天津市2017年中考数学一轮专题复习二次函数综合复习

合集下载

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。

2017年中考数学备考专题复习二次函数的应用含解析

2017年中考数学备考专题复习二次函数的应用含解析

二次函数的应用一、单选题(共12题;共24分)1、(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A、1或﹣5B、﹣1或5C、1或﹣3D、1或32、(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A、y=﹣(x﹣)2﹣B、y=﹣(x+ )2﹣C、y=﹣(x﹣)2﹣D、y=﹣(x+ )2+3、(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大4、(2016•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A 、b≥B、b≥1或b≤﹣1C、b≥2D、1≤b≤25、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A、y=60(300+20x)B、y=(60﹣x)(300+20x)C、y=300(60﹣20x)D、y=(60﹣x)(300﹣20x)6、(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④ <a<⑤b>c.其中含所有正确结论的选项是()A、①③B、①③④C、②④⑤D、①③④⑤7、(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A、y=(x﹣2)2+3B、y=(x﹣2)2+5C、y=x2﹣1D、y=x2+48、(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A 、B 、C 、D 、9、(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A、1B、2C、3D、410、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、011、(2016•攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A、2a﹣b=0B、a+b+c>0C、3a﹣c=0D、当a= 时,△ABD是等腰直角三角形12、(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.14、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.15、(2016•大庆)直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.16、(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是________.17、(2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是________ (只填写序号).三、综合题(共5题;共65分)18、(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.19、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.20、(2016•连云港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B (2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N 的坐标.21、(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.22、(12分)(2016•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.答案解析部分一、单选题【答案】B【考点】二次函数的最值【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【分析】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.【答案】A【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥ ;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1, x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥ ,故选A.【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b 的不等式组解决问题.【答案】B【考点】根据实际问题列二次函数关系式【解析】【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【答案】D【考点】二次函数的性质【解析】【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴ =1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴ >a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.【答案】C【考点】二次函数图象与几何变换【解析】【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x= >0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,对称轴x= <0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x= >0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y= x2﹣x﹣,把x=1代入得y= ﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误;由a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).【答案】A【考点】二次函数的图象,二次函数的应用【解析】【解答】解:S△AEF = AE×AF= x2, S△DEG = DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+ x+ ,则y=4×(﹣x2+ x+ )=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题【答案】(1,4)【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】(0,4)【考点】二次函数的性质,一次函数的性质【解析】【解答】解:∵直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,∴kx+b= ,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴ ,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【分析】根据直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k 的乘积为﹣1.【答案】P>Q【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c <0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q 的值.本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.【答案】②【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征【解析】【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′= x2+x= (x2+ x)= (x+ )2﹣,∵ >0,∴函数y′有最小值﹣,∴ x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,∵x1•1= =﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′= x2+x= (x2+ x)= (x+ )2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,则x1•1= =﹣,求出x1即可解决问题.本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、综合题【答案】(1)解:把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0)(2)解:①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD = •4•t + •8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.【考点】待定系数法求二次函数解析式,与二次函数有关的动态几何问题【解析】【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.【答案】(1)解:由已知可得:AD= ,则S=1× m2(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大【考点】二次函数的应用【解析】【分析】此题考查二次函数的应用,关键是利用二次函数的最值解答.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【答案】(1)解:把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y= x2﹣x,∵BC∥x轴,设C(x0, 2).∴ x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2)(2)解:设△BCM边BC上的高为h,∵BC= ,∴S△BCM = •h= ,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y= x2﹣x=0,解得:x1=0,x2= ,∴M1(0,0),M2(,0),令y= x2﹣x=4,解得:x3= ,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4)(3)解:∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2 ,OA= ,OC= ,∴∠AOD=∠BOD=45°,tan∠COD= ,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE 中,tan∠NOE=tan∠COD= ,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD= ,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【考点】二次函数的性质,相似三角形的性质,与二次函数有关的动态几何问题【解析】【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2﹣x,由于BC∥x轴,设C(x0, 2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2﹣x=0,或令y= x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x 轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.【答案】(1)解:∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x(2)解:由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2 ,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+ ,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+ ,4)或(1﹣,4).(3)解:设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,由解得,∴OM= = ,ON=m• ,∴ = ,∴k= 时,= .∴当k= 时,点T运动的过程中,为常数.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题【考点】待定系数法求二次函数解析式,二次函数与一次函数的交点问题【解析】【分析】(1)利用待定系数法即可解决问题(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.【答案】(1)解:△ABC为直角三角形,当y=0时,即﹣x2+ x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3 ,0),∴O A= ,OB=3 ,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3 ﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图,∵B(3 ,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+ a+3),∴G(a,﹣a+3),∴PG=﹣a2+ a,设点D的横坐标为x D, C点的横坐标为x C,S△PCD = ×(x D﹣x C)×PG=﹣(a﹣)2+ ,∵0<a<3 ,∴当a= 时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y= x+ ,当x=0时,y= ,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH= ,P′H= ,AP′= ,∴点Q运动得最短路径长为PM+MN+AN= + = ;(3)解:在Rt△AOC中,∵tan∠OAC= = ,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2 ,∴A′E′=AE=2 ,∵直线AE的解析式为y= x+2,设点E′(a,a+2),∴A′(a﹣2 ,﹣2)∴C1E′2=(a﹣2 )2+(+2﹣)2= a2﹣a+7,C1A′2=(a﹣2 ﹣)2+(﹣2﹣)2= a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7= a2﹣a+49,∴a= ,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1= ,a2= ,∴E′(,7+ ),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1= ,a2= (舍),∴E′(,3+ ),即,符合条件的点E′(,5),(,7+ ),或(,7﹣),(,3+ )【考点】二次函数的最值,勾股定理的逆定理,与二次函数有关的动态几何问题【解析】【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC 是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。

中考数学一轮复习《二次函数》综合复习练习题(含答案)

中考数学一轮复习《二次函数》综合复习练习题(含答案)

中考数学一轮复习《二次函数》综合复习练习题(含答案)一、单选题1.二次函数223y x x =-+的一次项系数是( ) A .1B .2C .2-D .32.抛物线22(9)3y x =+-的顶点坐标是( ) A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-3.如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m .那么水位下降1m 时,水面的宽度为( )A 6mB .26mC .)64mD .()264m4.二次函数()225y x =+-的图象的顶点坐标是( ) A .2,5B .()2,5C .()2,5--D .()2,5-5.在平面直角坐标系xOy 中,点123(1)(2)(4)y y y -,,,,,在抛物线22y ax ax c =-+上,当0a >时,下列说法一定正确的是( ) A .若120y y <,则30y > B .若230y y >,则10y < C .若130y y <,则20y >D .若1230y y y =,则20y =6.抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(1,2)D .(-1,2)7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .()2323y x =++B .()2323y x =-+C .()2332y x =++D .()2332y x =-+8.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0)9,,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m9.关于抛物线2(1)y x =-,下列说法错误的是( ) A .开口向上B .当1x >时,y 随x 的增大而减小C .对称轴是直线1x =D .顶点()1,010.一次函数y x a =+与二次函数2y ax a =-在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为( )A .7B .8C .9D .1012.下表中列出的是一个二次函致的自变量x 与函数y 的几组对应值:下列各选项中,正确的是( ) x … 2- 0 1 3 …y … 6- 4 6 4 …A .函数的图象开口向上B .函数的图象与x 轴无交点C .函数的最大值大于6D .当12x -≤≤时,对应函数y 的取值范围是36y ≤≤二、填空题13.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.14.二次函数2y ax bx c =++的图象如图所示.当0y >时,自变量x 的取值范围是 _____.15.某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙长20米),另外三边用篱笆围成如图所示,所用的篱笆长为32米.请问当垂直于墙的一边的长为____米时,花圃的面积有最大值,最大值是____.16.如图是抛物线型拱桥,当拱顶高距离水面2m 时,水面宽4m ,如果水面上升1.5m ,则水面宽度为________.17.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是___________米.18.在平面直角坐标系中,抛物线2yx 的图象如图所示,已知A 点坐标()1,1,过点A 作1AA x ∥轴交抛物线于点1A ,过点1A 作12A A OA ∥交抛物线于点2A ,过点2A 作23A A x ∥轴交抛物线于点3A ,过点3A 作34A A OA ∥交抛物线于点4A ,…,依次进行下去,则点2022A 的坐标为______.19.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,如果水面下降0.5m ,那么水面宽度增加________m .20.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米三、解答题21.已知关于x 的方程2(23)0mx m x m +-+=有两个不相等的实数根,求m 的取值范围.22.已知关于x 的一元二次方程x 2+x −m =0.(1)设方程的两根分别是x 1,x 2,若满足x 1+x 2=x 1•x 2,求m 的值. (2)二次函数y =x 2+x −m 的部分图象如图所示,求m 的值.23.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售。

天津市河北区2017年中考数学《二次函数》复习练习题及答案

天津市河北区2017年中考数学《二次函数》复习练习题及答案

九年级数学中考专题复习二次函数一、选择题:1、将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2 B.y=(x﹣2)2+6 C.y=x2+6 D.y=x22、已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>33、已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=34、函数y=(x﹣1)2﹣k与y=(k≠0)在同一坐标系中的图象大致为()A. B. C. D.5、如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个 B.4个 C.3个 D.2个6、在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)图象可能是( )7、如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2C.3D.28、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月9、已知a<﹣1,点(a﹣1,y1)、(a,y2)、(a+1,y3)都在函数y=x2﹣2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y310、在平面直角坐标系中,二次函数y=﹣x2+6x﹣9的图象顶点为A,与y轴交于点B.若在该二次函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点的坐标为()A.(﹣9,0) B.(﹣6,0) C.(6,0) D.(9,0)11、二次函数y=ax2+bx+c的图象如图所示,对称轴x=﹣1,下列五个代数式ab、ac、a﹣b+c、b2﹣4ac、2a+b中,值大于0的个数为()A.5 B.4 C.3 D.212、根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.2613、如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于轴的直线从轴出发,沿轴正方向以每秒1个单位长度的速度向右平移,设直线与菱形OABC的两边分别交于点M、N(点M在点N 的上方),若△OMN的面积S,直线的运动时间为秒(),则能大致反映S与的函数关系的图像是( )14、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③-1≤a≤;④4ac-b2>8a.其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④15、已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:①d没有最大值;②d没有最小值;③;-1<x<3时, d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个二、填空题:16、如图,点E是抛物线y=a(x﹣2)2+k的顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D.点A是对称轴上一点,连结AC、AB.若△ABC是等边三角形,则图中阴影部分图形的面积之和是.17、如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为.18、有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数的表达式:.(答案不惟一)19、二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2= ___________.20、如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为________.21、若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=______.22、小明在某次投篮中,球的运动路线是抛物线y=﹣x2+3.5的一部分,如图所示,若球命中篮圈中心,则他与篮底的距离L是m.23、如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.24、已知抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,若D为AB中点,则CD长为.25、如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长为.26、如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.27、如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少个时,网球可以落入桶内.28、如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,的值总是正数;②;③当x=0时,;④AB+AC=10;⑤,其中正确结论的个数是:.29、如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则= .30、如图,抛物线的对称轴是.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)三、简答题:31、如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,交y轴于点C.(1)求该抛物线的解析式与顶点D的坐标;(2)请判断以B、C、D为顶点的三角形的形状;(3)若点Q是y轴上的动点,在抛物线上是否存在点P使得以点A、B、P、Q为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P坐标;若不存在,请说明理由.32、如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.(1)求该抛物线的函数关系式;(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.33、某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看做一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)每月的利润z(万元)与销售单价x(元)之间的函数关系式为;(2)当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?34、某水果店出售某种水果,已知该水果的进价为6元/千克,若以9元/千克的价格销售,则每天可售出200千克;若以11元/千克的价格销售,则每天可售出120千克.通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该水果店销售这种水果每天获取的利润达到280元?(利润=销售量×(销售单价﹣进价))(3)该水果店在进货成本不超过720元时,销售单价定为多少元可获得最大利润?最大利润是多少?35、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.36、一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.37、某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?38、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.39、已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.40、如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC 相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.参考答案1、D.2、B.3、B.4、C.5、B.6、D.7、B.8、C.9、C.10、D.11、C.12、C.13、C.14、D.15、B.16、答案为:2.17、答案为:y=13﹣x.18、答案为:y=x2﹣x+3.19、答案为:520、答案为:(,2) 21、答案是:9.22、答案为:4.5.23、答案为:2米.24、答案为:.25、答案为:6.26、答案为:_1 27、答案为:8. 28、答案为:4.29、答案为:3﹣.30、答案为:①③⑤.31【解答】解:(1)把A(﹣1,0)、B(3,0)两点代入y=x2+bx+c得:,解得:b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,4);(2)如图1,连接BC、CD、BD,DM⊥x轴,DN⊥y轴,垂足分别为M、N,∵y=x2﹣2x﹣3与y轴的交点C(O,﹣3),A(﹣1,0)、B(3,0),D(1,4),∴BC==3,CD==,BD==2,∵(3)2+()2=(2)2∴BC2+CD2=BD2∴△BCD是直角三角形;(3)如图2,①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,所以点P的横坐标为﹣4或4,当x=﹣4时,y=21;当x=4时,y=5;所以此时点P1的坐标为(﹣4,21),P2的坐标为(4,5);②当AB为对角线时,只要线段PQ与线段AB互相平分即可,线段AB中点为G,PQ必过G点且与y轴交于Q点,过点P3作x轴的垂线交于点H,可证得△P3HB≌△Q3OA,∴AO=BH,∴GO=GH,∵线段AB的中点G的横坐标为1,∴此时点P横坐标为2,由此当x=2时,y=﹣3,∴这是有符合条件的点P3(2,﹣3),∴所以符合条件的点为:P1的坐标为(﹣4,21),P2的坐标为(4,5);P3(2,﹣3).32、【解答】解:(1)∵抛物线的顶点D的坐标为(1,﹣4),∴设抛物线的函数关系式为y=a(x﹣1)2﹣4,又∵抛物线过点C(0,﹣3),∴﹣3=a(0﹣1)2﹣4,解得a=1,∴抛物线的函数关系式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,∴点P的纵坐标一定为4.令y=4,则x2﹣2x﹣3=4,解得x1=1+2,x2=1﹣2.∴点P的坐标为(1+2,4)或(1﹣2,4).33、【解答】解:(1)由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800.故答案是:z=﹣2x2+136x﹣1800;(2)设月销售利润为w,则w=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,当x=35时,w取得最大,最大利润为450万元.答:当销售单价为35元时,厂商每月能获得最大利润,最大利润是450万元;(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,故当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),因此,所求每月最低制造成本为648万元.34、【解答】解:(1)设y(千克)与x(元)(x>0)的函数关系式为:y=kx+b,根据题意可得:,解得:.故y(千克)与x(元)(x>0)的函数关系式为:y=﹣40x+560;(2)∵W=280元,∴280=(﹣40x+560)×(x﹣6)解得:x1=7,x2=13.答:当销售单价为7元或13元时,每天可获得的利润达到W=280元;(3)∵利润=销售量×(销售单价﹣进价)∴W=(﹣40x+560)(x﹣6)=﹣40x2+800x﹣3360=﹣40(x﹣10)2+640,当售价为10元,则y=560﹣400=160,160×6=960(元)>720元,则当(﹣40x+560)×6=720,解得:x=11.即当销售单价为11元时,每天可获得的利润最大,最大利润是600元.35、【解答】方法一:解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:,解得:∴抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,1)(1,0).(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).(4)作点O关于直线AC的对称点O交AC于H,作HG⊥AO,垂足为G,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH,∴△GHO∽△GAH,∴HG2=GO•GA,∵A(﹣1,0),C(0,3),∴l AC:y=3x+3,H(﹣,),∵H为OO′的中点,∴O′(﹣,),∵D(1,4),∴l O′D:y=x+,l AC:y=3x+3,∴x=﹣,y=,∴Q(﹣,).36【解答】解:(1)根据题目条件,A、B、C的坐标分别是(﹣10,0)、(10,0)、(0,6).将B、C的坐标代入y=ax2+c,得解得.所以抛物线的表达式是;(2)可设N(5,y N),于是.从而支柱MN的长度是10﹣4.5=5.5米;(3)设DE是隔离带的宽,EG是三辆车的宽度和,则G点坐标是(7,0),(7=2÷2+2×3).过G点作GH垂直AB交抛物线于H,则yH=﹣×72+6=3+>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.37、【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.38、【解答】解:(1)当1≤x<50时,y=(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050.∴a=﹣2<0,∴二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)①当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得:20≤x<70,因此利润不低于4800元的天数是20≤x<50,共30天;②当50≤x≤90时,y=﹣120x+12000≥4800,解得:x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在整个销售过程中,共41天每天销售利润不低于4800元.39、【解答】解:(1)根据题意得,解得,所以抛物线的解析式为y=x2﹣2x﹣3.∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)根据题意,﹣y=x2﹣2x﹣3,所以y=﹣x2+2x+3.(3)∵抛物线y=x2﹣2x﹣3的顶点为(1,﹣4),当x=﹣2时,y=5,抛物线y=﹣x2+2x+3的顶点(1,4),当x=﹣2时,y=﹣5.∴当﹣2<x<2时,直线y=m与该图象有一个公共点,则4<m<5或﹣5<m<﹣4.40、解:(1)∵点A(1,0)在抛物线y=ax2﹣5ax+2(a≠0)上,∴a﹣5a+2=0,∴a=,∴抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∴点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,∴把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=﹣,b=2,∴直线BC的解析式y=﹣x+2;(3)设N(x,x2﹣x+2),分两种情况讨论:①当△OBC∽△HNB时,如图1,=,即=,解得x1=5,x2=4(不合题意,舍去),∴点N坐标(5,2);②当△OBC∽△HBN时,如图2,=,即=﹣,解得x1=2,x2=4(不合题意舍去),∴点N坐标(2,﹣1);综上所述点N坐标(5,2)或(2,﹣1).。

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析) 知识点总结1. 二次函数与一元二次方程:①若二次函数()02≠++=a c bx ax y 与x 轴有两个交点⇔一元二次方程02=++c bx ax 有两个不相等的实数根⇔042>ac b −=∆。

②若二次函数()02≠++=a c bx ax y 与x 轴只有一个交点⇔一元二次方程02=++c bx ax 有两个相等的实数根⇔042=−=∆ac b 。

③若二次函数()02≠++=a c bx ax y 与x 轴没有交点⇔一元二次方程02=++c bx ax 没有实数根⇔042<ac b −=∆。

④若二次函数()02≠++=a c bx ax y 与直线m y =相交,则一元二次方程为m c bx ax =++2。

交点情况与方程的解的情况同与x 轴相交时一样。

2. 二次函数与不等式(组)若二次函数()02≠++=a c bx ax y 与一次函数()0≠+=k b kx y 存在交点,则不等式:b kx c bx ax +++>2的解集取二次函数图像在上方的部分所对应的自变量取值范围;b kx c bx ax +++<2的解集取二次函数图像在下方的部分所对应的自变量取值范围。

3. 二次函数的一些特殊的自变量的函数值:①当1=x 时所对应的函数值为c b a y ++=。

②当1−=x 时所对应的函数值为c b a y +−=。

③当2=x 时所对应的函数值为c b a y ++=24。

④当2−=x 时所对应的函数值为c b a y +−=24。

4. 对称轴的特殊值:①若对称轴为直线1=x 时,则02=+b a 。

②若对称轴为直线1−=x 时,则02=−b a 。

③判断b a +2与0的大小关系时,看对称轴与1=x 的位置关系。

④判断b a −2与0的大小关系时,看对称轴与1−=x 的位置关系。

练习题1、(2022•巴中)函数y =|ax 2+bx +c |(a >0,b 2﹣4ac >0)的图像是由函数y =ax 2+bx +c (a >0,b 2﹣4ac >0)的图像x 轴上方部分不变,下方部分沿x 轴向上翻折而成,如图所示,则下列结论正确的是( )①2a +b =0;②c =3;③abc >0;④将图像向上平移1个单位后与直线y =5有3个交点.A .①②B .①③C .②③④D .①③④【分析】根据函数图像与x 轴交点的横坐标求出对称轴为,进而可得2a +b =0,由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,由抛物线y =ax 2+bx +c 的开口方向,对称轴位置和抛物线与y 轴交点位置可得abc 的符号,求出二次函数y =ax 2+bx +c 的顶点式,可得图像向上平移1个单位后与直线y =5有3个交点【解答】解:∵图像经过(﹣1,0),(3,0),∴抛物线y =ax 2+bx +c 的对称轴为直线x =1,∴﹣=1,∴b =﹣2a ,即2a +b =0,①正确.由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,∴c<0,②错误.由抛物线y=ax2+bx+c的开口向上可得a>0,∴b=﹣2a<0,∴abc>0,③正确.设抛物线y=ax2+bx+c的解析式为y=a(x+1)(x﹣3),代入(0,3)得:3=﹣3a,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4),∵点(1,4)向上平移1个单位后的坐标为(1,5),∴将图像向上平移1个单位后与直线y=5有3个交点,故④正确;故选:D.2、(2022•资阳)如图是二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个【分析】①:根据二次函数的对称轴,c=1,即可判断出abc>0;②:结合图像发现,当x=﹣1时,函数值大于1,代入即可判断;③:结合图像发现,当x=1时,函数值小于0,代入即可判断;④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.【解答】解:∵二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1),∴,c=1,∴ab>0,∴abc>0,故①正确;从图中可以看出,当x=﹣1时,函数值大于1,因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,即a﹣b+c>1,故②正确;∵,∴b=2a,从图中可以看出,当x=1时,函数值小于0,∴a+b+c<0,∴3a+c<0,故③正确;∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),∴设二次函数的解析式为y=a(x+1)2+2,将(0,1)代入得,1=a+2,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+2,∴当x=1时,y=﹣2;∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;综上所述,①②③④均正确,故有4个正确结论,故选A.3、(2022•黄石)已知二次函数y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图像经过点(1,3)时,方程ax2+bx+c ﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=﹣1时有最小值可对②进行判断;由于二次函数y=ax2+bx+c与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(﹣3,3),从而得到x1=﹣3,x2=1,则可对③进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣1,即﹣=﹣1,∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤at 2+bt +c (t 为任意实数),即a ﹣bt ≤at 2+b ,所以②正确;∵图像经过点(1,3)时,得ax 2+bx +c ﹣3=0的两根为x 1,x 2(x 1<x 2),∴二次函数y =ax 2+bx +c 与直线y =3的一个交点为(1,3),∵抛物线的对称轴为直线x =﹣1,∴二次函数y =ax 2+bx +c 与直线y =3的另一个交点为(﹣3,3),即x 1=﹣3,x 2=1,∴x 1+3x 2=﹣3+3=0,所以③正确.故选:D .4、(2022•日照)已知二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,对称轴为x =23,且经过点(﹣1,0).下列结论:①3a +b =0;②若点(21,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b ﹣3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由对称轴为x=即可判断①;根据点(,y1),(3,y2)到对称轴的距离即可判断②;由抛物线经过点(﹣1,0),得出a﹣b+c=0,对称轴x=﹣=,得出a=﹣b,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.【解答】解:∵对称轴x=﹣=,∴b=﹣3a,∴3a+b=0,①正确;∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,∴y1<y2,故②正确;∵经过点(﹣1,0),∴a﹣b+c=0,∵对称轴x=﹣=,∴a=﹣b,∴﹣b﹣b+c=0,∴3c=4b,∴4b﹣3c=0,故③错误;∵对称轴x=,∴点(0,c)的对称点为(3,c),∵开口向上,∴y≤c时,0≤x≤3.故④正确;故选:C.5、(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故选:B.6、(2022•绵阳)如图,二次函数y=ax2+bx+c的图像关于直线x=1对称,与x轴交于A (x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b >0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点以及x=﹣1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a﹣b+c<0,即可判断④.【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,∴3<x2<4,①正确,∵﹣=1,∴b=﹣2a,∴3a+2b=3a﹣4a=﹣a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,由题意可知x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∵a>0,∴b=﹣2a<0,∴a+c<0,∴b2﹣4ac>a+c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a﹣b+c<0,b=﹣2a,∴3a+c<0,∴c<﹣3a,∴b=﹣2a,∴b>c,所以④错误;故选:B.7、(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x 轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c <0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1 B.2 C.3 D.4【分析】根据函数图像的开口方向、对称轴、图像与y轴的交点即可判断①;根据对称轴x =﹣2,OA=5OB,可得OA=5,OB=1,点A(﹣5,0),点B(1,0),当x=1时,y =0即可判断②;根据对称轴x=﹣2,以及,a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=﹣2时,y=4a﹣2b+c,即可判断④;【解答】解:①观察图像可知:a>0,b>0,c<0,∴abc<0,故①错误;②∵对称轴为直线x=﹣2,OA=5OB,可得OA=5,OB=1,∴点A(﹣5,0),点B(1,0),∴当x=1时,y=0,即a+b+c=0,∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;③抛物线的对称轴为直线x=﹣2,即﹣=﹣2,∴b=4a,∵a+b+c=0,∴5a+c=0,∴c=﹣5a,∴9a+4c=﹣11a,∵a >0,∴9a +4c <0,故③正确;④当x =﹣2时,函数有最小值y =4a ﹣2b +c ,由am 2+bm +c ≥4a ﹣2b +c ,可得am 2+bm +2b ≥4a ,∴若m 为任意实数,则am 2+bm +2b ≥4a ,故④正确;故选:C .8、(2022•烟台)二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,其对称轴为直线x =﹣21,且与x 轴的一个交点坐标为(﹣2,0).下列结论:①abc >0;②a =b ;③2a +c =0;④关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A .①③B .②④C .③④D .②③【分析】根据对称轴、开口方向、与y 轴的交点位置即可判断a 、b 、c 与0的大小关系,然后将由对称轴可知a =b .图像过(﹣2,0)代入二次函数中可得4a ﹣2b +c =0.再由二次函数最小值小于0,从而可判断ax 2+bx +c =1有两个不相同的解.【解答】解:①由图可知:a >0,c <0,<0,∴b >0,∴abc <0,故①不符合题意.②由题意可知:=﹣,∴b =a ,故②符合题意.③将(﹣2,0)代入y =ax 2+bx +c ,∴4a ﹣2b +c =0,∵a =b ,∴2a +c =0,故③符合题意.④由图像可知:二次函数y =ax 2+bx +c 的最小值小于0,令y =1代入y =ax 2+bx +c ,∴ax 2+bx +c =1有两个不相同的解,故④不符合题意.故选:D .9、(2022•广安)已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图像如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (34,y 1)、C (31,y 2)、D (﹣31,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4【分析】①正确,根据抛物线的位置,判断出a ,b ,c 的符号,可得结论;②③错误,利用对称轴公式,抛物线经过A (3,0),求出b ,c 与a 的关系,判断即可; ④正确.利用图像法判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴是直线x=1,∴1=﹣,∴b=﹣2a,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵抛物线y=ax2﹣2ax+c经过(3,0),∴9a﹣6a+c=0,∴c=﹣3a,∴2c﹣3b=﹣6a+6a=0,故②错误,5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,观察图像可知,y1<y2<y3,故④正确,故选:B.10、(2022•辽宁)抛物线y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x 有最大值.其中正确的个数是( )A .2B .3C .4D .5【分析】利用图像的信息与已知条件求得a ,b 的关系式,利用待定系数法和二次函数的性质对每个结论进行逐一判断即可得出结论.【解答】解:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1,∴﹣=﹣1,∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.11、(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x 的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图像知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图像看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.12、(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y =ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b =2a ,∴3a +c =0,⑤错误.故答案为:①②③.13、(2022•内江)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④不等式ax 2+bx +c >﹣1x c x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .4B .3C .2D .1【分析】利用二次函数的图像和性质依次判断即可.【解答】解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴, ∴a >0,b <0,c >0,∴abc <0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②错误.∵抛物线过点(2,0),∴4a+2b+c=0,∴b=﹣2a﹣,∵a+b+c<0,∴a﹣2a﹣+c<0,∴2a﹣c>0,∴③正确.如图:设y1=ax2+bx+c,y2=﹣x+c,由图值,y1>y2时,x<0或x>x1,故④错误.故选:C.14、(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a、b、c的正负即可解答;③将点A的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【解答】解:①由抛物线的开口方向向下,则a<0,故①正确;②∵抛物线的顶点为P(1,m),∴﹣=1,b=﹣2a,∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∴abc<0,故②错误;③∵抛物线经过点A(2,1),∴1=a•22+2b+c,即4a+2b+c=1,故③正确;④∵抛物线的顶点为P(1,m),且开口方向向下,∴x>1时,y随x的增大而减小,即④正确;⑤∵a<0,∴at2+bt﹣(a+b)=at 2﹣2at ﹣a +2a=at 2﹣2at +a=a (t 2﹣2t +1)=a (t ﹣1)2≤0,∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故选:C .15、(2022•达州)二次函数y =ax 2+bx +c 的部分图像如图所示,与y 轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc >0;②a >31;③对于任意实数m ,都有m (am +b )>a +b 成立;④若(﹣2,y 1),(21,y 2),(2,y 3)在该函数图像上,则y 3<y 2<y 1;⑤方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4.其中正确结论有( )个.A .2B .3C .4D .5【分析】①正确,判断出a ,b ,c 的正负,可得结论;②正确.利用对称轴公式可得,b =﹣2a ,当x =﹣1时,y >0,解不等式可得结论; ③错误.当m =1时,m (am +b )=a +b ;④错误.应该是y 2<y 3<y 1,;⑤错误.当有四个交点或3个时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4,当有两个交点时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为3,当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.。

天津市和平区2017年中考数学《二次函数》专题练习含答案

天津市和平区2017年中考数学《二次函数》专题练习含答案

天津市和平区2017年中考数学《⼆次函数》专题练习含答案⼆次函数50题⼀、选择题:1.若⼆次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( )A.-1或3B.-1C.3D.-3或12.若为⼆次函数的图象上的三点,则的⼤⼩关系是()A. B. C. D.3.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对4.已知⼀条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点⽤待定系数法能求出抛物线解析式的为()A.E,FB.E,GC.E,HD.F,G5.已知⼆次函数y=ax2-1的图象开⼝向下,则直线y=ax-1经过的象限是( )A.第⼀、⼆、三象限B.第⼀、⼆、四象限C.第⼀、三、四象限D.第⼆、三、四象限6.⽣产季节性产品的企业,当它的产品⽆利润时就会及时停产.现有⼀⽣产季节性产品的企业,其⼀年中获得的利润y和⽉份n 之间函数关系式为y=-n2+14n-24,则该企业⼀年中利润最⾼的⽉份是( )A.5⽉B.6⽉C.7⽉7.已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.48.⼀次函数y=ax+b(a≠0)与⼆次函数y=ax2+bx+c(a≠0)在同⼀平⾯直⾓坐标系中的图象可能是()A. B. C. D.9.⼆次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )A.5B.3C.3或-5D.-3或510.抛物线y=3x2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为()A.y=3(x+2)2+3B.y=3(x-2)2+3C.y=3(x+2)2﹣3D.y=3(x-2)2﹣311.已知⼆次函数y=x2+2x﹣3,当⾃变量x取m时,对应的函数值⼩于0,设⾃变量分别取m﹣4,m+4时对应的函数值为y1,y2,则下列判断正确的是()A.y1<0,y2<0B.y1<0,y2>0C.y1>0,y2<0D.y1>0,y2>012.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-213.⽣产季节性产品的企业,当它的产品⽆利润时就会及时停产.现有⼀⽣产季节性产品的企业,其⼀年中获得的利润y和⽉份n之间函数关系式为y=﹣n2+14n﹣24,则该企业⼀年中应停产的⽉份是()A.1⽉、2⽉、3⽉B.2⽉、3⽉、4⽉C.1⽉、2⽉、12⽉D.1⽉、11⽉、12⽉14.⼆次函数y=-x2+bx+c的图象如图所⽰:若点A(x1,y1),B(x2,y2)在此函数图象上,且x1B.y1C.y1≥y2D.y1>y215.⼆次函数y=x2﹣4x+5的最⼩值是( )A.﹣1B.1C.3D.516.在平⾯直⾓坐标系中,⼆次函数y=x2+2x﹣3的图象如图所⽰,点A(x1,y1),B(x2,y2)是该⼆次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最⼩值是﹣3D.y的最⼩值是﹣417.⼆次函数y=ax2+bx+c(a,b下列结论:①ac<0;②当x>1(b-1)x+c=0的⼀个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为( )A.4个 B.3个 C.2个 D.1个18.如图,直线y=0.5x+2与y轴交于点A,与直线y=﹣0.5x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=-0.5x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤0.5B.﹣2≤h≤1C.﹣1≤h≤1.5D.﹣1≤h≤0.519.下列函数是⼆次函数的是( )A.y=2x+1B.y=-2x+1C.y=x2+2D.y=0.5x-220.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到抛物线是()A.y=3(x﹣1)2﹣2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2+2⼆、填空题:21.已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点, 则这条抛物线的对称轴是22.⼆次函数y=x2-3x+2的图像与x轴的交点坐标是 ,与y轴的交点坐标为23.对于⼆次函数,有下列说法:①如果当x≤1时随的增⼤⽽减⼩,则m≥1;②如果它的图象与x轴的两交点的距离是4,则;③如果将它的图象向左平移3个单位后的函数的最⼩值是-4,则m=-1;④如果当x=1时的函数值与x=2013时的函数值相等,则当x=2014时的函数值为-3.其中正确的说法是.24.如图,坐标平⾯上,⼆次函数y=-x2+4x-k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的⾯积⽐为1:4,则k值为何?25.如图,在Rt△ABC中,∠C=90°,AB= 5,AC= 4,则cos A= .A B C26.抛物线y=2(x﹣3)2+3的顶点在象限.27.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最⼤,每件的售价应为元.28.如图,点A是抛物线y=x2﹣4x对称轴上的⼀点,连接OA,以A为旋转中⼼将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为.29.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°,按以下步骤作图:①以点B为圆⼼,⼩于AB的长为半径画弧,分别交AB、BC于点M、N;②分别以点M、N为圆⼼,⼤于0.5MN的长为半径画弧,两弧相交于点G;③连结BG交AC边于点E,交⊙O于点D,连接CD.则△ABE与△CDE的⾯积之⽐为.30.将⼀条长为20cm的铁丝剪成两段,并以每⼀段铁丝的长度为周长各做成⼀个正⽅形,则这两个正⽅形⾯积之和的最⼩值是cm2.31.如图,⼆次函数y1=ax2+bx+c(a≠0)与⼀次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),则使y1>y2成⽴的x的取值范围是__ _.32.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上⽅的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.33.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(0.5,2.5)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△PAC为直⾓三⾓形时, 点P的坐标是____________________.34.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1.则关于x的⽅程ax2+bx+=0的解为.35.⼆次函数y=2(x﹣3)2﹣4的最⼩值为.36.如图,⼆次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的⽅程ax2+bx+c=0(a≠0)有⼀个根为 -a-1.其中正确的结论个数有(填序号)37.已知⼆次函数y=﹣x2+2x+m的部分图象如图所⽰,则关于x的⼀元⼆次⽅程﹣x2+2x+m=0的解为.38.如图,⼩明的⽗亲在相距2⽶的两棵树间拴了⼀根绳⼦,给⼩明做了⼀个简易的秋千.拴绳⼦的地⽅距地⾯⾼都是2.5⽶,绳⼦⾃然下垂呈抛物线状,⾝⾼1⽶的⼩明距较近的那棵树0.5⽶时,头部刚好接触到绳⼦,则绳⼦的最低点距地⾯的距离为⽶.39.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满⾜=k(k≠0,1),则称y1,y2互为“相关抛物线”.给出如下结论:①y1与y2的开⼝⽅向,开⼝⼤⼩不⼀定相同;②y1与y2的对称轴相同;③若y2的最值为m,则y1的最值为k2m;④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).40.如图,是⼆次函数y=ax2+bx+c图象的⼀部分,其对称轴为直线x=1,若其与x轴⼀交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.三、解答题:41.已知⼆次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.42.⼀元⼆次⽅程x2+2x-3=0的⼆根x1,x2(x1< x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).。

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案一、单选题(共12题;共24分)1.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=12,且经过点(2,0),下列说法:①abc>0;②b2﹣4ac>0;③x=﹣1是关于x的方程ax2+bx+c=0的一个根;④a+b=0.其中正确的个数为()A.1B.2C.3D.42.若二次函数y=ax2﹣4ax+c的图象经过点(﹣1,0),则方程ax2﹣4ax+c=0的解为()A.x1=﹣1,x2=﹣5B.x1=5,x2=1C.x1=﹣1,x2=5D.x1=1,x2=﹣53.已知抛物线y=ax2+bx+c经过点(−4,m),(−3,n)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且−4<x1<−3,x2>0则下列结论一定正确的是()A.m+n>0B.m−n<0C.m⋅n<0D.m n>04.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a +c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个5.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D 的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣43.其中正确的是()A.①②④B.①③④C.②③D.②④6.已知二次函数y=x2−2x+m(m为常数)的图象与x轴的一个交点为(3,0),则关于x 的一元二次方程x2−2x+m=0的两个实数根是()A.x1=−1,x2=3B.x1=1C.x1=−1,x2=1D.x1=37.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()x 6.17 6.18 6.19 6.20y=ax2+bx+c0.020.010.020.04D.1或28.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0)则①二次函数的最大值为a+b+c;②a-b+c<0;③b2-4ac<0;④当y>0时,-1<x<3其中正确的个数是()A.1B.2C.3D.49.二次函数y=ax2+bx+c的部分图像如图所示,可知方程ax2+bx+c=0的所有解的积为()A.-4B.4C.5D.-510.抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,若关于x的一元二次方程﹣x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.﹣12<t≤3B.﹣12<t<4C.﹣12<t≤4D.﹣12<t<311.二次函数y=ax2−2ax+c(a≠0)的图象过点(3,0),方程ax2−2ax+c=0的解为()A.x1=−3,x2=−1B.x1=−1C.x1=1,x2=3D.x1=−312.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论中正确的有()①4ac<b2,②方程ax2+bx+c=0的两个根是x1=−1,x2=3③3a−c>0,④当y>0时,x的取值范围是−1≤x≤3.A.①②B.①②③C.①③④D.②④二、填空题(共6题;共6分)13.已知二次函数y=﹣x2+bx+c的顶点为(1,5),那么关于x的一元二次方程﹣x2+bx+c﹣m=0有两个相等的实数根,则m=.14.已知关于x的一元二次方程(x−2)(x−3)=m有实根x1,x2,且x1<x2,现有下列说法:①当)(x−m=0时,x1=2,x2=3;②当m>0时,2<x1<x2<3;③m>−14;④二次函数y=(x−x1x2)−m的图象与x轴的交点坐标为(2,0)和(3,0). 其中正确的有.15.如图所示为抛物线y=ax2−2ax+3,则一元二次方程ax2−2ax+3=0两根为.16.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣2<x<6的范围内有解,则t的取值范围是.17.如图,已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是.18.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是三、综合题(共6题;共75分)19.已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.20.已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有求出实数根;若没有请说明理由.21.在一次羽毛球比赛中,甲运动员在离地面53米的P点处发球,球的运动轨迹PAN可看作是一条抛物线的一部分,当球运动到最高点A处时,其高度为3米,离甲运动员站立地点O的水平距离为5米,球网BC离点O的水平距离为6米,以点O为原点建立平面直角坐标系,回答下列问题.(1)求抛物线的解析式(不要求些出自变量的取值范围);(2)羽毛球场地底线距离球网BC的水平距离为6米,此次发球是否会出界?(3)乙运动员在球场上M(m,0)处接球,乙原地起跳可接球的最大高度为2.5米,若乙因接球高度不够而失球,求m的取值范围.22.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=−2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.并指出该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x 的取值范围.24.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当﹣1≤x≤2时,求y的取值范围.参考答案1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】A 7.【答案】A 8.【答案】B 9.【答案】D 10.【答案】C 11.【答案】B 12.【答案】A 13.【答案】5 14.【答案】①③ 15.【答案】x 1=−1 16.【答案】﹣1≤t <2417.【答案】有两个同号不等实数根 18.【答案】①②④19.【答案】(1)解:∵抛物线与x 轴有两个交点∴b 2﹣4ac >0 即16+8c >0 解得c >﹣2(2)解:由y=﹣2x 2+4x+c 得抛物线的对称轴为直线x=1 ∵抛物线经过点(﹣1,0)∴抛物线与x 轴的另一个交点为(3,0) ∴方程﹣2x 2+4x+c=0的根为x 1=﹣1,x 2=3.20.【答案】(1)解:∵抛物线经过P (-3,m )和Q (1,m )∴抛物线的对称轴为直线x=−3+12=-1∴-b 2×2=−1 ∴b=4;(2)解:方程有实数解.对于方程2x 2+4x+1=0 ∵Δ=42-4×2×1=8>0∴关于x 的一元二次方程2x 2+4x+1=0有两个不相等的实数根;∴x=−4±√82×2=−2±√22∴x 1=−1+√22,x 2=−1−√22.21.【答案】(1)解:设抛物线的解析式为y =a (x ﹣5)2+3,由题意,得 53=a (0﹣5)2+3;a =﹣ 475.∴抛物线的解析式为:y =﹣ 475 (x ﹣5)2+3(2)解:当y =0时,﹣ 475(x ﹣5)2+3=0解得:x 1=﹣ 52 (舍去),x 2= 252即ON = 252∵OC =6∴CN = 252 ﹣6= 132 >6∴此次发球会出界 (3)解:由题意,得 2.5=﹣ 475(m ﹣5)2+3;解得:m 1=5+ 5√64 ,m 2=5﹣ 5√64(舍去)∵m >6∴6<m <5+ 5√64. ∴m 的取值范围是6<m <5+ 5√6422.【答案】(1)解:根据题意得W =(x −20)(−2x +80) =−2x 2+120x −1600 =−2(x −30)2+200∴当x =30时,每天的利润最大,最大利润为200元. (2)令−2(x −30)2+200=150,解得:x =35或x =25 ∵这种产品的销售价不高于每千克28元 ∴x =25.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.【答案】(1)解:∵函数图象与x轴的两个交点坐标为(1,0)(3,0)∴方程的两个根为x1=1(2)解:∵二次函数的顶点坐标为(2,2)∴若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2(3)解:∵抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点由图象可知,抛物线在直线下方时x的取值范围为:x<1或x>2.24.【答案】(1)解:∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3)∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①把x=0,y=3代入y=﹣x2+bx+c得:c=3把c=3代入①,解得b=2则二次函数解析式为y=﹣x2+2x+3;(2)解:令二次函数解析式中的y=0得:﹣x2+2x+3=0可化为:(x﹣3)(x+1)=0解得:x1=3,x2=﹣1由函数图象可知:当﹣1<x<3时,y>0;(3)解:由抛物线的表达式知,抛物线的对称轴为直线x=1当﹣1≤x≤2时,y在x=﹣1和顶点处取得最小和最大值当x=﹣1时,y=0当x=1时,y=﹣x2+2x+3=4故当﹣1≤x≤2时,求y的取值范围0≤y≤4.。

初中数学中考一轮复习专题5 二次函数重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题5 二次函数重点、考点知识、方法总结及真题练习

【答案】 【解析】解:(1)把 A(0,﹣1)代入 y1=a(x﹣2)2,得:﹣1=4a,即 a=﹣ ,
∴二次函数解析式为 y1=﹣ (x﹣2)2=﹣ a2+a﹣1;
设直线 AB 解析式为 y=kx+b,
把 A(0,﹣1),B(2,0)代入得:

解得:k= ,b=﹣1,
则直线 AB 解析式为 y= x﹣1;
选叏的五点为:顶点、不 y 轴的交点 0,c 、以及 0,c 关于对称轴对称的点 2h ,c 、 不 x 轴的交点 x1 ,0 , x2 ,0 (若不 x 轴没有交点,则叏两组关于对称轴对称的点).
画草图时应抓住以下几点:开口斱向,对称轴,顶点,不 x 轴的交点,不 y 轴的交点.
4. 二次函数 y ax2 bx c 的性质
正斱形的面积,∴y=﹣x2+36.
3.抛物线 y=x2﹣2x+3 的顶点坐标是

【答案】(1,2)
【解析】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,
∴抛物线 y=x2﹣2x+3 的顶点坐标是(1,2).
4.已知抛物线 y=﹣2(x+1)2﹣3,如果 y 随 x 的增大而减小,那么 x 的叏值范围
D. y=1﹣ x2
【解析】解:把每一个函数式整理为一般形式, A、y=(x﹣1)(x+2)=x2+x﹣2,是二次函数,故 A 丌符合题意; B、y= (x+1)2= x2+x+ ,是二次函数,故 B 丌符合题意;
C、y=2(x+3)2﹣2x2=12x+18,是一次函数,故 C 符合题意; D、y=1﹣ x2=﹣ x2+1,是二次函数,故 D 丌符合题意. 故选:C.

中考数学总复习之 二次函数综合

中考数学总复习之 二次函数综合

连接 BC,如图①,∵B(5,0),C0,-52,∴设直线 BC 的解
析式为 y=kx+b(k≠0),∴5bk=+-b2= 5,0,
解得k=21, b=-52,
∴直线 BC 的解析式为 y=21x-52,当 x=2 时,y=1-52=-23, ∴P2,-32.
(3)存在,如图②. ①当点 N 在 x 轴下方时,∵抛物线的对称轴为直线 x=2, C0,-52,∴N14,-52. ②当点 N 在 x 轴上方时,如图②,过点 N2 作 N2D⊥x 轴于点 D,
解:(1)已知抛物线 y=21x2-32x-9,当 x=0 时,y=-9,则 C(0,-9),当 y=0 时,12x2-32x-9=0,得 x1=-3,x2=6, 则 A(-3,0),B(6,0),∴AB=9,OC=9.
(2)∵ED∥BC,∴△AED∽△ABC,
∴SS△△AAEBDC=AABE2,即12×S9×9=m9 2,得 S=21m2(0<m<9).
2.如图,抛物线 y=12x2-32x-9 与 x 轴交于 A ,B 两点,与 y 轴交于点 C ,连接 B C ,A C .
(1)求 AB 和 OC 的长; (2)点 E 从点 A 出发,沿 x 轴向点 B 运动(点 E 与点 A,B 不重 合),过点 E 作直线 l 平行于 BC,交 AC 于点 D.设 AE 的长为 m,△ADE 的面积为 S,求 S 关于 m 的函数关系式,并写出自 变量 m 的取值范围; (3)在(2)的条件下,连接 CE,求△CDE 面积的最大值;此时, 求出以点 E 为圆心,与 BC 相切的圆的面积(结果保留 π).
在 △AN2D
与 △M2CO
∠N2AD=∠CM2O, 中 , A∠NA2N=2CDM=2∠,M2CO,

中考数学考点17二次函数综合题总复习(原卷版)

中考数学考点17二次函数综合题总复习(原卷版)

二次函数综合题【命题趋势】在中考中.二次函数综合题每年必考点.特别是跟几何结合.经常在压轴题中出现。

【中考考查重点】一、线段问题二、面积问题三、等腰、直角三角形问题四、特殊四边形问题五、相似三角形问题六、与角度有关问题考点一:线段问题1.(2021秋•龙沙区期末)如图.抛物线y=ax2+bx+c与x轴交于A(﹣1.0).B(3.0)两点.与y轴交于点C(0.3).抛物线的顶点为D.连接BC.P为线段BC上的一个动点(P 不与B、C重合).过点P作PF∥y轴.交抛物线于点F.交x轴于点G.(1)求抛物线的解析式;(2)当PG=2PF时.求点P的坐标;考点二:面积问题2.(2021秋•梅里斯区期末节选)如图.在平面直角坐标系中.已知直线y=x﹣2与x轴交于点A.与y轴交于点B.过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1.0).(1)求抛物线的解析式和顶点坐标;(2)探究:在抛物线上直线AB下方是否存在一点P.使△ABP面积最大?若存在.请求出点P的坐标.若不存在.请说明理由;考点三:等腰、直角三角形问题3.(2021秋•龙凤区校级期末)如图.已知抛物线y=ax2+bx﹣8的图象与x轴交于A(2.0)和B(﹣8.0).与y轴交于点C.(1)求该抛物线的解析式;(2)点F是直线BC下方抛物线上的一点.当△BCF的面积最大时.在抛物线的对称轴上找一点P.使得△BFP的周长最小.请求出点F的坐标和点P的坐标;(3)在(2)的条件下.是否存在这样的点Q(0.m).使得△BFQ为等腰三角形?如果有.请直接写出点Q的坐标;如果没有.请说明理由.4.(2021秋•黄埔区期末)如图.抛物线y=mx2﹣4mx﹣5m(m>0)与x轴交于A、B两点.与y轴交于C点.(1)求抛物线顶点M的坐标(用含m的代数式表示).A.B两点的坐标;(2)是否存在使△BCM为直角三角形的抛物线?若存在.请求出;若不存在.请说明理由.特考点四:特殊四边形问题5.(2021秋•龙江县期末节选)已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1.0).与y轴交于点C.连接AC.有一动点D在线段AC上运动.过点D作x轴的垂线.交抛物线于点E.交x轴于点F.AB=4.设点D的横坐标为m.(1)求抛物线的解析式;(2)当m=﹣2时.在平面内是否存在点Q.使以B.C.E.Q为顶点的四边形为平行四边形?若存在.请直接写出点Q的坐标;若不存在.请说明理由.6.(2021秋•江西月考)如图.抛物线y=﹣x2+3x+m与x轴的一个交点为A(4.0).另一交点为B.且与y轴交于点C.连接AC.(1)求m的值及该抛物线的对称轴;(2)若点P在直线AC上.点Q是平面内一点.是否存在点Q.使以点A、点B、点P、点Q为顶点的四边形为正方形?若存在.请直接写出Q点的坐标;若不存在.请说明理由.考点五:相似三角形问题7.(2021秋•建华区期末节选)抛物线y=x2+bx+c经过A、B(1.0)、C(0.﹣3)三点.点D为抛物线的顶点.连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在线段AC上找一点M.使△AOM∽△ABC.请你直接写出点M的坐标;考点六:与角度有关的问题8.(2021秋•郧西县期末)如图.抛物线y=ax2+bx﹣3与x轴交于点A(1.0)、B(3.0).与y轴交于点C.连接AC.BC.(1)求抛物线的函数解析式;(2)Q为抛物线上一点.若∠ACQ=45°.求点Q的坐标.3.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位.再向上平移4个单位后.得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A.B.与y轴交于点C.已知A(﹣3.0).点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1.点P在线段AC上方的抛物线H上运动(不与A.C重合).过点P作PD ⊥AB.垂足为D.PD交AC于点E.作PF⊥AC.垂足为F.求△PEF的面积的最大值;(3)如图2.点Q是抛物线H的对称轴l上的一个动点.在抛物线H上.是否存在点P.使得以点A.P.C.Q为顶点的四边形是平行四边形?若存在.求出所有符合条件的点P 的坐标;若不存在.说明理由.1.(2021秋•长兴县月考)如图.在平面直角坐标系xOy中.抛物线y=﹣x2+bx+c与x轴交于A(1.0)和B(3.0).点D为线段BC上一点.过点D作y轴的平行线交抛物线于点E.连结BE.(1)求抛物线的解析式;(2)当△BDE为直角三角形时.求线段DE的长度;(3)在抛物线上是否存在这样的点P.使得∠ACP=45°.若存在.求出点P的坐标;若不存在.请说明理由.2.(2021秋•新荣区月考)如图1.在平面直角坐标系中.二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1.0).B(4.0).与y轴交于C(0.4).(1)求该二次函数的解析式.(2)二次函数位于x轴上方的图象上是否存在点P.使得S△BOP=6S△AOC?如果存在.请求出点P的坐标;若不存在.请说明理由.(3)如图2.D为线段BC上的一个动点.过点D作DE∥y轴.交二次函数的图象于点E.求线段DE长度的最大值.1.(2021•内江)如图.抛物线y=ax2+bx+c与x轴交于A(﹣2.0)、B(6.0)两点.与y 轴交于点C.直线l与抛物线交于A、D两点.与y轴交于点E.点D的坐标为(4.3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方.连接P A、PD.求当△P AD面积最大时点P的坐标及该面积的最大值;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.2.(2021•西藏)在平面直角坐标系中.抛物线y=﹣x2+bx+c与x轴交于A.B两点.与y 轴交于点C.且点A的坐标为(﹣1.0).点C的坐标为(0.5).(1)求该抛物线的解析式;(2)如图(甲).若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时.求点P的坐标;(3)图(乙)中.若点M是抛物线上一点.点N是抛物线对称轴上一点.是否存在点M 使得以B.C.M.N为顶点的四边形是平行四边形?若存在.请求出点M的坐标;若不存在.请说明理由.3.(2021•湘潭)如图.一次函数y=x﹣图象与坐标轴交于点A、B.二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C.点P是对称轴上一动点.在抛物线上是否存在点Q.使得以B、C、P、Q为顶点的四边形是菱形?若存在.求出Q点坐标;若不存在.请说明理由.4.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1.0).点B(3.0).顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1.点P在抛物线上.连接CP并延长交x轴于点D.连接AC.若△DAC是以AC为底的等腰三角形.求点P的坐标;(3)如图2.在(2)的条件下.点E是线段AC上(与点A.C不重合)的动点.连接PE.作∠PEF=∠CAB.边EF交x轴于点F.设点F的横坐标为m.求m的取值范围.1.(2021•宝鸡模拟)如图.已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1.0)和B.与y 轴交于点C(0.3).(1)求此抛物线的解析式及点B的坐标;(2)设抛物线的顶点为D.连接CD、DB、CB、AC.①求证:△AOC∽△DCB;②在坐标轴上是否存在与原点O不重合的点P.使以P、A、C为顶点的三角形与△DCB相似?若存在.请直接写出点P的坐标;若不存在.请说明理由.2.(2021•中山市模拟)如图.抛物线y=﹣x﹣3与x轴交于A.B两点(点A在点B 的左侧).与y轴交于点C.直线l与抛物线交于A.D两点.与y轴交于点E.点D的坐标为(4.﹣3).(1)请直接写出A.B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点.点P的横坐标为m(m≥0).过点P作PM⊥x轴.垂足为M.PM与直线l交于点N.当点N是线段PM的三等分点时.求点P的坐标;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.3.(2020•长春模拟)如图.抛物线y=﹣x2+bx+c与x轴交于点A(1.0)、B(3.0)(点A 在点B的左边).与y轴交于点C.过点C作CD∥x轴.交抛物线于点D.过点D作DE ∥y轴.交直线BC于点E.点P在抛物线上.过点P作PQ∥y轴交直线CE于点Q.连接PB.设点P的横坐标为m.PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时.求d关于m的函数关系式;(4)当△PQB是等腰三角形时.直接写出m的值.4.(2021•黄冈二模)如图.抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1.0)和点B (2.0).与y轴交于点C.(1)求该抛物线的函数解析式;(2)如图1.连接BC.点D是直线BC上方抛物线上的点.连接OD、CD.OD交BC于点F.当S△COF:S△CDF=2:1时.求点D的坐标;(3)如图2.点E的坐标为(0.﹣1).在抛物线上是否存在点P.使∠OBP=2∠OBE?若存在.请直接写出符合条件的点P的坐标;若不存在.请说明理由.5.(2021•阳东区模拟)如图.已知抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1.0).与y 轴相交于点N(0.3).抛物线的顶点为D.经过点A的直线y=kx+1与抛物线y=﹣x2+bx+c相交于点C.(1)求抛物线的解析式;(2)若P是抛物线上位于直线AC上方的一个动点.设点P的横坐标为t.过点P作y 轴的平行线交AC于M.当t为何值时.线段PM的长最大.并求其最大值;(3)若抛物线的对称轴与直线AC相交于点B.E为直线AC上的任意一点.过点E作EF∥BD交抛物线于点F.以B.D.E.F为顶点的四边形能否为平行四边形?若能.请直接写出点E的坐标;若不能.请说明理由.。

天津市2017年中考数学一轮专题复习二次函数综合复习

天津市2017年中考数学一轮专题复习二次函数综合复习

二次函数综合复习一选择题:1.已知是y关于x的二次函数,那么m的值为( )A.-2 B. 2 C. D. 02.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是( )A.y=(x﹣1)2+2B.y=(x﹣1)2+3C.y=(x﹣2)2+2D.y=(x﹣2)2+43.已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.20104.二次函数y=(x﹣1)2+2的最小值为()A.1 B.-1 C.2 D.-25.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是( )B.A.C.D.6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为( )A.1或﹣5B.﹣1或5C.1或﹣3D.1或37.抛物线y=2x2﹣2x+1与坐标轴的交点个数是( )A.0B.1C.2D.38.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+3上的三点,则y1,y2,y3大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y29.二次函数y=ace+bx+c图像上部分点的坐标如下表所示则该函数的顶点坐标为( )A.(-3,-3)B.(-2.-2)C.(-1,-3)D.(0,-6〕10.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2 C.3 D.211.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大13.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=714.已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中正确的是()A.m﹣1的函数值小于0 B.m﹣1的函数值大于0C.m﹣1的函数值等于0 D.m﹣1的函数值与0的大小关系不确定15.已知函数的图像与x轴的交点坐标为且,则该函数的最小值是()A.2 B.-2 C.10 D.-1016.设二次函数y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y2+y1的图象与x轴仅有一个交点,则( )A. a(x1-x2)=dB. a(x2-x1)=dC. a(x1-x2)2=dD. a(x1+x2)2=d17.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③A.①②③ B.①③④ C.①②③⑤ D.①③⑤18.矩形ABCD的边BC在直线l上,AB=2,BC=4,P是AD边上一动点且不与点D重合,连结CP,过点P作∠APE=∠CPD,交直线l于点E,若PD的长为x,△PEC与矩形ABCD重合部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )19.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④<a<;⑤b>c.其中含所有正确结论的选项是()A.①③ B.①③④ C.②④⑤ D.①③④⑤20.如图,正方形ABCD中,AB=8cm,对角线AC、BD相交于点O,点E、F分别从B、C两点同时出发,以1cm/s的速度沿BC、CD运动,到点C、D时停止运动,设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )二填空题:21.抛物线y=x2+3x+2不经过第象限.22.将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n= .23.若函数y=mx2﹣2x+1的图象与x轴只有一个交点,则m= .24.如图是某地一座抛物线形拱桥,桥拱在竖起平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为 m.25.如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,-2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为__26.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.27.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=_______.28.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是_______.29.如图所示,已知二次函数y=ax2+bx+c的图象经过(﹣1,0)和(0,﹣1)两点,则化简代数式+=__________.30.如图,我们把抛物线y=-x(x-3)(0≤x≤3)记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于另一点A2;将C2绕点A2旋转180°得C3,交x 轴于另一点A3;……;如此进行下去,直至得C2016.①C1的对称轴方程是;②若点P(6047,m)在抛物线C2016上,则m = .三计算题:31.已知函数是关于的二次函数,求:(1)满足条件m的值。

中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件

中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件
【解析】二次函数中 a=-14,所以二次函数的开口向下,∵-2ba=2, ∴对称轴为 x=2,当 x=2 时,取得最大值,最大值为-3,所以 B 正 确.
1.将抛物线解析式写成 y=a(x-h)2+k 的形式,则顶点坐标为(h,k), 对称轴为直线 x=h,也可应用对称轴公式 x2.解题时尽可能画出草图.
【解析】如图所示:图象与x轴有两个交点,则b2-4ac>0,故①错 误;根据图象有a>0, b<0, c<0,∴abc>0,故②正确;当x=-1时 ,a-b+c>0,故③错误;二次函数y=ax2+bx+c的顶点坐标纵坐 标为-2,∵关于x的一元二次方程ax2+bx+c-m=0有两个不相等的 实数根,∴m>-2,故④正确.故选B.
二次函数是中考的重点内容: 1.直接考查二次函数的概念、图象和性质等. 2实际情境中构建二次函数模型,利用二次函数的性质来解释、解决实 际问题. 3在动态的几何图形中构建二次函数模型,常与方程、不等式、几何知 识等结合在一起综合考查. 4.体现数形结合思想、转化的思想、方程的思想.
1.(2016·衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x, y)对应值列表如下:
(2)∵将 x=0 代入 y=12x+32得 y=32,将 x=1 代入得 y=2,∴直线 y=12x +32经过点(0,32),(1,2).直线 y=12x+32的图象如图所示,由函数图象可 知:当 x<-1.5 或 x>1 时,一次函数的值小于二次函数的值 (3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为 P(-1, 1).平移后的表达式为 y=(x+1)2+1,即 y=x2+2x+2.点 P 在 y=12x+32的 函数图象上.理由:∵把 x=-1 代入得 y=1,∴点 P 的坐标符合直线的 解析式,∴点 P 在直线 y=12x+32的函数图象上

天津中考数学二次函数综合题汇编

天津中考数学二次函数综合题汇编
∴ M(﹣1, 13 ); 2
综上所述,点 M 的坐标为:∴ M(﹣1,3+ 11 )或(﹣1,3﹣ 11 )或(﹣1,﹣1)或 (﹣1, 13 ).
2
【点睛】
此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理 的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨 论思想的应用.
【答案】(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6),②存在,M(﹣1,3+ 11 )或(﹣
1,3﹣
11
)或(﹣1,﹣1)或(﹣1,
13 2
).
【解析】
【分析】
(1)先根据已知求点 A 的坐标,利用待定系数法求二次函数的解析式; (2)①先得 AB 的解析式为:y=-2x+2,根据 PD⊥x 轴,设 P(x,-x2-3x+4),则 E(x,-
03, x2y2
3
3 6

所以 M1(3 3 ,6);
②若 M 在 B 下方,设 MC 交 x 轴于点 E, 则∠ OEC=45°-15°=30°,
∴ OE=OC•tan60°=3 3 ,
设 EC 为 y=kx﹣3,代入(3 3 ,0)可得:k 3 , 3
联立两个方程可得:
y
物线 y=﹣x2+bx+c 经过 A、B 两点. (1)求抛物线的解析式; (2)点 P 是直线 AB 上方抛物线上的一点,过点 P 作 PD 垂直 x 轴于点 D,交线段 AB 于点
E,使 PE= 1 DE. 2
①求点 P 的坐标; ②在直线 PD 上是否存在点 M,使△ ABM 为直角三角形?若存在,求出符合条件的所有点 M 的坐标;若不存在,请说明理由.

中考数学压轴题专题复习——二次函数的综合

中考数学压轴题专题复习——二次函数的综合

一、二次函数真题与模拟题分类汇编(难题易错题)1.如图1,对称轴为直线x=1的抛物线y=1 2 x2+bx+c,与x轴交于A、B两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.(1)求点B 的坐标和抛物线的表达式;(2)当AE:EP=1:4 时,求点E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<α<90°),连接C ′D、C′B,求C ′B+23C′D 的最小值.【答案】(1)B(3,0);抛物线的表达式为:y=12x2-x-32;(2)E(1,6);(3)C′B+23C′D4103【解析】试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得AEAP=AGAF=EGPF=15,从而求出E的坐标;(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).如图,取点M(0,43),连接MC′、BM.则可求出OM,BM的长,得到△MOC′∽△C′OD.进而得到MC′=23C′D,由C′B+23C′D=C′B+MC′≥BF可得到结论.试题解析:解:(1)∵抛物线y=12x2+bx+c的对称轴为直线x=1,∴-122b=1,∴b=-1.∵抛物线过点A(-1,0),∴12-b+c=0,解得:c=-32,即:抛物线的表达式为:y=12x2-x-32.令y=0,则12x2-x-32=0,解得:x1=-1,x2=3,即B(3,0);(2)过点P作PF⊥x轴,垂足为F.∵EG∥PF,AE:EP=1:4,∴AEAP =AGAF=EGPF=15.又∵AG=2,∴AF=10,∴F(9,0).当x=9时,y=30,即P(9,30),PF=30,∴EG=6,∴E(1,6).(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,则D(0,3).∵原点O与点C关于该对称轴成轴对称,∴EG=6,∴C(2,0),∴OC′=OC=2.如图,取点M(0,43),连接MC′、BM.则OM=43,BM=2243()3+=97.∵423'23OMOC==,'23OCOD=,且∠DOC′=∠C′OD,∴△MOC′∽△C′OD.∴'2'3MCC D=,∴MC′=23C′D,∴C′B+23C′D=C′B+MC′≥BM=4103,∴C′B+23C′D的最小值为4103.点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.2.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣12x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)抛物线解析式为:y=211184x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣12);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO 最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得042101641a b a b --⎧⎨+-⎩==解得1814a b ⎧⎪⎪⎨⎪-⎪⎩== ∴抛物线解析式为:y=18x 2−14x−1 ∴抛物线对称轴为直线x=-141228ba -=-⨯=1 (2)存在使四边形ACPO 的周长最小,只需PC+PO 最小∴取点C (0,-1)关于直线x=1的对称点C′(2,-1),连C′O 与直线x=1的交点即为P 点.设过点C′、O 直线解析式为:y=kx∴k=-1 2∴y=-1 2 x则P点坐标为(1,-12)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,-12a-1)由△EDN∽△OAC ∴ED=2a∴点D坐标为(0,-52a−1)∵N为DM中点∴点M坐标为(2a,32a−1)把M代入y=18x2−14x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N 由(2)N(2,-1)∴N 点坐标为(4,-3)或(2,-1)点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.3.已知抛物线26y x x c =-++.(1)若该抛物线与x 轴有公共点,求c 的取值范围;(Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若MN =C 的值; (Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ∆≅∆,求c 的取值范围.【答案】(I )9c -;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是2174c -<< 【解析】 【分析】(1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可;(2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解; (3)由OPA OQB ∆≅∆可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解. 【详解】解:(I )∵抛物线26y x x c =-++与x 轴有交点,∴一元二次方程260x x c -++=有实根。

中考数学总复习《二次函数综合题》专项提升练习题(附答案)

中考数学总复习《二次函数综合题》专项提升练习题(附答案)

中考数学总复习《二次函数综合题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________类型一 线段问题1. 如图,抛物线y =14 x 2+bx +c 过点A (4,0),B (-4,4),与y 轴交于点C ,连接AB .(1)求抛物线的表达式;(2)若E 是线段AB 上的一个动点(不与点A ,B 重合),过点E 作y 轴的平行线,分别交抛物线,x 轴于F ,D 两点,若DE =2DF ,请求出点E 的坐标.第1题图2. 平面直角坐标系中已知抛物线y =ax 2+83 x +c (a ≠0)与x 轴交于点A (1,0)和点B ,与y轴交于点C (0,-4).(1)求这条抛物线的函数解析式;(2)P 是抛物线上一动点(不与点A ,B ,C 重合),作 PD ⊥x 轴,垂足为D ,连接PC . ①如图,若点P 在第三象限,且tan ∠CPD =2,求点P 的坐标;②直线PD 交直线BC 于点E ,当点E 关于直线PC 的对称点E ′落在y 轴上时,请直接写出四边形 PECE ′的周长.第2题图 备用图类型二 面积问题1. 如图,抛物线y =ax 2+bx +5(a ≠0)交x 轴于A (-1,0),B (5,0)两点,交y 轴于点C ,连接AC ,BC ,点G 为线段BC 上方的抛物线上一点,过点G 作GH ∥AC 交BC 于点H . (1)求抛物线的解析式;(2)连接AG ,AH ,BG ,设h =S △AGB -S △AHB ,点G 的横坐标为t ,求h 关于t 的函数解析式,并求出h 的最大值.第1题图2. 在平面直角坐标系中点O 是坐标原点,抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2. (1)求a ,b 的值;(2)已知点B ,C 在抛物线上,点B 的横坐标为t ,点C 的横坐标为t +1.过点B 作x 轴的垂线交直线OA 于点D ,过点C 作x 轴的垂线交直线OA 于点E . (ⅰ)当0<t <2时,求△OBD 与△ACE 的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B ,使得以B ,C ,D ,E 为顶点的四边形的面积为32 ?若存在,请求出点B 的横坐标t 的值;若不存在,请说明理由.类型三存在性问题典例精析例如图,在平面直角坐标系xOy中抛物线y=-x2+2x+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C,连接BC,点D为抛物线的顶点.(1)若点M为抛物线对称轴上一点,是否存在点M,使得△BCM为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;例题图①【思路点拨】判断等腰三角形存在性问题,一般要进行分类讨论.①BC为腰时:分别以点B,C为圆心,BC长为半径画圆,与直线x=1的交点即为所求作的点;②BC为底时:作线段BC的垂直平分线,与直线x=1的交点即为所求作的点.(2)在抛物线上是否存在一点N,使得△BCN是以BC为直角边的直角三角形?若存在,求出点N的坐标;若不存在,请说明理由;例题图②【思路点拨】判断直角三角形存在性问题,一般要进行分类讨论.①BC 为直角边时:分别过点B ,C 作BC 的垂线,与抛物线的交点即为所求作的N 点; ②BC 为斜边,点N 为直角顶点时:以BC 的中点为圆心,12 BC 的长为半径作圆,所作的圆与抛物线的交点即为所求作的N 点.(3)若点Q 为第一象限内抛物线上一点,过点Q 作QG ⊥x 轴,垂足为G ,连接AC ,OQ .是否存在点Q ,使得△QGO ∽△AOC ?若存在,求出点Q 的坐标;若不存在,请说明理由; 【思路点拨】判断相似三角形存在性问题,通常利用相似三角形的性质,列出线段比例关系,求解即可.例题图③(4)若点E 在抛物线上,点F 在x 轴上,是否存在点E ,使得以D ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标;若不存在,请说明理由; 【思路点拨】判断平行四边形存在性问题,一般要进行分类讨论. ①当DE ,FC 是平行四边形对角线时; ②当DF ,EC 是平行四边形对角线时; ③当DC ,EF 是平行四边形对角线时.再利用平行四边形对角线的性质结合中点坐标公式求点坐标即可.例题图④(5)若点H是x轴上一点,点K是平面任意一点,是否存在点H,使得以点A,C,H,K为顶点的四边形是矩形?若存在,求出点H的坐标;若不存在,请说明理由;【思路点拨】判断矩形存在性问题,一般要进行分类讨论.①当AC为矩形的边时,∠ACH=90°;②当AC为矩形的对角线时,∠AHC=90°.再利用勾股定理求解即可.例题图⑤(6)若点S是第一象限抛物线上一点,过点S作ST⊥BC于点T,连接AC,CS,是否存在点S使得△CST中有一个角与∠CAO相等,若存在,求出S点坐标;若不存在,请说明理由.【思路点拨】判断角度存在性问题,一般要进行分类讨论.①若∠SCT=∠CAO;②若∠CST=∠CAO.再构造直角三角形,利用三角函数求解即可.例题图⑥对接中考1. 如图,抛物线y=x2+bx+c过点A(-1,0),点B(5,0),交y轴于点C.(1)求b,c的值;(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.第1题图2. 如图,将一块自制的直角三角板放置在平面直角坐标系中顶点为坐标原点,A(0,-3),B(6,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O,抛物线L经过点A′,B′,B.(1)求抛物线L的解析式;(2)点Q为平面内一点,在直线AB上是否存在点P,使得以点A,B′,P,Q为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.第2题图拓展类型二次函数性质综合题1. 在二次函数y=x2-2tx+3(t>0)中(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值;(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.2. 已知抛物线y=ax2+bx+3(a,b均为常数,且a≠0)的对称轴为直线x=2.(1)求抛物线顶点M的坐标和b的值(用含a的代数式表示);(2)已知点A(x1,y1),B(x2,y2)都在此抛物线上,且x1<2<x2,x1+x2<4,若a>0,试比较y1与y2的大小,并说明理由;(3)若自变量x的值满足-1≤x≤1,与其对应的函数的最大值为18,请直接写出b的值.3. 在平面直角坐标系中抛物线y=ax2-4ax+c(a<0)与x轴交于A(1,0),B两点,与y轴交于点C.(1)若OC=2OB,求抛物线的解析式;(2)若抛物线的最大值为6,求a 的值;(3)若点P (x 0,m ),Q (52,n )在抛物线上,且m <n ,求x 0的取值范围.参考答案类型一 线段问题1. 解:(1)∵抛物线y =14 x 2+bx +c 过点A (4,0),B (-4,4)∴将A (4,0),B (-4,4)分别代入y =14x 2+bx +c 中得⎩⎪⎨⎪⎧4+4b +c =04-4b +c =4 解得⎩⎪⎨⎪⎧b =-12c =-2∴抛物线的表达式为y =14 x 2-12x -2;(2)由点A (4,0),B (-4,4)可得直线AB 的表达式为y =-12 x +2设点E (x ,-12 x +2),其中-4<x <4,则F (x ,14 x 2-12 x -2)∴DE =2-12 x ,DF =|14 x 2-12 x -2|分两种情况讨论:①当点F 在x 轴上方时,即2-12 x =2×(14 x 2-12 x -2)解得x 1=-3,x 2=4(舍去) 将x =-3代入y =-12 x +2中得y =72∴E (-3,72);②当点F 在x 轴下方时,即2-12 x =2×(-14 x 2+12 x +2)解得x 1=-1,x 2=4(舍去)将x =-1代入y =-12 x +2得y =52 ,∴E (-1,52);综上所述,当DE =2DF 时,点E 的坐标为(-3,72 )或(-1,52).2. 解:(1)∵抛物线y =ax 2+83 x +c (a ≠0)与x 轴交于点A (1,0),与y 轴交于点C (0,-4)∴⎩⎪⎨⎪⎧a +83+c =0c =-4 ,解得⎩⎪⎨⎪⎧a =43c =-4∴抛物线的函数解析式为y =43 x 2+83x -4;(2)①如解图①,过点C 作CE ⊥PD 于点E第2题解图①则∠PEC =∠CED =90° ∵C (0,-4) ∴OC =4∵PD ⊥x 轴,垂足为D ∴∠PDO =90°,∠DOC =90° ∴四边形DOCE 是矩形 ∴DE =OC =4 设P (x ,43 x 2+83 x -4)∴CE =-x∴PE =PD -DE =-(43 x 2+83 x -4)-4=-43 x 2-83 x∵tan ∠CPD =CEPE =2∴-x -43x 2-83x =2解得x 1=-138 ,x 2=0(不合题意,舍去)当x =-138 时,43 x 2+83 x -4=-7716∴P (-138 ,-7716);②四边形PECE ′的周长为353 或853.【解法提示】设P (m ,43 m 2+83 m -4),对于y =43 x 2+83 x -4,当y =0时,43 x 2+83 x -4=0,解得x 1=1,x 2=-3,∴B (-3,0),∴OB =3,在Rt △BOC 中由勾股定理得BC =OB 2+OC 2 =5.当点P 在第三象限时,如解图②,过点E 作EF ⊥y 轴于点F第2题解图②则四边形DEFO 是矩形,∴EF =DO =-m ,∵点E 与点E ′关于PC 对称,∴∠ECP =∠E ′CP ,CE =CE ′,PE =PE ′,∵PE ∥y 轴,∴∠EPC =∠PCE ′,∴∠EPC =∠ECP ,∴PE =CE ,∴PE =CE =CE ′=PE ′,∴四边形PECE ′是菱形,∵EF ∥OA ,∴△CEF ∽△CBO ,∴CE CB =EFBO,∴CE 5 =-m 3 ,∴CE =-53m ,设直线BC 的解析式为y =kx +b (k ≠0),把B (-3,0),C (0,-4)代入得,⎩⎪⎨⎪⎧-3k +b =0b =-4 ,解得⎩⎪⎨⎪⎧k =-43b =-4,∴直线BC 的解析式为y =-43 x -4,∴E (m ,-43 m -4),∴PE =-43 m 2-4m ,∵PE =CE ,∴-43 m 2-4m =-53 m ,解得m 1=-74 ,m 2=0(舍去),∴CE =-53 ×(-74 )=3512 ,∴四边形PECE ′的周长为4CE =4×3512 =353;当点P 在第二象限时,如解图③第2题解图③同理可得43 m 2+4m =-53 m ,解得m 1=-174 ,m 2=0(舍去),∴CE =-53 ×(-174 )=8512 ,∴四边形PECE ′的周长为4CE =4×8512 =853 ;综上所述,四边形PECE ′的周长为353 或853.类型二 面积问题1. 解:(1)∵抛物线y =ax 2+bx +5(a ≠0)交x 轴于A (-1,0),B (5,0)两点∴⎩⎪⎨⎪⎧a -b +5=025a +5b +5=0 ,解得⎩⎪⎨⎪⎧a =-1b =4 ∴抛物线的解析式为y =-x 2+4x +5;(2)如解图,过点G 作GD ∥y 轴交BC 于点D ,连接CG ∵当x =0时,y =-x 2+4x +5=5 ∴C (0,5) ∵GH ∥AC ∴S △AGH =S △CGH∴h =S △AGB -S △AHB =S △AGH +S △BGH =S △CGH +S △BGH =S △BGC . 设直线BC 的解析式为y =kx +b 1(k ≠0) 将B (5,0),C (0,5)代入y =kx +b 1中∴⎩⎪⎨⎪⎧5k +b 1=0b 1=5 ,解得⎩⎪⎨⎪⎧k =-1b 1=5 ∴直线BC 的解析式为y =-x +5∵点G 的横坐标为t (0<t <5),∴G (t ,-t 2+4t +5),D (t ,-t +5) ∴GD =-t 2+4t +5-(-t +5)=-t 2+5t ∴h =S △BGC =S △CGD +S △BGD =12 GD ·t +12 GD ·(5-t ) =-52 (t -52 )2+1258∵-52<0,0<t <5∴当t =52 时,h 取最大值,最大值为1258.第1题解图2. 解:(1)由题意得⎩⎪⎨⎪⎧-b 2a =2,9a +3b =3,解得⎩⎪⎨⎪⎧a =-1,b =4;(2)(i)如解图①,延长BD 与x 轴交于点M ,延长CE 与x 轴交于点N ,过点A 作AF ⊥CE 于点F ,连接OB ,AC第2题解图①由(1)知抛物线的解析式为y =-x 2+4x ,易知直线OA 的解析式为y =x ∵点B ,C 在抛物线上,点B 横坐标为t ,点C 的横坐标为t +1 ∴B (t ,-t 2+4t ),C (t +1,-(t +1)2+4(t +1)),D (t ,t ),E (t +1,t +1) ∴OM =t ,BD =-t 2+3t ,CE =-(t +1)2+3(t +1),AF =-t +2 ∵0<t <2 ∴1<t +1<3∴S △OBD +S △ACE =12 OM ·BD +12 CE ·AF =12 t ·(-t 2+3t )+12 [-(t +1)2+3(t +1)]·(-t +2)=2;(ii)存在.如解图②,当点B 在点D 上方,即2<t <3时,过点D 作DQ ⊥EC 于点Q ,连接BE ,CD第2题解图②∵BD ∥EC∴四边形DBEC 为梯形此时,BD =-t 2+3t ,CE =-(t +1)2+3(t +1) ∵DQ =1∴S 四边形DBEC =12 (BD +EC )·DQ =12 [-t 2+3t -(t +1)2+3(t +1)]·1=t -1当S 四边形DBEC =32 时,可得t -1=32 ,解得t =52;当点D 在点B 上方,即t >3时,如解图③,过点D 作DQ ⊥EC 于点Q ,连接BC第2题解图③此时BD =t 2-3t ,CE =(t +1)2-3(t +1)∴S 四边形DBCE =12 (BD +EC )·DQ =12 [t 2-3t +(t +1)2-3(t -1)]·1=t 2-2t -1令t 2-2t -1=32 ,解得t 1=142 +1<3,t 2=-142 +1<3,均舍去;综上所述,t 的值为52.类型三 存在性问题典例精析例 解:(1)存在 设点M (1,m )由题意得BC =32 ,BM =4+m 2 ,CM =1+(m -3)2①当BC 为腰时 a .若BC =BM ,如解图①例题解图①即32=4+m2解得m=±14则M1(1,14),M2(1,-14);b.若BC=CM,如解图②即32=1+(m-3)2,解得m=3±17,则M3(1,3+17),M4(1,3-17);②当BC为底边时,则CM=BM,如解图②,即1+(m-3)2=4+m2解得m=1,则M5(1,1);∴综上所述,满足条件的点M的坐标为(1,14)或(1,-14)或(1,3+17)或(1,3-17)或(1,1);例题解图②(2)存在设点N(x,-x2+2x+3).①当点C为直角顶点时,如解图③,则∠N1CB=90°,过点N1作N1H⊥y轴于点H∵△BOC是等腰直角三角形∴∠BCO=45°∴∠N1CH=180°-90°-45°=45°∴△N1CH是等腰直角三角形∴N1H=HC,即x=-x2+2x+3-3解得x1=0(舍去),x2=1∴N1(1,4);例题解图③②当点B 为直角顶点时,如解图③,则∠CBN 2=90°,过点N 2作N 2G ⊥y 轴,过点B 作BG ⊥x 轴交N 2G 于点G∴同理可得∠BN 2G =45°,△BN 2G 是等腰直角三角形 ∴N 2G =BG ,即3-x =-(-x 2+2x +3) 解得x 1=-2,x 2=3(舍去) ∴N 2(-2,-5).综上所述,满足条件的点N 的坐标为 (1,4)或(-2,-5); (3)存在∵点Q 在第一象限内抛物线上 ∴设Q (m ,-m 2+2m +3),0<m <3 ∵QG ⊥x 轴∴G (m ,0),OG =m ,QG =-m 2+2m +3 ∵△AOC ∽△QGO ∴AO QG =CO OG ,即1-m 2+2m +3 =3m解得m 1=5+1336 或m 2=5-1336 (舍去)此时点Q 的坐标为(5+1336 ,5+13318 );(4)存在设E (m ,-m 2+2m +3),F (n ,0),易得抛物线顶点D 的坐标为(1,4),点C 的坐标为(0,3)①如解图④,当DE ,FC 是平行四边形对角线时 ∵平行四边形对角线互相平分 ∴DE ,FC 的中点重合∴⎩⎪⎨⎪⎧1+m =n +04-m 2+2m +3=0+3 解得m =1+5 或m =1-5∴E 1(1+5 ,-1)或E 2(1-5 ,-1);例题解图④②如解图⑤,当DF ,EC 是平行四边形对角线时,同理DF ,EC 的中点重合∴⎩⎪⎨⎪⎧1+n =m +04+0=-m 2+2m +3+3 解得m =1+3 或m =1-3 ∴E 3(1+3 ,1)或E 4(1-3 ,1);例题解图⑤③当DC ,EF 是平行四边形对角线时,DC ,EF 的中点重合∴⎩⎪⎨⎪⎧1+0=m +n 4+3=-m 2+2m +3+0方程组无实数解.综上所述,满足条件的点E 的坐标为(1+5 ,-1)或(1-5 ,-1)或(1+3 ,1)或(1-3 ,1); (5)存在如解图⑥,由题意知,A (-1,0),C (0,3),设点H 的坐标为(p ,0) ∴AH 2=(p +1)2,CH 2=p 2+32,AC 2=12+32=10 当AC 为矩形的边时,∠ACH =90° ∴AH 2=CH 2+AC 2即(p +1)2=p 2+32+10,解得p =9 ∴点H 的坐标为(9,0);当AC 为矩形的对角线时,∠AHC =90° ∴此时点H 与原点重合,点H 的坐标为(0,0). 综上所述,满足条件的点H 的坐标为(9,0)或(0,0);例题解图⑥(6)存在如解图⑦,过点S 作SZ ⊥x 轴于点Z ,交BC 于点X ∵A (-1,0),B (3,0),C (0,3)∴OA =1,OC =OB =3,易得直线BC 的函数解析式为y =-x +3 ∴∠OBC =∠OCB =45° ∵SZ ⊥x 轴∴∠BXZ =∠SXT =45° ∵ST ⊥BC ∴XT =ST设S (m ,-m 2+2m +3),且0<m <3,则X (m ,-m +3) ∴CX =m 2+(-m +3-3)2 =2 m ,SX =-m 2+3m ∴ST =TX =22 SX =-22 m 2+322m ∴CT =CX -TX =2 m -(-22 m 2+322 m )=22 m 2-22m ①若∠SCT =∠CAO∴tan ∠SCT =tan ∠CAO =OCOA =3∵tan ∠SCT =STCT =3∴ST =3CT ∴-22 m 2+322 m =3×(22 m 2-22m )解得m =32 或m =0(舍去)∴点S 的坐标为(32 ,154 );②若∠CST =∠CAO 则tan ∠CST =tan ∠CAO =3 ∵tan ∠CST =CTST =3∴3ST =CT ∴3×(-22 m 2+322 m )=22 m 2-22m 解得m =52 或m =0(舍去)∴点S 的坐标为(52 ,74);综上所述,存在点S ,使得△CST 中有一个角与∠CAO 相等,点S 的坐标为(32 ,154 )或(52 ,74).例题解图⑦对接中考1. 解:(1)由题意可知,抛物线y =x 2+bx +c 过点A (-1,0),点B (5,0)∴⎩⎪⎨⎪⎧1-b +c =025+5b +c =0 ,解得⎩⎪⎨⎪⎧b =-4c =-5; (2)①如解图,过点P 作y 轴的平行线交BC 于点D ∴S △PBC =S △CPD +S △PDB由(1)可知,c =-5,故点C 的坐标为(0,-5) 易知BC 的表达式为y =x -5∵点P 的坐标为(x 0,y 0)(0<x 0<5),点P 在抛物线上 ∴y 0=x 20 -4x 0-5设点D 的坐标为(x 0,x 0-5)∴|PD |=x 0-5-x 20 +4x 0+5=-x 20 +5x 0∴S △PBC =12 ×|PD |×5=12 ×(-x 20 +5x 0)×5 =-52 (x 0-52 )2+1258∴当x 0=52 时,△PBC 面积最大,最大值为1258;第1题解图②存在.由题意可知,∠EPF =90°,△PEF 为等腰直角三角形 ∴PE =PF∵PE ⊥x 轴,PF ∥x 轴,且点E 在线段BC 上,点F 在抛物线上 由(2)可知PE =-x 20 +5x 0 易知PF =|4-2x 0|∴|PF |=|PE |,即|4-2x 0|=|-x 20 +5x 0|解得x 0=4或x 0=7-332 或x 0=-1(舍去)或x 0=7+332 (舍去)当x 0=4时,解得y =-5当x 0=7-332 时,解得y 0=3-3332∴综上所述,当△PEF 为等腰直角三角形时,点P 的坐标为(4,-5)或(7-332 ,3-332 ).2. 解:(1)由题意得A ′(-3,0),B ′(0,-6),B (6,0)已知抛物线L 经过点A ′,B ′,B ,设抛物线L 的解析式为y =a (x +3)(x -6)(a ≠0) 将点B ′(0,-6)代入抛物线解析式中得-6=a (0+3)(0-6),解得a =13∴抛物线L 的解析式为y =13 (x +3)(x -6)=13 x 2-x -6;(2)存在.∵A (0,-3),B ′(0,-6) ∴AB ′=3设直线AB 的解析式为y =kx +b (k ≠0) 将A (0,-3),B (6,0)代入直线AB 的解析式得⎩⎪⎨⎪⎧b =-36k +b =0 ,解得⎩⎪⎨⎪⎧b =-3k =12∴直线AB 的解析式为y =12 x -3∵点P 在直线AB 上∴设点P (m ,12m -3),分情况讨论:①当以AB ′为边且AP 2=AB ′2时,即m 2+(12 m )2=9解得m 1=655 ,m 2=-655∴点P 的坐标为(655 ,355 -3)或(-655 ,-355 -3);②当以AB ′为边且B ′P 2=AB ′2时,即m 2+(12 m +3)2=9解得m 1=0(舍去),m 2=-125∴P (-125 ,-215 );③当以AB ′为对角线时 ∵AB ′=3∴AB ′的中点坐标为(0,-92 )由菱形的性质可得y P =-92即12 m -3=-92 ,解得m =-3 ∴P (-3,-92);综上所述,点P 的坐标为(655 ,355 -3)或(-655 ,-355 -3)或(-125 ,-215 )或(-3,-92). 拓展类型 二次函数性质综合题1. 解:(1)把点(2,1)代入y =x 2-2tx +3中 得4-4t +3=1解得t =32; (2)∵抛物线对称轴为直线x =t①若0<t ≤3∵a =1>0∴当x =t 时,函数y 取得最小值∵y 的最小值为-2∴t 2-2t 2+3=-2解得t =±5 .∵0<t ≤3∴t =5 ;②若t >3,∵a =1>0∴当0≤x ≤3时,y 随x 的增大而减小∴当x =3时,函数y 取得最小值∵y 的最小值为-2∴9-6t +3=-2解得t =73(不符合题意,舍去). 综上所述,t 的值为5 ;(3)∵A (m -2,a ),C (m ,a )关于对称轴直线x =t 对称∴m -2+m 2=t ,即m -1=t ,且点A 在对称轴左侧,点C 在对称轴右侧. 在y =x 2-2tx +3中令x =0,则y =3∴抛物线与y 轴交点为(0,3)∴此交点关于对称轴直线x =t 的对称点为(2m -2,3).∵a <3,b <3且t >0∴4<2m -2,解得m >3.当点A ,B 都在对称轴左边时∵a <b∴4<m -2,解得m >6∴m >6;当点A ,B 分别在对称轴两侧时∴B 到对称轴的距离大于A 到对称轴的距离∴4-(m -1)>m -1-(m -2),解得m <4∴3<m <4.综上所述,m 的取值范围为3<m <4或m >6.2. 解:(1)由题意得,-b 2a=2 解得b =-4a∴4ac -b 24a =12a -(-4a )24a=3-4a ∴抛物线顶点M 的坐标为(2,3-4a );(2)y 2<y 1,理由如下:由题可知,抛物线的对称轴为直线x =2∴A (x 1,y 1)关于直线x =2的对称点为(4-x 1,y 1)∵x 1<2<x 2,x 1+x 2<4∴2<x 2<4-x 1∵a >0∴抛物线开口向上∴在对称轴右侧y 随x 的增大而增大∴y 2<y 1;(3)b 的值为-12或20.【解法提示】由(1)知,b =-4a ,∴抛物线的解析式为y =ax 2-4ax +3,当a >0时,抛物线开口向上,此时在对称轴左侧,y 随x 的增大而减小,∴当x =-1时,函数值y 最大,最大值为a +4a +3,∴a +4a +3=18,解得a =3,∴b =-4a =-12;当a <0时,抛物线开口向下,此时在对称轴左侧,y 随x 的增大而增大,∴当x =1时,函数值y 最大,最大值为a -4a +3,∴a -4a +3=18,解得a =-5,∴b =-4a =20.综上所述,b 的值为-12或20.3. 解:(1)∵抛物线的对称轴为直线x =--4a 2a=2,抛物线与x 轴的交点为A (1,0),B ∴B (3,0)∴OB =3.∵OC =2OB∴OC =6.∴抛物线开口向下∴C (0,-6).把A (1,0),C (0,-6)代入y =ax 2-4ax +c 中得⎩⎪⎨⎪⎧a -4a +c =0,c =-6, 解得⎩⎪⎨⎪⎧a =-2,c =-6, ∴抛物线的解析式为y =-2x 2+8x -6;(2)由解析式可知抛物线的最大值为4ac -(-4a )24a =4ac -16a 24a=c -4a . ∵抛物线的最大值为6∴c -4a =6.∵抛物线过点A (1,0)∴a -4a +c =0,即c -4a =-a∴-a =6,即a =-6;(3)已知抛物线的对称轴为直线x =2,a <0∴(52 ,n )与(32,n )关于对称轴对称 当点P 在对称轴的左侧(含顶点)时,y 随x 的增大而增大,由m <n ,得x 0<32; 当点P 在对称轴的右侧时,y 随x 的增大而减小,由m <n ,得x 0>52. 综上所述,x 0的取值范围为x 0<32 或x 0>52.。

九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案

九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案

中考数学专题复习:二次函数综合题(特殊三角形问题)1.如图,已知抛物线经过点A (-1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到111A O C △,点A 、O 、C 的对应点分别是点1A 、1O 、1C 、若111A O C △的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点1A 的横坐标.2.如图,已知A (﹣2,0)、B (3,0),抛物线y =ax 2+bx +4经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一动点,点P 的横坐标为m .过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN ⊥BC ,垂足为点N .(1)直接写出抛物线的函数关系式 ;(2)请用含m 的代数式表示线段PN 的长 ;(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得⊥BCO +2⊥PCN =90°?若存在,请求出m 的值;若不存在,请说明理由;(4)连接AQ ,若△ACQ 为等腰三角形,请直接写出m 的值 .3.如图,抛物线2y ax bx =+过()4,0A ,()1,3B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH x ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)求ABC 的面积;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,当CMN △为等腰直角三角形时,点N 的坐标为______.4.如图,已知二次函数的图象经过点()3,3A 、()4,0B 和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为(),0D m ,并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当0m >时,探索是否存在点P ,使得PCO △为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得⊥ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得⊥P AB 为直角三角形,请求出点P 的坐标.6.如图,在平面直角坐标系xOy 中,抛物线26y ax bx =++与x 轴交于点()2,0A -和点()6,0B ,与y 轴交于点C ,顶点为D ,连接BC 交抛物线的对称轴l 于点E .(1)求抛物线的表达式;(2)连接CD 、BD ,点P 是射线DE 上的一点,如果PDB CDB S S =△△,求点P 的坐标;(3)点M 是线段BE 上的一点,点N 是对称轴l 右侧抛物线上的一点,如果EMN 是以EM 为腰的等腰直角三角形,求点M 的坐标.7.已知抛物线经过A (-1,0)、B (0、3)、 C (3,0)三点,O 为坐标原点,抛物线交正方形OBDC 的边BD 于点E ,点M 为射线BD 上一动点,连接OM ,交BC 于点F(1)求抛物线的表达式;(2)求证:⊥BOF =⊥BDF :(3)是否存在点M 使⊥MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长8.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式;(2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.9.已知二次函数214y x bx c =-++图像的对称轴与x 轴交于点A (1,0),图像与y 轴交于点B (0,3),C 、D 为该二次函数图像上的两个动点(点C 在点D 的左侧),且90CAD ∠=.(1)求该二次函数的表达式;(2)若点C 与点B 重合,求tan⊥CDA 的值;(3)点C 是否存在其他的位置,使得tan⊥CDA 的值与(2)中所求的值相等?若存在,请求出点C 的坐标;若不存在,请说明理由.10.如图1,抛物线y =-x 2+bx +c 交x 轴于A ,B 两点,交y 轴于C 点,D 是抛物线上的动点,已知A 的坐标为(-3,0),C 的坐标为(0,3).(1)求该抛物线的函数表达式以及B 点的坐标;(2)在第二象限内是否存在点D 使得⊥ACD 是直角三角形且⊥ADC=90°,若存在请求出D 点的坐标,若不存在请说明理由;(3)如图2,连接AC ,BC ,当⊥ACD=⊥BCO ,求D 点的坐标.11.如图,在平面直角坐标系中,抛物线C 1:y =ax 2+bx ﹣1经过点A (﹣1,﹣2)和点B (﹣2,1),抛物线C 2:y =3x 2+3x +1,动直线x =t 与抛物线C 1交于点N ,与抛物线C 2交于点M .(1)求抛物线C 1的表达式;(2)求线段MN 的长(用含t 的代数式表达);(3)当⊥BMN 是以MN 为直角边的等腰直角三角形时,求t 的值.12.如图,二次函数23y ax bx =++的图象经过点A (-1,0),B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)第一象限内的二次函数23y ax bx =++图象上有一动点P ,x 轴正半轴上有一点D ,且OD =2,当S △PCD =3时,求出点P 的坐标;(3)若点M 在第一象限内二次函数图象上,是否存在以CD 为直角边的Rt MCD ,若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线23y ax bx =+-与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A ,D 两点,与y 轴交于点E ,点D 的坐标为()4,3-.(1)求抛物线的解析式;(2)若点P 是抛物线上的点,点P 的横坐标为()0m m ≥,过点P 作PM x ⊥轴,垂足为M .PM 与直线l 交于点N ,当点N 是线段PM 的三等分点时,求点P 的坐标;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.14.如图,抛物线23y ax bx =+-与x 轴交于()30A -,,()1,0B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)若点E 是线段AC 上一动点,过点E 的直线EF 平行于y 轴并交抛物线于点F ,当线段EF 取得最大值时,在x 轴上是否存在这样的点P ,使得以点E 、B 、P 为顶点的三角形是以EB 为腰的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.15.如图,抛物线2y x bx c =-++与x 轴相交于A ,B 两点(点A 位于点B 的左侧),与y 轴相交于点C ,M 是抛物线的顶点,直线1x =是抛物线的对称轴,且点C 的坐标为(0,3).(1)求抛物线的解析式;(2)已知P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若,PD m PCD =△的面积为S .⊥求S 与m 之间的函数关系式,并写出自变量m 的取值范围;⊥当S 取得最大值时,求点P 的坐标.(3)在(2)的条件下,在线段MB 上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出满足条件的点P 的坐标;如果不存在,请说明理由.16.如图,在平面直角坐标系中,已知抛物线y =ax 2+4x +c 与直线AB 相交于点A (0,1)和点B (3,4).(1)求该抛物线的解析式;(2)设C 为直线AB 上方的抛物线上一点,连接AC ,BC ,以AC ,BC 为邻边作平行四边形ACBP ,求四边形ACBP 面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点D ,是否存在点E 使得△ADE 是以AD 为腰的等腰直角三角形?若存在,直接写出....点E 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.18.如图,已知抛物线212y x bx c =++经过点B (4,0)和点C (0,-2),与x 轴的另一个交点为点A ,其对称轴l 与x 轴交于点E ,过点C 且平行x 轴的直线交抛物线于点D ,连接AD .(1)求该抛物线的解析式;(2)判断⊥ABD 的形状,并说明理由;(3)P 为线段AD 上一点,连接PE ,若△APE 是直角三角形,求点P 的坐标;(4)抛物线的对称轴上是否存在一点P ,使△APD 是直角三角形,若存在,求出P 点坐标;若不存在,请说明理由.19.如图,抛物线22y ax x c =-+与x 轴相交于A ,B 两点,与y 轴相交于点C ,点A 在点B 的左侧,()1,0A -,()0,3C -,点E 是抛物线的顶点,P 是抛物线对称轴上的点.(1)求抛物线的函数表达式;(2)当点P 关于直线BC 的对称点Q 落在抛物线上时,求点Q 的横坐标;(3)若点D 是抛物线上的动点,是否存在以点B ,C ,P ,D 为顶点的四边形是平行四边形.若存在,直接写出点D 的坐标__________;若不存在,请说明理由;(4)直线CE 交x 轴于点F ,若点G 是线段EF 上的一个动点,是否存在以点O ,F ,G 为顶点的三角形与ABC 相似,若存在,请直接写出点G 的坐标__________;若不存在,请说明理由.20.如图1,抛物线23y ax bx =++与x 轴交于点()3,0A 、()1,0B -,与y 轴交于点C ,点P 为x 轴上方抛物线上的动点,点F 为y 轴上的动点,连接PA ,PF ,AF .(1)求该抛物线所对应的函数解析式;(2)如图1,当点F 的坐标为()0,4-,求出此时AFP 面积的最大值;(3)如图2,是否存在点F ,使得AFP 是以AP 为腰的等腰直角三角形?若存在,求出所有点F 的坐标;若不存在,请说明理由.参考答案:1.(1)213222y x x =-++ (2)存在,Q (3,2)或Q (-1,0)(3)两个“和谐点”,1A 的横坐标是1或122.(1)222433y x x =-++ (2)22655PN m m =-+ (3)存在,741253.(1)24y x x =-+(2)3(3)(2,0)或(﹣4,0)或(﹣2,0)或(4,0).4.(1)y =-x 2+4x (2)94(3)存在,点P 的坐标为(3+或(3-或(5,-5)或(4,0)5.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(12--+,,(12--, 6.(1)21262y x x =-++ (2)()2,2(3)()4,2或(27.(1)2y x 2x 3=-++(2)见解析(3)存在,2或28.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)()3,4-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭9.(1)211342y x x =-++(2)1(3)()2,1-,()32,(12--10.(1)y =-x 2-2x +3,B (1,0)(2)存在,D (-2,3) (3)D (-52,74)或(-4,-5)11.(1)y =2x 2+3x ﹣1(2)t 2+2(3)t =012.(1)2+23y x x =-+(2)P 1(32,154),P 2(2,3)(3)存在点M 其坐标为1M 43539(,)或2M13.(1)y =14x 2−x −3 (2)(3,−154)或(0,−3) (3)(0,−133)或(0,9)14.(1)223y x x =+-(2)()4,-0,或10⎛⎫ ⎪ ⎪⎝⎭,或10⎛⎫ ⎪ ⎪⎝⎭15.(1)2y x 2x 3=-++ (2)⊥213(04)42S m m m =-+<≤;⊥S 有最大值为94,此时3,32P ⎛⎫ ⎪⎝⎭(3)存在,(6-+-或(42-+16.(1)241y x x =-++ (2)274(3)存在,E (4,3)或(-2,5)或(-3,2)或(3,0).17.(2)()11,-(3)()14-,或()25-,或⎝⎭或⎝⎭18.(1)213222y x x =-- (2)直角三角形,见解析(3)(1,-1)或(32,-54)(4)存在,( 32,-1+2 ),( 32,-1- 2,( 32,5),( 32,-5) 19.(1)223y x x =-- (2)11(3)存在,()2,3-或()4,5或()2,5-(4)存在,39,44⎛⎫-- ⎪⎝⎭或()1,2--20.(1)2y x 2x 3=-++ (2)323(3)存在,12(0,3),(0,1)F F --,32)F。

中考数学—二次函数的综合压轴题专题复习及详细答案

中考数学—二次函数的综合压轴题专题复习及详细答案

中考数学—二次函数的综合压轴题专题复习及详细答案一、二次函数1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).【解析】试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC V V 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可;(3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,∵直线BC 经过B (4,0),C (0,3), 设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩解得:343k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +,∵PE ⊥x 轴,PE ∥OC , ∴∠BDE=∠BCO , ∵∠BDE=∠PDF , ∴∠PDF=∠BCO , ∵∠PFD=∠BOC=90°, ∴△PFD ∽△BOC ,∴=PED PDBOC BCV V 的周长的周长,由(1)得:OC=3,OB=4,BC=5, 故△BOC 的周长=12,∴2334125m mL -+=,即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD , ∴∠PCQ=∠CPD , ∴∠PCD=∠CPD , ∴CD=PD , ∴CD=DP=PQ=QC , ∴四边形CDPQ 是菱形, 过D 作DG ⊥y 轴于点G , 设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|,∵PD=CD , ∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【解析】 【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值. 【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,Q 函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=,y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+.Q 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<Q ,∴当90x <时,w 随x 的增大而增大, 80x ∴=时,w 有最大值, 当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.3.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m . (1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s 时,足球离地面最高,最大高度是4.5m ;(2)能. 【解析】试题分析:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=16x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是. 【解析】 【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.5.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围.【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)Q 点(),A a b 是直线2y x =-上的一点,∴2b a =-.Q 2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ .∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<.综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论6.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2=0有两个实数根. (1)求k 的取值范围; (2)设x 1,x 2是方程两根,且121111x x k +=-,求k 的值. 【答案】(1)k ≥﹣14;(2)k【解析】 【分析】(1)根据方程有两个实数根可以得到△≥0,从而求得k 的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k 的值即可. 【详解】解:(1)△=(2k +1)2﹣4k 2=4k 2+4k +1﹣4k 2=4k +1 ∵△≥0 ∴4k +1≥0 ∴k ≥﹣14; (2)∵x 1,x 2是方程两根, ∴x 1+x 2=2k +1 x 1x 2=k 2,又∵121111x x k +=-, ∴121211x x x x k +=⋅-, 即22111k k k +=+ ,解得:12k k ==又∵k ≥﹣14, 即:k【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于b a -,两根之积等于ca”是解题的关键.7.已知抛物线2(5)6y x m x m =-+-+-. (1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或 【解析】 【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论. 【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥ ∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x =即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.8.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)如图1,设抛物线顶点为M,且M的坐标是(12,92),对称轴交AB于点N.①求抛物线的解析式;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).【解析】【分析】(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=a21922x⎛⎫-+⎪⎝⎭,把点B的坐标代入求得a的值即可;②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,根据该等量关系列出方程﹣2m2+4m=32,通过解方程求得m的值,易得点N、P的坐标,然后推知PN=MN是否成立即可;(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.【详解】解:①如图1,∵顶点M的坐标是19,22⎛⎫ ⎪⎝⎭,∴设抛物线解析式为y=21922a x⎛⎫-+⎪⎝⎭(a≠0).∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).又∵点B在该抛物线上,∴21922a⎛⎫-+⎪⎝⎭=4,解得a=﹣2.故该抛物线的解析式为:y=219222x⎛⎫--+⎪⎝⎭=﹣2x2+2x+4;②不存在.理由如下:∵抛物线y=219222x⎛⎫--+⎪⎝⎭的对称轴是直线x=12,且该直线与直线AB交于点N,∴点N的坐标是1,32⎛⎫ ⎪⎝⎭.∴93322MN=-=.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.∵PD∥MN.当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=32.解得 m1=12(舍去),m2=32.此时P(32,1).∵PN∴PN≠MN,∴平行四边形MNPD不是菱形.∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=12OB•OA=12×4×2=4.则当S△ABD取最大值时,S四边形BOAD最大.S△ABD=12(y D﹣y P)(x A﹣x B)=y D﹣y P=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n=﹣2(n﹣1)2+2.当n=1时,S△ABD取得最大值2,S四边形BOAD有最大值.此时点D的坐标是(1,4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。

天津市南开区2017年九年级《二次函数》单元试题含答案

天津市南开区2017年九年级《二次函数》单元试题含答案

单元测试题二次函数一、选择题:1. 下列函数中是二次函数的是( )A.y=3x-1 B .y=3x2-1 C .y=(x +1)2-1 C .y=(x +1)2-x 2 D .y=x3+2x-32. 已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是()A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数3. 在平面直角坐标系中,将抛物线y=x2-4 先向右平移 2 个单位,再向上平移 2 个单位,得到的抛物线解析式为( )A.y=(x +2) 2+2B.y=(x-2) 2-2C.y=(x-2) 2+2D.y=(x +2) 2-24. 已知一个直角三角形两直角边的和为10,设其中一条直角边为x,则直角三角形的面积y 与x 之间的函数关系式是( )A.y=-0.5x 2+5xB.y=-x 2+10xC.y =0.5x 2+5xD.y=x 2+10x5. 对于y=ax2+bx+c,有以下四种说法,其中正确的是( )A. 当b=0 时,二次函数是y=ax 2+cB. 当c=0 时,二次函数是y=ax 2+bxC. 当a=0 时,一次函数是y=bx+cD. 以上说法都不对6. 把抛物线y=﹣0.5x 2 先向左平移 1 个单位,再向下平移 2 个单位长度后,所得的函数表达式为()A.y=﹣0.5 (x+1)2+2B .y=﹣0.5 (x+1)2+2 B .y=﹣0.5 (x+1)2﹣2C.y=﹣0.5 (x﹣1)2+2 D .y=﹣0.5 (x﹣1)2﹣27. 不论m为何实数,抛物线y=x 2﹣mx+m﹣2()A. 在x 轴上方B. 与x 轴只有一个交点C. 与x 轴有两个交点D.在x 轴下方8. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()2 B .63 m2 C .64 m2 D .66 mA.60 m29. 某商品现在的售价为每件60 元,每星期可卖出300 件. 市场调查反映, 如果调整商品售价, 每降价 1 元,每星期可多卖出20 件. 设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60B.y= (60﹣x)C.y=300 (60﹣20x)D.y= (60﹣x)10. 在平面直角坐标系中,抛物线y=x 2-1 与x 轴的交点的个数是( )A.3B.2C.1D.011. 已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为 d中:①d没有最大值;②d没有最小值;③-1<x<3 时,d 随x的增大而增大;④满足d=5 的点P有四个. 其中正确结论的个数有( )A .1 个B .2 个C .3 个D .4 个12. 如图为二次函数y=ax 2+bx+c(a≠0)的图象,与x 轴交点坐标为(-1,0) 和(3,0), 对称轴是x=1,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④当﹣1<x<3 时,y>0其中正确的个数为( )A.1B.2C.3D.4二、填空题:13. 如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x=1,若其与x 轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0 的解集是.14. 抛物线y=-4x 2+8x-3 的开口方向向,对称轴是,最高点的坐标是,函数值得最大值是。

天津市第一中学中考数学二次函数和几何综合专题

天津市第一中学中考数学二次函数和几何综合专题

天津市第一中学中考数学二次函数和几何综合专题一、二次函数压轴题1.定义:若抛物线的顶点和与x轴的两个交点所组成的三角形为等边三角形时.则称此抛物线为正抛物线.概念理解:(1)如图,在△ABC中,∠BAC=90°,点D是BC的中点.试证明:以点A为顶点,且与x轴交于D、C两点的抛物线是正抛物线;问题探究:(2)已知一条抛物线经过x轴的两点E、F(E在F的左边),E(1,0)且EF=2若此条抛物线为正抛物线,求这条抛物线的解析式;应用拓展:(3)将抛物线y1=﹣x2+23x+9向下平移9个单位后得新的抛物线y2.抛物线y2的顶点为P,与x轴的两个交点分别为M、N(M在N左侧),把△PMN沿x轴正半轴无滑动翻滚,当边PN与x轴重合时记为第1次翻滚,当边PM与x轴重合时记为第2次翻滚,依此类推…,请求出当第2019次翻滚后抛物线y2的顶点P的对应点坐标.2.某数学兴趣小组在探究函数y=x2﹣2|x|+3的图象和性质时,经历了以下探究过程:(1)列表(完成下列表格).x…﹣3﹣2﹣1﹣1212123…y…632236…(2)描点并在图中画出函数的大致图象;(3)根据函数图象,完成以下问题:①观察函数y=x2﹣2|x|+3的图象,以下说法正确的有(填写正确的序号)A.对称轴是直线x=1;B.函数y=x2﹣2|x|+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2);C.当﹣1<x<1时,y随x的增大而增大;D.当函数y=x2﹣2|x|+3的图象向下平移3个单位时,图象与x轴有三个公共点;E.函数y=(x﹣2)2﹣2|x﹣2|+3的图象,可以看作是函数y=x2﹣2|x|+3的图象向右平移2个单位得到.②结合图象探究发现,当m满足时,方程x2﹣2|x|+3=m有四个解.③设函数y=x2﹣2|x|+3的图象与其对称轴相交于P点,当直线y=n和函数y=x2﹣2|x|+3图象只有两个交点时,且这两个交点与点P所构成的三角形是等腰直角三角形,求n的值.3.问题发现:如图1,在△ABC中,∠C=90°,分别以AC,BC为边向外侧作正方形ACDE 和正方形BCFG.(1)△ABC和△DCF面积的关系是______________;(请在横线上填写“相等”或“不等”)(2)拓展探究:若∠C≠90°,(1)中的结论还成立吗?若成立,请结合图2给出证明;若不成立,请说明理由;(3)解决问题:如图3,在四边形ABCD中,AC⊥BD,且AC与BD的和为10,分别以四边形ABCD的四条边为边向外侧作正方形ABFE、正方形BCHG、正方形CDJI,正方形DALK,运用(2)的结论,图中阴影部分的面积和是否有最大值?如果有,请求出最大值,如果没有,请说明理由.图1图2图34.基本模型如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.(1)模型拓展:如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB 上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;(3)拓展提升:如图4,在平面直角坐标系柳中,抛物线y=﹣(x+4)(x﹣6)与x轴交于点A,C,与y轴交于点B,抛物线的对称轴交线段BC于点E,探求线段AB上是否存在点F,使得∠EFO=∠BAO?若存在,求出BF的长;若不存在,请说明理由.5.小明在学习函数的过程中遇到这样一个函数:y =[x ],若x ≥0时,[x ]=x 2﹣1;若x <0时,x =﹣x +1.小明根据学习函数的经验,对该函数进行了探究. (1)下列关于该函数图像的性质正确的是 ;(填序号) ①y 随x 的增大而增大; ②该函数图像关于y 轴对称; ③当x =0时,函数有最小值为﹣1; ④该函数图像不经过第三象限.(2)①在平面直角坐标系xOy 中画出该函数图像;②若关于x 的方程2x +c =[x ]有两个互不相等的实数根,请结合函数图像,直接写出c 的取值范围是 ;(3)若点(a ,b )在函数y =x ﹣3图像上,且﹣12<[a ]≤2,则b 的取值范围是 .6.综合与探究如图1,已知抛物线2142y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y轴交于点C ,作直线BC ,点C 关于x 轴的对称点是点C '.(1)求点C '的坐标和直线BC 的表达式;(2)如图2,点M 在抛物线的对称轴上,N 为平面内一点,依次连接BM ,C M ',C N ',NB ,当四边形BMC N '是菱形时,求点M 坐标;(3)如图3,点P 是抛物线第一象限内一动点,过P 作x 轴的平行线分别交直线BC 和y 轴于点Q 和点E ,连接PC '交直线BC 于点D ,连接QC ',PB ,设点P 的横坐标为m ,△QC D '的面积为1S ,△PBD 的面积为2S ,求12S S -的最大值.7.某班“数学兴趣小组”对函数22y x x =-的图象和性质进行了探究,探究过程如下.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下:x… -352--2 -1 0 1 252 3 …y (3)54m-1 0 -1 0 543 …其中,m =______.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象的另一部分. (3)进一步探究函数图象发现:①方程220x x -=有______个实数根;②关于x 的方程22x x a -=有4个实数根时,a 的取值范围是______.8.在平面直角坐标系xOy 中(如图).已知点()1,2A -,点()1,6B ,点()1,4C .如果抛物线()230y ax bx a =++≠恰好经过这三个点之中的两个点.(1)试推断抛物线23y ax bx =++经过点A 、B 、C 之中的哪两个点?简述理由; (2)求常数a 与b 的值:(3)将抛物线23y ax bx =++先沿与y 轴平行的方向向下平移2个单位长度,再与沿x 轴平行的方向向右平移0t t 个单位长度,如果所得到的新抛物线经过点()1,4C .设这个新抛物线的顶点是D .试探究ABD △的形状.9.如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C . (1)求该抛物线的解析式;(2)如图1,若点D 是抛物线上第一象限内的一动点,设点D 的横坐标为m ,连接CD ,BD ,BC ,AC ,当△BCD 的面积等于△AOC 面积的2倍时,求m 的值;(3)如图2,若点N 为抛物线对称轴上一点,探究抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.10.已知抛物线()2n n n y x a b =--+(n 为正整数,且120n a a a ≤<<<)与x 轴的交点为(0,0)A 和()1,0,2n n nn A c c c -=+.当1n =时,第1条抛物线()2111=--+y x a b 与x 轴的交点为(0,0)A 和1(2,0)A ,其他以此类推.(1)求11,a b 的值及抛物 线2y 的解析式.(2)抛物线n y 的顶点n B 的坐标为(_______,_______);以此类推,第(1)n +条抛物线1n y +的顶点1n B +的坐标为(______,_______);所有抛物线的顶点坐标(,)x y 满足的函数关系式是_________. (3)探究以下结论:①是否存在抛物线n y ,使得△n n AA B 为等腰直角三角形?若存在,请求出抛物线n y 的解析式;若不存在,请说明理由.②若直线(0)=>x m m 与抛物线n y 分别交于点12,,,n C C C ,则线段12231,,,n n C C C C C C -的长有何规律?请用含有m 的代数式表示.二、中考几何压轴题11.综合与实践——探究特殊三角形中的相关问题 问题情境:某校学习小组在探究学习过程中,将两块完全相同的且含60︒角的直角三角板ABC 和AFE 按如图1所示位置放置,且Rt ABC 的较短直角边AB 为2,现将Rt AEF 绕A 点按逆时针方向旋转α(090)α︒<<︒,如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)初步探究:勤思小组的同学提出:当旋转角α= 时,AMC 是等腰三角形; (2)深入探究:敏学小组的同学提出在旋转过程中,如果连接AP ,CE ,那么AP 所在的直线是线段CE 的垂直平分线.请帮他们证明; (3)再探究:在旋转过程中,当旋转角30α=︒时,求ABC 与AFE △重叠的面积; (4)拓展延伸:在旋转过程中,CPN 是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.12.如图1,已知ABC EBD △≌△,90ACB EDB ∠=∠=︒,点D 在AB 上,连接CD 并延长交AE 于点F ,(1)猜想:线段AF 与EF 的数量关系为_____;(2)探究:若将图1的EBD △绕点B 顺时针方向旋转,当CBE ∠小于180︒时,得到图2,连接CD 并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E 作EG CB ⊥,垂足为点G .当ABC ∠的大小发生变化,其它条件不变时,若EBG BAE ∠=∠,6BC =,直接写出AB 的长.13.某数学学习小组在复习线段垂直平分线性质时,提出了以下几个问题,请你帮他们解决: [数学理解](1)点P 是线段AB 垂直平分线上的一点,则:PA PB 的值为 ; [拓展延伸](2)在平面直角坐标系xOy 中,点()6,0C , 点Q 在x 轴上,且:O 1:2QO C =, 则点Q 的坐标为 .(3)经小组探究发现,如图,延长线段DE 到点F ,使13EF DE =,以点F 为因心,2EF 长为半径作园,则对于OF 上任一点T ,都有2TD TE =,请你证明这个结论:[问题解决](4)如图,某人乘船以25千米/时的速度沿一笔直的河l 从码头G 到码头M ,再立即坐车沿一笔直公路以75千米/时的速度回到住处H ,已知乘船和坐车所用的时间相等请在河l 边上确定码头M 的位置.(请画出示意图并简要说明理由)14.在ABC 与CDE △中,90ACB DCE ∠=∠=︒且CAB CDE θ∠=∠=︒,点D 始终在线段AB 上(不与A 、B 重合).(1)问题发现:如图1,若45θ=度,DBE ∠的度数______,BEAD=______; (2)类比探究:如图2,若30θ=度,试求DBE ∠的度数和BEAD的值; (3)拓展应用:在(2)的条件下,M 为DE 的中点,当23AC =时,BM 的最小值为多少?直接写出答案. 15.(阅读理解)定义:如果四边形的某条对角线平分一组对角,那么把这条对角线叫“协和线”,该四边形叫做“协和四边形”. (深入探究)(1)如图1,在四边形ABCD 中,AB BC =,AD CD =,请说明:四边形ABCD 是“协和四边形”. (尝试应用)(2)如图2,四边形ABCD 是“协和四边形”,BD 为“协和线”,AB AD ⊥,60ADC ∠=︒,若点E 、F 分别为边AD 、DC 的中点,连接BE ,BF ,EF .求: ①DEF 与BEF 的面积的比; ②EBF ∠的正弦值. (拓展应用)(3)如图3,在菱形ABCD 中,8AB =,120BAD ∠=︒,点E 、F 分别在边AD 和BC 上,点G 、K 分别在边AB 和CD 上,点N 为BE 与GF 的交点,点M 在EF 上,连接MN ,若四边形BGEF ,DHMK 都是“协和四边形”,“协和线”分别是GF 、HK ,求MN的最小值.16.将抛物线y =ax 2的图像(如图1)绕原点顺时针旋转90度后可得新的抛物线图像(如图2),记为C :y 2=1ax .(概念与理解)将抛物线y1=4x2和y2=x2按上述方法操作后可得新的抛物线图像,记为:C1:_____________;C2:____________.(猜想与证明)在平面直角坐标系中,点M(x,0)在x轴正半轴上,过点M作平行于y轴的直线,分别交抛物线C1于点A、B,交抛物线C2于点C、D,如图3所示.(1)填空:当x=1时,ABCD=______;当x=2时,ABCD=_______;(2)猜想:对任意x(x>0)上述结论是否仍然成立?若成立,请证明你的猜想;若不成立,请说明理由.(探究与应用)①利用上面的结论,可得△AOB与△COD面积比为;②若△AOB和△COD中有一个是直角三角形时,求△COD与△AOB面积之差;(联想与拓展)若抛物线C3:y2=mx、C4:y2=nx(0<m<n),M(k,0)在x轴正半轴上,如图所示,过点M作平行于y轴的直线,分别交抛物线C3于点A、B,交抛物线C4于点C、D.过点A 作x轴的平行线交抛物线C4于点E,过点D作x轴的平行线交抛物线C3于点F.对于x轴上任取一点P,均有△PAE与△PDF面积的比值1:3,请直接写出m和n之间满足的等量关系是______.17.点E是矩形ABCD边AB延长线上的一动点,在矩形ABCD外作Rt△ECF,其中∠ECF=90°,过点F作FG⊥BC,交BC的延长线于点G,连接DF,交CG于点H.(1)发现:如图1,若AB=AD,CE=CF,猜想线段DH与HF的数量关系是;(2)探究:如图2,若AB=nAD,CF=nCE,则(1)中的猜想是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)拓展:在(2)的基础上,若射线FC 过AD 的三等分点,AD =3,AB =4,则直接写出线段EF 的长.18.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起. (1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ; (2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.19.已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B 重合,连接AN 、CM ,E 是AN 的中点,连接BE .(观察猜想)(1)CM 与BE 的数量关系是________;CM 与BE 的位置关系是________; (探究证明)(2)如图2所示,把三角板BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM 与BE 的关系是否仍然成立,并说明理由; (拓展延伸)(3)若旋转角45α=,且2NBE ABE ∠=∠,求BCBN的值. 20.如图1,在Rt ABC 中,90ACB ∠=︒,点P 在斜边AB 上,点D 、E 、F 分别是线段PA 、PB 、PC 的中点,易知DEF 是直角三角形.现把DEF 以点P 为中心,顺时针旋转α,其中0360α︒<<︒.连接AD 、BE 、CF .(1)操作发现如图2,若点P 是AB 的中点,连接PF ,可以发现=AD CF ______CFBE=______; (2)类比探究如图3,Rt ABC 中,CP AB ⊥于点P ,请判断AD CF 与CFBE的大小,结合图2说明理由; (3)拓展提高在(2)的条件下,如果30CAB ∠=︒,且4AB =,在DEF 旋转的过程中,当以点C 、D 、F 、P 四点为顶点的四边形与以点B 、E 、F 、P 四点为顶点的四边形都是平行四边形时,直接写出线段AD 、CF 、BE 的长.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题 1.A解析:(1)详见解析;(2)y =23(2)3x --y 23(2)3x -3)当第2019次翻滚后抛物线y 2的顶点P 的对应点坐标为(33). 【分析】(1)由Rt △ABC 中AD 是斜边BC 的中线可得AD =CD ,由抛物线对称性可得AD =AC ,即证得△ACD 是等边三角形.(2)设抛物线顶点为G ,根据正抛物线定义得△EFG 是等边三角形,又易求E 、F 坐标,即能求G 点坐标.由于不确定点G 纵坐标的正负号,故需分类讨论,再利用顶点式求抛物线解析式.(3)根据题意求出抛物线y 2的解析式,并按题意求出P 、M 、N 的坐标,得到等边△PMN ,所以当△PMN 翻滚时,每3次为一个周期,点P 回到x 轴上方,且横坐标每多一个周期即加n 能被3n(2n +12019能被3整除,代入即能求此时点P 坐标. 【详解】解:(1)证明:∠BAC =90°,点D 是BC 的中点 ∴AD =BD =CD =12BC∵抛物线以A 为顶点与x 轴交于D 、C 两点 ∴AD =AC ∴AD =AC =CD ∴△ACD 是等边三角形∴以A 为顶点与x 轴交于D 、C 两点的抛物线是正抛物线. (2)∵E (1,0)且EF =2,点F 在x 轴上且E 在F 的左边 ∴F (3,0)∵一条经过x 轴的两点E 、F 的抛物线为正抛物线,设顶点为G ∴△EFG 是等边三角形∴x G =E FG x x 2,2y +==①当G (2y =a (x ﹣2)2把点E (1,0)代入得:a 0 ∴a∴y x ﹣2)2②当G (2y =a (x ﹣2)2把点E (1,0)代入得:a 0 ∴a∴y x ﹣2)2综上所述,这条抛物线的解析式为y x ﹣2)2y x ﹣2)2(3)∵抛物线y 1=﹣x 2+9=﹣(x 2+12 ∴y1向下平移9个单位后得抛物线y 2=﹣(x 2+3 ∴P 3),M (0,0),N (0)∴PM =MN =PN =∴△PMN 是等边三角形∴第一次翻滚顶点P 的坐标变为P1(0),第二次翻滚得P 2与P 1相同,第三次翻滚得P 3(3)即每翻滚3次为一个周期,当翻滚次数n能被3整除时,点P纵坐标为3,横坐标为:3 +n×23=(2n+1)3∵2019÷3=673∴(2×2019+1)×3=40393∴当第2019次翻滚后抛物线y2的顶点P的对应点坐标为(40393,3).【点睛】本题考查了新定义的理解、性质运用,二次函数的图象与性质,直角三角形和等边三角形的性质.第(3)题的解题关键是发现等边△PMN每3次翻滚看作一个周期,点P对应点坐标的特征,是规律探索的典型题.2.B解析:(1)详见解析;(2)详见解析;(3)①B、D、E;②2<m<3;③n=2或6.【分析】(1)把x=﹣12,0,12分别代入函数表达式即可求解;(2)描点确定函数图象;(3)①结合图象,根据二次函数的性质依次判断各项即可求解;②根据二次函数的图象即可解答;③如图,当直线y=n处于直线m或m′的位置时,由此即可求解.【详解】(1)把x=﹣12,0,12分别代入函数表达式得:y=94,3,94;故答案为94,3,94;(2)描点确定函数图象如下:(3)①A.对称轴是直线x=0,故错误;B.函数y=x2﹣2|x|+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2),故正确;C.当﹣1<x<1时,函数在y轴右侧,y随x的增大而增大,故错误;D.当函数y=x2﹣2|x|+3的图象向下平移3个单位时,图象与x轴有三个公共点,正确;E.函数y=(x﹣2)2﹣2|x﹣2|+3的图象,可以看作是函数y=x2﹣2|x|+3的图象向右平移2个单位得到,正确;故答案为:B、D、E;②从图象看,2<m<3时,方程x2﹣2|x|+3=m有四个解;③如图,当直线y=n处于直线m或m′的位置时,点P和图象上的点构成等腰直角三角形,即n=2或6.【点睛】本题考查了二次函数的图象和性质,正确的识别图象,利用数形结合思想是解决问题的关键.3.B解析:(1)相等;(2)成立,理由见解析;(3)阴影部分的面积和有最大值,最大值为25【解析】解:(1)相等;(2)成立;理由如下:如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.∴∠APC=∠DQC=90°.∵四边形ACDE、四边形BCFG均为正方形,∴AC =CD ,BC =CF ,∠ACP +∠PCD =90°,∠DCQ +∠PCD =90°, ∴∠ACP =∠DCQ .={=APC DQC APC DQC ACP DCQAC DC在和中,∴∆∆∠∠∠∠=∴△APC ≌△DQC (AAS ), ∴AP =DQ .又∵S △ABC =BC •AP ,S △DFC =FC •DQ , ∴S △ABC =S △DFC .(3)图中阴影部分的面积和有最大值 理由:由(2)的结论可知: ,,,,KDJADC FBG ABC AEL ABD CHIBDC SSSS SS SS=====++++++=2.KDJFBGAELCHIADCABCABDBDCABCD S SS SSSSSSS ∴=阴影四边形设AC=m,则BD=10-m, ∵AC ⊥BD. ∴()22111125=105=522222ABCD S AC BD m m m m m 四边形()⋅=⋅-=-+--+. ∴25.2ABCD S 四边形有最大值,最大值为∴阴影部分的面积和有最大值,最大值为254.F解析:(1)证明详见解析;(2)y=﹣x 2+x (0≤x≤8),当x=4时,y 最大=2;(3)存在一点F ,使得∠EFO=∠BAO ;或.【解析】试题分析:(1)利用已知得出∠E=∠CFB ,进而利用相似三角形的判定方法得出即可; (2)利用(1)得出△AFE ∽△BCF ,则,进而求出y 与x 的函数关系式及y 的最大值;(3)首选求出A ,C 点坐标,再得到△CEH ∽△CBO ,求出BE 的长,再利用△AFO ∽△BEF ,求出BF 的长.试题解析:(1)证明:如图2,∵∠A=∠EFC , ∴∠E+∠EFA=∠EFA+∠CFB , ∴∠E=∠CFB , ∵∠A=∠B , ∴△AFE ∽△BCF ;(2)解:如图3,∵AB 是⊙O 的直径, ∴∠ACB=90°,∴AB==8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴,即,∴y=﹣x2+x(0≤x≤8),当x=4时,y最大=2;(3)解:如图4,存在一点F,使得∠EFO=∠BAO,理由:连接EF,FO,抛物线y=﹣(x+4)(x﹣6),对称轴为x==1,把x=0代入y=﹣(x+4)(x﹣6),得y=8,∴B(0,8),即OB=8把y=0代入y=﹣(x+4)(x﹣6)得x1=﹣4,x2=6,∴A(﹣4,0),C(6,0),∴OC=6,OA=4,AC=10,∴BC===10,∴AB===4,∵EH∥BO,∴△CEH∽△CBO,∴,即,解得:BE=,∵BC=AC=10,∴∠CAB=∠CBA∴∠CAB=∠CBA=∠EFO,由(1)可得△AFO∽△BEF,∴,设BF=x ,则, 化简得:x 2﹣4x+=0, 解得:x 1=,x 2=,∴当BF=或时,∠EFO=∠BAO .考点:二次函数综合题.5.(1)③④;(2)①见解析;②1c >或21c -<-;(3)43b -<-或2333b <-【分析】(1)画出图象,根据函数的性质即可判断. (2)①根据题意列表、描点、连线即可.②将2x c +看成是一次函数2y x c =+,此函数与y 轴的交点是c ,因此要与[]x 图像有两个交点,则需要分情况讨论.当1c >时,满足两个交点的要求;当11c -<≤时,与图像没有两个交点;当1c -≥时,可以有两个交点,此种情况要代入221x c x +=-,根据根的判别式求出c 的范围即可.(3)因为1[]22a -<≤,所以根据分段函数的图像,求解取值在12-到2之间的自变量的范围,分情况讨论即可.再根据点(,)a b 在函数3y x =-图象上,则3b a =-,即3a b =+,代入到a 的取值范围中求解即可. 【详解】解:(1)画出图象,根据图象可知, ①当0x 时,y 随x 的增大而增大,故错误; ②该函数图象关于y 轴不对称,故错误; ③当0x =时,函数有最小值为1-,正确; ④该函数图象不经过第三象限,正确; 故答案为:③④.(2)①在平面直角坐标系xOy 中画出该函数图象,②关于x 的方程2[]x c x +=有两个互不相等的实数根,∴可以看成是[]y x =和2y x c =+有两个交点. 2y x c =+是一次函数,与y 轴的交点为c ,∴当1c >时,满足两个交点的条件.若将2y x c =+向下平移与图像有两个交点,则1c -.∴方程为221x c x +=-,即22(1)0x x c --+=. ∴△44(1)0c =++>, 2c ∴>-,21c ∴-<-.故答案为:1c >或21c -<-. (3)1[]22a -<,∴当0a <时,1[]2a <,112a <-+,解出10a -<. 当0a 时,1[]22a -<,21122a -<-23a .10a ∴-<23a <.点(,)a b 在函数3y x =-图象上,3b a ∴=-,3a b ∴=+,43b ∴-<-2333b <-.故答案为:43b -<-2333b -<-.【点睛】此题考查的是分段函数,用数形结合的思想是解此题的关键.6.A解析:(1)(0,4)C '-,y =-x +4;(2)M (1,-1);(3)12S S -的最大值是4. 【分析】(1)先求得点A ,B ,C 的坐标,即可求得C '的坐标,再用待定系数法求得直线BC 的表达式;(2)过M 作MH ⊥y 轴于点H ,连接OM . 证明△OMB ≌△O MC ',即可得∠MOB =C OM ∠'.再求得∠MOB =C OM ∠'=45°;由此求得OH MH =. 再求得抛物线的对称轴,即可求得点M 的坐标;(3)过B 作BI ⊥PQ 于I .易求122S S QP -=,再求得PQ 的最大值,即可求得12S S -的最大值. 【详解】(1)∵抛物线与x 轴相交于点A ,B ,当y =0时,21402x x -++=,解,得122,4x x =-=;∴B (4,0)∵抛物线与x 轴相交于点C , ∴当x =0时,y =4, ∴C (0,4),(0,4)C -'∴.设BC 的表达式为y =kx +b ,将B ,C 两点坐标分别代入得404k b b +=⎧⎨=⎩,解,得14k b =-⎧⎨=⎩.直线BC 的表达式为y =-x +4 ;(2)过M 作MH ⊥y 轴于点H ,连接OM .∵四边形BMC N '是菱形, ∴BM =MC ',∵B (4,0),C (0,4), ∴OB =OC , ∵OM=OM , ∴△OMB ≌△O MC ', ∴∠MOB =C OM ∠'.∵∠BO C '=90°,∴∠MOB =C OM ∠'=45°;∵MH ⊥y ,OH MH ∴=.∵抛物线的对称轴为直线11122x =-=⎛⎫⨯- ⎪⎝⎭, 1OH MH ∴==. ∴M (1,-1).(3)过B 作BI ⊥PQ 于I .∵PQ //x 轴,∴∠IEO =90°90IEO EOB BIE ∠∠∠===,∴四边形EOBI 是矩形.BI OE ∴=.12ΔΔΔΔΔΔ1)11(2222QDC QD QPD QD QPC QPB P P S S S S S S S S QP C E QP BI QP C O QP ''∴-=-=''++-=⋅-⋅=⋅= ,∵点P 在抛物线上,且点P 的横坐标为m ,∴点P 的纵坐标为2142m m -++. ∵PQ //x 轴,∴点Q 的纵坐标为2142m m -++,将其代入y =-x +4, ∴点Q 的横坐标为212m m -. ∵点P 是抛物线第一象限内,∴点P 在点Q 右侧,2221112(2)2222PQ m m m m m m ⎛⎫∴=--=-+=--+ ⎪⎝⎭. 102-<, ∴当m =2时,PQ 的最大值是2,∴12S S -的最大值是4. 【点睛】本题是二次函数的综合题,解决第(3)题时构建二次函数模型是解决问题的关键. 7.(1)0;(2)图见解析;(3)①3;②10a -<<【分析】(1)那x =-2代入解析式,即可求得m 的值;(2)利用描点法画函数图象即可;(3)①观察图象找出图象与x 轴的交点个数即可求解;②观察图象,找出图象与平行于x 轴直线的交点个数为4个时对应y 的取值范围即可.【详解】(1)x =-2时,m =(-2)2-22⨯- =0;故答案为:0;(2)如图所示(3)①观察图象,可知22y x x =-与x 轴有三个交点,所以22||=0x x -有三个根,分别是2-、0、2;即答案为3;②∵关于x 的方程22||x x a -=有四个根,∴函数22y x x =-的图象与y =a 有四个交点,由函数图象知:a 的取值范围是10a -<<.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,其中观察函数图像的能力是解答本题的关键.8.A解析:(1)点A 、B 在抛物线上,理由见解析;(2)1a =,2b =;(3)等腰直角三角形【分析】(1)BC y ∥轴,故B 、C 中只有一个点在抛物线上,算出AC 的解析式,交y 轴于点()0,3,抛物线与y 轴也交于点()0,3,故C 不符要求,由此解答即可;(2)把A 、B 点的坐标代入解析式,由此解答即可;(3)由平移可得新的解析式,代入()1,4得出D 点的坐标,再判断三角形的形状.【详解】(1)∵BC y ∥轴,故B 、C 中只有一个点在抛物线上,∵:3AC y x =+,交y 轴于点()0,3.且抛物线与y 轴也交于点()0,3,故C 不符要求.∴点A 、B 在抛物线上(2)代入A 、B 到23y ax bx =++.1a =,2b =∴223y x x =++(3)()212y x =++()()210y x t t =+-> ∴()1,0D t -代入()1,4到()21y x t =+-,10t =(舍),24t =,∴()3,0D ∴5AD =210BD =25AB =∴AD AB =,222AD AB BD +=,∴90BAD ∠=︒.∴ABD △是等腰直角三角形【点睛】本题考查了与待定系数法求二次函数解析式及判断点是否在图像上,平移变换勾股定理等知识,求解析式是解题的关键.9.A解析:(1)224233y x x =-++;(2)1或2;(3)存在,点M 的坐标为()2,2或102,3⎛⎫-- ⎪⎝⎭或104,3⎛⎫- ⎪⎝⎭ 【分析】(1)把点A 、B 的坐标代入二次函数解析式进行求解即可;(2)过点D 作y 轴平行线交BC 于点E ,由题意易得C 点坐标是(0,2),然后可得直线BC 的解析式,然后可表示点E 坐标,进而可根据铅垂法进行表示△BCD 的面积,最后问题可进行求解;(3)设点M 的坐标为:(x ,y ),点N (1,s ),点B (3,0)、C (0,2),根据题意易得当以B ,C ,M ,N 为顶点的四边形是平行四边形,可分①当BC 是平行四边形的边时,②当BC 为对角线时,然后根据平行四边形的性质及中点坐标公式可求解.【详解】解:(1)把A (﹣1,0),B (3,0)代入y =ax 2+bx +2中,得:209320a b a b -+=⎧⎨++=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为224233y x x =-++; (2)过点D 作y 轴平行线交BC 于点E ,把x =0代入224233y x x =-++中,得:y =2,∴C 点坐标是(0,2),又∵B (3,0),∴直线BC 的解析式为y =23-x +2, ∵点D (m ,224233m m -++),∴E (m ,23-m +2),∴DE =(224233m m -++)﹣(23-m +2)=23-m 2+2m , 由S △BCD =2S △AOC 得:12×DE ×OB =2×12×OA ×OC ,∴12(23-m 2+2m )×3=2×12×1×2, 整理得:m 2﹣3m +2=0解得:m 1=1,m 2=2∵0<m <3∴m 的值为1或2;(3)存在,理由:设点M 的坐标为:(x ,y ),y =224233x x -++,则有点N (1,s ),点B (3,0)、C (0,2),①当BC 是平行四边形的边时,当点C 向右平移3个单位,向下平移2个单位得到B ,同样点M (N )向右平移3个单位,向下平移2个单位N (M ),故:x +3=1,y ﹣2=s 或x ﹣3=1,y +2=s ,解得:x =﹣2或4,故点M 坐标为:(﹣2,103-)或(4,103-); ②当BC 为对角线时, 由中点公式得:x +1=3,y +s =2,解得:x =2,故点M (2,2);综上,M 的坐标为:(2,2)或(﹣2,103-)或(4,103-). 【点睛】本题主要考查二次函数的综合,关键是根据题意得到函数解析式,然后利用平行四边形的存在性问题可进行分析.10.C解析:(1)1111a b =⎧⎨=⎩ ;y 2 =−(x−2)2+4;(2)(n ,n 2 );[(n +1),(n +1)2 ];y =x 2;(3)①存在,理由见详解;②C 1n -C n =2m .【分析】(1)1(2,0)A ),则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:()2112110=-0(-2-)a b a b ⎧-+⎪⎨=-+⎪⎩,解得:1111a b =⎧⎨=⎩ ,则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4,即可求解;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B +[(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ,即可求解; (3)①△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2+4n ),即可求解;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n = y n c −y 1n c -,即可求解.【详解】解:(1)1(2,0)A ,则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得: 2112110=()0(2)a b a b ⎧--+⎨=---+⎩,解得:1111a b =⎧⎨=⎩, 则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4; 故y 2 =−(x−2a )2+2b =−(x−2)2+4;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B + [(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ;故答案为:(n ,n 2 );[(n +1),(n +1)2];y =x 2;(3)①存在,理由:点A (0,0),点An (2n ,0)、点n B (n ,n 2 ),△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2 +n 4), 解得:n =1(不合题意的值已舍去),抛物线的表达式为:y =−(x−1)2 +1;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n =y n c −y 1n c -=−(m−n )2+n 2 +(m−n +1)2−(n−1)2=2m .【点睛】本题考查的是二次函数综合运用,这种找规律类型题目,通常按照题设的顺序逐次求解,通常比较容易.二、中考几何压轴题11.(1)15º或60º;(2)见解析;(3);(4)能,30º或60º【分析】(1)分三种情况讨论:当时,当当 利用三角形的内角和定理与旋转的旋转从而可得答案;(2)先证明,得到 证明,再证明,解析:(1)15º或60º;(2)见解析;(34)能,30º或60º【分析】(1)分三种情况讨论:当CAM CMA ∠=∠时,当30,MAC C ∠=∠=︒当 ,AMC C ∠=∠利用三角形的内角和定理与旋转的旋转从而可得答案;(2)先证明ABM AFN ≌,得到,AM AN = 证明EM CN =,再证明MPE NPC ≌,得到,PE PC = 结合,AE AC = 从而可得结论;(3)先求解ABM 的面积,再证明ABM EPM ≌,结合ABM AFN ≌,从而可得重叠部分的面积;(4)当∠CNP=90°时,依据对顶角相等可求得∠ANF=90°,然后依据∠F=60°可求得∠FAN 的度数,由旋转的定义可求得∠α的度数;当∠CPN=90°时.由∠C=30°,∠CPN=90°,可求得∠CNP 的度数,然后依据对顶角相等可得到∠ANF 的度数,然后由∠F=60°,依据三角形的内角和定理可求得∠FAN 的度数,于是可得到∠α的度数.【详解】解:(1)当CAM CMA ∠=∠时,30,C ∠=︒1803075,2CAM CMA ︒-︒∴∠=∠==︒ 907515,α∴=︒-︒=︒当30,MAC C ∠=∠=︒903060,α∴=︒-︒=︒AMC ∠>60,B ∠=︒,AMC C ∴∠≠∠综上:当α=15︒或60︒,AMC 是等腰三角形;故答案为:15︒或60︒.(2)由题可知,AB AF =,B F ∠=∠,E C ∠=∠,AE AC =.由旋转可知BAM FAN ∠=∠,∴ABM AFN ≌,∴AM AN =.AE AC =,∴EM CN =.又∵E C ∠=∠,MPE NPC ∠=∠,∴MPE NPC ≌.∴PE PC =,∴点P 在CE 的垂直平分线上.∵AE AC =,∴点A 在CE 的垂直平分线上,∴AP 所在的直线是CE 的垂直平分线.(3)如答图,∵30α=︒,60B ∠=︒,∴90AMB ∠=︒,∴ABM 是直角三角形,∵2AB =,∴sin301BM AB =⋅︒=,cos303AM AB =⋅︒=, ∴11313222ABM S AM MB =⨯=⨯⨯=. ∵tan 6023AE AC AB ==⋅︒=,3AM =,∴3EM =.∵30.BAE E α∠==∠=︒90EMP ∠=︒.∴ABM EPM ≌,∵由(2)可知ABM AFN ≌. ∴32AFN EPM ABM SS S ===. ∵112232322AEF S AF AE =⋅=⨯⨯=. ∴323232AEF AFN EPM S S S S =--=-⨯=重叠.(4)如图所示:当∠CNP=90°时.∵∠CNP=90°,∴∠ANF=90°.又∵∠AFN=60°,∴∠FAN=180°-60°-90°=30°.∴∠α=30°.如图所示:当∠CPN=90°时.∵∠C=30°,∠CPN=90°,∴∠CNP=60°.∴∠ANF=60°.又∵∠F=60°,∴∠FAN=60°.∴∠α=60°.综上所述,∠α=30°或60°.【点睛】本题考查的是旋转的性质,等腰三角形的判定,直角三角形的性质,三角形的内角和定理,三角形的全等的判定与性质,线段的垂直平分线的判定,解直角三角形,重叠部分的面积的计算,掌握以上知识是解题的关键.12.(1)AF=EF;(2)成立,理由见解析;(3)12【分析】(1) 延长DF 到G 点,并使FG=DC ,连接GE ,证明△ACF △EDG ,进而得到△GEF 为等腰三角形,即可证明AF=GE=EF ;(2解析:(1)AF=EF ;(2)成立,理由见解析;(3)12【分析】(1) 延长DF 到G 点,并使FG=DC ,连接GE ,证明△ACF ≌△EDG ,进而得到△GEF 为等腰三角形,即可证明AF=GE=EF ;(2)证明原理同(1),延长DF 到G 点,并使FG=DC ,连接GE ,证明△ACF ≌△EDG ,进而得到△GEF 为等腰三角形,即可证明AF=GE=EF ;(3)补充完整图后证明四边形AEGC 为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.【详解】解:(1)延长DF 到G 点,并使FG=DC ,连接GE ,如下图所示∵ABC EBD △≌△,∴DE=AC ,BD=BC ,∴∠CDB=∠DCB ,且∠CDB=∠ADF ,∴∠ADF=∠DCB ,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE ,又延长DF 使得FG=DC ,∴FG+DF=DC+DF ,∴DG=CF ,在△ACF 和△EDG 中,AC ED ACF EDG CF DG =⎧⎪∠=∠⎨⎪=⎩, ∴△ACF ≌△EDG(SAS),∴GE=AF ,∠G=∠AFC ,又∠AFC=∠GFE ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数综合复习
一选择题:
1.已知是y关于x的二次函数,那么m的值为( )
A.-2 B. 2 C. D. 0
2.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是( )
A.y=(x﹣1)2+2
B.y=(x﹣1)2+3
C.y=(x﹣2)2+2
D.y=(x﹣2)2+4
3.已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()
A.2015 B.2016 C.2017 D.2010
4.二次函数y=(x﹣1)2+2的最小值为()
A.1 B.-1 C.2 D.-2
5.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式
是( )
A.B.
C.D.
6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为( )
A.1或﹣5
B.﹣1或5
C.1或﹣3
D.1或3
7.抛物线y=2x2﹣2x+1与坐标轴的交点个数是( )
A.0
B.1
C.2
D.3
8.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+3上的三点,则y1,y2,y3大小关系为()
A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2
9.二次函数y=ace+bx+c图像上部分点的坐标如下表所示
则该函数的顶点坐标为( )
A.(-3,-3)
B.(-2.-2)
C.(-1,-3)
D.(0,-6〕
10.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降
1m时,水面的宽度为()
1。

相关文档
最新文档