设DM =CP =x ,则OC =OP +PC =2+x ,MH =MD +DH =x +1 ∵点M 关于点H 的对称点为Q∴HQ =MH =x +1∴DQ =DH +HQ =1+x +1=2+x ∴OC =DQ在△OCN 与△QDP 中{OC =QD∠OCN =∠QDP =90°NC =PD∴△OCN≌△QDP(SAS)∴ON =QP【解析】(1)根据题意画出图形.(2)由旋转可得∠MPN =150°,故∠OPN =150°−∠OPM ;由∠AOB =30°和三角形内角和180°可得∠OMP =180°−30°−∠OPM =150°−∠OPM ,得证.(3)根据题意画出图形,以ON =QP 为已知条件反推OP 的长度.由(2)的结论∠OMP =∠OPN 联想到其补角相等,又因为旋转有PM =PN ,已具备一边一角相等,过点N 作NC ⊥OB 于点C ,过点P 作PD ⊥OA 于点D ,即可构造出△PDM≌△NCP ,进而得PD =NC ,DM =CP.此时加上ON =QP ,则易证得△OCN≌△QDP ,所以OC =QD.利用∠AOB =30°,设PD =NC =a ,则OP =2a ,OD =√3a.再设DM =CP =x ,所以QD =OC =OP +PC =2a +x ,MQ =DM +QD =2a +2x.由于点M 、Q 关于点H 对称,即点H 为MQ 中点,故MH =12MQ =a +x ,DH =MH −DM =a ,所以OH =OD +DH =√3a +a =√3+1,求得a =1,故OP =2.证明过程则把推理过程反过来,以OP =2为条件,利用构造全等证得ON =QP .本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON =QP 为条件反推OP 的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP =2为条件构造全等证明ON =QP .28.【答案】解:(1)如图2,以DE为直径的半圆弧DE⏜,就是△ABC的最长的中内弧DE⏜,连接DE,∵∠A=90°,AB=AC=2√2,D,E分别是AB,AC的中点,∴BC=ACsinB =2√2sin45°=4,DE=12BC=12×4=2,∴弧DE⏜=12×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE 垂直平分线FP,作EG⊥AC交FP于G,①当t=12时,C(2,0),∴D(0,1),E(1,1),F(12,1),设P(12,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE//OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=12根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤1 2综上所述,m≤12或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=32,∴P(t,32),∵DE//BC∴∠ADE=∠AOC=90°∴AE=√AD2+DE2=√12+(2t)2=√4t2+1,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=12 AE由三角形中内弧定义知,PD≤PM∴12AE≤32,AE≤3,即√4t2+1≤3,解得:t≤√2,∵t>0∴0<t≤√2.【解析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE 为直径的半圆,DE⏜的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=1时,要注意圆2心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP 满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.。

2019年北京市中考数学试题(Word版,解析版)

2019年北京市中考数学试题(Word版,解析版)

12019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【答案】C本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是( )A. B. C. D.【答案】C本题考察轴对称图形的概念,故选C3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°【答案】B多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.1【答案】A本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO ,∵2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∵AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作»PQ,交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交»PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∵COM=∵COD B.若OM=MN ,则∵AOB=20°C.MN∵CDD.MN=3CD【答案】D连接ON ,由作图可知∵COM∵∵DON.A. 由∵COM∵∵DON.,可得∵COM=∵COD ,故A 正确.B. 若OM=MN ,则∵OMN 为等边三角形,由全等可知∵COM=∵COD=∵DON=20°,故B 正确C.由题意,OC=OD ,∵∵OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证∵MOR∵∵NOS ,则OR=OS ,∵∵ORS=2COD180∠-︒,∵∵OCD=∵ORS.∵MN∵CD ,故C正确.D.由题意,易证MC=CD=DN ,∵MC+CD+DN=3CD.∵两点之间线段最短.∵MN <MC+CD+DN=3CD ,故选DB36.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( )A.-3B.-1C.1D.3【答案】:D()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m Θ∵原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.3【答案】D本题共有3种命题:命题∵,如果0,>>ab b a ,那么ba 11<. ∵b a >,∵0>-b a ,∵0>ab ,∵0>-ab b a ,整理得ab 11>,∵该命题是真命题. 命题∵,如果,11,ba b a <>那么0>ab .∵,11b a <∵.0,011<-<-aba b b a ∵b a >,∵0<-a b ,∵0>ab . ∵该命题为真命题. 命题∵,如果ba ab 11,0<>,那么b a >. ∵,11b a <∵.0,011<-<-aba b b a ∵0>ab ,∵0<-a b ,∵a b < ∵该命题为真命题. 故选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.5下面有四个推断:∵这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∵这200名学生参加公益劳动时间的中位数在20-30之间∵这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ∵这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A.∵∵B.∵∵C.∵∵∵D.∵∵∵∵【答案】C∵由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为25.5h ,则平均数一定在24.5~25.5之间,故∵正确∵由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故∵正确.∵由统计表计算可得,初中学段栏0≤t <10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故∵正确. ∵由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当学生类别50≤t <10时间段人数为0时,中位数在10~20之间;当0≤t <10时间段人数为15时,中位数在10~20之间,故∵错误 故选C二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为______. 【答案】1本题考查分式值为0,则分子01=-x ,且分母0≠x ,故答案为110.如图,已知∵ABC ,通过测量、计算得∵ABC 的面积约为 cm 2.(结果保留一位小数)【答案】本题考查三角形面积,直接动手操作测量即可.11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【答案】∵∵第10题图CBA第11题图③圆锥②圆柱①长方体7本题考查对三视图的认识.∵长方体的主视图,俯视图,左视图均为矩形;∵圆柱的主视图,左视图均为矩形,俯视图为圆;∵圆锥的主视图和左视图为三角形,俯视图为圆.故答案为∵∵12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【答案】45本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∵222PB BQ PQ =+,即∵PBQ 为等腰直角三角形,∵∵BPQ=45°,∵∵PAB+∵PBA=∵BPQ=45°,故答案为4513.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1ky x=上.点A 关于x轴的对称点B在双曲线2k y x=上,则12k k +的值为______.【答案】0本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴第12题图的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∵021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【答案】12设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)【答案】“=”本题考查方差的性质。

2019年北京中考数学试题及答案(解析版)

2019年北京中考数学试题及答案(解析版)

2019年北京市中考数学试卷考试时间:120分钟满分:100分{题型:1-选择题}一、选择题:本大题共8小题,每小题2分,合计16分.{题目}1.(2019年北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方紅一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439 000用科学记数法表示应为A.0.439×106B.4.39×106C.4.39×105D.439 ×103{答案}C{解析}本题考查了用科学记数法表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.439 000=4.39×100000=4.39×105,故本题答案为C.{分值}2{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}2.(2019年北京)下列但导节约的图案中,是轴对称图形的是()A B C D{答案}C{解析}本题考查了轴对称图形的识.如果一个图形沿某直线对折后,这线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的定义可知选项C 中的图形是轴对称图形.{分值}2{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019年北京)正十边形的外角和为()A.180° B.360° C.720° D.1440°{答案}B{解析}本题考查了多边形的外角和,根据多边形的外角和都等于360°可知答案为B.{分值}2{章节:[1-11-3]多边形及其内角和}{考点:多边形的外角和}{类别:常考题}{难度:1-最简单}{题目}4.(2019年北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.1{答案}A{解析}本题考查了数轴及平移的性质.∵点A,B在原点O的两侧,∴a<0.∵CO=BO,点B表示数2,∴点C表示数-2.∵点A向右平移1个单位长度得到点C,∴点A表示的数a=-2-1=-3.{分值}2{章节:[1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:2-简单}{题目}5.(2019年北京)已知锐角∠AOB.如图(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D.连接CD;(2)分别以点C、D为圆心,CD长为半径作弧,交PQ于点M、N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CDD.MN=3CD{答案}D{解析}本题是一道尺规作图题,综合考查了等腰三角形、全等三角形、平行线的判定等知识.如图,连接ON,根据作图过程可知∠COM=∠COD=∠DON,故选项A正确;若OM=MN,则△OMN是等边三角形,∴∠AOB=13×60°=20°,故选项B正确;设MN与OA交于点E,与OB交于点F.易证△MOE≌△NOF,∴OE=OF.∵OC=OD,∴∠OEF=∠OFE=∠OCD=∠ODC,∴MN∥CD,故选项C正确;连接MC,DN,则MC=CD=DN,根据“两点之间线段最短”可知MC+CD+DN<MN,即3CD<MN,故选项D不正确.O{分值}2{章节:[1-13-2-2]等边三角形} {考点:全等三角形的判定ASA,AAS} {考点:等边三角形的判定与性质} {考点:等边对等角}{考点:同位角相等两直线平行} {考点:线段公理} {类别:常考题}{难度:3-中等难度}{题目}6.(2019年北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 ( )A .-3B .-1C .1D .3{答案}D{解析}本题考查了分式的化简求值.原式=()()()23()()()()m n m n mm n m n m n m n m m n m m n m m n ⎡⎤+-=+⋅+-=⋅+-⎢⎥---⎢⎥⎣⎦=3(m+n ).当m+n=1时,原式=3×1=3. {分值}2{章节:[1-15-2-2]分式的加减} {考点:分式的混合运算} {类别:常考题} {难度:3-中等难度}{题目}7.(2019年北京)用不等式a >b ,ab >0,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( ) A .0 B .1 C .2 D .3{答案}D{解析}本题考查了不等式的基本性质及真命题的判定.根据题意,可知组成的命题有3个,分别为①若ab >0,11a b <,则a >b ;②若a >b ,ab >0,则11a b <;③若a >b ,11a b<,则ab >0. 对于命题①,∵ab >0,11a b <,∴b <a ,故该命题正确;对于命题②,∵a >b ,ab >0,∴11b a<,故该命题正确;对于命题③,∵11a b<,∴110b aa b ab --=<.∵a >b ,∴b-a <0,∴ab >0,故该命题正确; {分值}2{章节:[1-9-1]不等式} {考点:不等式的性质} {考点:命题} {类别:易错题} {难度:3-中等难度}{题目}8.(2019年北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是A.①③B.①④C.①②③D.①②③④ {答案}C{解析}本题是一道与统计图有关的题目,综合考查了平均数、中位数等知识.根据题意,补全统计名女生人均参加公益劳动的时间为25.5,故这200名学生参加公益劳动时间的平均数x -=24.597+25.5103200⨯⨯,故24.5<x -<25.5,故①正确;这200名学生参加公益劳动的时间的中位数是第100个数据和第101个数据的平均数,根据上面统计表可知,第100个数据和第101个数据都在20≤t <30这一组内,即中位数在20-30之间,故②正确;由统计表可知x+y=15,故初中生参加公益劳动时间的中位数一定在20≤t <30这一组内,高中生参加公益劳动时间的中位数一定在10≤t <20这一组内,故③正确,④不正确.{分值}2{章节:[1-20-1-2]中位数和众数}{考点:频数(率)分布表}{考点:算术平均数}{考点:中位数}{考点:条形统计图}{类别:高度原创}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共8小题,每小题2分,合计16分.{题目}9.(2019年北京)若分式1xx-的值为0,则x的值为= .{答案}1{解析}本题考查了分式的值为0的条件.∵分式1xx-的值为0,∴分子x-1=0,解得x=1.{分值}2{章节:[1-15-1]分式}{考点:分式的值}{类别:常考题}{难度:1-最简单}{题目}10.(2019年北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为=cm.(结果保留一位小数){答案}{解析}本题考查了三角形面积的计算,解题的关键正确作出三角形的高.如图,过点C作CD⊥AB,交AB的延长线于点D,则S△ABC=12 AB·CD.{分值}2{章节:[1-11-1]与三角形有关的线段}{考点:三角形的面积}{考点:准确数与近似数}{类别:常考题}{难度:2-简单}{题目}11.(2019年北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号){答案}①②{解析}本题考查了几何体的三视图. ①中长方体的主视图、俯视图和左视图都是矩形,②中圆柱的主视图和左视图都是矩形,③中圆锥的三视图都不是矩形. {分值}2{章节:[1-29-2]三视图} {考点:同底数幂的乘法} {考点:简单几何体的三视图} {类别:常考题} {难度:1-最简单}{题目}12.(2019年北京)如图所示的网格是正方形网格,则∠PAB +∠PBA = °.{答案}45{解析}本题是一道网格题,利用全等三角形实现角的转化是解题的关键. 如图,∵△APC ≌△BED ,∴∠PAB=∠DBE.∵△EPB 是等腰直角三角形,∴∠EBP=45°,∴∠DBE+∠PBA=90°-45°=45°,即∠PAB+∠PBA=45°.{分值}2{章节:[1-13-2-1]等腰三角形} {考点:全等三角形的性质} {考点:等腰直角三角形} {类别:发现探究} {难度:3-中等难度}{题目}13.(2019年北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线1k y x=上,点A 关于x 轴的对称点B 在双曲线2k y x=上,则k 1+k 2的值为 .{答案}0{解析}本题考查了反比例函数表达式的求法,确定关于x 轴的对称点的坐标是解题的关键. ∵点A (a ,b )在双曲线1k y x =上,∴k 1=ab.∵点A 与点B 关于x 轴对称,∴B (a,-b ).∵ 点B 在双曲线2ky x=上,∴k 2=-ab.∴k 1+k 2 =0. {分值}2{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的解析式} {考点:点的坐标}{考点:坐标系中的轴对称} {类别:常考题}{难度:3-中等难度}{题目}14.(2019年北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为 .图1 图2 图3 {答案}12{解析}本题考查了正方形和菱形的性质,根据所拼图形得到直角三角形两直角边的关系是解题的关键. 设每个直角三角形较长直角边为a ,较短直角边为b ,则5,1a b a b +=⎧⎨-=⎩,解得=3,2a b ⎧⎨=⎩,∴菱形的面积为12ab ×4=12.{分值}2{章节:[1-18-2-2]菱形} {考点:菱形的性质}{考点:二元一次方程组的应用} {类别:常考题} {难度:3-中等难度}{题目}15.(2019年北京)小天想要计算一组数据92,90,94,86,99,85的方差20s ,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则20s 21s .(填“>”,“=”或“<”) {答案}={解析}本题考查了方差的计算,根据方差公式计算即可.原数据的平均数()1=92+90+94+86+99+85=916x -,()()()()()()22222221=9291909194918691999185916S ⎡⎤-+-+-+-+-+-⎣⎦0=68=3;新数据的平均数()1=2+04495=16x +-+--,()()()()()()22222221=2101414191516S ⎡⎤-+-+-+--+-+--⎣⎦168=3,∴22=S S 01.{分值}2{章节:[1-20-2-1]方差} {考点:同底数幂的乘法} {考点:方差} {类别:常考题} {难度:2-简单}{题目}16.(2019年北京)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形.所有正确结论的序号是 .{答案}①②③{解析}本题是一道四边形压轴题,综合考查了平行四边形的性质、矩形、菱形和正方形的判定.在矩形ABCD 中,对角线AC,BD 相交于点O ,过点O 作直线PM 和NQ 交BC ,易证MNPQ 为平行四边形;当PM=QN 时,四边形MNPQ 为矩形;当PM ⊥QN 时,四边形MNPQ 为菱形;由于PM=QN 与PM ⊥QN 不一定能同时成立,故四边形MNPQ 不一定是正方形.故正确的结论是①②③.{分值}2{章节:[1-18-2-3] 正方形} {考点:平行四边形边的性质} {考点:平行四边形对角线的性质} {考点:矩形的判定} {考点:菱形的判定} {考点:正方形的判定}{类别:高度原创}{类别:易错题} {难度:4-较高难度}{题型:4-解答题}三、解答题:本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分.{题目}17.(2019年北京)计算:011(4)2sin 60()4π---+︒+.{解析}本题考查了实数的运算,掌握绝对值的性质、零指数幂、特殊角的三角函数值及负指数幂是解题才能正确解答.{答案}解:原式{分值}5{章节:[1-28-3]锐角三角函数} {考点:实数与绝对值、相反数} {考点:零次幂}{考点:负指数参与的运算} {考点:特殊角的三角函数值} {考点:简单的实数运算} {类别:常考题} {难度:2-简单}{题目}18.(2019年北京)解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩{解析}本题考查了不等组的解法和不等式组的整数解,解不等式组的步骤为:先解出不等式组中每个不等式的解集,然后得出不等式组的解集. {答案}解:解不等式4(x-1)<x+2,得x <2;解不等式73x x +>,得x <72. 所以,这个不等式组的解集为x <2. {分值}5{章节:[1-9-3]一元一次不等式组}{难度:2-简单}{类别:常考题}{考点:解一元一次不等式组}{题目}19.(2019年北京)关于x的方程22+210x x m--=有实数根,且m为正整数,求m的值及此时方程的根.{解析}本题考查了一元二次方程根的判别式,由于原方程有实数根可知b2-4ac≥0,由此确定出m取值范围,又有m为正整数,从而可确定m的值.{答案}解:∵方程x2-2x+2m-1=0有实数根,∴(-2)2-4(2m-1)≥0,解得m≤1.∵m为正整数,∴m=1.∴原方程为x2-2x+1=0.解得x1=x2=1.{分值}5{章节:[1-21-2-2]公式法}{考点:根的判别式}{考点:完全平方式}{类别:常考题}{难度:3-中等难度}{题目}20.(2019年北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE= DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=12,求AO的长.{解析}本题考查了菱形的性质、等腰三角形的性质、平行四边形的判定、锐角三角函数等知识.(1)先根据菱形边和对角线的性质得到AB=AD,AC平分∠BAD,再根据等腰三角形三线合一的性质证得AC⊥EF;(2)根据菱形对角线的性质可得BO的长度及AC⊥BD,又有AC⊥EF,故BD∥EF,由此可知四边形EBDG是平行四边形,从而得到tan∠ABD= tanG=12.在Rt△ABD中由tan∠ABD=12即可求得AO的长度.{答案}解:(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠BAD. ∵BE=DF,即AE=AF.∴AC⊥EF.(2)∵四边形ABCD是菱形,∴AC⊥BD,CG∥AB,BO=12BD=2.∵AC⊥EF,∴BD∥EF.∴四边形EBDG是平行四边形. ∴∠ABD =∠G.∵tan∠ABD=tanG=12,D BC∴2AO =12,解得AO=1.{分值}5{章节:[1-28-3]锐角三角函数} {考点:正切}{考点:菱形的性质} {考点:等腰直角三角形} {考点:平行四边形边的性质}{考点:两组对边分别平行的四边形是平行四边形} {类别:常考题} {难度:3-中等难度}{题目}21.(2019年北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数,对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析,下图给出了部分信息.a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x < 40,40≤x <50,50≤x <60,60 ≤x <70,70≤x <80,80≤x <90,90 ≤x ≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c .40个国家的人均国内生产总值和国家创新指数得分情况统计图国家创新指数得分d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第 ;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l 1的上方,请在图中用“○”画出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 万美元;(结果保留一位小数)(4)下列推断合理的是 .①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出"加快建设创新型国家"的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产品值还有一定差距,中国提出"决胜全国建成小集社会"的奋斗目标,进一步提高人均国内生产总值.{解析}本题考查了统计图及数据的分析. (1)得分在60 ≤x <70这一组的9个国家中,中国得分最高,故70 ≤x <80这一组有12个国家,80 ≤x <90这一组有2个国家,90 ≤x <100这一组有2个国家,故中国的得分排名为1+12+2+2=17. (2)由中国的国家创新指数得分为69.5及“包括中国在内的少数几个国家所对应的点位于虚线l 1的上方”可以代表中国的点.(3)观察《40个国家的人均国内生产总值和国家创新指数得分情况统计图》可知有在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元.(4)因为中国的国家创新指数得分比A,B 所代表的国家低得多,所以中国需进一步提高国家综合创新能力;因为中国的人均国内生产品值比B,C 所代表的国家低得多,所以中国需要进一步提高人均国内生产总值,故推断①②都是合理的.{答案}解:(1)17; (2)如图:(3)2.7. (4)①②. {分值}5{章节:[1-20-3]课题学习 体质健康测试中的数据分析} {考点:数据分析综合题}/万美元30405060708090{考点:频数(率)分布直方图} {类别:高度原创} {难度:3-中等难度}{题目}22.(2019年北京)在平面内,给定不在同一条直线上的点A ,B ,C .如图所示,点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD = CD(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD = CM ,求直线DE 与图形G 的公共点个数.{解析}解析:(1)由BD 平分∠ABCA 可得∠ABD=∠CBD ,根据相等的圆周角、等弧、等弦之间的关系可得AD CD =和AD=CD.(2)通过证明Rt △CDF ≌Rt △CMF 得到DF=MF ,连接OD ,由∠ABC=2∠CBD=∠COD 可得OD ∥BE ,进而由DE ⊥AB 得到OD ⊥DE ,即DE 为⊙O 的切线. {答案}解:(1)∵BD 平分∠ABCA,∴∠ABD=∠CBD , ∴AD CD =,∴AD=CD.(2)∵DF ⊥BC ,∴∠DFC=∠CFM=90°. 又∵CD=AD=CM.∴Rt △CDF ≌Rt △CMF.∴DF=MF ,∴BC 为⊙O 的直径. 连接OD.∵∠COD=2∠CBD ,∠ABC=2∠CBD , ∴∠ABC=∠OCD. ∴OD ∥BE. ∵DE ⊥AB , ∴OD ⊥DE.∴DE 为⊙O 的切线,即直线DE 与图形G 的公共点个数为1.{分值}6{章节:[1-24-2-2]直线和圆的位置关系} {考点:垂径定理}{考点:圆心角、弧、弦的关系} {考点:圆周角定理} {考点:切线的判定}{考点:全等三角形的判定HL}ABC{考点:同位角相等两直线平行} {考点:两直线平行同旁内角互补} {类别:高度原创} {类别:发现探究} {难度:4-较高难度}{题目}23.(2019年北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背调第三遍,三解答下列问题:(1)填入x 3,补全上表;(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为 ; (3)7天后,小云背诵的诗词最多为 首.{解析}本题是一道与不等式组有关的实际应用题.(1)由题意,得对于第3组诗词,第3天背诵第一遍,第4天背诵第二遍,第6天背调第三遍,三遍后完成背诵,其它天无需背诵.(2)由“每天最多背诵14首,最少背诵4首”可得134244414414414x x x x x x ≤++≤⎧⎪≤+≤⎨⎪≤≤⎩,解得4≤x 4≤6.(3)当第4天背诵的诗词数为14首时,x 1+x 3+x 4=14.由题意,得122324414414414x x x x x x ≤+≤⎧⎪≤+≤⎨⎪≤+≤⎩①②③,∴123412242x x x x ≤+++≤,解得222833x -≤≤,∴x 2的最大值为9,∴(x 1+x 3+x 4)+x 2=23.{答案}解: ((2)4,5,6. (3)23. {分值}6{章节:[1-9-3]一元一次不等式组} {考点:一元一次不等式组的应用} {类别:高度原创}{类别:易错题} {难度:4-较高难度}{题目}24.(2019年北京)如图,P 是AB 与弦AB 所围成的图形的外部的一定点,C 是AB 上一动点连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了程究. 下面是小腾的探究过程,请补充完整:(1)对于点C 在AB 的不同位置,画图,测量,得到了线段PC ,PD ,AD 的长度的几组值,如的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC =2PD 时,AD 的长度约为 cm .{解析}本题是一道与函数图像有关的实际应用题.(1)观察表格可知,PC 在位置5和位置6时长度都等于2.25,PD 在位置3和位置7时长度都等于2.00,而AD 在不同位置时的长度各不相等,故AD 的长度是自变量,PC 的长度和PD 的长度都是这个自变量的函数.(2)根据(1)表格中的数值描点、连线,注意平面坐标系的x 轴表示AD 的长度,纵轴表示PC 或PD 的长度;(3)观察(2)中函数图像,并结合(1)表格求解即可. {答案}解: (1)AD PC PD ; (2)如图A(3)2.29或3.98.{分值}6{章节:[1-19-1-2] 函数的图象}{考点:函数的概念}{考点:函数的图象}{类别:高度原创}{难度:4-较高难度}{题目}25.(2019年北京)在平面直角坐标系xOy中,直线l:1(0)y kx k=+≠与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y =-k交于点C.(1)求直线1与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区城W内没有整点,直接写出k的取值范围.{解析}本题是考查了一次函数的图像,解题时要画出函数图像并结合图像分析求解.(1)将x=0代入l的解析式即可;(2)画出k=2时三条直线并求出点A,B,C的坐标,从而确定出区域W及其内部整点的个数;(3)当-1≤k<0或k=-2时,区域W内没有整点.{答案}解:(1)将x=0代入y=kx+1,得y=1,∴直线l与y轴的交点坐标为(0,1).(2)①将x=2代入y=2x+1,得y=5,∴A(2,5).将y=-2代入y=2x+1,得2x+1=-2,解得y=-32,∴点B(-32,-2).又∵直线x=2和y=-2的交点C(2,-2),∴W内的整点为(1,2)(1,1)(1,0)(1,-1)(0,0)(0,-1),共6个.②k=-2或-1≤k<0.{分值}5{章节:[1-19-3]一次函数与方程、不等式}{考点:一次函数的图象}{考点:一次函数与几何图形综合}{类别:高度原创}{类别:发现探究}{类别:新定义}{难度:5-高难度}{题目}26.(2019年北京)在平面直角坐标系xOy中,抛物线21y ax bxa=+-与y轴交于点A,将点A向右平称2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴:(3)已知点P11(,)2a-,Q(2.2),若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.{解析}本题是一道与二次函数图像有关的压轴题,解题时要画图分析.(1)先将x=0代入抛物线的解析式求得点A的坐标,再根据平移规律求得点B的坐标;(2)根据抛物线的对称性求解;(3)画出函数图像求解,注意由于点A和P的纵坐标相等,点B和点Q的纵坐标相等,故抛物线不能同时经过点A和P,也不能同时经过点B和Q.{答案}解:(1)将x=0代入y=ax2+bx-1a,得y=-1a,∴点A的坐标为(0,-1a).∵点B的坐标为(2,-1a).(2)∵抛物线经过点A(0,-1a)和点B(2,-1a),∴抛物线的对称轴为x=1.(2)①当a>0时,-1a<0.根据抛物线的对称性,可知抛物线不能同时经过点A和点P,也不能同时经过点B和点Q,所以此时抛物线与线段PQ没有交点;②当a<0时,-1a>0.根据抛物线的对称性,可知抛物线不能同时经过点A和点P;当点Q在点B上方或与点B重合时,抛物线与线段PQ恰有一个公共点,此时-1a≤2,即a≤-12.综上可知,当a≤-12时,抛物线与线段PQ恰有一个公共点.{分值}6{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}{考点:算术平均数}{考点:含参系数的二次函数问题}{类别:思想方法}{类别:高度原创}{类别:发现探究}{难度:5-高难度}{题目}27.(2019年北京)已知∠AOB=30°,H为射线OA上一定点,OH,P为射线OB上一点,M为线段OH上一动点,连接PM.满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1:(2)求证:∠OMP = ∠OPN:(3)点M关于点H的对称点为Q,连接QP,写出一个OP的值,使得对于任意的点M总有ON= QP,并证明.{解析}本题是考查了图形的旋转与中心对称、三角形内角和定理、全等三角形的判定和性质、解直角三角形等知识.(1)根据题意画图即可;(2)在△OMP 中根据三角形内角和定理可知∠OMP=150°-∠OPM ,而∠OPN=1 50°-∠OPM ,故∠OMP=∠OPM ;(3)求出当ON=PQ 时x 的值即可. {答案}解:(1)如图所示:(2)在△OMP 中,∵∠AOB=30°,∴∠OMP=150°-∠OPM. ∵∠MON=150°,∴∠OPN=150°-∠OPM ,∴∠OMP=∠OPM.(3)如图,过点P 作PK ⊥OA ,过点N 作NF ⊥OB ,垂足分别为K,F. ∴∠PKM=∠NFP=90°.∵∠OMP=∠OPM ,∴∠PMK=∠NPF. ∴△PMK ≌△NPF.∴MK=PF,∠MPK=∠PNF ,PK=NF. 假设ON=PQ ,∴Rt △NOF ≌Rt △PQK. ∴KQ=OF.设MK=y ,PK=x.在Rt △OPK 中,∵∠AOB=30°,∴OP=2x ,x.∴,∵点M 与Q 关于H 对称,∴MH=HQ ,∴∵KQ=OF ,∴,解得x=1. ∴OP=2x=2.{分值}7{章节:[1-28-1-2]解直角三角形} {考点:三角形内角和定理} {考点:全等三角形的判定HL}{考点:全等三角形的判定ASA,AAS} {考点:全等三角形的性质}OAOA{考点:含30度角的直角三角形} {考点:解直角三角形} {类别:高度原创} {类别:发现探究} {难度:5-高难度}{题目}28.(2019年北京)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE 上的所有点都在△ABC 的内部或边上,则称DE 为△ABC 的中内弧,例如,下图中DE 是△ABC 的一条中内弧(1)如图,在Rt △ABC 中,AB =AC=D ,E 外别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ,并直接写出此时DE 的长;(2)在平而直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0). 在△ABC 中,D ,E 分别是AB ,AC 的中点①若t =12,求△ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.{解析}本题是一道新定义题,综合考查了等腰直角三角性的性质、弧长的计算、切线的性质、相似三角形的判定和性质等知识.(1)设DE 所在圆的圆心为P ,当⊙P 与BC 相切于F 时,中内弧DE最长,易证点P 是DE 的中点,∴PD=12DE=1. 1122122DE l r πππ=⨯=⨯⨯=.(2)分别求出⊙P 与AB相切和⊙P 与AC 相切时y p 的值,即可求出y p 的取值范围;(3)求出⊙P 分别与AC ,BC 相切时t 的值即可.{答案}解:(1)如图所示:BCCABDE的长为π.(2)①当t=12时,C(2,0),D(0,1),E(1,1).如图,当⊙P与AB相切于点D,y p=1;如图,当⊙P与AC相切于点E,y p=12,∴y p≤12.∴y p≥1或y p≤1 2 .(3)0<t.{分值}7{章节:[1-27-1-3]相似三角形应用举例}{考点:等腰直角三角形}{考点:勾股定理}{考点:切线的性质}{考点:弧长的计算}{考点:相似三角形的性质}{考点:相似三角形的判定(两角相等)}{类别:思想方法}{类别:高度原创}{类别:发现探究}{类别:新定义} {难度:5-高难度}。

2019年北京市中考数学试卷(带解析)

2019年北京市中考数学试卷(带解析)
第 8页(共 34页)
(2)求证:∠OMP=∠OPN; (3)点 M 关于点 H 的对称点为 Q,连接 QP.写出一个 OP 的值,使得对于任意的点 M 总有 ON=QP,并证明.
28.(7 分)在△ABC 中,D,E 分别是△ABC 两边的中点,如果 上的所有点都在△ABC 的内部或边上,则称 为△ABC 的中内弧.例如,图 1 中 是△ABC 的一条中内弧.
b.国家创新指数得分在 60≤x<70 这一组的是: 61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c.40 个国家的人均国内生产总值和国家创新指数得分情况统计图:
第 5页(共 34页)
d.中国的国家创新指数得分为 69.5.
(以上数据来源于《国家创新指数报告(2018)》)
2019 年北京市中考数学试卷
一、选择题(本题共 16 分,每小题 2 分) 1.(2 分)4 月 24 日是中国航天日.1970 年的这一天,我国自行设计、制造的第一颗人造地
球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距
地球最近点 439000 米,将 439000 用科学记数法表示应为(
D.3
7.(2 分)用三个不等式 a>b,ab>0, < 中的两个不等式作为题设,余下的一个不等式
作为结论组成一个命题,组成真命题的个数为( )
A.0
B.1
C.2
D.3
8.(2 分)某校共有 200 名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加
公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分
③这 200 名学生中的初中生参加公益劳动时间的中位数一定在 20~30 之间

2019年北京市中考数学试卷附答案

2019年北京市中考数学试卷附答案

2019年北京市中考数学试卷附答案一、选择题1.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1062.下表是某学习小组一次数学测验的成绩统计表:分数/分708090100人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁4.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分5.若点P1(x1,y1),P2(x2,y2)在反比例函数kyx(k>0)的图象上,且x1=﹣x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2 6.如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A.3 B.23C.32D.67.下列各曲线中表示y是x的函数的是()A .B .C .D .8.如果关于x 的分式方程11222ax xx有整数解,且关于x 的不等式组0322(1)x a xx 的解集为x >4,那么符合条件的所有整数a 的值之和是()A .7B .8C .4D .59.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是()A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)10.如图,将?ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD48o,CFD40o,则E 为()A .102oB .112oC .122oD .92o11.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A .140B .120C .160D .10012.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为()A .5米B .6米C .8米D .(3+5)米二、填空题13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是.14.一列数123,,,a a a ……n a ,其中1231211111,,,,111nna a a a a a a L L ,则1232014a a a a L L __________.15.如图,添加一个条件:,使△ADE ∽△ACB ,(写出一个即可)16.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.17.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.19.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD=∠MAP +∠PAB ,则AP =_____.20.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N →P →Q →M 方向运动至点 M处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)2估计光明中学全体学生社会实践活动成绩的总分.23.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?24.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC,DF+BF=8,如图2,求BF的长.25.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.2.D解析:D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.3.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x=2221·1x x x x x =2212·1x xx x x=221·1x x x x x=2x x=2xx,∴出现错误是在乙和丁,故选D .【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.4.B解析:B 【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B .【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.D解析:D 【解析】由题意得:1212k k y y x x ,故选 D.6.B解析:B 【解析】【分析】根据折叠的性质可得∠MAN=∠DAM ,再由AN 平分∠MAB ,得出∠DAM=∠MAN=∠NAB ,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM ≌△ADM ,∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∠MAN=∠NAB ,∴∠DAM=∠MAN=∠NAB ,∵四边形ABCD 是矩形,∴∠DAB=90°,∴∠DAM=30°,∴AM=262333AD ,故选:B .【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,7.D解析:D 【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确.故选D .8.C解析:C 【解析】【分析】解关于x 的不等式组0322(1)x axx ,结合解集为x >4,确定a 的范围,再由分式方程11222ax xx有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】由分式方程11222ax x x可得1﹣ax+2(x ﹣2)=﹣1解得x =22a,∵关于x 的分式方程11222ax xx有整数解,且a 为整数∴a =0、3、4关于x 的不等式组322(1)x ax x 整理得4x a x∵不等式组0322(1)xa xx 的解集为x >4∴a ≤4于是符合条件的所有整数a 的值之和为:0+3+4=7故选C .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.9.D解析:D 【解析】【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称;由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D10.B解析:B 【解析】【分析】由平行四边形的性质和折叠的性质,得出ADBBDF DBC ,由三角形的外角性质求出1BDF DBCDFC 202o,再由三角形内角和定理求出A ,即可得到结果.【详解】AD //BC Q ,ADBDBC ,由折叠可得ADBBDF ,DBCBDF ,又DFC 40o Q,DBCBDF ADB20o,又ABD48oQ,ABD V 中,A1802048112oooo ,E A112o ,故选B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB的度数是解决问题的关键.11.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得12.A解析:A【解析】试题分析:根据CD:AD=1:2,AC=35米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD=22AB AD=8米,则BC=BD-CD=8-3=5米.考点:直角三角形的勾股定理二、填空题13.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD,交AC于点O,由勾股定理可得BO=3,根据菱形的性质求出BD,再计算面积.【详解】连接BD,交AC于点O,根据菱形的性质可得AC⊥BD,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】解:123412311111,,2,1,1211a a a a a a a …由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112.故答案为20112.考点:规律性:数字的变化类.15.∠ADE=∠ACB (答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB (答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A (公共角),则添加:∠ADE=∠ACB 或∠AED=∠ABC ,利用两角法可判定△ADE ∽△ACB ;添加:AD AE ACAB,利用两边及其夹角法可判定△ADE ∽△ACB.16.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l ∵r=3h=4∴母线l=∴S 侧=×2πr ×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线l=225r h,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9= 4×3-3按照这个规律即可求出第n各图形中有多少三角形【详解】分解析:43n【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x.故答案为:13201320304060x x.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=32,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.20.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.三、解答题21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,解得k1,b40,∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90); 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,解得:m2,n200,故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.14,4;23150分.【解析】【分析】1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:中位数众数随机抽取的50人的社会实践活动成绩4 4(单位:分)2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(分).50估计光明中学全体学生社会实践活动成绩的总分是: 3.59003150(分).【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.23.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n,解得:237m n,∴y 1=﹣23x+7;将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13,∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13.∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73.∵﹣13<0,∴当x=5时,y 1﹣y 2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2.设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.24.(1)证明见解析(2)93﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到?BD CD,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=23,得到∠BDF=∠DBP=30°,在Rt△DBP中得到PD=3,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC可设AB=4x,AC=3x,设BF=y,由??BD CD得到CD=BD=23,由△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴?BD CD,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=23,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12BD=3,PB=3PD=3,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=577,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD,即57571257DF,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)23604=932;(3)连结CD,如图2,由43ABAC可设AB=4x,AC=3x,设BF=y,∵?BD CD,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD,即23323yx,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF,即848y yy x y,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.25.(1)280名;(2)补图见解析;108°;(3)0.1.【解析】【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.。

北京市2019年中考数学复习 统计与概率 课时训练(十五)统计图表练习

北京市2019年中考数学复习 统计与概率 课时训练(十五)统计图表练习

北京市2019年中考数学复习统计与概率课时训练(十五)统计图表练习(十五) 统计图表(限时:30分钟)|夯实基础|1.某棉纺织厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位: mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为()A.0.8B.0.7C.0.4D.0.22.[2018·朝阳二模]小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.图K15-1根据图中信息,下列说法:①这栋居民楼共有居民140人;②每周使用手机支付次数为28~35次的人数最多;③有的人每周使用手机支付的次数在35~42次;④每周使用手机支付不超过21次的有15人.其中正确的是()A.①②B.②③C.③④D.④3.[2018·怀柔一模]图K15-2是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是()图K15-2A.9月毛衣的销量最低, 10月衬衫的销量最高B.与10月相比,11月时,毛衣的销量有所增长,衬衫的销量有所下降C.9月-11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右4.[2018·海淀第二学期练习]在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.图K15-3(以上数据摘自《2017年在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理的是()A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%5.[2018·丰台一模]太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.图K15-4是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理的是()图K15-4A .截至2017年底,我国光伏发电累计装机容量为13078万千瓦B .2013-2017年,我国光伏发电新增装机容量逐年增加C .2013-2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦D .2017年我国光伏发电新增装机容量大约占当年累计装机容量的40%6.[2018·东城一模] 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0.甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,那么你会选派 (理由是.7.[2017·顺义一模]图K15-5①为女生从出生到15岁的平均身高统计图,图K15-5②是某女生从出生到12岁的身高统计图.图K15-5请你根据以上信息预测该女生15岁时的身高约为,你的预测理由是.8.[2018·朝阳二模]鼓励科技创新、技术发明,2012-2017年专利授权量如图K15-6所示.根据统计图中提供信息,预估2018年专利授权量约件,你的预估理由是.图K15-69.[2017·朝阳二模]在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:①平均来说,乘坐公共汽车上学所需的时间较短;②骑自行车上学所需的时间比较容易预计;③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车;④如果小军一定要在16 min内到达学校,他应该乘坐公共汽车.其中合理的是(填序号).10.[2018·门头沟一模]地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76889365789489689550898889897794878892 91初二:74979689987469767278997297769974997398 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:(说明:)分析数据:(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性)11.[2018·延庆一模]从环保局证实,为满足2022年冬奥会对环境质量的要求,延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.收集数据:从2016年12月初开始,连续一年对两镇的空气质量进行监测,将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:1201151001009585807050505045永宁镇:11090105809085906090457060(1)整理、描述数据:按下表整理、描述这两镇空气污染指数的数据:(说明:;100<空气污染指数≤150时,空气质量为轻度污染)(2)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示:(3)得出结论:可以推断出镇这一年中环境状况比较好,理由:.(至少从两个不同的角度说明推断的合理性)12.[2018·东城二模]十八大报告首次提出建设生态文明,建设美丽.十九大报告再次明确,到2035年美丽目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率) 请根据以上信息解答下列问题:(1)从第次清查开始,的森林覆盖率超过全国的森林覆盖率;(2)补全以下森林覆盖率折线统计图,并在图中标明相应数据;图K15-7(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a和b的式子表示).|拓展提升|13.[2018·丰台二模]某校七年级6个班的180名学生即将参加中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是;(填序号)①选择七年级1班、2班各15名学生作为调查对象;②选择机器人社团的30名学生作为调查对象;③选择各班学号为6的倍数的30名学生作为调查对象.调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表图K15-8分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是(填A-G的字母代号),估计全年级大约有名学生喜欢这个课程领域.参考答案1.A2.B3.C4.B5.B6.答案不唯一,理由须支撑选项.7.170厘米12岁时该女生比平均身高高8厘米,预测她15岁时也比平均身高高8厘米(答案不唯一,合理即可).8.答案不唯一,理由须支撑推断的合理性.9.①②③10.解:(1)补全表格如下:初一:8;众数:89;中位数:77.(2)略.可以从给出的三个统计量去判断,如果利用其他标准推断要有数据说明合理才能得分.11.解:(1)19 2(2)82.590(3)千家店理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的次数是4,永宁镇空气质量为优的次数是1,所以千家店镇空气质量为优的次数多,空气质量较好.12.解:(1)四(2)如图.(3)13.解:收集数据③整理、描述数据某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图分析数据、推断结论G60。

【名师推荐】2019年北京中考数学习题精选:统计图表

【名师推荐】2019年北京中考数学习题精选:统计图表

一、选择题1、(2018北京朝阳区二模)小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人28~35次的人数最多35~42次21次的有15人其中正确的是(A)①②(B)②③(C)③④(D)④答案:B2.(2018北京通州区一模)答案:B3.(2018北京平谷区中考统一练习)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A.①③B.②③C.②④D.③④答案C4.(2018北京丰台区一模)太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理...的是(A)截至2017年底,我国光伏发电累计装机容量为13 078万千瓦(B)2013-2017年,我国光伏发电新增装机容量逐年增加(C)2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦(D)2017年我国光伏发电新增装机容量大约占当年累计装机容量的40% Array答案B5.(2018北京海淀区第二学期练习)在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.2015-2017年中国在线教育用户规模统计图6月12月6月(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理...的是A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70% 答案B6.(2018北京延庆区初三统一练习)下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》) 根据统计图提供的信息,下列推断不合理...的是 A .与2016年相比,2017年我国国内生产总值有所增长; B .2013-2016年,我国国内生产总值的增长率逐年降低; C .2013-2017年,我国国内生产总值的平均增长率约为6.7% ; D .2016-2017年比2014-2015年我国国内生产总值增长的多. 答案:C7.(2018北京西城区九年级统一测试)空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.某同学查阅资料,制作了近五年1月份北京市AQI 各类别天数的统计图如下图所示.2000004000006000001000000520%亿元2013-2017年国内生产总值及其增长速度优良轻度污染中度污染重度污染严重污染1月1月1月1月1月根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年1月B .AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别 答案:D8. (2018北京房山区一模)某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是A. 该班学生一周锻炼时间的中位数是11B. 该班学生共有44人C.该班学生一周锻炼时间的众数是10D.该班学生一周锻炼12小时的有9人 答案A9.(2018北京怀柔区一模)下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( ) A. 9月毛衣的销量最低,10月衬衫的销量最高——毛衣的销量 ……衬衫的销量B.与10月相比,11月时,毛衣的销量有所增长, 衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右 答案C10. (2018北京门头沟区初三综合练习)下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是 A .2011-2014年最高温度呈上升趋势; B .2014年出现了这6年的最高温度; C .2011-2015年的温差成下降趋势; D .2016年的温差最大. 答案C11.(2018北京市大兴区检测)自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理...的是 A .统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况 B .我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1%温度50北京市2011-2016年气温变化情况最高气温最低气温C .2011年我国发明专利申请量占世界发明专利申请量的比重是28%D .2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长 答案C12.(2018北京市朝阳区综合练习(一)) “享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况.第六届和第八届北京国际电影节﹒电影市场“项目创投”申报类型统计表根据统计图提供的信息,下列推断合理..的是 (A )两届相比较,所占比例最稳定的是动作冒险(含战争)类(B )两届相比较,所占比例增长最多的是剧情类(C )第八届悬疑惊悚犯罪类申报数量比第六届2倍还多(D )在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类 答案A 二、填空题13、(2018北京昌平区二模)近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是2014-2017年新能源汽车生产和销售的情况:根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为 万量,你数量(万辆)152535455565758525元10元的预估理由是 .答案: 答案不唯一(只要理由合理均可给分)14、(2018北京东城区二模)每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 . 答案: 120 ;3 00015、(2018北京朝阳区二模)鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示. 根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.答案:答案不唯一,理由须支撑推断的合理性. 16、(2018北京房山区二模)某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为__________元.答案:1717.(2018北京通州区一模)答案:三、解答题18.(2018北京市朝阳区一模)北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市2012—2017年污水处理率统计表:(1)用折线图将2012—2017年北京市污水处理率表示出来,并在图中标明相应的数据;(2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为%,说明你的预估理由:.频数成绩x /分121086401009080706021416解:(1)图略. ………………………………………………………………3分 (2)预估理由须包含统计图表中提供的信息,且支撑预估的数据.……5分 19.(2018北京顺义区初三练习)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次 “汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66, 62,68,89,86,93,97,100,73,76,80, 77,81,86,89,82,85,71,68,74,98, 90,97,100,84,87,73,65,92,96,60.对上述成绩(成绩x 取整数,总分100分)进行了整理,得到下列不完整的统计图表:70d请根据所给信息,解答下列问题:(1)a = ,b = , c = ,d = ; (2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?解:(1)a = 14 ,b = 0.35 , c = 12 ,d =0.3 ;………… 2分(2)补全频数分布直方图如下:…………………… 4分161426070809010004681012成绩x /分频数(3)估计参加这次比赛的600名学生中成绩“优”等的约有180人.……… 5分20.(2018北京市朝阳区综合练习(一))水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲26 32 40 51 44 74 44 63 73 74 81 546241 33 54 43 34 51 63 64 73 64 54 33乙27 35 46 55 48 36 47 68 82 48 57 667527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据两组样本数据的平均数、众数和方差如下表所示:得出结论a.估计乙大棚产量优秀的秧苗数为株;b.可以推断出大棚的小西红柿秧苗品种更适应市场需求,理由为.(至少从两个不同的角度说明推断的合理性)解:整理、描述数据按如下分组整理、描述这两组样本数据…………………………………………………………………………………………………2分得出结论a.估计乙大棚产量优秀的秧苗数为84 株;…………………………3分b.答案不唯一,理由须支撑推断的合理性.…………………5分21、(2018北京东城区二模)十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).解:(1)四;---------------------------------------------------------------------1分(2)如图:---------------------------------------------------------------------3分(3)5432000ab.------------------------------------------------------5分22、(2018北京丰台区二模)某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习. 学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史. 为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是___________;(填序号)①选择七年级1班、2班各15名学生作为调查对象②选择机器人社团的30名学生作为调查对象③选择各班学号为6的倍数的30名学生作为调查对象调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据 整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图. 某校七年级学生喜欢的课程领域统计表 某校七年级学生喜欢的课程领域统计图分析数据、推断结论 请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是__________(填A-G 的字母代号),估计全年级大约有_________名学生喜欢这个课程领域.答案.收集数据 抽样调查对象选择合理的是③. ………………………1分整理、描述数据 如下: ………………………4分某校七年级学生喜欢的课程领域统计表 某校七年级学生喜欢的课程领域统计图EF CDGAB分析数据、推断结论 G ,60. ………………………6分 23.(2018北京西城区二模)阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题: (1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由..解:(1)补全统计图如图3.………………………………………………………………… 4分(2)答案不唯一,预估理由合理,支撑预估数据即可. ……………………… 6分图3。

2019年北京市中考数学总复习课件:第15课时 统计图表

2019年北京市中考数学总复习课件:第15课时 统计图表

[答案] 50 30%
图15-5
高频考向探究
探究一 获取统计图表信息,解决问题
年份 动车组发送旅 2014 2015 2016 2017 2018 0.87 1.14 1.46 1.80 2.17
例 1[2018· 东城一模] 随着高铁的建设,春运期间动车组发
送旅客量越来越大.相关部门为了进一步了解春运期间动车 客量 a 亿人次 组发送旅客量的变化情况,针对 2014 年至 2018 年春运期间 铁路发送旅客 铁路发送旅客量情况进行了调查,具体过程如下. (1) 收集、整理数据 请将表格补充完整:
总量 b 亿人次 动车组发送
2.52 2.76 3.07 3.42 3.82
旅客量占比 34.5%41.3%47.6%52.6%
������ ������
×100%
高频考向探究
(2)描述数据 为了更直观地显示春运期间动车组发送旅客量占比的变化趋 势,需要用 (填“折线图”或“扇形图”)进行描述;
解:(1)56.8%. (2)折线图. (3)答案不唯一,预估的理由须支撑预 估的数据,参考数据 61%左右.
图 15-8
高频考向探究
3.[2015· 北京 15 题] 北京市 2009-2014 年轨道交通日均客运量统计 如图 15-9 所示.根据统计图中提供的信息,预估 2015 年北京市轨道 交通日均客运量约 万人次,你的预估理由是 .
[答案] 答案不唯一,如 990 等.预估理 由略
图 15-9
高频考向探究
2011-2016 年我国与东南亚地区和 东欧地区的贸易额统计图
A.与 2015 年相比,2016 年我国与东欧地区的贸易额有所增长 B.2011-2016 年,我国与东南亚地区的贸易额逐年增长 C.2011-2016 年,我国与东南亚地区的贸易额的平均值超过 4200 亿美元 D.2016 年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的 3 倍还多

北京市2019年中考数学总复习第四单元统计与概率课时训练15统计图表试题

北京市2019年中考数学总复习第四单元统计与概率课时训练15统计图表试题

课时训练(十五) 统计图表(限时:30分钟)|夯实基础|1.某棉纺织厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位: mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为()A.0.8B.0.7C.0.4D.0.22.[2018·朝阳二模]小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.图K15-1根据图中信息,下列说法:①这栋居民楼共有居民140人;②每周使用手机支付次数为28~35次的人数最多;③有的人每周使用手机支付的次数在35~42次;④每周使用手机支付不超过21次的有15人.其中正确的是()A.①②B.②③C.③④D.④3.[2018·怀柔一模]图K15-2是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是()图K15-2A.9月毛衣的销量最低,10月衬衫的销量最高B.与10月相比,11月时,毛衣的销量有所增长,衬衫的销量有所下降C.9月-11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右4.[2018·海淀第二学期练习]在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.图K15-3(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理的是()A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%5.[2018·丰台一模]太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.图K15-4是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理的是()图K15-4A.截至2017年底,我国光伏发电累计装机容量为13078万千瓦B.2013-2017年,我国光伏发电新增装机容量逐年增加C.2013-2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦D.2017年我国光伏发电新增装机容量大约占当年累计装机容量的40%6.[2018·东城一模]举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0.甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,要选派一名选手参加国际比赛,那么你会选派(填“甲”或“乙”),理由是.7.[2017·顺义一模]图K15-5①为北京市女生从出生到15岁的平均身高统计图,图K15-5②是北京市某女生从出生到12岁的身高统计图.图K15-5请你根据以上信息预测该女生15岁时的身高约为,你的预测理由是.8.[2018·朝阳二模]鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图K15-6所示.根据统计图中提供信息,预估2018年北京市专利授权量约件,你的预估理由是.图K15-69.[2017·朝阳二模]在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:下面有四个推断:①平均来说,乘坐公共汽车上学所需的时间较短;②骑自行车上学所需的时间比较容易预计;③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车;④如果小军一定要在16 min内到达学校,他应该乘坐公共汽车.其中合理的是(填序号).10.[2018·门头沟一模]地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76889365789489689550898889897794878892 91初二:74979689987469767278997297769974997398 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性)11.[2018·延庆一模]从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.收集数据:从2016年12月初开始,连续一年对两镇的空气质量进行监测,将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:1201151001009585807050505045永宁镇:11090105809085906090457060(1)整理、描述数据:按下表整理、描述这两镇空气污染指数的数据:(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻度污染)(2)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示:请将以上两个表格补充完整;(3)得出结论:可以推断出镇这一年中环境状况比较好,理由:.(至少从两个不同的角度说明推断的合理性)12.[2018·东城二模]十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率表2北京森林面积和森林覆盖率(以上数据来源于中国林业网) 请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;图K15-7(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a和b的式子表示).|拓展提升|13.[2018·丰台二模]某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是;(填序号)①选择七年级1班、2班各15名学生作为调查对象;②选择机器人社团的30名学生作为调查对象;③选择各班学号为6的倍数的30名学生作为调查对象.调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表图K15-8分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是(填A-G的字母代号),估计全年级大约有名学生喜欢这个课程领域.参考答案1.A2.B3.C4.B5.B6.答案不唯一,理由须支撑选项.7.170厘米12岁时该女生比平均身高高8厘米,预测她15岁时也比平均身高高8厘米(答案不唯一,合理即可).8.答案不唯一,理由须支撑推断的合理性.9.①②③10.解:(1)补全表格如下:初一:8;众数:89;中位数:77.(2)略.可以从给出的三个统计量去判断,如果利用其他标准推断要有数据说明合理才能得分.11.解:(1)19 2(2)82.590(3)千家店理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的次数是4,永宁镇空气质量为优的次数是1,所以千家店镇空气质量为优的次数多,空气质量较好.12.解:(1)四(2)如图.(3)13.解:收集数据③整理、描述数据某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图分析数据、推断结论G60。

北京市2019年中考数学总复习第四单元统计与概率课时训练15统计图表试题

北京市2019年中考数学总复习第四单元统计与概率课时训练15统计图表试题

精品文档,欢迎下载如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!课时训练(十五) 统计图表(限时:30分钟)|夯实基础|1.某棉纺织厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位: mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8B.0.7C.0.4D.0.22.[2018·朝阳二模]小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.图K15-1根据图中信息,下列说法:①这栋居民楼共有居民140人;②每周使用手机支付次数为28~35次的人数最多;③有1的人每周使用手机支付的次数在35~42次;5④每周使用手机支付不超过21次的有15人.其中正确的是()A.①②B.②③C.③④D.④3.[2018·怀柔一模]图K15-2是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是 ()图K15-2A.9月毛衣的销量最低,10月衬衫的销量最高B.与10月相比,11月时,毛衣的销量有所增长,衬衫的销量有所下降C.9月-11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右4.[2018·海淀第二学期练习]在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.图K15-3(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理的是 ()A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%5.[2018·丰台一模]太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.图K15-4是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理的是()图K15-4A.截至2017年底,我国光伏发电累计装机容量为13078万千瓦B.2013-2017年,我国光伏发电新增装机容量逐年增加C .2013-2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦D .2017年我国光伏发电新增装机容量大约占当年累计装机容量的40%6.[2018·东城一模] 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0.甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):年份选手2015上 半年 2015下 半年 2016上 半年 2016下 半年 2017上 半年 2017下 半年甲290 (冠军) 170(没 获奖) 292 (季军) 135(没 获奖) 298(冠军) 300(冠军) 乙285(亚军) 287(亚军) 293(亚军) 292(亚军) 294(亚军) 296 (亚军)如果你是教练,要选派一名选手参加国际比赛,那么你会选派 (填“甲”或“乙”),理由是 .7.[2017·顺义一模] 图K15-5①为北京市女生从出生到15岁的平均身高统计图,图K15-5②是北京市某女生从出生到12岁的身高统计图.图K15-5请你根据以上信息预测该女生15岁时的身高约为,你的预测理由是.8.[2018·朝阳二模]鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图K15-6所示.根据统计图中提供信息,预估2018年北京市专利授权量约件,你的预估理由是.图K15-69.[2017·朝阳二模]在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:交通工具所需时间(单位:min)14,14,14,15,15,15,15,15,15,15,15,15,15,15,自行车1510,10,11,11,11,12,12,12,12,13,15,16,17,17,公共汽车19下面有四个推断:①平均来说,乘坐公共汽车上学所需的时间较短;②骑自行车上学所需的时间比较容易预计;③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车;④如果小军一定要在16 min内到达学校,他应该乘坐公共汽车.其中合理的是(填序号).10.[2018·门头沟一模]地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76889365789489689550898889897794878892 91 初二:74979689987469767278997297769974997398 74 (1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数年级50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100初一 1 2 3 6初二0 1 10 1 8(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一84 88.5初二84.2 74(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性)11.[2018·延庆一模]从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.收集数据:从2016年12月初开始,连续一年对两镇的空气质量进行监测,将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:1201151001009585807050505045永宁镇:11090105809085906090457060(1)整理、描述数据:按下表整理、描述这两镇空气污染指数的数据:空气次数质量镇空气质量为优空气质量为良空气质量为轻度污染千家店镇 4 6 2永宁镇(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻度污染)(2)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示:城镇平均数中位数众数千家店镇80 50永宁镇81.3 87.5请将以上两个表格补充完整;(3)得出结论:可以推断出镇这一年中环境状况比较好,理由:.(至少从两个不同的角度说明推断的合理性)12.[2018·东城二模]十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数森林面积(万公顷) 森林覆盖率一(1976年) 12200 12.7%二(1981年) 11500 12%三(1988年) 12500 12.98%四(1993年) 13400 13.92%五(1998年) 15894.09 16.55%六(2003年) 17490.92 18.21%七(2008年) 19545.22 20.36%八(2013年) 20768.73 21.63%表2北京森林面积和森林覆盖率清查次数森林面积(万公顷) 森林覆盖率一(1976年) 11.2%二(1981年) 8.1%三(1988年) 12.08%四(1993年) 14.99%五(1998年) 33.74 18.93%六(2003年) 37.88 21.26%七(2008年) 52.05 31.72%八(2013年) 58.81 35.84%(以上数据来源于中国林业网) 请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;图K15-7(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a和b的式子表示).|拓展提升|13.[2018·丰台二模]某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是;(填序号)①选择七年级1班、2班各15名学生作为调查对象;②选择机器人社团的30名学生作为调查对象;③选择各班学号为6的倍数的30名学生作为调查对象.调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表课程领域 A B C D E F G 合计人数 4 4 3 3 2 30图K15-8分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是(填A-G的字母代号),估计全年级大约有名学生喜欢这个课程领域.参考答案1.A2.B3.C4.B5.B6.答案不唯一,理由须支撑选项.7.170厘米12岁时该女生比平均身高高8厘米,预测她15岁时也比平均身高高8厘米(答案不唯一,合理即可).8.答案不唯一,理由须支撑推断的合理性.9.①②③10.解:(1)补全表格如下:初一:8;众数:89;中位数:77.(2)略.可以从给出的三个统计量去判断,如果利用其他标准推断要有数据说明合理才能得分.11.解:(1)19 2(2)82.590(3)千家店理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的次数是4,永宁镇空气质量为优的次数是1,所以千家店镇空气质量为优的次数多,空气质量较好.12.解:(1)四(2)如图.(3)543a2000a13.解:收集数据③整理、描述数据某校七年级学生喜欢的课程领域统计表课程领域 A B C D E F G 合计人数 4 4 3 3 2 4 10 30某校七年级学生喜欢的课程领域统计图分析数据、推断结论G60。

北京市2019年中考数学复习统计与概率课时训练十五统计图表(含答案)15

北京市2019年中考数学复习统计与概率课时训练十五统计图表(含答案)15

课时训练 ( 十五 )统计图表( 限时 :30 分钟)| 夯实基础 |1.某棉纺织厂为认识一批棉花的质量 , 从中随机抽取了 20 根棉花纤维进行丈量 , 其长度 x(单位: mm)的数据散布以下表,则棉花纤维长度的数据在8≤ x<32这个范围的频次为()棉花纤维长度 x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A. 0. 8B. 0. 7C. 0. 4D. 0. 22. [2018 ·旭日二模 ]小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数 , 并绘制了直方图.图K15- 1依据图中信息 , 以下说法 :①这栋居民楼共有居民140 人;②每周使用手机支付次数为28~35 次的人数最多 ;③有的人每周使用手机支付的次数在35~42 次;④每周使用手机支付不超出21 次的有 15 人.此中正确的选项是()A.①②B. ②③C. ③④D. ④3. [2018 ·怀柔一模 ]图K15-2是某品牌毛衣和衬衫2016 年 9 月至 2017 年 4 月在怀柔京北大世界的销量统计图. 依据统计图供给的信息, 以下推测不合理的是()图K15- 2A. 9 月毛衣的销量最低 , 10 月衬衫的销量最高B.与 10 月对比 ,11 月时 , 毛衣的销量有所增添 , 衬衫的销量有所降落C. 9 月- 11 月毛衣和衬衫的销量逐月增添D. 2 月毛衣的销售量是衬衫销售量的7 倍左右4. [2018 ·海淀第二学期练习]在线教育使学生足不出户也能连结全世界优异的教育资源 . 下边的统计图反应了我国在线教育用户规模的变化状况.图K15- 3( 以上数据摘自《 2017 年中国在线少儿英语教育白皮书》)依据统计图供给的信息, 以下推测必定不合理的是()A. 2015 年 12 月至 2017 年 6 月, 我国在线教育用户规模渐渐上涨B. 2015 年 12 月至 2017 年 6 月, 我国手机在线教育课程用户规模占在线教育用户规模的比率连续上涨C. 2015 年 12 月至 2017 年 6 月, 我国手机在线教育课程用户规模的均匀值超出7000 万D. 2017 年 6 月, 我国手机在线教育课程用户规模超出在线教育用户规模的70%5. [2018 ·丰台一模 ]太阳能是来自太阳的辐射能量. 关于地球上的人类来说, 太阳能是对环境无任何污染的可重生能源, 所以很多国家都在鼎力发展太阳能. 图K15- 4 是 2013- 2017 年我国光伏发电装机容量统计图. 依据统计图供给的信息,判断以下说法不合理的是()图K15- 4A.截止 2017 年末 , 我国光伏发电累计装机容量为13078 万千瓦B. 2013- 2017 年, 我国光伏发电新增装机容量逐年增添C. 2013- 2017 年, 我国光伏发电新增装机容量的均匀值约为2500 万千瓦D. 2017 年我国光伏发电新增装机容量大概占当年累计装机容量的40%6. [2018 ·东城一模 ]举重比赛的总成绩是选手的挺举与抓举两项成绩之和, 若此中一项三次挑战失败 , 则该项成绩为 0.甲、乙是同一重量级其余举重选手 , 他们近三年六次重要比赛的成绩以下 ( 单位 : 公斤 ):年份 2015 上 2015 下 2016 上 2016 下2017 上2017 下选手半年半年半年半年半年半年290 170( 没292 135( 没298300甲( 冠军 )获奖) (季军)获奖) (冠军) (冠军)285287293292294296乙( 亚军 ) ( 亚军 ) ( 亚军 ) ( 亚军 ) ( 亚军 ) ( 亚军 )假如你是教练, 要选派一名选手参加国际比赛, 那么你会选派( 填“甲”或“乙”),原因是.7. [2017 ·顺义一模 ] 图 K15- 5①为北京市女生从出生到 15 岁的均匀身高统计图 , 图K15- 5②是北京市某女生从出生到 12 岁的身高统计图.图K15- 5请你依据以上信息展望该女生15 岁时的身高约为, 你的展望原因是.8. [2018 ·旭日二模 ]鼓舞科技创新、技术发明,北京市2012-2017年专利受权量如图K15- 6所示 .依据统计图中供给信息, 预估2018年北京市专利受权量约件,你的预估原因是.图K15- 69. [2017 ·旭日二模 ]在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基真同样 , 他随机记录了此中某些天上学所用的时间, 整理以下表 :交通工具所需时间 ( 单位 :min)自行车14,14,14,15,15,15,15,15,15,15,15,15,15,15,15公共汽车 10,10,11,11,11,12,12,12,12,13,15,16,17,17,19下边有四个推测 :①均匀来说 , 乘坐公共汽车上学所需的时间较短;②骑自行车上学所需的时间比较简单估计;③假如小军想在上学路上花的时间更少, 他应当更多地乘坐公共汽车;④假如小军必定要在16 min 内抵达学校 , 他应当乘坐公共汽车.此中合理的是( 填序号 ) .10. [2018 ·门头沟一模 ] 地球环境问题已经成为我们日趋关注的问题.学校为了普及生态环保知识 , 提高学生生态环境保护意识 , 举办了“我参加 , 我环保”的知识比赛 . 以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行检查剖析, 成绩以下 :初一 :76889365789489689550898889897794 87889291初二 :74979689987469767278997297769974 99739874(1)依据上边的数据 , 将以下表格增补完好 ;整理、描绘数据 :成绩 x50≤ 60≤ 70≤ 80≤人数90≤x≤100x≤59x≤69x≤79x≤89年级初一1236初二011018( 说明 : 成绩 90 分及以上为优异 ,80 ~90 分为优异 ,60 ~80 分为合格 ,60 分以下为不合格 )剖析数据 :年级均匀数中位数众数初一8488. 5初二 84 . 274(2)得出结论 :你以为哪个年级掌握生态环保知识水平较好并说明原因. (起码从两个不一样的角度说明推测的合理性 )11. [2018 ·延庆一模 ]从北京市环保局证明,为知足2022年冬奥会对环境质量的要求 , 北京延庆正在对其周边的环境污染进行综合治理, 抢先在部分村镇进行“煤改电”改造 . 在治理的过程中,环保部门随机选用了永宁镇和千家店镇进行空气质量监测 .过程以下 , 请增补完好.采集数据 :从 2016 年 12 月初开始 , 连续一年对两镇的空气质量进行监测, 将 30 天的空气污介入数 ( 简称 :API) 的均匀值作为每个月的空气污介入数,12 个月的空气污介入数以下 :千家店镇 :120 115 100 100 95 85 80 70 50 50 5045永宁镇 :110 90 105 80 90 85 90 60 90 45 7060(1)整理、描绘数据 :按下表整理、描绘这两镇空气污介入数的数据:空气空气质空气质空气质量次数质量量为优量为良为轻度污染镇千家店镇462永宁镇( 说明 : 空气污介入数≤ 50 时, 空气质量为优 ;50 <空气污介入数≤ 100 时, 空气质量为良 ;100 <空气污介入数≤ 150 时, 空气质量为轻度污染 )(2)剖析数据 :两镇的空气污介入数的均匀数、中位数、众数以下表所示:城镇均匀数中位数众数千家店镇 8050永宁镇81. 387. 5请将以上两个表格增补完好;(3) 得出结论 : 可以推断出镇这一年中环境状况比较好,理由:. (起码从两个不一样的角度说明推测的合理性)12. [2018 ·东城二模 ] 十八大报告初次提出建设生态文明 , 建设漂亮中国.十九大报告再次明确 , 到 2035 年漂亮中国目标基本实现.丛林是人类生计发展的重要生态保障 , 提高丛林的数目和质量对生态文明建设特别重点.截止到 2013年, 我国已经进行了八次丛林资源清点 , 此中全国和北京的丛林面积和丛林覆盖率状况如下:表1 全国丛林面积和丛林覆盖率清点次数丛林面积 ( 万公顷 ) 丛林覆盖率一(1976 年)1220012. 7%二(1981 年)1150012%三(1988 年)1250012. 98%四(1993 年)1340013. 92%五(1998 年)15894. 0916. 55%六(2003 年)17490. 9218. 21%七(2008 年)19545. 2220. 36%八(2013 年)20768. 7321. 63%表2 北京丛林面积和丛林覆盖率清点次数丛林面积 ( 万公顷 ) 丛林覆盖率一(1976年)11. 2%二(1981年)8.1%三(1988年)12.08%四(1993年)14.99%五(1998年)33. 7418.93%六(2003年)37. 8821.26%七(2008年)52. 0531.72%八(2013年)58. 8135.84%( 以上数据根源于中国林业网)请依据以上信息解答以下问题:(1) 从第次清点开始,北京的丛林覆盖率超出全国的丛林覆盖率;(2)补全以下北京丛林覆盖率折线统计图 , 并在图中注明相应数据 ;图K15- 7(3)第八次清点的全国丛林面积20768. 73( 万公顷 ) 记为a, 全国丛林覆盖率21.63%记为b, 到 2018 年第九次丛林资源清点时, 假如全国丛林覆盖率达到2715%,那么全国丛林面积能够达到万公顷 ( 用含a 和b的式子表示 )..| 拓展提高 |13. [2018 ·丰台二模 ]某校七年级6个班的180名学生马上参加北京市中学生开放性科学实践活动送课到校课程的学习 . 学习内容包含以下7个领域:A . 自然与环境,B .健康与安全 ,C.构造与机械 ,D.电子与控制 ,E .数据与信息 ,F .能源与资料 ,G.人文与历史 . 为认识学生喜爱的课程领域,学生会展开了一次检查研究,请将下边的过程补全 .采集数据学生会计划检查 30 名学生喜爱的课程领域作为样本, 下边抽样检查的对象选择合理的是;( 填序号 )①选择七年级 1 班、 2 班各 15 名学生作为检核对象 ;②选择机器人社团的30 名学生作为检核对象 ;③选择各班学号为 6 的倍数的 30 名学生作为检核对象.检核对象确立后 , 检查小组获取了30 名学生喜爱的课程领域以下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描绘数据整理、描绘样本数据 , 绘制统计图表以下 , 请补全统计表和统计图.某校七年级学生喜爱的课程领域统计表课程领域 ABCDEFG共计人数4433230图K15- 8剖析数据、推测结论域, 你的介绍是喜爱这个课程领域 .请你依据上述检查结果向学校介绍本次送课到校的课程领( 填 A-G的字母代号 ), 估计整年级大概有名学生参照答案1. A2. B3. C4. B5. B6.答案不独一 , 原因须支撑选项.7. 170 厘米12 岁时该女生比均匀身高高8 厘米 , 展望她 15 岁时也比均匀身高高8厘米( 答案不独一 , 合理即可 ) .8.答案不独一 , 原因须支撑推测的合理性.9.①②③10.解:(1) 补全表格以下 :初一 :8;众数 :89;中位数 :77 .(2)略. 能够从给出的三个统计量去判断,假如利用其余标准推测要有数听说明合理才能得分 .11.解:(1)19 2(2)82 . 590(3)千家店原因 : 千家店镇污介入数均匀数为 80, 永宁镇污介入数均匀数为 81. 3, 所以千家店镇污介入数均匀数较低 , 空气质量较好 ; 千家店镇空气质量为优的次数是 4, 永宁镇空气质量为优的次数是 1, 所以千家店镇空气质量为优的次数多 , 空气质量较好.12.解:(1) 四(2)如图 .(3)13.解: 采集数据③整理、描绘数据某校七年级学生喜爱的课程领域统计表课程领域 ABCDEF G 共计人数 4 4332410 30某校七年级学生喜爱的课程领域统计图剖析数据、推测结论G60。

2019年北京中考数学习题精选:数据的分析

2019年北京中考数学习题精选:数据的分析

温度(°C )403020一、选择题1.(2018北京西城区二模) 在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:A .这组样本数据的平均数超过130B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好 答案:C2、(2018北京丰台区二模)为适应新中考英语听说机考,九年级甲、乙两位同学使用某手机软件进行英语听说练习并记录了40次的练习成绩. 甲、乙两位同学的练习成绩统计结果如图所示:甲同学的练习成绩统计图 乙同学的练习成绩统计图下列说法正确的是(A )甲同学的练习成绩的中位数是38分 (B )乙同学的练习成绩的众数是15分(C )甲同学的练习成绩比乙同学的练习成绩更稳定 (D )甲同学的练习总成绩比乙同学的练习总成绩低答案:A 3、(2018北京东城区二模)七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组 158 159 160 160 160 161 169 乙组158159160161161163165以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 答案D4、(2018北京房山区二模)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是A .30,28B .26,26C .31,30D .26,22答案:B5、(2018北京昌平区二模)某九年一贯制学校在六年级和九年级的男生中分别随机抽取40名学生测量他们的身高,将数据分组整理后,绘制的频数分布直方图如下:其中两条纵向虚线上端的数值分别是每个年级抽出的40名男生身高的平均数,根据统计图提供的信息,下列结论不合理的是( ) A .六年级40名男生身高的中位数在第153~158cm 组B .可以估计该校九年级男生的平均身高比六年级的平均身高高出18.6cmC .九年级40名男生身高的中位数在第168~173cm 组D .可以估计该校九年级身高不低于158cm 但低于163cm 的男生所占的比例大约是5%答案:A6.(2018北京燕山地区一模)每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界。

北京市2019年中考数学专题练习题精选 提分专练(四)图表的分析与决策

北京市2019年中考数学专题练习题精选 提分专练(四)图表的分析与决策

提分专练(四) 图表的分析与决策(18年25题,17年25题,16年22题,15年 25题)|类型1| 利用样本估计总体1.[2018·西城一模]某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员;B.书香社区图书整理;C.学编中国结及义卖;D.家风讲解员;E.校内志愿服务.要求:每位学生都从中选择一个项目参加.为了了解同学们选择这5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E.整理、描述数据:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表正2 2正正选择各志愿服务项目的人数比例统计图图T4-1分析数据、推断结论:a.抽样的40个样本数据(志愿服务项目的编号)的众数是(填A-E的字母代号).b.请你任选A-E中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.2.[2018·海淀一模]某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:7783806486907592838185 86 88 62 65 86 97 96 82 7386 84 89 86 92 73 57 77 87 8291 81 86 71 53 72 90 76 68 78整理数据,如下表所示:2018年九年级部分学生的体质健康测试成绩统计表分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比.344图T4-2你能从中得到的结论是 ,你的理由是 . 体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有 名同学参加此项目.|类型2| 图表的分析与决策3.[2018·石景山一模] 某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩(单位:分)如下:图T4-3整理、分析过程如下,请补充完整. (1)按如下分数段整理、描述这两组数据:5(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:(3)若从甲、乙两人中选择一人参加知识竞赛,你会选 (填“甲”或“乙”),理由为 .4.[2018·丰台一模] 第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲 30 60 60 70 60 80 30 90 100 60 60 100 80 60 70 60 60 90 60 60 乙 80 90 40 60 80 80 90 40 80 50 8070 70 70 70 60 80 50 80 80 【整理、描述数据】 按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x ≤100,良好成绩为50<x ≤80,合格成绩为30≤x ≤50) 【分析数据】两组样本数据的平均数、中位数、众数如下表所示:6 6其中a= .【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)参考答案1.解:B项有10人,D项有4人,划记略.选择各志愿服务项目的人数比例统计图中,B占25%,D占10%.分析数据、推断结论a.抽样的40个样本数据(志愿服务项目的编号)的众数是C.b.根据学生选择情况答案分别如下(写出任意两个即可).A:500×20%=100(人).B:500×25%=125(人).C:500×30%=150(人).D:500×10%=50(人).E:500×15%=75(人).2.解:收集数据 C整理、描述数据分析数据、得出结论去年的体质健康测试成绩比今年好.(答案不唯一,合理即可)去年较今年低分更少,高分更多,平均分更高.(答案不唯一,合理即可)703.解:(1)014500(2)1484.581(3)甲理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)7或:乙理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)4.解:【分析数据】80【得出结论】(1)甲 (2)(3)答案不唯一,理由需支撑推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分,说明乙校平均水平高,乙校成绩的中位数75高于甲校成绩的中位数60,说明乙校分数不低于70分的学生比甲校多.88。

2019年北京市中考数学试题汇编:20统计与概率之解答题

2019年北京市中考数学试题汇编:20统计与概率之解答题

专题20统计与概率之解答题(28题)一.解答题(共28小题)1. (2019?北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30<xV 40, 40< x V 50, 50< xv 60, 60< x61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c. 40个国家的人均国内生产总值和国家创新指数得分情况统计图:30 —■—--- ,• - ■- , - >0123456789 10 1Ld.中国的国家创新指数得分为69.5 .(以上数据来源于〈〈国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线11的上方,请在图中用“0”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8 万美元:(结果保留一位小数)(4)下列推断合理的是①②①相比于点A, B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B, C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【答案】解:(1) 国家创新指数得分为69.5以上(含69.5 )的国家有17个,国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B, C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.9DS070如5040300123455789 10 11【点睛】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.2. (2019?通州区三模)为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数) A 区抽样学生体育测试成绩的平均分、中位数、众数如下:B 区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)昨 500 ;【答案】解:(1) g 1000 - 60 - 80 - 140- 220= 500;(2) A,理由:.• 500 - 500 X 20%+22O 620,B 区样本中大于等于 38分的学生有620人,而A 区样本中位数是 36,得分为37分的学生在 A 区被抽 样学生中排名更靠前.1000-60-80(3) -------------- x 10000= 86M,1000答:B 区有10000名学生参加此次体育测试,估计成绩不低于 34分的人数为8600人.故答案为:500, A.【点睛】本题考查了众数,频数分布直方图,中位数,解题的关键是真确的读图并找到进一步解题的有 关彳言息.3. (2019?房山区二模)某校要从小明和小亮两名运动员中挑出一人参加立定跳远比赛,学校记录了二人在最近的6次立定跳远选拔赛中的成绩(单位: cm,并进行整理、描述和分析.下面给出了部分信息.平均分中位数众数373637成绩28<x V 3131 v x v 3434 V xv 3737V xv 4040 (满分)6080140220(2)在两区抽样的学生中,体育测试成绩为 37分的学生,在 (填“ A”或“ B”)区被抽样学生中排名更靠前,理由是;(3)如果B 区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.B 区抽样学生体育则试成 缰3 7分至诵分分布情况a. 如图b. 小亮最近6次选拔赛成绩如下: 250 254 260 271 255 240c. 小明和小亮最近 6次选拔赛中成绩的平均数、中位数、方差如下:平均数中位数万差小明252 252.5129.7 小亮255m88.7根据以上信息,回答下列问题:(1)n^254.5 ;(2) 历届比赛表明:成绩达到 266cm 就有可能夺冠,成绩达到 270cm 就能打破纪录(积分加倍),根据小亮 (填“小明”或“小亮”)参加这项比赛,理由是 小亮的平均数比小明大,方差较小..(至少从两个不同的角度说明推断的合理性)故答案为254.5 .(2)选:小亮.理由:小亮的平均数比小明大,方差较小. 故答案为小亮的平均数比小明大,方差较小.【点睛】本题考查方差,平均数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4. (2019?昌平区二模)近日,某中学举办了一次以“赏中华诗词、寻文化基因、品生活之美”为主题的诗词大会比赛,初一和初二两个年级各有 600名学生参加.为了更好地了解本次比赛成绩的分布情况,学这6次选拔赛成绩,你认为应选 255+254【答案】解:(1)中位数 m ------ 2 ---- =254.5 .校分别从两个年级随机抽取了若干名学生的成绩作为样本进行分析.下面是初二年级学生成绩样本的频 数分布表和频数分布直方图(不完整,每组分数段中的分数包括最低分,不包括最高分) :初二学生样本成绩频数分布表分组/分频数频率50 - -60 2 0.05 60 - -70 4 0.10 70 - -80 8 0.20 80 - -90 14 0.35 90〜 10012 0.30 合计401.00请根据所给信息, 解答卜列1可题:(1) 补全成绩频数分布表和频数分布直方图; (2) 若初二学生成绩样本中80〜90分段的具体成绩为: 80 80 81.5 82 82.5 82.5 8384.5 85 86.5 8788 88.5 89① 根据上述信息,估计初二学生成绩的中位数为 82.75 ;② 若初一学生样本成绩的中位数为 80,甲同学在比赛中得到了 82分,在他所在的年级中位居275名,根据上述信息推断甲同学所在年级为初一 (填“初一”或“初二”);③ 若成绩在85分及以上为“优秀”,请你根据抽取的样本数据,估计初二年级学生中达到“优秀”的学 生人数为 270人.【答案】解:(1)频数4+ 0.10 X 0.20 = 8,频率1- 0.10 - 0.20 - 0.35 - 0.30 = 0.05 ,频数分布直方图补全如下:故答案为8, 0.05 ;(2)①根据初二年级学生成绩样本的和频数分布直方图可知,中位数20、21的平均数,落在809080〜90 分段的具体成绩为: 80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89..•中位数为(82.5+83 ) - 2= 82.75 故答案为82.75 ;②600名学生,中位数为第300、301的中位数,而甲同学在比赛中得到了82分,在他所在的年级中位居275名,初一学生样本成绩的中位数为80,82 > 80,.••该同学为初一,故答案为:初一;③初二学生样本中,85分以上共有18人,初二年级学生中达到“优秀”的学生人数为—■[4&故答案为270.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.5.(2019?怀柔区二模)2019年4月23日世界读书日这天,某校初三年级的小记者,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下,请补充完整. 收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲:1, 9,乙4, 2, 3, 3, 2, 7, 2乙:2, 6, 6, 3, 1 , 6, 5, 2, 5, 4整理、描述数据绘制统计表如下,请补全下表:班级平均数众数中位数方差甲423 5.6乙46 4.5 3.2分析数据、推断结论(1)该校初三乙班共有40名同学,你估计2018年寒假读6本书的同学大概有12人;(2)你认为甲、乙两班同学寒假读书情况更好的是,理由是:乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡漠的同学.【答案】解:班缰平均at用42乙4(1) 2018年寒假读6本书的同学约为:4皿会=12 (人),故答案为:12;(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡漠的同学,故答案为:乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡漠的同学.【点睛】本题考查的是方差的概念和性质、用样本估计总体、众数和中位数的概念,掌握相关的概念和性质是解题的关键.(2019?顺义区二模)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分6.制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:xV 60,60< xv 70, 70< xV 80, 80< xv90 , 90<x< 100):A. B两班学生数学成绩巍数分布直方图②A B两班学生测试成绩在80< x v 90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B 班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6m96.9B班80.8n153.3根据以上信息,回答下列问题:(1)补全数学成绩频数分布直方图;(2)写出表中m n的值;(3)请你对比分析A B两班学生的数学学习情况(至少从两个不同的角度分析)【答案】解:(1) A、B两班学生数学成绩频数分布直方图如下:5 买整tp 忌”此旧tco必瑚网匏巴§(2 ) A班共40名同学,中位数落在80< x v 90,中位数m '件= 81 ,B班共40名同学,中位数落在80< xv 90,中位数n=^^^=85,故mi n的值分别为81, 85;(3)从平均分来看,A B两班差不多,从中位数来看,B班85分以上学生数比A班多,从方差看,班方差小,学生成绩差距较小,B班方差大,说明B班学生发展不均衡.【点睛】本题考查了统计图,熟练掌握统计图的相关知识是解题的关键.7.(2019?朝阳区二模)某部门为新的生产线研发了一款机器人,为了了解它的操作技能情况,在相同条件下与人工操作进行了抽样对比.过程如下,请补充完整.收集数据对同一个生产动作,机器人和人工各操作20次,测试成绩(十分制)如下:机器人8.08.18.18.18.28.28.38.48.49.09.09.09.19.19.49.59.59.59.59.6人工 6.1 6.2 6.67.27.27.58.08.28.38.5中考机器人 8.8 9.0 9.5 0.333次数为 110 ;(2)请结合数据分析机器人和人工在操作技能方面各自的优势:都明显高于人工,方差较小,可以推断其优势在于操作技能水平较高的同时还能保持稳定.人工的样本 数据的众数为10,机器人的样本数据的最大值为 9.6,可以推断人工的优势在于能完成一些最高水平的操作.【答案】解:补全表格如下:6< xv 7 7< x V 88 < xv 99< x < 10机器人 0 0 9 11 人工33410平均数 中位数众数方差9.1 9.6 9.8 9.9 9.9 9.9 10 10 10 10整理、描述数据按如下分段整理、 描述这两组样本数据:成绩x7< x V 89< x < 10机器人11(说明:成绩在 9.0分及以上为操作技能优秀, 8.0 〜8.9 分为操作技能良好,6.0〜7.9分为操作技能合格,6.0分以下为操作技能不合格)分析数据两组样本数据的平均数、平均数中位数众数万差机器人8.8 9.0 9.5 0.333 人工8.68.8101.868得出结论(1)如果生产出一个产品,需要完成同样的操作 200 次, 估计机器人生产这个产品达到操作技能优秀的机器人的样本数据的平均数和中位数中位数、众数和方差如下表所人工8.6 8.8 10 1.868(1)兰X200 = 110; 20(2)机器人的样本数据的平均数和中位数都明显高于人工,方差较小,可以推断其优势在于操作技能水平较高的同时还能保持稳定.人工的样本数据的众数为10,机器人的样本数据的最大值为9.6 ,可以推断人工的优势在于能完成一些最高水平的操作.【点睛】此题主要考查了方差和众数、中位数、平均数,关键是掌握三数定义和方差的计算公式.8.(2019?东城区二模)2019年中国北京世界园艺博览会已于2019年4月29日在北京市延庆区开展,吸引了大批游客参观游览.五一小长假期间平均每天入园人数大约是8万人,佳佳等5名同学组成的学习小组,随机调查了五一假期中入园参观的部分游客,获得了他们在园内参观所用时间,并对数据进行整理,描述和分析,下面给出了部分信息:a.参观时间的频数分布表如下:时间t (时)频数(人数)频率1< t V 2 25 0.0502< t v 3 85 a3< t v 4 160 0.3204< t V 5 139 0.2785< t v 6 b 0.1006< t < 7 41 0.082合计 c 1.000b.参观时间的频数分布直方图如图:[频数〈人数)1的 -------------13$--------------55 ---------- ---° 1 2 3 4 5 6 7时间时根据以上图表提供的信息,解答下列问题:(1)这里采用的调查方式是抽样调查;(2)表中a= 0.17 , b= 50 , c = 500 ;(3)并请补全频数分布直方图;(4)请你估算五一假期中平均每天参观时间小于4小时的游客约有多少万人?【答案】解:(1)这里采用的调查方式是抽样调查,故答案为:抽样调查;(2)c= 25 + 0.05 = 500, a= 85+ 500 = 0.17, b= 500X 0.1 = 50,故答案为:0.17 , 50, 500;(3)补全直方图如下:(4)五一假期中平均每天参观时间小于4小时的游客约有8X (0.05+0.17+0.32 ) = 4.32 (万人).【点睛】本题主要考查频数分布直方图,解题的关键是掌握频率=频数+总数及样本估计总体思想的运用.9.(2019?西城区二模)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2 < XV 6.6 6.6 < X< 7.07.0 < XV 7.47.4 < XV 7.87.8 < XV 8.28.2 < X< 8.6频数2m10621b.实心球成绩在7.0 < XV 7.4 这一组的是:7.0 , 7.0 , 7.0 , 7.1 , 7.1 , 7.1 , 7.2 , 7.2 , 7.3 , 7.3C. 一分钟仰卧起坐成绩如图所示:②一分钟仰卧起坐成绩的中位数为 45 ;(2) 若实心球成绩达到 7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;仰卧起 坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这 达到了优秀,于是体育委员推测女生 E 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.【答案】解:(1)①咛30 - 2 - 10 - 6 - 2 - 1 = 9, 故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,女生代ABCDEFGH码实心球 8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5 一分钟*4247*4752*49②该年级某班体育委员将本班在这次抽样测试中被抽取的 8名女生的两项成绩的数据抄录如表所示:8名女生中恰好有 4人两项测试成绩都人数人(1) ①表中m 的值为 9 ;故答案为:45;(2)①•.•实心球成绩在7.0 < x V 7.4 这一组的是:7.0 , 7.0 , 7.0 , 7.1 , 7.1 , 7.1 , 7.2 , 7.2 , 7.3,7.3 , 实心球成绩在7.0 < xv 7.4这一组优秀的有4人,•.•全年级女生实心球成绩达到优秀的人数是:150乂心斯+1三65,-J 答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有 A D F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.【点睛】本题考查频数分布表、条形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2019?海淀区二模)某学校共有六个年级,每个年级10个班,每个班约40名同学.该校食堂共有10个窗口,中午所有同学都在食堂用餐.经了解,该校同学年龄分布在12岁(含12岁)到18岁(含18岁)之间,平均年龄约为15岁.小天、小东和小云三位同学,为了解全校同学对食堂各窗口餐食的喜爱情况,各自进行了抽样调查,并记录了相应同学的年龄,每人调查了60名同学,将收集到的数据进行了整理.小天从初一年级每个班随机抽取6名同学进行调查,绘制统计图表如下:沸口12345人敢115210留口678910人数1541723用I小东从全校每个班随机抽取1名同学进行调查,绘制统计图表如下:小云在食堂门口,对用餐后的同学采取每隔10人抽取1人进行调查,绘制统计图表如下:12343人数3242in前口67S910人数152)624根据以上材料回答问题:(1)写出图2中m的值,并补全图2;(2)小天、小东和小云三人中,哪个同学抽样调查的数据能较好地反映出该校同学对各窗口餐食的喜爱情况,并简要说明其余同学调查的不足之处;(3)为使每个同学在中午尽量吃到自己喜爱的餐食,学校餐食管理部门应为6号和8号窗口尽量多的分配工作人员,理由为从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.【答案】解:(1) 60 - (5+9+11+10+10+5) = 10 (人),(12X 5+13 X 9+14X 11+15X 10+16X 10+17X 10+18X 5) - 60^ 15.0 岁,故m的值为15.0 ,补全图如下:(2)小东.理由:小大调查的不足之处:仅对初一年级抽样,不能代表该学校学生总体的情况;小云调查的不足之处:抽样学生的平均年龄为16岁,远高于全校学生的平均年龄,不能代表该学校学生总体情况.(3)6号和8号(或者只有8;或者5, 6, 8).理由:从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.故答案为6号和8号,从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.注意:(2) (3)的答案不唯一【点睛】本题考查了统计图,熟练掌握条形统计图是解题的关键.11.(2019?门头沟区二模)2019年1月有300名教师参加了 “新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了 60位教师,并对数据进行了整理、描述和分析.下 面给出了部分信息: a.关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:0< xv4, 4< xv 8, 8< xv 12, 12< xv 16, 16<xv 20, 20< x< 24):b.关于"家庭教育”问题发言次数在 8<xv 12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c. "面向未来的教育”和"家庭教育”这两问题发言次数的平均数、众数、中位数如下:平均数根据以上信息,回答下列问题:(1) 表中m 的值为 11 ;(2) 在此次采访中,参会教师更感兴趣的问题是 家庭教育 (填“面向未来的教育” 或“家庭教育”),理由是 家庭教育”的平均数、众数、中位数都高于“面向未来的教育”的平均数、众数、中位数;(3) 假设所有参会教师都接受调查, 估计在“家庭教育”这个问题上发言次数超过 8次的参会教师有 210 位.中位数面向未来的学校教育11 10家庭教育1210。

2019年北京市各城区中考二模数学——统计图表题20题汇总

2019年北京市各城区中考二模数学——统计图表题20题汇总

数学试卷2019年北京市各城区中考二模数学——统计图表题20题汇总1、(2019年门头沟二模)21. 在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下三个统计图表(如图1,图2,图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为 度; (2)图2、3中的a = ,b = ;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?2、(2019年丰台二模)21.某市在2019年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图.频数分布表 扇形统计图请根据上述信息,回答下列问题:(1)a =________,b =________,c =_______;(2)在扇形统计图中,和父母一起生活的学生所对应扇形圆心角的度数是______; (3)如果该市八年级学生共有30000人,估计不与父母一起生活的学生有_______ 人.3、(2019年平谷二模)21.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题. (1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.4、(2019年顺义二模) 20.保障房建设是民心工程,某市从2009年加快保障房建设工程.现统计了该市从2009年到2019年这5年新建保障房情况,绘制成如图1、2所示的折线统计图和不完整的条形统计图.某市2009-2019年新建保障房套数年增长率折线统计图 某市2009-2019年新建保障房套数条形统计图(1)新建保障房的套数比2011年少了.”你认为小颖的说法正确吗?请说明理由; (2)求2019年新建保障房的套数,并补全条形统计图; (3)求这5年平均每年新建保障房的套数.36°DC BA数学试卷5、(2019年石景山二模)20.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制的北京市年生产总值统计图的一部分.请你根据以上信息解答下列问题:(1)根据北京市2009--2019年生产总值年增长率,请计算出2011年北京市年生产总值是_________(结果精确到1百亿元),并补全条形统计图;(2)若从2019年以后,北京市年生产总值都按15%的年增长率增长,则请你估算,若年生产总值不低于...2009年的2倍,至少要到_________年.(填写年份) (3)在(1)的条件下,2009--2019这四年间,比上一年增长的生产总值的平均数为多少百亿元?若按此平均数增长,请你预测2019年北京地区的生产总值多少百亿元? 解:6、(2019年海淀二模)20.为了满足广大手机用户的需求,某移动通信公司推出了三种套餐,资费标准如下表所示:(1)已知小莹2019年10月套餐外通话费为33.6元,则她选择的上网套餐为套餐(填“一”、“二”或“三”);(2)补全条形统计图,并在图中标明相应的数据;(3)根据2019年后半年每月的消费情况,小莹估计自己每月本地主叫市话通话大约430分钟,发短信大约240条,国内移动数据流量使用量大约为120兆,除此之外不再产生其他费用,则小莹应该选择套餐 最划算(填“一”、“二”或“三”);选择该套餐后,她每月的手机消费总额约为 元.35%42%11.75%11.25% 86.176.088.184.683.1总额/元月份套餐费用套餐外 通话费套餐外 短信费套餐外数 据流量费2013年后半年每月手机消费总额统计图北京市2009-2013年生产总值 统计图 北京市2009-2013年 生产总值年增长率统计图 年生产总值(百亿元)数学试卷7、(2019年西城二模)21.据报道:2019年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:请根据以上信息,回答以下问题:(1)从2019年到2019年微信的人均使用时长增加了________分钟;(2)补全2019年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为_________亿(结果精确到0.1);(3)从调查数学看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达_________亿.8、(2019年通州二模)19.某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计. 请你根据不完整的表格,回答下列问题:(1)补全频率分布直方图;(2)若将得分转化为等级,规定50≤x <60评为“D”,60≤x <70评为“C”,70≤x <90评为“B”,90≤x <100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?9、(2019年东城二模)20. 图①表示的是某综合商场今年1—5月的商品各月销售总额的情况,图②表示商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1—5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整; (2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了,你同意他的看法吗?请说明理由.10、(2019年朝阳二模)20.某校对部分初三学生的体育训练成绩进行了随机抽测,并绘制了如下的统计图:女生篮球障碍运球成绩折线统计图 男生引体向上成绩条形统计图数学试卷根据以上统计图解答下列问题:(1)所抽测的女生篮球障碍运球成绩的众数是多少?极差是多少?(2)该校所在城市规定“初中毕业升学体育现场考试”中,男生做引体向上满13次,可以获得满分10分;满12次,可以获9.5分;满11次,可以获得9分;满10次,可以获得8.5分;满9次,可以获得8分. ①所抽测的男生引体向上得分..的平均数是多少? ②如果该校今年有120名男生在初中毕业升学体育现场考试中报名做引体向上,请你根据本次抽测的数据估计在报名的这些学生中得分不少于9分的学生有多少人?11、(2019年密云二模)20. 《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校抽取八年级学生人数的10%进行体质测(1)在抽取的学生中不及格人数所占的百分比是 ;(2)小明按以下方法计算出所抽取学生测试结果的平均分是:(90+82+65+40)÷4=69.25.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果.12、(2019年延庆二模)13、(2019年房山二模) 20.房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式” 随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了 名学生; (2)补全两幅..统计图; (3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?(1)这50个样本数据的众数是 ,中位数是 ;(2)根据样本数据,估计该校九年级300名学生在本次活动中读书多于2册的人数; (3)学校广播站的小记者对被调查的50名学生中读书册数最少和最多的人进行随即采访,请利用树状图或列表,求被采访的两人恰好都是读书册数最多的学生的概率.20.解:(1)众数为3,中位数为2. …………………………2分 (2)在50名学生中,读书多于2本的学生有20名,所以,300×=120.………………………3分答:该校八年级300名学生在本次活动中读书多于2册的约有120名.被采访的两人恰好都是读书册数最多的学生的情况如下:(B 1,B 2)、(B 1,B 3)、(B 2,B 1)、(B 2,B 3)、(B 3,B 1)、(B 3,B 2),共6种,所以,被采访的两人恰好都是读书册数最多的学生的概率为P==.………5分15、(2019年怀柔二模)20.从2019年1月7日起,中国中东部大部分地区持续出现雾霾天气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题 1、(2018北京朝阳区二模)小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:人②每周使用手机支付次数为28~35次的人数最多 ③有51的人每周使用手机支付的次数在35~42次 ④每周使用手机支付不超过21次的有15人 (A )①② (B )②③ (C )③④ (D )④ 答案:B2.(2018北京通州区一模)答案:B 3.(2018北京平谷区中考统一练习)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论: ①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高; ②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生; ③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A . ①③B .②③C .②④D .③④答案C4.(2018北京丰台区一模)太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理...的是 (A )截至2017年底,我国光伏发电累计装机容量为13 078万千瓦 (B )2013-2017年,我国光伏发电新增装机容量逐年增加(C )2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦 (D )2017年我国光伏发电新增装机容量大约占当年累计装机容量的40%答案B 5.(2018北京海淀区第二学期练习)在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.2015-2017年中国在线教育用户规模统计图6月12月6月12月(以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理...的是 A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70% 答案B6.(2018北京延庆区初三统一练习)下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》) 根据统计图提供的信息,下列推断不合理...的是 A .与2016年相比,2017年我国国内生产总值有所增长;B .2013-2016年,我国国内生产总值的增长率逐年降低;C .2013-2017年,我国国内生产总值的平均增长率约为6.7% ;D .2016-2017年比2014-2015年我国国内生产总值增长的多.答案:C7.(2018北京西城区九年级统一测试)空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.优良轻度污染中度污染重度污染严重污染2014年1月2015年1月2016年1月2017年1月2018年1月天数123446789610121032134691141210根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年1月B .AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别 答案:D595244643974689052743585827122201620000040000060000010000000520%亿元2013-2017年国内生产总值及其增长速度国内生产总值比上年增长(%)7.87.36.96.76.98. (2018北京房山区一模)某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是A. 该班学生一周锻炼时间的中位数是11B. 该班学生共有44人C.该班学生一周锻炼时间的众数是10D.该班学生一周锻炼12小时的有9人 答案A 9.(2018北京怀柔区一模)下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( ) A. 9月毛衣的销量最低,10月衬衫的销量最高 B.与10月相比,11月时,毛衣的销量有所增长, 衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右 答案C10. (2018北京门头沟区初三综合练习)下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是 A .2011-2014年最高温度呈上升趋势; B .2014年出现了这6年的最高温度; C .2011-2015年的温差成下降趋势; D .2016年的温差最大.答案C11.(2018北京市大兴区检测)自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.——毛衣的销量……衬衫的销量年份温度5040302010-20-10201620152014201320122011-15.2-9.2-11.2-14.1-13.7-11.637.838.941.138.23835.9北京市2011-2016年气温变化情况最高气温最低气温根据统计图提供的信息,下列说法不合理...的是A.统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况B.我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1% C.2011年我国发明专利申请量占世界发明专利申请量的比重是28%D.2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长答案C12.(2018北京市朝阳区综合练习(一))“享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况.第六届和第八届北京国际电影节﹒电影市场“项目创投”申报类型统计表根据统计图提供的信息,下列推断合理..的是 (A )两届相比较,所占比例最稳定的是动作冒险(含战争)类(B )两届相比较,所占比例增长最多的是剧情类(C )第八届悬疑惊悚犯罪类申报数量比第六届2倍还多(D )在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类 答案A 二、填空题13、(2018北京昌平区二模)近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是2014-2017年新能源汽车生产和销售的情况:根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为 万量,你的预估理由是 .答案: 答案不唯一(只要理由合理均可给分)14、(2018北京东城区二模)每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).(第12题)数量(万辆)152535455565758525元10元18元30%50%分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 . 答案: 120 ;3 00015、(2018北京朝阳区二模)鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示. 根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.答案:答案不唯一,理由须支撑推断的合理性. 16、(2018北京房山区二模)某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为__________元.答案: 1717.(2018北京通州区一模)答案:三、解答题 18.(2018北京市朝阳区一模)北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市 2012—2017年污水处理率统计表:(1)用折线图将2012—2017年北京市污水处理率表示出来,并在图中标明相应的数据; (2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为 %, 说明你的预估理由: .解:(1)图略. ………………………………………………………………3分 (2)预估理由须包含统计图表中提供的信息,且支撑预估的数据.……5分 19.(2018北京顺义区初三练习)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次 “汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66, 62,68,89,86,93,97,100,73,76,80, 77,81,86,89,82,85,71,68,74,98, 90,97,100,84,87,73,65,92,96,60. 70d 请根据所给信息,解答下列问题:(1)a = ,b = , c = ,d =; (2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?解:(1)a = 14 ,b = 0.35 , c = 12 ,d = 0.3 ;………… 2分北京市2012—2017年污水处理率统计图16142607*********4681012成绩x /分频数频数成绩x /分121086401009080706021416 (2)补全频数分布直方图如下:…………………… 4分(3)估计参加这次比赛的600名学生中成绩“优”等的约有180人.……… 5分20. (2018北京市朝阳区综合练习(一))水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据 从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲 26 32 40 51 44 74 44 63 73 74 81 54 6241 33 54 43 34 51 63 64 73 64 54 33 乙 27 35 46 55 48 36 47 68 82 48 57 66 7527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据 按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据 两组样本数据的平均数、众数和方差如下表所示:大棚 平均数 众数 方差 甲 53 54 3047 乙53573022得出结论 a .估计乙大棚产量优秀的秧苗数为 株;b .可以推断出 大棚的小西红柿秧苗品种更适应市场需求,理由为 .(至少从两个不同的角度说明推断的合理性)解:整理、描述数据 按如下分组整理、描述这两组样本数据25≤x <35 35≤x <45 45≤x <55 55≤x <65 65≤x <75 75≤x <85甲55554 1 乙2462x大棚个数 株数…………………………………………………………………………………………………2分得出结论a.估计乙大棚产量优秀的秧苗数为84 株;…………………………3分b.答案不唯一,理由须支撑推断的合理性.…………………5分21、(2018北京东城区二模)十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).解:(1)四;---------------------------------------------------------------------1分(2)如图:---------------------------------------------------------------------3分(3)5432000ab.------------------------------------------------------5分22、(2018北京丰台区二模)某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习. 学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史. 为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是___________;(填序号)①选择七年级1班、2班各15名学生作为调查对象②选择机器人社团的30名学生作为调查对象③选择各班学号为6的倍数的30名学生作为调查对象调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图分析数据、推断结论 请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是__________(填A-G 的字母代号),估计全年级大约有_________名学生喜欢这个课程领域.答案.收集数据 抽样调查对象选择合理的是③. ………………………1分整理、描述数据 如下: ………………………4分 某校七年级学生喜欢的课程领域统计表 某校七年级学生喜欢的课程领域统计图E F C DGAB分析数据、推断结论 G ,60. ………………………6分 23.(2018北京西城区二模)阅读下列材料: 材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验. 材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.年度 2013 2014 2015 2016 2017 参观人数(人次) 7 450 000 7 630 000 7 290 000 7 550 000 8 060 000 年增长率(%) 38.7 2.4 -4.5 3.6 6.8纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,课程领域 人数F 4 G10国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式. 根据以上信息解决下列问题: (1)补全以下两个统计图;(2)请你预估2018………………………………………………………………… 4分(2)答案不唯一,预估理由合理,支撑预估数据即可. ……………………… 6分图3。

相关文档
最新文档