2016-2017年安徽省合肥市瑶海区初三上学期期末数学试卷及参考答案

合集下载

合肥市瑶海区2016-2017学年度九年级上数学期末试卷有答案

合肥市瑶海区2016-2017学年度九年级上数学期末试卷有答案

()
A. a : c b : d
B. d : c b : a
4.对于反比例函数 y
2 x
,下列说法不正确的是
C. a : b c : d
D. a : d c : b
()
A.点(-2,-1)在它的图象上
C. y 随 x 的增大而减小

B.它的图象在第一、三象限
D.当 x 0 时, y 随 x 的增大而减小
5.如图,在△错误!未找到引用源。 中,D、E 分别是错误!未找到引用源。的中点,则下列结 论:①BC=2DE;②△ADE∽△ABC;③AD/AE=AB/AC.其中正确的有
()
A.3个
B.2个
C.1个
D.0个
6.AB为⊙O 的直径,点 C、D 在⊙O 上.若∠ABD=42°,则∠
第 8 题图
BCD的度数是 A.122°
线分别交 AD于点 E、 F,连接 BD、DP、BD与 CF相交于点 H.给出下
列结论:①△ABE≌△DCF;② FP = 3;③DP2=PHgPB; PH 5
第 14题图
④ SBPD = 3形 1.其中正确的是
S形形形ABCD
4
.(填写正确结论的序号)
三、(本大题共 2 小题,每小题 8 分,满分 16分)
15.抛物线y 2x2 8x 6 。
(1)用配方法求顶点坐标,对称轴;
(2) x 取何值时, y 随 x 的增大而减小?
16.如图,AB是⊙O 的直径,弦 CD⊥AB,垂足为 E,连接 AC.若∠CAB=22.5°,CD=8cm, 求:⊙O 的半径.
第 16题图
四、(本大题共 2 小题,每小题 8 分,满分 16分)

九年级2016--2017期末数学试卷

九年级2016--2017期末数学试卷

人教版九年级2016--2017期末数学试卷一.选择题(共12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为()A.90°B.125°C.135°D.145°4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.45.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.6.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大二.填空题(共24分)7.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.8.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.9.二次函数y=x2+4x﹣3的最小值是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.12.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.13.关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三.解答题(共84分)15.解方程:x2+4x﹣1=0.16.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.22.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C (0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.23.把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为cm,高为cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.24.已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.26.已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.九年级2016--2017期末数学试卷一.选择题(共6小题)1.(2016秋•南京期中)方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.2.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.3.(2016•长春模拟)如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD 的大小为()A.90°B.125°C.135°D.145°【解答】解:∵∠BOD=90°,∴∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=135°,故选:C.4.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.5.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.6.(2016•三明)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.二.填空题(共8小题)7.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.8.(2016•本溪)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.9.(2016•兰州)二次函数y=x2+4x﹣3的最小值是﹣7.【解答】解:∵y=x2+4x﹣3=(x+2)2﹣7,∵a=1>0,∴x=﹣2时,y有最小值=﹣7.故答案为﹣7.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【解答】解:∵,∴S 阴影==πAB2=π.故答案为:π.11.(2016•牡丹江)如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.12.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.13.(2016春•延庆县期末)关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2015.【解答】解:把x=1代入ax2+bx﹣2016=0得a+b﹣2016=0,当a=1时,b=2015.故答案为:1,2015.14.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.三.解答题(共12小题)15.(2016•淄博)解方程:x2+4x﹣1=0.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.16.(2015•香坊区三模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.【解答】解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.17.(2016春•南开区期末)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0 (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.【解答】(1)证明:∵△=(2k+3)2﹣4(k2+3k+2)=1,∴△>0,∴无论k取何值时,方程总有两个不相等的实数根;(2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6.∴△ABC的周长为14或16.18.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).19.(2015秋•玄武区期末)如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.【解答】解:(1)过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD=AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD==.即点O到AB的距离为.(2)如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.20.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.【解答】证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.22.(2016春•荣成市校级月考)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.【解答】解:(1)根据题意得,解得,所以二次函数解析式为y=﹣x2+4x+5;(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,则M点坐标为(2,9),设直线MC的解析式为y=mx+n,把M(2,9)和C(0,5)代入得,解得,所以直线CM的解析式为y=2x+5;(3)把y=0代入y=2x+5得2x+5=0,解得x=﹣,则E点坐标为(﹣,0),把y=0代入y=﹣x2+4x+5得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以S△MCB=S△MBE﹣S△CBE=××9﹣××5=15.23.(2016秋•孝感校级月考)把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为22cm,高为9cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.【解答】解:(1)如图所示,由已知得:BC=9cm,AB=40﹣2×9=22cm,故答案为:22,9;(2)设剪掉的正方形的边长为x cm,则(40﹣2x)2=484,即40﹣2x=±22,解得x1=31(不合题意,舍去),x2=9;答:剪掉的正方形边长为9cm;③折成的长方体盒子的侧面积有最大值,设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2,此时剪掉的正方形的边长是10cm.24.(2016春•合肥校级月考)已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:如图1,连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:如图2,连接OD,∵AO=BO,BD=DC,∴DO是△BAC的中位线,∴DO∥AC,∴DO⊥DE,∴DE为⊙O的切线;(3)解:如图3,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=3,∵AC×DE=CD×AD,∴6×DE=3×3,解得:DE=.25.(2015•南丹县一模)如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.【解答】(1)证明:∵⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是矩形,∵OF=OE,∴四边形OECF为正方形;(2)解:由题意可得:EO∥AC,∴△DEO∽△DCA,∴=,设⊙O的半径为x,则=,解得:x=1.5,故⊙O的半径为1.5;(3)解:∵⊙O的半径为1.5,AC=6,∴CF=1.5,AF=4.5∴AG=4.5,设BG=BE=y,∴在Rt△ACB中AC2+BC2=AB2,∴62+(y+1.5)2=(4.5+y)2,解得:y=3,∴AB=AG+BG=4.5+3=7.5.26.(2016•亭湖区一模)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.第21页(共21页)。

【初三数学】合肥市九年级数学上期末考试测试卷及答案

【初三数学】合肥市九年级数学上期末考试测试卷及答案

九年级上学期期末考试数学试题【答案】一、选择题(每题3分,共30分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列事件是必然事件的是()A.明天太阳从西边升起B.掷出一枚硬币,正面朝上C.打开电视机,正在播放2018俄罗斯世界杯足球赛D.任意画一个三角形,它的内角和为180°3.(3分)关于x的一元二次方程x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.0或2 C.1或2 D.04.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣25.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2106.如图,直线c与直线a相交于点A,与直线b相交于点B,∠1=130°,∠2=60°,若要使直线a∥b,则将直线a绕点A按如图所示的方向至少旋转()A.10°B.20°C.60°D.130°7.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°8.对于二次函数y=(x﹣2)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,3)D.与x轴有两个交点9.已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6 B.9 C.14 D.﹣610.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10 B.5C.10D.20二、填空题(每题4分,共24分11.方程x2﹣16=0的解为.12.如图,转动的转盘停止转动后,指针指向白色区域的概率是.13.如果点P(4,5)和点Q(a,b)关于原点对称,则点Q的坐标为.14.请任意写出一个图象开口向下且顶点坐标为(﹣2,1)的二次函数解析式:.15.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是.16.如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为.三、解答题(-)(本大题3小题,每题6分,共18分)17.(6分)解方程:2x2﹣3x=﹣1.18.(6分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣1,0),B(﹣2,﹣2),C(﹣4,﹣1).(1)将△ABC绕点O逆时针旋转90°得到△A1B1C1,请画出△A1B1C1;(2)点C1的坐标为.19.(6分)如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.四、解答题(二)(本大题3小题,每题7分,共21分)20.(7分)关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的一个根为2,求另一个根.21.(7分)凤城中学九年级(3)班的班主任让同学们为班会活动设计一个摸球方案,这些球除颜色外都相同,拟使中奖概率为50%.(1)小明的设计方案:在一个不透明的盒子中,放入黄、白两种颜色的球共6个,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有个,白球应有个;(2)小兵的设计方案:在一个不透明的盒子中,放入2个黄球和1个白球,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖,该设计方案是否符合老师的要求?试说明理由.22.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.五、解答题(三)(本大题3小题,每题9分,共27分)23.(9分)凤城商场经销一种高档水果,售价为每千克50元(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?24.(9分)如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若菱形ABC D的边长为2,∠ABC=60°,求⊙O的半径.25.(9分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P 点的坐标;若不存在,请说明理由.参考答案一、选择题1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.下列事件是必然事件的是()A.明天太阳从西边升起B.掷出一枚硬币,正面朝上C.打开电视机,正在播放2018俄罗斯世界杯足球赛D.任意画一个三角形,它的内角和为180°【分析】必然事件就是一定发生的事件,依据定义即可作出判断.解:A、明天太阳从西边升起,是不可能事件;B、抛掷一枚硬币,正面朝上是随机事件;C、打开电视机,正在播放2018俄罗斯世界杯足球赛,是随机事件;D、任意画一个三角形,它的内角和为180°,是必然事件;故选:D.【点评】本题主要考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.3.关于x的一元二次方程x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.0或2 C.1或2 D.0【分析】根据常数项为0,即可得到m2﹣2m=0,列出方程求解即可.解:根据题意得,m2﹣2m=0,解得:m=0,或m=2,故选:B.【点评】此题考查了一元二次方程的定义.判断一个方程是否是一元二次方程必须具备以下3个条件:(1)是整式方程,(2)只含有一个未知数,(3)方程中未知数的最高次数是2.这三个条件缺一不可,尤其要注意二次项系数a≠0这个最容易被忽略的条件.4.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣2【分析】先确定物线y=﹣2x2的顶点坐标为(0,0),再把点(0,0)平移所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=210【分析】根据题意列出一元二次方程即可.解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.6.如图,直线c与直线a相交于点A,与直线b相交于点B,∠1=130°,∠2=60°,若要使直线a∥b,则将直线a绕点A按如图所示的方向至少旋转()A.10°B.20°C.60°D.130°【分析】根据平行线的判定可得,当c与a的夹角为60°时,存在b∥a,由此得到直线a 绕点A顺时针旋转60°﹣50°=10°.解:∵∠2=60°,∴若要使直线a∥b,则∠3应该为60°,又∵∠1=130°,∴∠3=50°,∴直线a绕点A按顺时针方向至少旋转:60°﹣50°=10°,故选:A.【点评】本题主要考查了旋转的性质以及平行线的判定,解题时注意:同位角相等,两直线平行.7.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,即可得出答案.解:由题意得,∠AOB=60°,则∠APB=∠AOB=30°.故选:C.【点评】本题考查了圆周角定理的知识,解答本题的关键是熟练掌握圆周角定理的内容.8.对于二次函数y=(x﹣2)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,3)D.与x轴有两个交点【分析】直接利用二次函数的性质分别判断得出答案.解:A、二次函数y=(x﹣2)2+3的图象,开口向上,故此选项错误;B、对称轴是直线x=2,故此选项错误;C、顶点坐标是(2,3),故此选项正确;D、与x轴没有交点,故此选项错误;故选:C.【点评】此题主要考查了二次函数的性质,正确结合二次函数解析式分析是解题关键.9.已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6 B.9 C.14 D.﹣6【分析】利用一元二次方程根的定义得到a2﹣3a=5,然后利用整体代入的方法计算代数式的值.解:∵x=a是方程x2﹣3x﹣5=0的根,∴a2﹣3a﹣5=0,∴a2﹣3a=5,∴a2﹣3a+4=5+4=9.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10 B.5C.10D.20【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=10,∴AD=20,∴MN=AD=10,故选:A.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.二、填空题(本大题6小题,每题4分,共24分11.方程x2﹣16=0的解为x=±4 .【分析】移项,再直接开平方求解.解:方程x2﹣16=0,移项,得x2=16,开平方,得x=±4,故答案为:x=±4.【点评】本题考查了直接开方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.12.如图,转动的转盘停止转动后,指针指向白色区域的概率是.【分析】用白色区域的面积除以圆的面积得到指针指向白色区域的概率.解:指针指向白色区域的概率==.故答案为.【点评】本题考查了几何概率:某事件的概率=相应的面积与总面积之比.13.如果点P(4,5)和点Q(a,b)关于原点对称,则点Q的坐标为(﹣4,﹣5).【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,记忆方法是结合平面直角坐标系的图形记忆.解:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),所以点Q的坐标为(﹣4,﹣5).【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.14.请任意写出一个图象开口向下且顶点坐标为(﹣2,1)的二次函数解析式:y=﹣(x+2)2+1(答案不唯一).【分析】写出一个抛物线开口向下,顶点为已知点坐标即可.解:抛物线y=﹣(x+2)2+1的开口向下、顶点坐标为(﹣2,1),故答案为:y=﹣(x+2)2+1(答案不唯一).【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.15.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离.【分析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出即可.解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,故答案为:相离.【点评】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.16.如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为.【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.扇形ADE解:连接BD,过点B作BN⊥AD于点N,∵将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=2,BN=2,S=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD阴影=﹣(﹣×4×)=.故答案为:.【点评】此题主要考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.三、解答题(-)(本大题3小题,每题6分,共18分)17.(6分)解方程:2x2﹣3x=﹣1.【分析】利用因式分解法解方程即可.解:2x2﹣3x=﹣1,2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,∴2x﹣1=0或x﹣1=0,∴x1=,x2=1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据题目要求的方法求解.18.(6分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (﹣1,0),B (﹣2,﹣2),C (﹣4,﹣1).(1)将△ABC 绕点O 逆时针旋转90°得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)点C 1的坐标为 (1,﹣4) .【分析】(1)利用网格特点和旋转的性质画出A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1;(2)利用(1)所画图形写出点C 1的坐标.解:(1)如图,△A 1B 1C 1即为所求;(2)C 1的坐标为 (1,﹣4).故答案为(1,﹣4).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.(6分)如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.【分析】过点O作OE⊥AB于点E,根据垂径定理得到CE=DE,根据等腰三角形的性质得到AE=BE,计算即可.证明:过点O作OE⊥AB于点E,∵在⊙O中,OE⊥CD,∴CE=DE,∵OA=OB,OE⊥AB,∴AE=BE,∴AE﹣CE=BE﹣DE,∴AC=BD.【点评】本题考查的是垂径定理、等腰三角形的性质,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.四、解答题(二)(本大题3小题,每题7分,共21分)20.(7分)关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的一个根为2,求另一个根.【分析】(1)根据方程有两个不相等的实数根可得△=4﹣4(2k﹣4)>0,解不等式求出k 的取值范围;(2)根据方程有一个根是2,再设方程的另一根为x2,利用根与系数的关系列式计算即可.解:(1)∵关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根,∴△=4﹣4(2k﹣4)>0,解得:k<;(2)若方程的一个根为2,设方程的另一根为x2,则2+x2=﹣2,解得x2=﹣4.所以方程的另一根为﹣4.【点评】此题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根;(4)x1+x2=﹣,x1•x2=.21.(7分)凤城中学九年级(3)班的班主任让同学们为班会活动设计一个摸球方案,这些球除颜色外都相同,拟使中奖概率为50%.(1)小明的设计方案:在一个不透明的盒子中,放入黄、白两种颜色的球共6个,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有 3 个,白球应有 3 个;(2)小兵的设计方案:在一个不透明的盒子中,放入2个黄球和1个白球,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖,该设计方案是否符合老师的要求?试说明理由.【分析】(1)根据中奖概率为50%和摸到黄球则表示中奖,可以得到袋子中的黄球数量和白球数量;(2)画树状图求出摸到的2个球都是黄球的概率,从而可以解答本题.解:(1)根据题意知如果小明的设计符合老师要求,则盒子中黄球应有3个,白球应有3个,故答案为:3,3;(2)画树状图如下:∵共有6种等可能的结果,其中摸到的2个球都是黄球的有2种可能,∴P(2个球都是黄球)==≠50%,∴该设计方案不符合老师的要求.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.【点评】本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.五、解答题(三)(本大题3小题,每题9分,共27分)23.(9分)凤城商场经销一种高档水果,售价为每千克50元(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出关于上涨价格m的二次函数解析式,然后将其配方成顶点式,最后根据二次函数的性质可得其最值情况.解:(1)设每次下降的百分率为x,根据题意得:50(1﹣x)2=32,解得:x1=0.2,x2=1.8(不合题意舍去),答:平均下降的百分率为20%.(2)设每千克应涨价m元,每天的利润为W元,W=(50﹣40+m)(500﹣20m)=﹣20m2+300m+5000,则对称轴为m=﹣=7.5,∵a=﹣20<0,∴当m=7.5时函数有最大值,答:每千克应涨价7.5元才能使每天盈利最大.【点评】此题主要考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法求解比较简单.24.(9分)如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若菱形ABCD的边长为2,∠ABC=60°,求⊙O的半径.【分析】(1)连接OM,过点O作ON⊥CD于N.只要证明OM=ON即可解决问题;(2)设半径为r.则OC=2﹣r,OM=r,利用勾股定理构建方程即可解决问题;解:(1)连接OM,过点O作ON⊥CD于N.∵⊙O与BC相切于点M,∴OM⊥BC,OM是⊙O的半径,∵AC是菱形ABCD的对角线,∴AC平分∠BCD,∵ON⊥CD,OM⊥BC,∴ON=OM=r,∴CD与⊙O相切;(2)∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ACB是等边三角形,∴AC=AB=2,设半径为r.则OC=2﹣r,OM=r,∵∠ACB=60°,∠OMC=90°,∴∠COM=30°,MC=,在Rt△OMC中,∠OMC=90°∵OM2+CM2=OC2∴r2+()2=(2﹣r)2,解得r=﹣6+4或﹣6﹣4(舍弃),∴⊙O的半径为﹣6+4.【点评】本题考查切线的判定,菱形的性质等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题,属于中考常考题型.25.(9分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P 点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求解可得;(2)先求出直线AE的解析式为y=x+1,作DG⊥x轴,延长DG交AE于点F,设D(m,m2+2m﹣3),则F(m,m+1),DF=﹣m2﹣m+4,根据S=S△ADF+S△DEF可得△ADE函数解析式,利用二次函数性质求解可得答案;(3)先根据抛物线解析式得出对称轴为直线x=﹣1,据此设P(﹣1,n),由A(﹣3,0),E(0,1)知AP2=4+n2,AE2=10,PE2=(n﹣1)2+1,再分AP=AE,AP=PE及AE =PE三种情况分别求解可得.解:(1)∵二次函数y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),∴,解得:,∴二次函数解析式为y=x2+2x﹣3;(2)设直线AE的解析式为y=kx+b,∵过点A(﹣3,0),E(0,1),∴,解得:,∴直线AE解析式为y=x+1,如图,过点D作DG⊥x轴于点G,延长DG交AE于点F,设D(m,m2+2m﹣3),则F(m,m+1),∴DF=﹣m2﹣2m+3+m+1=﹣m2﹣m+4,∴S△ADE=S△ADF+S△DEF=×DF×AG+DF×OG=×DF×(AG+OG)=×3×DF=(﹣m2﹣m+4)=﹣m2﹣m+6=﹣(m+)2+,∴当m=﹣时,△ADE的面积取得最大值为.(3)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,设P(﹣1,n),∵A(﹣3,0),E(0,1),∴AP2=(﹣1+3)2+(n﹣0)2=4+n2,AE2=(0+3)2+(1﹣0)2=10,PE2=(0+1)2+(1﹣n)2=(n﹣1)2+1,①若AP=AE,则AP2=AE2,即4+n2=10,解得n=±,∴点P(﹣1,)或(﹣1,﹣);②若AP=PE,则AP2=PE2,即4+n2=(n﹣1)2+1,解得n=﹣1,∴P(﹣1,﹣1);③若AE=PE,则AE2=PE2,即10=(n﹣1)2+1,解得n=﹣2或n=4,∴P(﹣1,﹣2)或(﹣1,4);综上,点P的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,﹣1)或(﹣1,﹣2)或(﹣1,4).【点评】本题是二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式,割补法求三角形的面积,二次函数的性质及等腰三角形的判定和分类讨论思想的运用等知识点.九年级上学期期末考试数学试题【答案】一、选择题(每题3分,共30分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列事件是必然事件的是()A.明天太阳从西边升起B.掷出一枚硬币,正面朝上C.打开电视机,正在播放2018俄罗斯世界杯足球赛D.任意画一个三角形,它的内角和为180°3.(3分)关于x的一元二次方程x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.0或2 C.1或2 D.04.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣25.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2106.如图,直线c与直线a相交于点A,与直线b相交于点B,∠1=130°,∠2=60°,若要使直线a∥b,则将直线a绕点A按如图所示的方向至少旋转()A.10°B.20°C.60°D.130°7.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°8.对于二次函数y=(x﹣2)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,3)D.与x轴有两个交点9.已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6 B.9 C.14 D.﹣610.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10 B.5C.10D.20二、填空题(每题4分,共24分11.方程x2﹣16=0的解为.12.如图,转动的转盘停止转动后,指针指向白色区域的概率是.13.如果点P(4,5)和点Q(a,b)关于原点对称,则点Q的坐标为.14.请任意写出一个图象开口向下且顶点坐标为(﹣2,1)的二次函数解析式:.15.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是.16.如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为.三、解答题(-)(本大题3小题,每题6分,共18分)17.(6分)解方程:2x2﹣3x=﹣1.18.(6分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣1,0),B(﹣2,﹣2),C(﹣4,﹣1).(1)将△ABC绕点O逆时针旋转90°得到△A1B1C1,请画出△A1B1C1;(2)点C1的坐标为.19.(6分)如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.四、解答题(二)(本大题3小题,每题7分,共21分)20.(7分)关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的一个根为2,求另一个根.21.(7分)凤城中学九年级(3)班的班主任让同学们为班会活动设计一个摸球方案,这些球除颜色外都相同,拟使中奖概率为50%.(1)小明的设计方案:在一个不透明的盒子中,放入黄、白两种颜色的球共6个,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有个,白球应有个;(2)小兵的设计方案:在一个不透明的盒子中,放入2个黄球和1个白球,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖,该设计方案是否符合老师的要求?试说明理由.22.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.五、解答题(三)(本大题3小题,每题9分,共27分)23.(9分)凤城商场经销一种高档水果,售价为每千克50元(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?24.(9分)如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若菱形ABC D的边长为2,∠ABC=60°,求⊙O的半径.25.(9分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P 点的坐标;若不存在,请说明理由.。

2015-2016学年安徽省合肥市瑶海区九年级(上)期末数学试卷

2015-2016学年安徽省合肥市瑶海区九年级(上)期末数学试卷

2015-2016学年安徽省合肥市瑶海区九年级(上)期末数学试卷一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项写在题后的表格中,不选、错选或多选的,一律得0分.1.(4分)若=,则的值为()A.1 B.C.D.2.(4分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是()A.b=atanB B.a=ccosB C.D.a=bcosA3.(4分)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°4.(4分)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.=D.=5.(4分)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.6.(4分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x …﹣2 ﹣1 0 1 2 …y …﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣57.(4分)如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.1个B.2个C.3个D.4个8.(4分)若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2 C.2﹣D.﹣29.(4分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S四边形EFBC为()A.2:5 B.4:25 C.4:31 D.4:3510.(4分)如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.二.填空题(本大题共4小题,每小题5分,满分20分)11.(5分)抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是.12.(5分)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.13.(5分)已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.14.(5分)如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是(写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC=BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.三.(本大题共2小题,每小题8分,满分16分)15.(8分)计算:4sin60°+tan45°﹣.16.(8分)已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求a的值;(2)求此函数图象抛物线的顶点坐标;(3)直接写出函数y随自变量增大而减小的x的取值范围.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在6×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的格点上.请按要求画图:(1)以点B为位似中心,在方格内将△ABC放大为原来的2倍,得到△EBD,且点D、E 都在单位正方形的顶点上.(2)在方格中作一个△FGH,使△FGH∽△ABC,且相似比为,点F、G、H都在单位正方形的顶点上.18.(8分)如图,MN经过△ABC的顶点A,MN∥BC,AM=AN,MC交AB于D.(1)求证:△ADE∽△ABC;(2)连结DE,如果DE=1,BC=3,求MN的长.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2=ED•EA.20.(10分)为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)六、(本题满分12分)21.(12分)如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.七、(本题满分12分)22.(12分)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是;互为逆相似的是.(填写所有符合要求的序号).(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边AB上(不与点A,B重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,请在备用图中画出图形并说明截线满足的条件,不必说明理由.八、(本题满分14分)23.(14分)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?2015-2016学年安徽省合肥市瑶海区九年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项写在题后的表格中,不选、错选或多选的,一律得0分.1.(4分)(2015•东营)若=,则的值为()A.1 B.C.D.【分析】根据合分比性质求解.【解答】解:∵=,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.2.(4分)(2015•崇明县一模)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是()A.b=atanB B.a=ccosB C.D.a=bcosA【分析】根据三角函数的定义就可以解决.【解答】解:∵∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴A、tanB=,则b=atanB,故本选项正确,B、cosB=,故本选项正确,C、sinA=,故本选项正确,D、cosA=,故本选项错误,故选D.【点评】此题考查直角三角形中两锐角的三角函数之间的关系,难度适中.3.(4分)(2014•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.4.(4分)(2015•荆州)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.=D.=【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.5.(4分)(2009•益阳)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.【分析】利用所给的角的余弦值求解即可.【解答】解:∵BC=5米,∠CBA=∠α.∴AB==.故选:B.【点评】此题主要考查学生对坡度、坡角的理解及运用.6.(4分)(2015•泰安)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x …﹣2 ﹣1 0 1 2 …y …﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣5【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.【点评】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.7.(4分)(2008•河北)如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.1个B.2个C.3个D.4个【分析】根据垂径定理计算.【解答】解:如图OD=OA=OB=5,OE⊥AB,OE=3,∴DE=OD﹣OE=5﹣3=2cm,∴点D是圆上到AB距离为2cm的点,∵OE=3cm>2cm,∴在OD上截取OH=1cm,过点H作GF∥AB,交圆于点G,F两点,则有HE⊥AB,HE=OE﹣OH=2cm,即GF到AB的距离为2cm,∴点G,F也是圆上到AB距离为2cm的点.故选C.【点评】本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.8.(4分)(2015•滨州)若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2 C.2﹣D.﹣2【分析】由于直角三角形的外接圆半径是斜边的一半,由此可求得等腰直角三角形的斜边长,进而可求得两条直角边的长;然后根据直角三角形内切圆半径公式求出内切圆半径的长.【解答】解:∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为2,∴它的内切圆半径为:R=(2+2﹣4)=2﹣2.故选B.【点评】本题考查了三角形的外接圆和三角形的内切圆,等腰直角三角形的性质,要注意直角三角形内切圆半径与外接圆半径的区别:直角三角形的内切圆半径:r=(a+b﹣c);(a、b为直角边,c为斜边)直角三角形的外接圆半径:R=c.9.(4分)(2016•河北区二模)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S四边形EFBC为()A.2:5 B.4:25 C.4:31 D.4:35【分析】由平行四边形的性质可证明△DEF∽△BAF,可求得△DEF和△AFE、△ABF的面积之间的关系,从而可求得△DEF和△BCD的面积之间的关系,可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF,∴==,∴=()2=,==设S△DEF=S,则S△ABF=S,S△ADF=S,∴S△ABD=S△ADF+S△ABF=S+S=S,∵四边形ABCD为平行四边形,∴S△ABD=S△DBC=S,∴S四边形EFBC=S△BDC﹣S△DEF=S﹣S=S,∴S△DEF:S四边形EFBC=4:31.故选C.【点评】本题主要考查平行四边形和相似三角形的性质,根据条件找到△DEF和△DBC的关系是解题的关键.10.(4分)(2010•江津区)如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG 的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.【分析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y==.当A从D点运动到E点时,即2<x≤4时,y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.【点评】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.二.填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2010•双鸭山)抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是(3,0).【分析】把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标.【解答】解:把点(1,0)代入抛物线y=x2﹣4x+m中,得m=3,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3,∴抛物线与x轴的另一个交点的坐标是(3,0).故答案为:(3,0).【点评】本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法.本题也可以用根与系数关系直接求解.12.(5分)(2015•黔西南州)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=﹣4.【分析】由于点A是反比例函数y=上一点,矩形ABOC的面积S=|k|=4,则k的值即可求出.【解答】解:由题意得:S矩形ABOC=|k|=4,又双曲线位于第二、四象限,则k=﹣4,故答案为:﹣4.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.13.(5分)(2015•兰州)已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是30°或150°.【分析】利用等边三角形的判定与性质得出∠BOC=60°,再利用圆周角定理得出答案.【解答】解:如图:连接BO,CO,∵△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,∴△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°.若点A在劣弧BC上时,∠A=150°.∴∠A=30°或150°.故答案为:30°或150°.【点评】此题主要考查了三角形的外接圆与外心以及等边三角形的判定与性质和圆周角定理等知识,得出△OBC是等边三角形是解题关键.14.(5分)(2014•岳阳)如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P 作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是②③④(写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC=BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.【分析】①只有一组对应边相等,所以错误;②根据切线的性质可得∠PCB=∠A=30°,在直角三角形ABC中∠ABC=60°得出OB=BC,∠BPC=30°,解直角三角形可得PB=OC=BC;③根据切线的性质和三角形的外角的性质即可求得∠A=∠PCB=30°,∠ABC=60°,进而求得PB=BC=OB;④连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【解答】解:①∵∠CPD=∠DPA,∠CDP=∠DAP+∠DPA≠∠DAP≠∠PDA,∴△CPD∽△DPA错误;②连接OC,∵AB是直径,∠A=30°∴∠ABC=60°,∴OB=OC=BC,∵PC是切线,∴∠PCB=∠A=30°,∠OCP=90°,∴∠APC=30°,∴在RT△POC中,cot∠APC=cot30°==,∴PC=BC,正确;③∵∠ABC=∠APC+∠PCB,∠PCB=∠A,∴∠ABC=∠APC+∠A,∵∠ABC+∠A=90°,∴∠APC+2∠A=90°,∵∠APC=30°,∴∠A=∠PCB=30°,∴PB=BC,∠ABC=60°,∴OB=BC=OC,∴PB=OB;正确;④解:如图,连接OC,∵OC=OA,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPO+∠COP=90°,∴(∠CPD+∠DPA)+(∠A+∠ACO)=90°,∴∠DPA+∠A=45°,即∠CDP=45°;正确;故答案为:②③④;【点评】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于作好辅助线构建直角三角形和等腰三角形.三.(本大题共2小题,每小题8分,满分16分)15.(8分)(2015秋•瑶海区期末)计算:4sin60°+tan45°﹣.【分析】直接把各特殊角的三角函数值代入进行计算即可.【解答】解:原式=4×+1﹣2=1.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.16.(8分)(2015秋•瑶海区期末)已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求a的值;(2)求此函数图象抛物线的顶点坐标;(3)直接写出函数y随自变量增大而减小的x的取值范围.【分析】(1)将点A(3,﹣4)代入y=ax2+4x+2,即可求出a的值;(2)利用配方法将一般式化为顶点式,即可求出此函数图象抛物线的顶点坐标;(3)根据二次函数的增减性即可求解.【解答】解:(1)∵二次函数y=ax2+4x+2的图象经过点A(3,﹣4),∴9a+12+2=﹣4,∴a=﹣2;(2)∵y=﹣2x2+4x+2=﹣2(x﹣1)2+4,∴顶点坐标为(1,4);(3)∵y=﹣2x2+4x+2中,a=﹣2<0,抛物线开口向下,对称轴为直线x=1,∴当x>1时,函数y随自变量增大而减小.【点评】本题考查了二次函数的性质.二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2015秋•瑶海区期末)如图,在6×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的格点上.请按要求画图:(1)以点B为位似中心,在方格内将△ABC放大为原来的2倍,得到△EBD,且点D、E 都在单位正方形的顶点上.(2)在方格中作一个△FGH,使△FGH∽△ABC,且相似比为,点F、G、H都在单位正方形的顶点上.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)直接利用相似三角形的性质得出各边长度进而得出答案.【解答】解:(1)如图所示:△EBD即为所求;(2)如图所示:△FGH即为所求.【点评】此题主要考查了位似变换和相似变换,根据题意得出对应边的长度是解题关键.18.(8分)(2015秋•瑶海区期末)如图,MN经过△ABC的顶点A,MN∥BC,AM=AN,MC交AB于D.(1)求证:△ADE∽△ABC;(2)连结DE,如果DE=1,BC=3,求MN的长.【分析】(1)根据MN∥BC,得到,,等量代换得到,根据相似三角形的判定即可得到结论;(2)根据,得到DE∥BC,根据平行线分线段成比例定理得到,于是推出,即,即可得到结论.【解答】(1)证明:∵MN∥BC,∴,,又∵AM=AN,∴,∴△ADE∽△ABC;(2)解:∵,∴DE∥BC,∴,∴,即,∴AM=BC=,∴MN=2AM=3.【点评】本题考查了相似三角形的判定和性质,平行线分线段成比例,熟练掌握相似三角形的判定和性质是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2015秋•瑶海区期末)如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2=ED•EA.【分析】(1)由内心的性质可知;∠ACI=∠BCI,∠BAE=∠CAE,由圆周角定理可知∠BCE=∠BAE,从而得到∠CAE+∠ACI=∠ICB+∠BCE,从而得到∠EIC=∠ICE,于是得到IE=EC;(2)先证明DCE∽△CAE,从而可得到CE2=DE•EA,由IE=EC从而得到IE2=DE•EA.【解答】解:(1)如图所示;连接IC.∵点I是△ABC的内心,∴∠ACI=∠BCI,∠BAE=∠CAE.又∵∠BAE=∠BCE,∴∠CAE=∠BCE.∴∠CAE+∠ACI=∠ICB+∠BCE.∴∠EIC=∠ICE.∴IE=EC.(2)由(1)可知:∠CAE=∠BCE.又∵∠AEC=∠DEC,∴△DCE∽△CAE.∴.∴CE2=DE•EA.∵IE=EC,∴IE2=DE•EA.【点评】本题主要考查的是三角形的内切圆、相似三角形的性质和判定、圆周角定理,明确三角形的内心是三角形内角平分线的交点是解题的关键.20.(10分)(2015•包头)为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)【分析】(1)根据已知和tan∠ADC=,求出AC,根据∠BDC=45°,求出BC,根据AB=AC ﹣BC求出AB;(2)根据cos∠ADC=,求出AD,根据cos∠BDC=,求出BD.【解答】解:(1)在Rt△ADC中,∵∠ADC=60°,CD=3,∵tan∠ADC=,∴AC=3•tan60°=3,在Rt△BDC中,∵∠BDC=45°,∴BC=CD=3,∴AB=AC﹣BC=(3﹣3)米.(2)在Rt△ADC中,∵cos∠ADC=,∴AD===6米,在Rt△BDC中,∵cos∠BDC=,∴BD===3米.【点评】本题考查的是解直角三角形的知识,掌握仰角的概念和锐角三角函数的概念是解题的关键.六、(本题满分12分)21.(12分)(2015•巴中)如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.【分析】(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;将B坐标代入反比例解析式中求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出a与b的值,即可确定出一次函数解析式;(2)设直线AB与y轴交于点C,求得点C坐标,S△AOB=S△AOC+S△COB,计算即可;(3)由图象直接可得自变量x的取值范围.【解答】解:(1)∵A(﹣2,1),∴将A坐标代入反比例函数解析式y2=中,得m=﹣2,∴反比例函数解析式为y=﹣;将B坐标代入y=﹣,得n=﹣2,∴B坐标(1,﹣2),将A与B坐标代入一次函数解析式中,得,解得a=﹣1,b=﹣1,∴一次函数解析式为y1=﹣x﹣1;(2)设直线AB与y轴交于点C,令x=0,得y=﹣1,∴点C坐标(0,﹣1),∴S△AOB=S△AOC+S△COB=×1×2+×1×1=;(3)由图象可得,当y1<y2<0时,自变量x的取值范围x>1.【点评】本题属于反比例函数与一次函数的交点问题,涉及的知识有:待定系数法求函数解析式,三角形面积的求法,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.七、(本题满分12分)22.(12分)(2015秋•瑶海区期末)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是①②;互为逆相似的是③.(填写所有符合要求的序号).(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边AB上(不与点A,B重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P 的不同位置,探索过点P的截线的情形,请在备用图中画出图形并说明截线满足的条件,不必说明理由.【分析】(1)根据互为顺相似和互为逆相似的定义即可作出判断;(2)根据点P在△ABC边上的位置分为三种情况,需要分类讨论,逐一分析求解即可.【解答】解:(1)互为顺相似的是①②;互为逆相似的是③;故答案为:①②,③;(2)根据点P在△ABC边上的位置分为以下三种情况:第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC 于点M.当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC互为逆相似;当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AB于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ACB,此时△AQP1与△ABC互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2、△Q2BP2都与△ABC互为逆相似;当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q′,使∠BP3Q′=∠BCA,此时△Q′BP3与△ABC互为逆相似.【点评】本题是创新型中考压轴题,主要考查了相似三角形的知识点、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中“顺相似”“逆相似”的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.八、(本题满分14分)23.(14分)(2016•繁昌县一模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?【分析】(1)根据题意此抛物线的顶点坐标为(4,﹣16),设出抛物线的顶点式,把(10,20)代入即可求出a的值,把a的值代入抛物线的顶点式中即可确定出抛物线的解析式;(2)相邻两个月份的总利润的差即为某月利润.(3)根据前x个月内所获得的利润减去前x﹣1个月内所获得的利润,再减去16即可表示出第x个月内所获得的利润,为关于x的一次函数,且为增函数,得到x取最大为12时,把x=12代入即可求出最多的利润.【解答】解:(1)根据题意可设:y=a(x﹣4)2﹣16,当x=10时,y=20,所以a(10﹣4)2﹣16=20,解得a=1,所求函数关系式为:y=(x﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣(4分)(2)当x=9时,y=(9﹣4)2﹣16=9,所以前9个月公司累计获得的利润为9万元,又由题意可知,当x=10时,y=20,而20﹣9=11,所以10月份一个月内所获得的利润11万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(3)设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元)则有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=2n﹣9,因为s是关于n的一次函数,且2>0,s随着n的增大而增大,而n的最大值为12,所以当n=12时,s=15,所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元.﹣﹣(4分)【点评】本题考查了二次函数的应用,主要考查学生会利用待定系数法求函数的解析式,灵活运用二次函数的图象与性质解决实际问题,是一道综合题.参与本试卷答题和审题的老师有:gsls;冯延鹏;dbz1018;sd2011;张超。

2016-2017学年安徽省合肥市瑶海区九年级(上)期末数学试卷-答案

2016-2017学年安徽省合肥市瑶海区九年级(上)期末数学试卷-答案

2016-2017学年安徽省合肥市瑶海区九年级(上)期末数学试卷【答案】1. C2. B3. D4. C5. A6. B7. D8. C9. B10. A11.12.13.14.15. 解:,该抛物线的顶点坐标为,,对称轴为直线.,当时,y随x的增大而减小.16. 解:连接OC,如图所示:是的直径,弦,,,,为等腰直角三角形,,即的半径为.17. 解:如图,为所作,,;如图,为所作,,.18. 解:过C作于E,设米,在中:,在中:,,解之得:.答:河宽为米.19. 解:.理由:,,,,又,∽ ,,即.20. 解:将二次函数化成,分,当时,y有最大值,最大值,分因此,演员弹跳离地面的最大高度是米分能成功表演理由是:当时,.即点,在抛物线上,因此,能表演成功分.21. 6422. 解:由题意可知:,解得:;由可知:y与x的函数关系应该是设商场每月获得的利润为W,由题意可得.,当时,利润最大,最大值答:当单价定为24元时,获得的利润最大,最大的利润为1920元.23. 解:如图1,在中,,,,,即,,,,为BC的中点,,,即AG:;如图,,不妨设,则,,,,,,,,,,,在中,,∽ ,,,;如图2,当点H在边DC上时,,,,∽ ,,,解得:;如图3,当H在DC的延长线上时,,,,∽ ,,,解得:,综上所述,可知x的值为或2.【解析】1. 解:二次函数的图象经过点,,,,故选:C.把点,代入函数解析式即可求出的值.本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.2. 解:在直角中.A、,选项错误;B、,选项正确;C、,选项错误;D、,选项错误.故选B.首先在直角中利用勾股定理求得BC的长,然后利用三角函数的定义进行判断.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3. 解:A、a::d,得,故A错误;B、d::a,得,故B错误;C、a::d,得,故C错误;D、a::b,得,故D正确;故选:D.根据比例的性质,可得答案.本题考查了比例的性质,比例的性质是:两外项的乘积等于两内项的乘积.4. 解:A、把点,代入反比例函数得,本选项正确;B、,图象在第一、三象限,本选项正确;C、当时,y随x的增大而减小,本选项不正确;D、当时,y随x的增大而减小,本选项正确.故选C.根据反比例函数的性质用排除法解答,当系数时,函数图象在第一、三象限,当或时,y 随x的增大而减小,据此可以得到答案.本题考查了反比例函数的性质:当时,图象分别位于第一、三象限;当时,图象分别位于第二、四象限当时,在同一个象限内,y随x的增大而减小;当时,在同一个象限,y随x的增大而增大.5. 解:、E是AB、AC的中点,是的中位线;,;故正确∽ ;故正确,即;故正确因此本题的三个结论都正确,故选A.若D、E是AB、AC的中点,则DE是的中位线,可根据三角形中位线定理得出的等量条件进行判断.此题主要考查了三角形中位线定理以及相似三角形的判定和性质.6. 解:连接AD,为的直径,,,,,故选:B.连接AD,根据圆周角定理可得,然后可得,再根据圆内接四边形对角互补可得答案.此题主要考查了圆周角定理和圆内接四边形的性质,关键是掌握半圆或直径所对的圆周角是直角.7. 解:点C是线段AB的黄金分割点且,,即,故A、B错误;,故C错误;,故D正确;故选:D.根据黄金分割的定义得出,从而判断各选项.本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.8. 解:连接AD,中,,,为BC中点,,,,.,,,,,.故选C.连接AD,由中,,,为BC中点,利用等腰三角形三线合一的性质,可证得,再利用勾股定理,求得AD的长,那么在直角中根据三角函数的定义求出,然后根据同角的余角相等得出,于是.此题考查了解直角三角形、等腰三角形的性质、勾股定理、锐角三角函数的定义以及余角的性质此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.9. 解:截得的小三角形与相似,过P作AC的垂线,作AB的垂线,作BC的垂线,所截得的三角形满足题意,则D点的位置最多有3处.故选B.过点P作直线PD与直角边AB或AC相交于点D,截得的三角形与原三角形有一个公共角,只需作一个直角即可.此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.10. 解:当时,,当时,ED交AB于,交AB于N,如图,,则,中,,为等腰直角三角形,,,,,,故选:A.分类讨论:当时,根据正方形的面积公式得到;当时,ED交AB于,交AB 于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到,配方得到,然后根据二次函数的性质对各选项进行判断.本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图也考查了等腰直角三角形的性质.11. 解:,,.故答案为:.先把,,代入原式,再根据实数的运算法则进行计算.本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.12. 解:在优弧上取点D,连接,,,,,.故答案为:.首先在优弧上取点D,连接,,由圆周角定理,即可求得的度数,又由圆的内接四边形的性质,即可求得答案.此题考查了圆周角定理与圆的内接四边形的性质此题比较简单,注意掌握辅助线的作法.13. 解:过A作于E、作于F,甲纸条的宽度是乙纸条宽的2倍,,纸条的两边互相平行,四边形ABCD是平行四边形,,,,∽ ,,即.故答案为:.分别过A作于E、作于F,再根据甲纸条的宽度是乙纸条宽的2倍可得出,再由平行四边形的性质得出,进而可判断出 ∽ ,其相似比为2:1.本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.14. 解:是等边三角形,,,在正方形ABCD中,,,在与中,,≌ ,故正确;,,,,,,,,∽ ,,故错误;,,∽ ,,,,,故正确;如图,过P作,,设正方形ABCD的边长是,为正三角形,,,,,四边形,.正方形故答案为:.根据等边三角形的性质和正方形的性质,得到,,,证得 ≌ ,故正确;由于,,推出 ∽ ,得到故错误;由于,,推出 ∽ ,得到,,等量代换得到,故正确;根据三角形面积计算公式,结合图形得到的面积的面积面积的面积,得到故正确.正方形本题考查的正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE 及PF的长,再根据三角形的面积公式得出结论.15. 利用配方法将抛物线解析式边形为,由此即可得出抛物线的顶点坐标以及抛物线的对称轴;由利用二次函数的性质即可得出:当时,y随x的增大而减小,此题得解.本题考查了二次函数的三种形式以及二次函数的性质,利用配方法将二次函数解析式的一般式换算成顶点式是解题的关键.16. 连接OC,由圆周角定理得出,根据垂径定理可得,证出为等腰直角三角形,利用特殊角的三角函数可得答案.此题主要考查了圆周角定理、垂径定理、以及三角函数的应用;关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17. 利用关于x轴对称的点的坐标特征,写出、、的坐标,然后描点即可得到;把A、B、C的横纵坐标后乘以得到出、、的坐标,然后描点即可得到.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.18. 设河宽为未知数,那么可利用三角函数用河宽表示出AE、EB,然后根据就能求得河宽.此题主要考查了三角函数的概念和应用,解题关键是把实际问题转化为数学问题,抽象到三角形中,利用三角函数进行解答.19. 根据,可得,然后有,可得,又由,可得出 ∽ ,最后可得出.本题考查了相似三角形的判定与性质,解答本题的关键是根据,得出,进而判定∽ .20. 将二次函数化简为,即可解出最大的值.当时代入二次函数可得点B的坐标在抛物线上.本题考查点的坐标的求法及二次函数的实际应用此题为数学建模题,借助二次函数解决实际问题.21. 解:如图,,过M作BC的平行线交AB、AC于D、E,过M作AC平行线交AB、BC于F、H,过M作AB平行线交AC、BC于I、G,根据题意得,∽ ∽ ,::,::25,它们的边长比为1:2:5,又四边形BDMG与四边形CEMH为平行四边形,,,设DM为x,则,::1,::1,.故答案为:64.首先过M作BC的平行线交AB、AC于D、E,过M作AC平行线交AB、BC于F、H,过M作AB平行线交AC、BC于I、G,判断出∽ ∽ ,再根据相似三角形的性质,判断出它们的边长比为1:2:5;然后判断出BC、DM的关系,根据相似三角形的面积的比等于它们的相似比的平方,判断出、的关系,求出的面积是多少即可.此题主要考查了三角形相似的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:三边法:三组对应边的比相等的两个三角形相似;两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;两角法:有两组角对应相等的两个三角形相似.22. 待定系数法求解可得;根据“总利润单件利润销售量”列出函数解析式,由二次函数的性质可得最值情况.本题主要考查二次函数的应用能力,理解题意找到题目蕴含的相等关系并列出函数解析式是解题的关键.23. 根据平行四边形的性质得:,由平行线分线段成比例定理得:,由得:,根据中点E得:,从而得出AG:AB的值;假设,则,由得:,,,证明 ∽ ,根据面积比等于相似比的平方列式可求得y关于x的函数关系式;因为H是射线DC上一点,所以分两种情况:如图2,当点H在边DC上时,根据已知,得,再利用 ∽ ,列比例式可求得x的值;如图3,当H在DC的延长线上时,同理可求得x的值.本题是相似形的综合题,考查了相似三角形的判定和性质、平行四边形的性质以及平行线分线段成比例定理,在相似形的综合题中,如果有平行的已知条件,可以直接根据平行线分线段成比例定理列比例式,不证明相似也可以;本题还利用了相似三角形的性质:相似三角形面积的比等于相似比的平方;注意第三问中采用分类讨论的方法,不要漏解.。

九年级上册合肥数学期末试卷测试卷(含答案解析)

九年级上册合肥数学期末试卷测试卷(含答案解析)

九年级上册合肥数学期末试卷测试卷(含答案解析)一、选择题1.抛物线223y x x =++与y 轴的交点为( )A .(0,2)B .(2,0)C .(0,3)D .(3,0)2.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .193.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( ) A .1 B .2 C .0,1 D .1,2 4.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤5.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°6.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2427.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =8.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .49.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .1610.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A.14B.13C.12D.2311.cos60︒的值等于()A.12B.22C.32D.3312.如图,AB,AM,BN 分别是⊙O 的切线,切点分别为 P,M,N.若 MN∥AB,∠A=60°,AB=6,则⊙O 的半径是()A.32B.3 C.323D.3二、填空题13.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___ 确定一个圆.(填“能”或“不能”)14.已知tan(α+15°)=33,则锐角α的度数为______°.15.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.16.如图,已知正六边形内接于O,若正六边形的边长为2,则图中涂色部分的面积为______.17.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.18.如图,在Rt△ABC中,BC AC⊥,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.19.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .20.已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表, x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.21.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.22.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.23.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.24.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .三、解答题25.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.26.如图1,矩形OABC 的顶点A 的坐标为(4,0),O 为坐标原点,点B 在第一象限,连接AC , tan ∠ACO=2,D 是BC 的中点, (1)求点D 的坐标;(2)如图2,M 是线段OC 上的点,OM=23OC ,点P 是线段OM 上的一个动点,经过P 、D 、B 三点的抛物线交x 轴的正半轴于点E ,连接DE 交AB 于点F.①将△DBF 沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时点P 的坐标; ②以线段DF 为边,在DF 所在直线的右上方作等边△DFG ,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动的路径的长.27.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF 交BD 于点G ,连接BE 交于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.28.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.29.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于10cm ?(2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由. 30.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.31.如图甲,在△ABC 中,∠ACB=90°,AC=4cm ,BC=3cm .如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm/s .连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题: (1)设△APQ 的面积为S ,当t 为何值时,S 取得最大值,S 的最大值是多少; (2)如图乙,连接PC ,将△PQC 沿QC 翻折,得到四边形PQP′C ,当四边形PQP′C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形.32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.2.B解析:B【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.3.C解析:C【解析】【分析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.4.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.5.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=A(0,2)、B(a ,a +2)= 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.7.D解析:D 【解析】 【分析】先将方程左边提公因式x ,解方程即可得答案. 【详解】 x 2﹣3x =0, x (x ﹣3)=0, x 1=0,x 2=3, 故选:D . 【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8.B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.9.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.10.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,11.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值. 12.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO ≌△BPO (AAS ),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=33,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.二、填空题13.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.14.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.15.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.18.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.19.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴圆锥的底面半径为cm ,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,6=cm ,∴底面周长为2π×6=12πcm ,即这张扇形纸板的弧长是12πcm ,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.20.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,∴当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.21.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B (2,6)在k y x =的图象上, ∴k =6; 即12y x=, 2025÷6=337…3,故点Q 离x 轴的距离与当x =3时,函数12y x =的函数值相等,又 x =3时,1243y ==, ∴点Q 的坐标为(2025,4),即n =4,∴mn =6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P 、Q 在A ﹣B ﹣C 段上的对应点是解题的关键.22.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3.故答案为:2 3 .【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.23.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.24.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径. 【详解】该圆锥的底面半径= 故答案为:1. 【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1 【解析】 【分析】 (1)根据180n Rl π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2Cr π=,求圆锥底面半径. 【详解】 该圆锥的底面半径=()1203=11802cm ππ⋅⋅故答案为:1. 【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.三、解答题25.(1)y=(x-1)2-4;(2)点G 坐标为(3.6,2.76),S △FHG =6.348;(3)m=0.6,四边形CDPQ 为平行四边形,理由见解析. 【解析】 【分析】(1)利用顶点式求解即可,(2)将G 点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH ,交x 轴于点R ,由平行线的性质得证明△AQR ∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m 中,即可证明四边形CDPQ 为平行四边形. 【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y 轴交于点E (0,3-),顶点为C (1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)(2)设G[a,0.6(a+1)],代入函数关系式, 得,2(1)40.6(1)a a --=+, 解得a 1=3.6,a 2=-1(舍去), 所以点G 坐标为(3.6,2.76). S △FHG =6.348(3)y=mx+m=m(x+1),当x=-1时,y=0,所以直线y=mx+m延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.因为FH∥x轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以QR QHAR PH= =0.6,设Q[n,0.6(n+1)],代入y=mx+m中,mn+m=0.6(n+1),m(n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y2=(x-1-m)2+0.6m-4,所以点D由点C向右平移m个单位,再向上平移0.6m个单位所得,过D作y轴的平行线,交x轴与K,再作CT⊥KD,交KD延长线与T,所以KD QRSK AR==0.6,所以tan∠KSD=tan∠QAR,所以∠KSD=∠QAR,所以AQ∥CS,即CD∥PQ.因为AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD,所以四边形CDPQ为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G 点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.26.(1)D (2,2);(2)①P (0,0);②13【解析】 【分析】(1)根据三角函数求出OC 的长度,再根据中点的性质求出CD 的长度,即可求出D 点的坐标;(2)①证明在该种情况下DE 为△ABC 的中位线,由此可得F 为AB 的中点,结合三角形全等即可求得E 点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E 点代入即可求得二次函数的表达式,根据表达式的特征可知P 点坐标;②可得G 点的运动轨迹为'GG ,证明△DFF'≌△FGG',可得GG'=FF',求得P 点运动到M 点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度. 【详解】解:(1)∵四边形OABC 为矩形, ∴BC=OA=4,∠AOC=90°, ∵在Rt △ACO 中,tan ∠ACO=OAOC=2, ∴OC=2, 又∵D 为CB 中点, ∴CD=2, ∴D (2,2); (2)①如下图所示,若点B 恰好落在AC 上的'B 时,根据折叠的性质1'','2BDF B DF BDB BD B D ∠=∠=∠=, ∵D 为BC 的中点, ∴CD=BD, ∴'CD B D =,∴1''2BCA DB C BDB ∠=∠=∠, ∴BCA BDF ∠=∠,∴//DF AC ,DF 为△ABC 的中位线, ∴AF=BF,∵四边形ABCD 为矩形 ∴∠ABC=∠BAE=90° 在△BDF 和△AEF 中,∵ABC BAE BF AF BFD AFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BDF ≌△AEF , ∴AE=BD=2, ∴E(6,0), 设(2)(4)2y a x x ,将E (6,0)带入,8a+2=0∴a=14-,则二次函数解析式为21342y x x =-+,此时P (0,0);②如图,当动点P 从点O 运动到点M 时,点F 运动到点F',点G 也随之运动到G'.连接GG'.当点P 向点M 运动时,抛物线开口变大,F 点向上线性移动,所以G 也是线性移动.∵OM=23OC=43 ∴4(0,)3M ,当P 点运动到M 点时,设此时二次函数表达式为1(2)(4)2y a x x ,将4(0,)3M 代入得14823a ,解得1112a ,所以抛物线解析式为1(2)(4)212y x x ,整理得21141223y x x =-++. 当y=0时,211401223x x -++=,解得x=8(已舍去负值),所以此时(8,0)E ,设此时直线'DF 的解析式为y=kx+b ,将D (2,2),E (8,0)代入2208k b k b =+⎧⎨=+⎩解得1383k b ⎧=-⎪⎪⎨⎪=⎪⎩,所以1833y x =-+, 当x=4时,43y =,所以4'3AF =,由①得112AF AB ==, 所以1''3FF AF AF =-=, ∵△DFG 、△DF'G'为等边三角形,∴∠GDF =∠G'DF'=60°,DG =DF ,DG'=DF', ∴∠GDF ﹣∠GDF'=∠G'DF'﹣∠GDF', 即∠G'DG =∠F'DF , 在△DFF'与△FGG'中,''''DF DG F DF G DG DF DG =⎧⎪∠=∠⎨⎪=⎩, ∴△DFF'≌△FGG'(SAS ), ∴GG'=FF', 即G 运动路径的长为13. 【点睛】本题考查二次函数综合,解直角三角形,全等三角形的性质与判定,三角形中位线定理,一次函数的应用,折叠问题.(1)中能根据正切求得OC 的长度是解决此问的关键;(2)①熟练掌握折叠前后对应边相等,对应角相等是解题关键;②中能通过分析得出G 点的运动轨迹为线段GG',它的长度等于FF',是解题关键. 27.(1)45;(2)25°;(31 【解析】 【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解. (2)由A 、B 、C 、D 共圆,得出∠BDC =∠BAC ,(3)根据正方形的性质可得AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,然后利用“边角边”证明△ABE 和△DCF 全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS ”证明△ADG 和△CDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB =90°,取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH =12AB =1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线时,DH 的长度最小. 【详解】(1)如图1,∵AB =AC ,AD =AC ,∴以点A 为圆心,点B 、C 、D 必在⊙A 上, ∵∠BAC 是⊙A 的圆心角,而∠BDC 是圆周角,∴∠BDC =12∠BAC =45°, 故答案是:45;(2)如图2,取BD 的中点O ,连接AO 、CO .∵∠BAD =∠BCD =90°, ∴点A 、B 、C 、D 共圆, ∴∠BDC =∠BAC , ∵∠BDC =25°, ∴∠BAC =25°;(3)在正方形ABCD 中,AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG , 在△ABE 和△DCF 中,AB CD BAD CDA AE DF ⎧⎪∠∠⎨⎪⎩===, ∴△ABE ≌△DCF (SAS ), ∴∠1=∠2, 在△ADG 和△CDG 中,AD CDADG CDGDG DG⎧⎪∠∠⎨⎪⎩===,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°−90°=90°,取AB的中点O,连接OH、OD,则OH=AO=12AB=1,在Rt△AOD中,OD2222125AO AD++=根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD−OH5.【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.28.(1)抛物线的表达式为:228y x x=-++,直线AB的表达式为:21y x=-;(2)存在,理由见解析;点P(6,16)-或(4,16)--或(17,2)+或(17,2)-.【解析】【分析】(1)二次函数表达式为:y=a(x-1)2+9,即可求解;(2)S△DAC=2S△DCM,则()()()()()21112821139112 222DAC C AS DH x x x x x x =-=-++-++=--⨯,,即可求解;(3)分AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:()219y a x =-+, 将点A 的坐标代入上式并解得:1a =-, 故抛物线的表达式为:228y x x =-++…①, 则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得: 直线AB 的表达式为:21y x =-; (2)存在,理由:二次函数对称轴为:1x =,则点()1,1C , 过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -,∵2DAC DCM S S ∆∆=, 则()()()()()21112821139112222DACC A SDH x x x x x x =-=-++-++=--⨯, 解得:1x =-或5(舍去5), 故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++, ①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++, 解得:6s =或﹣4, 故点()6,16P -或()4,16--; ②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =±故点()12P 或()12;综上,点()6,16P -或()4,16--或()12或()12. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.29.(1)3秒后,PQ 的长度等于(2)PQB ∆的面积不能等于27cm . 【解析】 【分析】(1)由题意根据PQ=BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可; 【详解】解:(1)设x 秒后,PQ =5BP x =-,2BQ x =, ∵222BP BQ PQ +=∴()()(22252x x -+=解得:13x =,21x =-(舍去) ∴3秒后,PQ 的长度等于;(2)设t 秒后,5PB t =-,2QB t =, 又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm . 【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键. 30.(1)174m >-;(2)4m =- 【解析】 【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解. 【详解】(1)∵方程有两个不相等的实数根, ∴()()22=2144=417m m m ∆+--+>0解得:174m >- ∴当174m >-时,方程有两个不相等的实数根; (2)由题意得: 2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++=解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线 ∴122 1 0x x m +=-->,即12m <- ∴4m =- 【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键. 31.(1)当t 为52秒时,S 最大值为185;(2)2013; (3)52或2513或4013.【解析】 【分析】(1)过点P 作PH ⊥AC 于H ,由△APH ∽△ABC ,得出=PH APBC AB,从而求出AB ,再根据535PH t -,得出PH=3﹣35t ,则△AQP 的面积为:12AQ•PH =12t (3﹣35t ),最后进行整理即可得出答案;(2)连接PP′交QC 于E ,当四边形PQP′C 为菱形时,得出△APE ∽△ABC ,=AE APAC AB,求出AE=﹣45t+4,再根据QE=AE ﹣AQ ,QE=12QC 得出﹣95t+4=﹣12t+2,再求t 即可; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=﹣95t+4,从而求出。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

九年级上册合肥数学期末试卷测试卷(含答案解析)

九年级上册合肥数学期末试卷测试卷(含答案解析)

九年级上册合肥数学期末试卷测试卷(含答案解析)一、选择题1.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .452.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( ) A .1 B .2 C .0,1 D .1,2 3.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .44.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .3B .5C .4D .65.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .46.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A.2 B.54C.53D.757.方程2x x=的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1 8.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有()A.最小值―3 B.最小值3 C.最大值―3 D.最大值39.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.73B.234+C.1433D.223310.如图,BC是O的直径,A,D是O上的两点,连接AB,AD,BD,若70ADB︒∠=,则ABC∠的度数是()A.20︒B.70︒C.30︒D.90︒11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个12.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .3二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.已知tan (α+15°)=33,则锐角α的度数为______°. 15.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)16.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 17.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.18.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 19.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.20.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.21.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 22.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.23.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒24.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.三、解答题25.对于代数式ax 2+bx +c ,若存在实数n ,当x =n 时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式x 2,当x =0时,代数式等于0;当x =1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A =0. (1)代数式x 2﹣2的不变值是 ,A = . (2)说明代数式3x 2+1没有不变值;(3)已知代数式x 2﹣bx +1,若A =0,求b 的值.26.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.27.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB . (1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.28.解方程: (1)x 2﹣2x ﹣1=0;(2)(2x ﹣1)2=4(2x ﹣1).29.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.30.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率.31.如图,某农户计划用长12m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m .(1)若生物园的面积为9m 2,则这个生物园垂直于墙的一边长为多少? (2)若要使生物园的面积最大,该怎样围?32.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍,设B产品生产数量的增长率为x(0x ),若10月份该工厂的总收入增加了4.4x,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.2.C解析:C【解析】【分析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.3.B解析:B分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425BC CD+=+=故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.5.B解析:B【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.6.D解析:D 【解析】 【分析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC 、BE ,在Rt △BCE 中,利用勾股定理即可解决问题. 【详解】如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3, ∴2234+, ∵CD=DB , ∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC ,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.7.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x=,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.8.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3. 故选A. 【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.11.C解析:C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.二、填空题13.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD5,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.15.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.16.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.17.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF ∴323x x DE x x DF∴45DE DF , ∴45CE CF .故答案为:45. 【点睛】 本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口. 18..【解析】试题分析:∵在△ABC 中,∠C =90°,cosA =,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =.∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.19.1【解析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.20.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 21.2019【解析】【分析】根据m 是方程5x2﹣3x ﹣1=0的一个根代入得到5m2﹣3m ﹣1=0,进一步得到5m2﹣1=3m ,两边同时除以m 得:5m ﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m 是方程5x 2﹣3x ﹣1=0的一个根代入得到5m 2﹣3m ﹣1=0,进一步得到5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3,然后整体代入即可求得答案. 【详解】解:∵m 是方程5x 2﹣3x ﹣1=0的一个根,∴5m 2﹣3m ﹣1=0,∴5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3, ∴15m ﹣3m +2010=3(5m ﹣1m)+2010=9+2010=2019, 故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.22.【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.解析:41383+【解析】【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明ABC AEO∆∆,由三角函数可得出23AOAE=,进而求得6AE=,再通过证明AEB AOC∆∆,可得出23OC BE=,根据三角形三边关系可得:BE OE OB≤+,由勾股定理可得213OE=,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵213sin B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE 的最大值为:4,∴OC 的最大值为:()28433=. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 23.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.24.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】-335+335【解析】【分析】由题意可得点P在以D5P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD5∴点P在以D5∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3AH)2,∴AH 335+AH335-,若点P在CD的右侧,同理可得AH=3352,综上所述:AH=3352或3352.【点睛】本题是正方形与圆的综合题,正确确定点P是以D5BD为直径的圆的交点是解决问题的关键.三、解答题25.(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】【分析】(1)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程3x2﹣x+1=0没有实数根,进而可得出代数式3x 2+1没有不变值;(3)由A =0可得出方程x 2﹣(b +1)x +1=0有两个相等的实数根,进而可得出△=0,解之即可得出结论.【详解】解:(1)依题意,得:x 2﹣2=x ,即x 2﹣x ﹣2=0,解得:x 1=﹣1,x 2=2,∴A =2﹣(﹣1)=3.故答案为﹣1和2;3.(2)依题意,得:3x 2 +1=x ,∴3x 2﹣x +1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x 2+1没有不变值.(3)依题意,得:方程x 2﹣bx +1= x 即x 2﹣(b +1)x +1=0有两个相等的实数根, ∴△=[﹣(b +1)]2﹣4×1×1=0,∴b 1=﹣3,b 2=1.答:b 的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.26.(1)b=2,c=1,D (2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A 分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标.(3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).∴b= 2 ,c= 1 ,D (2,3).(2)过点E 作EF⊥y 轴,设E (x ,-x 2+2x+3),当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去),∴B(3,0).∵C(0,3),∴CBE CBO CFE S S S梯形OFEB -S , ∴22111633(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD 的解析式为y=x+1,设P (m ,m+1),则Q (m ,-m 2+2m+3),∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24m, ∴当12m ==0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;当∠M 是直角时,如图1,点M 在线段DN 的垂直平分线上,此时N 1(2,0);当∠M 是直角时,如图2,作DE ⊥x 轴,M 2E ⊥HE ,N 2H ⊥HE,∴∠H=∠E=90︒,∵△M 2N 2D 是等腰直角三角形,∴N 2M 2=M 2D,∠N 2M 2D=90︒,∵∠N 2M 2H=∠M 2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);当∠N是直角时,如图3,作DE⊥x轴,∴∠N3HM3=∠DEN3=90︒,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90︒,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90︒,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90︒,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N的坐标.27.(1)见解析;(2)BP=7.【解析】【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP∽△ABD,然后利用相似三角形的对应边成比例求BP的长.【详解】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴APAD =AOAB,即14BP=21,解得:BP=7.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.28.(1)x=22;(2)x=52或x=12.【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x ﹣2)2=2, ∴x =2±2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0,∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.29.8+83【解析】【分析】过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 843BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.30.(1)14;(2)14. 【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=14,故答案为:14;(2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.31.(1)3m;(2)生物园垂直于墙的一边长为2m.平行于墙的一边长为6m时,围成生物园的面积最大,且为12m2【解析】【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(12-3x)米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可;(2)设围成生物园的面积为y,由题意可得:y=x(12﹣3x)且53≤x<4,从而求出y的最大值即可.【详解】设这个生物园垂直于墙的一边长为xm,(1)由题意,得x(12﹣3x)=9,解得,x1=1(不符合题意,舍去),x2=3,答:这个生物园垂直于墙的一边长为3m;(2)设围成生物园的面积为ym2.由题意,得()()21233212y x x x -+==--,∵12371230x x -≤⎧⎨-⎩> ∴53≤x <4 ∴当x =2时,y 最大值=12,12﹣3x =6,答:生物园垂直于墙的一边长为2m .平行于墙的一边长为6m 时,围成生物园的面积最大,且为12m 2.【点睛】本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.32.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.。

2016-2017年九年级上学期期末数学试卷及答案

2016-2017年九年级上学期期末数学试卷及答案

C O 图4DB A 2016-2017年九年级上学期期末数学试卷一、选择题(每小题4分,共40分)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( B )A .B .C .D .2.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( B )A .6 B .16 C .18 D .243.已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( C )A .43-B .83C .83-D .434.已知二次函数y =-(x +k )2+h ,当x >-2时,y 随x 的增大而减小,则函数中k 的取值范围是( C )A .k ≥-2 B .k ≤-2 C .k ≥2 D .k ≤2 5.在△ABC 中,∠A =90°,AB =3cm ,AC =4cm ,若以A 为圆心3cm 为半径作⊙O ,则BC 与⊙O 的位置关系是( A )A .相交 B .相离 C .相切 D .不能确定 6.如图C 、D 是以线段AB 为直径的⊙O 上两点,若CA CD =,且40ACD ∠=, 则CAB ∠=( B ) A.10B.20C.30D.407.如图在△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为 ( A ) A .10 B .2 2 C .3 D .2 58.如图AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为 的中点,P 是直径AB 上一动点,则PC+PD 的最小值为( B )A .22B.2C.1D.29.如图⊙O 是以原点为圆心,2为半径的圆,点P 是直线 y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( B )A .3B .4C .6-D .3-110.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b >0.其中正确的结论有( C ) A .①② B .①④ C .①③④ D .②③④ 二、填空题(每小题4分,共40分)11.已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m= 6 .12.若关于x 的二次函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为1k =-. 13.如图,⊙O 的直径CD 与弦AB 垂直相交于点E ,且BC =1,AD =2,则⊙O 的直径长为5 .14.如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是____32__________。

安徽省合肥市九年级数学上学期期末考试试题

安徽省合肥市九年级数学上学期期末考试试题

2016—2017学年度第一学期九年级期末考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)以下每小题都给出了A,B,C,D四个选项,其中只有一个是正确的,请把正确答案的代号填在下表中。

题号 1 2 3 4 5 6 7 8 9 10答案1.抛物线y=ax2+bx-3经过点(1,1),则代数式a+b的值为()A.2 B.3 C.4 D.62.在Rt△ABC中,90C∠=︒,5AB=,3AC=,下列选项中,正确的是()A.3sin5A=; B.3cos5A=; C.3tan5A=; D.3cot5A=;3.若cdab=,且0≠abcd,则下列式子正确的是()A.dbca::= B.abcd::= C.dcba::= D.bcda::=4.对于反比例函数2yx=,下列说法不正确...的是()A.点(-2,-1)在它的图象上 B.它的图象在第一、三象限C.y随x的增大而减小 D.当0x<时,y随x的增大而减小5.如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③AD/AE=AB/AC.其中正确的有()A.3个B.2个C.1个D.0个6.AB为⊙O的直径,点C、D在⊙O上.若∠ABD=42°,则∠BCD的度数是()第6题第8题图A.122°B.132°C.128°D.138°7.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A.AB 2=AC g BC B.BC 2=AC g BC C.AC =51-BC D.BC =35-AB 8.如图,在△ABC 中,AB =AC =13,BC =10,点D 为BC 的中点,DE ⊥AC 于点E ,则tan ∠CDE 的值等于 ( ) A.1013 B.1310 C.512 D.1259.如图,已知点P 是ABC Rt ∆的斜边BC 上任意一点,若过点P 作直线PD 与直角边AB 或AC 相交于点D ,截得的小三角形与ABC ∆相似,那么D 点的位置最多有 ( ) A.2处 B.3处 C.4处 D.5处10.如图,在Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是 ( )二、填空题(本大题共4小题,每小题5分,满分20分) 11.计算:sin60°cos30°﹣tan45°= .AB CDE F第10题图O O O Oyyyyx x x x1 1 1 12 2 22 22 4 2 111112.如图,点A 、B 、C 在⊙O 上,∠AOC=60°,则∠ABC的度数是 .13.有甲乙两张纸条,甲纸条的宽是乙纸条宽的3倍,如图将这两张纸条交叉重叠地放在一起,重合部分为平行四边形AB CD ,则AB 与BC 的数量关系为 . 14.如图,正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长 线分别交AD 于点E 、F ,连接BD 、DP 、BD 与CF 相交于点H .给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH g PB ;④BPD ABCDS S ∆正方形=314-.其中正确的是 .(填写正确结论的序号) 三、(本大题共2小题,每小题8分,满分16分) 15.抛物线6822-+-=x x y 。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

安徽省合肥市瑶海区九年级上学期期末考试数学试卷

安徽省合肥市瑶海区九年级上学期期末考试数学试卷

2015-2016学年度第一学期九年级期末考试数学试题本试卷共8大题,计23小题,满分150分,考试时间120分钟.一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项写在题后的表格中,不选、错选或多选的,一律得0分.1.若=,则的值为:( )A.1 B.C.D.2.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是:( )A.b=atanB B.a=ccosB C.D.a=bcosA3.如图,若∠1=∠2=∠3,则图中的相似三角形有()第3题图第4题图第5题图A.1对B.2对C.3对D.4对4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是:( )A.∠ABP=∠C B.∠APB=∠ABC C.=D.=5.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为:( )A.5cosαB.C.5sinαD.2A.﹣11B.﹣2C.1 D.﹣57.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.8.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为:( ) A.B.2﹣2 C.2﹣D.﹣2第7题图第9题图第10题图9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S四边形EFBC为:( )A.2:5 B.4:25 C.4:31 D.4:3510.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是:( )A B C D二.填空题(本大题共4小题,每小题5分,满分20分)11.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.第12题图第14题图13.计算:sin60°•cos30°﹣tan45°=.14.如图已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是.三.(本大题共2小题,每小题8分,满分16分)15.计算:4sin60°+tan45°﹣.16.已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求此函数图象抛物线的顶点坐标;(2)直接写出函数y随自变量增大而减小的x的取值范围.四、(本大题共2小题,每小题8分,满分16分)17.如图,在6×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的格点上.请按要求画图:(1)以点B为位似中心,在方格内将△ABC放大为原来的2倍,得到△EBD,且点D、E 都在单位正方形的顶点上.2,点F、G、H都在单(2)在方格中作一个△FGH,使△FGH∽△ABC,且相似比为1:位正方形的顶点上。

合肥市九年级上学期期末数学试卷

合肥市九年级上学期期末数学试卷

合肥市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)下列说法正确的是A . 一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B . 为了了解全国中学生的心理健康状况,应采用普查的方式C . 一组数据0,1,2,1,1的众数和中位数都是1D . 若甲组数据的方差甲=0.2 ,乙组数据的方差乙=0.5,则乙组数据比甲组数据稳定2. (2分) (2017九上·亳州期末) 下列各组中的四条线段成比例的是()A . 1cm、2cm、20cm、30cmB . 1cm、2cm、3cm、4cmC . 5cm、10cm、10cm、20cmD . 4cm、2cm、1cm、3cm3. (2分)如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么,图形所在平面内,可作为旋转中心的点有()A . 1个B . 2个C . 3个D . 4个4. (2分)已知二次函数y=ax2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b2﹣4ac<0 ⑤c <4b ④a+b>0,则其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分) (2015九上·龙岗期末) 将抛物线y=﹣5x2+1先向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为()A . y=﹣5(x+3)2﹣2B . y=﹣5(x+3)2﹣1C . y=﹣5(x﹣3)2﹣2D . y=﹣5(x﹣3)2﹣16. (2分)(2017·娄底模拟) 从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A . 0B .C .D . 17. (2分)若一个圆的内接正三角形、正方形、正六边形的边心距分别为r1 , r2 , r3 ,则r1:r2:r3等于()A . 1:2:3B . ::1C . 1::D . 3:2:18. (2分)下图中的两个四边形是位似图形,它们的位似中心是()A . 点MB . 点PC . 点OD . 点N9. (2分) (2017九上·莘县期末) 如图,在△ABC中,D是边AC上一点,连BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD•AC;③AD•BC=AB•BD;④AB•BC=AC•BD.其中单独能够判定△ABC∽△ADB的个数是()A . ①②B . ①②③C . ①②④D . ①②③④10. (2分) (2018九下·市中区模拟) 如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A . 圆形铁片的半径是4cmB . 四边形AOBC为正方形C . 弧AB的长度为4πcmD . 扇形OAB的面积是4πcm211. (2分)已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A . =B . =C . =D . =12. (2分) (2016九上·大悟期中) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A . c>0B . 2a+b=0C . b2﹣4ac>0D . a﹣b+c>0二、填空题: (共6题;共6分)13. (1分)(2017·裕华模拟) 对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)(t为常数)称为这两个函数的“再生二次函数”.其中t是不为零的实数,其图象记作抛物线F,现有点A(2,0)和抛物线F上的点B(﹣1,n),下列结论正确的有________.①n的值为6;②点A在抛物线F上;③当t=2时,“再生二次函数”y在x>2时,y随x的增大而增大④当t=2时,抛物线F的顶点坐标是(1,2)14. (1分)(2018·嘉定模拟) 如图,在直角梯形中,∥ ,,,,,点、分别在边、上,联结.如果△ 沿直线翻折,点与点恰好重合,那么的值是________.15. (1分)(2017·连云港) 如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为________.16. (1分)(2018·包头) 从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是________.17. (1分)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=________(填度数).18. (1分) (2016九上·云阳期中) 在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AE D的周长是9.其中正确的结论是________(把你认为正确结论的序号都填上.)三、解答题: (共7题;共80分)19. (15分)关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.20. (10分)(2011·湖州) 如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.(1)求OE和CD的长;(2)求图中阴影部分的面积.21. (10分)(2018·乌鲁木齐模拟) 如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P= ,AD=6,求线段AE的长.22. (10分) (2014九上·临沂竞赛) 近年来随着全国楼市的降温,商品房的价格开始呈现下降趋势,2012年某楼盘平均售价为5000元/平方米,2014年该楼盘平均售价为4050元/平方米.(1)如果该楼盘2013年和2014年楼价平均下降率相同,求该楼价的平均下降率;(2)按照(1)中楼价的下降速度,请你预测该楼盘2015年楼价平均是多少元/平方米?23. (10分) (2016九上·余杭期中) 一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.①求抛物线的解析式;②要使高为3米的船通过,则其宽度须不超过多少米?(2)如图2,若把桥看做是圆的一部分.①求圆的半径;②要使高为3米的船通过,则其宽度须不超过多少米?24. (10分)如图,等腰△ABC中,BA=BC,AO=3CO=6.动点F在BA上以每分钟5个单位长度的速度从B点出发向A点移动,过F作FE∥BC交AC边于E点,连结FO、EO.(1)求A、B两点的坐标;(2)证明:当△EFO面积最大时,△EFO∽△CBA.25. (15分)(2017·奉贤模拟) 如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A (﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC,BC,DB,DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共7题;共80分)19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

合肥市九年级上册期末数学试题(word版,含解析)

合肥市九年级上册期末数学试题(word版,含解析)

合肥市九年级上册期末数学试题(word 版,含解析)一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( ) A .3B .6C .5D .72.若x=2y ,则xy的值为( ) A .2B .1C .12D .133.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)4.若25x y =,则x y y+的值为( ) A .25B .72 C .57D .755.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π6.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 8.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定10.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°11.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .10C .10π D .π12.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 213.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80° 14.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=-C .()2425x +=D .()247x +=15.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°二、填空题16.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.17.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.18.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 19.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________;20.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.21.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.22.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.23.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.24.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 25.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.26.数据1、2、3、2、4的众数是______.27.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.28.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.29.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.30.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.三、解答题31.如图,AB BC =,以BC 为直径作O ,AC 交O 于点E ,过点E 作EG AB ⊥于点F ,交CB 的延长线于点G .(1)求证:EG 是O 的切线;(2)若23GF =,4GB =,求O 的半径.32.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为; (3)在所给坐标系中画出该二次函数的图象; (4)根据图象,当-3<x <2时,y 的取值范围是.33.解方程: (1)(x +1)2﹣9=0 (2)x 2﹣4x ﹣45=034.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .35.已知二次函数y =ax 2+bx ﹣16的图象经过点(﹣2,﹣40)和点(6,8). (1)求这个二次函数图象与x 轴的交点坐标; (2)当y >0时,直接写出自变量x 的取值范围.四、压轴题36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.38.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.39.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.A解析:A【解析】【分析】将x=2y代入xy中化简后即可得到答案.【详解】将x=2y 代入x y得: 22x yy y ==, 故选:A. 【点睛】此题考查代数式代入求值,正确计算即可.3.C解析:C 【解析】 【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可. 【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ), ∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1). 故选:C . 【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.D解析:D 【解析】 【分析】由已知可得x 与y 的关系,然后代入所求式子计算即可. 【详解】 解:∵25x y =, ∴25x y =, ∴2755y yx y y y ++==.故选:D. 【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.5.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.6.A解析:A 【解析】 【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可. 【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.7.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .8.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d 的范围,进而得出d 与r 的数量关系,即可判断点P 和⊙O 的关系..【详解】解:∵关于x 的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d ≥0,解得d ≤1,∵⊙O 的半径为r=1,∴d ≤r∴点P 在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r 时,点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内.9.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.10.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°,∴12ABC AOC4.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 11.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为601010π⨯=.故选C.12.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.13.C解析:C【解析】【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.14.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,8494x xx+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.15.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.17.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

2016-2017学年人教版初三数学第一学期期末试卷含答案

2016-2017学年人教版初三数学第一学期期末试卷含答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2016-2017学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S 的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。

合肥瑶海区九年级试卷数学【含答案】

合肥瑶海区九年级试卷数学【含答案】

合肥瑶海区九年级试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果一个三角形的两边分别是8cm和10cm,那么第三边的长度可能是多少?A. 5cmB. 12cmC. 15cmD. 18cm3. 下列哪个数是质数?A. 12B. 17C. 20D. 214. 如果一个数的平方是64,那么这个数是多少?A. 8B. 7C. 6D. 55. 下列哪个角是锐角?A. 30度B. 90度C. 120度D. 150度二、判断题(每题1分,共5分)1. 两个奇数相加的结果一定是偶数。

()2. 任何两个不同的质数相乘的结果一定是合数。

()3. 一个三角形的三个角的度数之和是180度。

()4. 两个负数相乘的结果一定是正数。

()5. 任何数乘以0的结果都是0。

()三、填空题(每题1分,共5分)1. 一个正方形的边长是6cm,那么它的面积是______平方厘米。

2. 如果一个数的平方根是4,那么这个数是______。

3. 两个质数相乘的结果是合数,这个合数的因数个数是______。

4. 一个等边三角形的三个角的度数都是______度。

5. 下列哪个数是合数?______四、简答题(每题2分,共10分)1. 请解释什么是质数和合数。

2. 请简述勾股定理的内容。

3. 请解释什么是因数和倍数。

4. 请简述什么是绝对值。

5. 请解释什么是等差数列。

五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。

2. 如果一个数的平方是81,那么这个数的平方根是多少?3. 一个等边三角形的边长是12cm,求这个三角形的面积。

4. 如果一个数的倒数是2,那么这个数是多少?5. 一个数加上它的倒数等于多少?六、分析题(每题5分,共10分)1. 已知一个三角形的两边分别是8cm和10cm,第三边的长度可能是多少?请给出所有可能的情况,并说明理由。

完整word安徽省合肥市瑶海区九年级上学期期末考试数学试卷

完整word安徽省合肥市瑶海区九年级上学期期末考试数学试卷

2015-2016学年度第一学期九年级期末考试数学试题本试卷共8大题,计23小题,满分150分,考试时间120分钟.一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项写在题后的表格中,不选、错选或多选的,一律得0分.,则的值为:( .若= )1.A.1.BD.C2.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是:( ).D.a=bcosAb=atanB B.a=ccosB CA.3.如图,若∠1=∠2=∠3,则图中的相似三角形有()第3题图第4题图第5题图A.1对B.2对C.3对D.4对4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是:( )= ..= APB=ABP=∠C B.∠∠ABCCD.A∠5.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为:( ).D .5sinααA.5cos B .C2+bx+c的图象时,列出了下面的表格:6.某同学在用描点法画二次函数y=ax……x ﹣2 ﹣1 0 1 2……y ﹣11 ﹣2 1 ﹣2 ﹣5由于粗心,他算错了其中一个y值,则这个错误的数值是:( )A.﹣11B.﹣2C.1 D.﹣57.如图,已知AB∥CD∥EF,那么下列结论正确的是()D.C.A.B.8.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为:( )2﹣.D﹣2.C2 ﹣2.B.A.第10题图第7题图第9题图:F,若EFBD,且AE、BD交于点9.如图,在?ABCD中,E为CD上一点,连接AE、S:) 为:( AF=2:5,则S DEF△EFBC四边形35.4:.4:31 DA.2:5 B.4:25 C与,且AC°)的直角边与正方形DEFG的边长均为210.如图,等腰Rt△ABC(∠ACB=90与沿这条直线向右平移,直到点A与点D重合,让△ABCDE在同一直线上,开始时点C重合部分(图中阴影部分)的面与正方形DEFG的长为x,△ABC点E重合为止.设CD)积为y,则y与x之间的函数关系的图象大致是:(D C A B题号 1 2 3 4 5 6 7 8 9 10答案二.填空题(本大题共4小题,每小题5分,满分20分)2﹣4x+m与x轴的一个交点的坐标为(1,0)11.抛物线y=x,则此抛物线与x轴的另一个交点的坐标是.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.第12题图第14题图13.计算:sin60°?cos30°﹣tan45°=.2+bx+c的图象如图所示,有以下结论:14.如图已知二次函数y=ax①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是.三.(本大题共2小题,每小题8分,满分16分)15.计算:4sin60°+tan45°﹣.2).3的图象经过点A(,﹣16.已知二次函数y=ax4+4x+2 1)求此函数图象抛物线的顶点坐标;(x的取值范围.(2)直接写出函数y随自变量增大而减小的分)小题,每小题8分,满分162四、(本大题共在单位正方形的格点上.请按C、B、A6×4的正方形方格中,△ABC的顶点.如图,在17 要求画图:E,且点D、2△ABC放大为原来的倍,得到△EBD(1)以点B为位似中心,在方格内将都在单位正方形的顶点上.2:1,点F、G、△△FGH,使FGH∽△ABCH都在单,且相似比为)在方格中作一个(2位正方形的顶点上。

2017-2018学年瑶海区九年级上期末考试试卷

2017-2018学年瑶海区九年级上期末考试试卷

2017-2018 学年瑶海区九年级(上)期末考试试卷一、选择题(本大题共10 小题,每小题4 分,满分40 分)1.下列函数中,一定是二次函数的是()A.y =ax2B. y = 3x(4 -x)C.y = 4x -3D.y = 2x2.反比例函数y =k (k ≠ 0)的图象如图所示,已知点A 的坐标为(1,1),则k满足的关系式为()xA.k =1B. 0 <k <1C.k >1D.k ≤13.若斜坡AB 的坡度i =1: 3 ,则它的坡角a 的度数是()A. 30°B. 45°C. 60°D. 无法确定4.下列四组图形中,一定相似的图形是()A.直角三角形B. 各有一个角是20°的两个等腰三角形C. 各有一个角是110°的两个等腰三角形D. 有两边之比都等于2:3 的两个三角形5.若AB∥CD,AD 与BC 相交于点O,若AO=2,DO=4,BO=3,则CD 的长不可能为()A. 5B. 7C. 9D. 116.已知函数y =bx +a 的图像如图所示,则函数y =ax2 +bx +c 的图象大致是()7.已知二次函数y =ax2+bx +c (a ≠ 0)的图象上的部分点坐标(y, x)的对应值列表如下:则关于该函数的说法正确的是()A.对称轴x =-32B.与y 轴交于点(0,-6)C.顶点的坐标是(1,-11)D.与x 轴有两个交点·1 28.如图,在圆O 中,半径OC 与弦AB 垂直于点D,且AB=8,OC=5,则CD 的长是()A. 3B. 2.5C. 2D. 19.如图,在△ABC 中,AC=6,AB=10,点D 是AC 的中点,点E 在AB 上,若△ADE 与△ABC 相似,则AE 为()A. 1.8B. 5C. 3 或5D. 1.8 或510.二次函数y =ax2+bx +c (a ≠ 0)的图象如图所示,有下列结论:①abc <0;②b =-2a ;③8a+c >0;④一元二次方程ax2+bx +c = 0(a ≠ 0)的两个根是x =-1,x =3,其中正确的结论有()A. 1 个B. 2 个C. 3 个D. 4 个第8 题图第9 题图第10 题图二、填空题(本大题共4 小题,每小题5 分,满分20 分)11. 已知,,则.12.如果线段a、b、c、d 满足a=c=2 ,那么a +c= .b d 3 b +d13.如图,已知圆O 是△ABD 的外接圆,AB 是圆O 的直径,CD 是圆O 的弦,∠ABD=58°,则∠BCD 的度数是.14.如图,在四边形ABCD 中,∠B=∠C,AB=3,CD=2,BC=6,点P 是BC 上的一动点,若△ABP 与△CDP 相似,则BP 的值为.第13 题图第14 题图三、(本大题共2 小题,每小题8 分,满分16 分)15. 计算:4sin 60︒- 2cos 45︒-16. 如图,在△ABC 中,∠A=30°,∠B=45°,AC=10,求AB(结果保留根号)四、(本大题共2 小题,每小题8 分,满分16 分)17.如图,AB 是圆O 的直径,C 是半圆O 上的一点,AD 平分∠BAC 交半圆O 于点D ,过D 作DE ⊥AC 交AC 的延长线于点E;求证:ED 是半圆O 的切线.18.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)按下列要求作图:①将△ABC 向左平移4 个单位,得到△A1B1C1;②将△A1B1C1 绕点B1 逆时针旋转90°,得到△A2B2C2.(2)求C1 在旋转过程中所经过的路径长.五、(本大题共2 小题,每小题10 分,满分20 分)19.如图,点B、C、D 在同一条直线上,△ABC 和△DCE 都是等边三角形,且都在直线BD 的同一侧,BE 分别交AD,AC 于点F、M,AD 交CE 于点N.(1)求证:∆BCE ≅∆ACD(2)求证:AB2 =AD ⋅AF⎩ ⎧⎪-ab 2(b > 0) 20. 规定新运算“ ⊗ ”为 a ⊗ b = ⎨⎪ab 2 (b ≤ 0) ,例如: 3⊗(-1) = 3⨯(-1)2= 3 . 若 y = 3 ⊗ x ,求 y 与 x 的函数 2关系式,并在给定的平面直角坐标系中画出它的图象.六、(本题满分 12 分)21. 已知菱形 OABC 的周长为 20,它在平面直角坐标系中的位置如图所示,其中点 C 的坐标为(3,4).(1) 若对角线 AC 、OB 的交点为点 P ,求点 P 的坐标; (2) 若反比例函数 y = k(k ≠ 0) 的图象经过点 P ,求反比例函数的表达式;x(3) 若反比例函数 y =k (k ≠ 0) 的图象与边 BC 所在的直线交于点 M ,求点 M 的坐标.x七、(本题满分 12 分)22. 如图,四边形 ABCD 是矩形,正方形 AEFG 的顶点 E 、F 分别在矩形 ABCD 的边 BC 、CD 上(不与顶点重合),边 FG 与矩形 ABCD 的边 AD 交于点 H .(1) 求证:BC=AB+CF ;(2)若矩形ABCD 的周长是20,CF=2x,且CE>CF.①用含x 的代数式表示AB,并指出x 的取值范围;②求DH 的长(用含x 的代数式表示).八、(本题满分14 分)23.某印刷厂接到一批教辅资料的印刷任务,要求在一个月(30 天)内完成,根据合同规定,每本教辅资料的出厂价为10 元.设该印刷厂第x 天印刷的教辅资料为y 本,y 与x 之间的函数关系图象如图所示.(1)求y 与x 之间的函数表达式;(2)通过计算求出该印刷厂有多少天日印刷辅助资料的数量达到1800 本以上(含1800 本);(3)设该厂第x 天每本教辅资料印刷成本为p 元,p 与x 之间满足p =-0.05x +9.2,若该厂第x 天的生产利润为w元,求w 与x 之间的函数关系式,并求第几天的生产利润最大?最大利润是多少?(利润=出厂价-成本)⎨⎩2017-2018 学年瑶海区九年级(上)期末试卷答案一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分)二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11. 0.3412.2 313. 32°14. 3.6 或3- 3 或3+三、(本大题共 2 小题,每小题 8 分,满分 16 分)15. 解:原式= 3 - 2 +116. 解 :5 3 + 5四、(本大题共 2 小题,每小题 8 分,满分 16 分) 17. 证明:连接 OD .∵ ∠EAD = ∠DAB =1∠DOB ∴∠EAB = ∠DOB2∴ AE DO , OD ⊥ ED∴ED 是半圆 O 的切线. 18. 解:(1)如图所示(2)2π五、(本大题共 2 小题,每小题 10 分,满分 20 分) 19. 证明:(1) ∠ACB +∠ACE = ∠ACE +∠DCE∴∠ACD = ∠BCE⎧BC = AC .在△BCE 和△ACD 中, ⎪∠BCE = ∠ACD . ⎪CD = CE (2) 由(1)可得: ∠BEC = ∠ADC∴∆BCE ≅ ∆ACD (SAS )∠ABC =∠ECD = 60︒∴ AB CE , ∠ABF = ∠BEC ∴∠ABF = ∠ADC∴∆ABF ∆ADB ,AB=AFAD AB∴ AB 2 = AD ⋅ AF20. 解:当 x > 0时, y 与 x 的关系式为 y = - 3x 2 ;2当 x ≤ 0时, y 与 x 的函数关系式为 y = 3x 2 ;23⎨3⎧- 3 x 2(x > 0)∴ y 与 x 的函数关系式为 y = ⎪⎪⎪⎩2 2x 2 (x ≤ 0)∆CEF∆DFH⎪ ⎩ ( ) 六、(本题满分 12 分)21. 解:(1)∵点 B 的坐标是(8,4)∴点 P 的坐标是(4,2)(2) 反比例函数的表达式为 y = 8x(3) 点 M 的坐标为(2,4)七、(本题满分 12 分)22. (1)证明: ∆ABE ≅ ∆ECF∴BC = CE + BE = AB + CF(2)①矩形 ABCD 的周长是20 ,∴AB + BC = 10.由(1)得 AB=CE ,BE=CF⎧2x > 0∴ AB + BC = AB + CF + AB =10∴ AB = 10 - 2x= 5 - x2由⎨5- x > 0 ⎪2x < 5- x,解得0 < x < 53 ② ∴CE = CFDF DHCE = AB = 5 - x , DF = CD - CF = 5 - x - 2x = 5 - 3x∴ 5 - x = 2x2x 5 - 3x DH = = 10x - 6x 2 5 - 3x DH八、(本题满分 14 分)5 - x5 - x⎧⎪100x (0 ≤ x ≤ 20)⎩ ma ∴ w 与 x 之间的函数表达式为 w = ⎨23. 解:(1)y 与 x 之间的函数表达式是 y = ⎨⎪-40x + 2800(20 < x ≤ 30)(2)8 天(从第 18 天到第 25 天)(3)当0≤ x ≤ 20时, w = ⎡10-(-0.05x + 9.2)⎤⨯100x = 5x 2 +80x = 5(x +8)2- 320,⎣⎦根据二次函数的性质,当 x > -8 时, w 随 x 的增大而增大,∴ x = 20时, w = 5⨯(20 + 8)2- 320 = 3600当20< x ≤ 30时, w = ⎡10-(-0.05x + 9.2)⎤⨯(-40x +2800)= -2x 2+108x +2240 = -2(x -27)2+3698,⎣⎦由二次函数的性质知当 x = 27时, w max = 3698,⎧⎪5x 2 + 80x (0 ≤ x ≤ 20)⎪⎩-2x 2+108x + 2240(20 < x ≤ 30)第27 天的生产利润最大,最大利润是3698 元,。

九年级上册合肥数学期末试卷测试卷(含答案解析)

九年级上册合肥数学期末试卷测试卷(含答案解析)
A.(6,0)B.(6,3)C.(6,5)D.(4,2)
11.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()
A.②④B.①③④C.①④D.②③
12.已知抛物线与二次函数 的图像相同,开口方向相同,且顶点坐标为 ,它对应的函数表达式为()
A. B.
C. D.
二、填空题
13.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是_____.
14.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm2.
18.如图,在 中, , , ,则 的长为________.
19.二次函数 的图象如图所示,若点 , 是图象上的两点,则 ____ (填“>”、“<”、“=”).
20.已知正方形ABCD边长为4,点P为其所在平面内一点,PD= ,∠BPD=90°,则点A到BP的距离等于_____.
21.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.
28.如图,直线y=kx+b(b>0)与抛物线y= x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,于y轴相交于点C,设∆OCD的面积为S,且kS+8=0.
(1)求b的值.
(2)求证:点(y1,y2)在反比例函数y= 的图像上.
29.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017 学年安徽省合肥市瑶海区初三上学期期末数学试卷
一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分)以下每小题都给出 了 A,B,C,D 四个选项,其中只有一个是正确的,请把正确答案的代号填 在表中. 1. (4 分)抛物线 y=ax2+bx﹣3 经过点(1,1) ,则代数式 a+b 的值为( A.2 B.3 C.4 D.6 ) )
A.
B.
C.
D.
二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分) 11. (5 分)计算:sin60°•cos30°﹣tan45°= . .
12. (5 分)如图,点 A、B、C 在⊙O 上,∠AOC=60°,则∠ABC 的度数是
13. (5 分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的 2 倍,如图,将这 两张纸条交叉重叠地放在一起, 重合部分为四边形 ABCD. 则 AB 与 BC 的数量 关系为 .
B.BC2=AC•BC
8. (4 分)如图,在△ABC 中,AB=AC=13,BC=10,点 D 为 BC 的中点,DE⊥AB 于点 E,则 tan∠BDE 的值等于( )
A.
B.
C.
D.
9. (4 分)如图,已知点 P 是 Rt△ABC 的斜边 BC 上任意一点,若过点 P 作直线 PD 与直角边 AB 或 AC 相交于点 D,截得的小三角形与△ABC 相似,那么 D 点 的位置最多有( )
2. (4 分)在 Rt△ABC 中,∠C=90°,AB=5,AC=3.下列选项中,正确的是( A.sinA= B.cosA= C.tanA= D.cotA= ) D.a:d=c:b )
3. (4 分)若 ab=cd,且 abcd≠0,则下列式子正确的是( A.a:c=b:d B.d:c=b:a C.a:b=c:d
4. (4 分)对于反比例函数
,下列说法中不正确的是(
A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限 C.y 随 x 的增大而减小 D.当 x<0 时,y 随 x 的增大而减小 5. (4 分) 如图, △ABC 中, 点 D、 E 分别是 AB、 AC 的中点, 则下列结论: ①BC=2DE; ②△ADE∽△ABC;③ .其中正确的有( )
三、 (本大题共 2 小题,每小题 8 分,满分 16 分) 15. (8 分)抛物线 y=﹣2x2+8x﹣6. (1)用配方法求顶点坐标,对称轴; (2)x 取何值时,y 随 x 的增大而减小? 16. (8 分)已知如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为 E,连接 AC.若 ∠A=22.5°,CD=8cm,求⊙O 的半径.
四、 (本大题共 2 小题,每小题 8 分,满分 16 分) 17. (8 分)如图,△ABC 的顶点坐标分别为 A(1,3) 、B(4,2) 、C(2,1) . (1)作出与△ABC 关于 x 轴对称的△A 1B1C1,并写出点 A1 的坐标; (2)以原点 O 为位似中心,在原点的另一侧画出△A2B2C2,使 出点 A2 的坐标. = ,并写
第 3 页(共 24 页)
14. (5 分)如图,在正方形 ABCD 中,△BPC 是等边三角形,BP、CP 的延长线 分别交 AD 于点 E、F,连结 BD、DP,BD 与 CF 相交于点 H.给出下列结论: ①△ABE≌△DCF;② 其中正确的是 = ;③DP2=PH•PB;④ . (写出所有正确结论的序号) = .
第 4 页(共 24 页)
18. (8 分)如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜 溪河沙湾段的宽度.小宇同学在 A 处观测对岸 C 点,测得∠CAD=45°,小英同 学在距 A 处 50 米远的 B 处测得∠CBD=30°,请你根据这些数据算出河宽. (精 确到 0.01 米,参考数据 ≈1.414, ≈1.732)
第 5 页(共 24 页)
x2+3x+1 的一部分,如图所
六、 (本题满分 12 分) 21. (12 分)如图,点 M 是△ABC 内一点,过点 M 分别作直线平行于△ABC 的 各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是 1、 4、25.则△ABC 的面积是 .
七、 (本题满分 12 分) 22. (12 分)某商场购进一批单价为 16 元的日用品,销售一段时间后,为了获 得更多的利润,商店决定提高价格.经调查发现,若按每件 20 元的价格销售 时,每月能卖出 360 件,在此基础上,若涨价 5 元,则每月销售量将减少 150 件,若每月销售量 y(件)与价格 x(元/件)满足关系式 y=kx+b. (1)求 k,b 的值; (2) 问日用品单价应定为多少元?该商场每月获得利润最大, 最大利润是多少?
A.2 处
B.3 处
C.4 处
D.5 处
10. (4 分)如图,Rt△ABC 中,AC=BC=2,正方形 CDEF 的顶点 D、F 分别在 AC、 BC 边上,设 CD 的长度为 x,△ABC 与正方形 CDEF 重叠部分的面积为 y,则 下列图象中能表示 y 与 x 之间的函数关系的是( )
第 2 页(共 24 页)
五、 (本大题共 2 小题,每小题 10 分,满分 20 分) 19. (10 分)如图,D 是 AC 上一点,BE∥AC,AE 分别交 BD、BC 于点 F、G.若 ∠1=∠2,线段 BF、FG、FE 之间有怎样的关系?请说明理由.
20. (10 分)杂技团进行杂技表演,演员从跷跷板右端 A 处弹跳到人梯顶端椅子 B 处,其身体(看成一点)的路线是抛物线 y= 示. (1)求演员弹跳离地面的最大高度; (2) 已知人梯高 BC=3.4 米, 在一次表演中, 人梯到起跳点 A 的水平距离是 4 米, 问这次表演是否成功?请说明理由.Fra bibliotekA.3 个
B.2 个
C.1 个
D.0 个
6. (4 分)AB 为⊙O 的直径,点 C、D 在⊙O 上.若∠ABD=42°,则∠BCD 的度 数是( )
第 1 页(共 24 页)
A.122°
B.132°
C.128°
D.138°
7. (4 分)已知点 C 在线段 AB 上,且点 C 是线段 AB 的黄金分割点(AC>BC) , 则下列结论正确的是( A.AB2=AC•BC ) C.AC= BC D.BC= AC
相关文档
最新文档