2019-2020学年广东省佛山市顺德区、三水区八年级(上)期末数学试卷 (1)
2019-2020学年广东省佛山市南海区八年级(上)期末数学试卷
2019-2020学年广东省佛山市南海区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1. 在下列各组数据中,不能作为直角三角形三边边长的是( ) A.3,4,5 B.3,3,3 C.6,8,10 D.5,12,132. 下列各数中与√2相乘结果为有理数的是( ) A.√2 B.2−√2 C.√5D.23. 若点A(m +3, m +1)在x 轴上,则点A 的坐标为( ) A.(0, 2) B.(2, 0) C.(0, −4) D.(4, 0)4. 下列各式中,运算正确的是( ) A.√6÷√3=√2 B.√16=±4 C.2√2+3√3=5√5D.√(−4)2=−45. 下列命题为真命题的是( ) A.两直线平行,同旁内角相等 B.两个锐角之和一定是钝角 C.平行于同一条直线的两条直线平行 D.如果x 2>0,那么x >06. 二元一次方程组{x −2y =6x =−y 的解是( )A.{x =2y =−2B.{x =−2y =2C.{x =2y =2D.{x =−2y =−27. 下列图象中,以方程y −2x −2=0的解为坐标的点组成的图象是( )A. B.C. D.8. 已知(x −y +3)2+√2x +y =0,则x +y 的值为( )A.−1B.0C.1D.59. 如图,在△ABC 中,∠B =46∘,∠C =54∘,AD 平分∠BAC ,交BC 于D ,DE // AB ,交AC 于E ,则∠ADE 的大小是( )A.45∘B.40∘C.54∘D.50∘10. 有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是( )A.2018B.1C.2020D.2019二、填空题(本大题共7小题,每小题4分,共28分)计算:25的平方根是________.某地教育局拟招聘一批数学教师,现有一名应聘者笔试成绩88分、面试成绩90分,综合成绩按照笔试占45%、面试占55%进行计算,该应聘者的综合成绩为________分.为了比较√10与√5+1的大小,可以构造如图所示的图形进行推算,其中∠C =90∘,BC =3,D 在BC 上且BD=AC=1,通过计算可得√10________√5+1.(填“>”或“<”或“=”).一副分别含有30∘和45∘角的两个直角三角板,拼成如上图形,则∠1=________度.如图,边长为4的等边△AOB在平面直角坐标系中的位置如图所示,则点A的坐标为________.如图,三角形ABC中,∠ACB=90∘,AC=3,BC=4,P为直线AB上一动点,连接PC,则线段PC的最小值是________.将长为25cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为________.三、解答题(一)(本大题3小题,每小题6分,共18分)计算:√32−3√12+(√3+√2)(√3−√2)−√42019国际篮联篮球世界杯的D组小组赛由佛山赛区承办,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为3400元,其中小组赛球票每张280元,淘汰赛球票每张580元,问小李预定了小组赛和淘汰赛的球票各多少张?如图,在△ABC中,CE⊥AB于E,MN⊥AB于N,∠1=∠2.求证:∠EDC+∠ACB=180∘.四、解答题(二)(本大题3小题,每小题8分,共24分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A,C的坐标分别为(−4, 5),(−1, 3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y (元)与骑行时间x (时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是________(填①或②).(2)在图①中当x ≥1时,求y 与x 的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示计算出a 、b 、c 的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s 初中2,并判断哪一个代表队选手成绩较为稳定.五、解答题(三)(本大题2小题,每小题10分,共20分)如图,在平面直角坐标系中,直线y =−2x +12与x 轴交于点A ,与y 轴交于点B ,与直线y =x 交于点C .(1)求点C 的坐标.(2)若P 是x 轴上的一个动点,直接写出当△POC 是等腰三角形时P 的坐标.(3)在直线AB 上是否存在点M ,使得△MOC 的面积是△AOC 面积的2倍?若存在,请求出点M 的坐标;若不存在,请说明理由.阅读下面的材料,并解决问题.(1)已知在△ABC 中,∠A =60∘,图1−3的△ABC 的内角平分线或外角平分线交于点O ,请直接求出下列角度的度数.如图1,∠O =________;如图2,∠O =________;如图3,∠O =________;如图4,∠ABC ,∠ACB 的三等分线交于点O 1,O 2,连接O 1O 2,则∠BO 2O 1=________.(2)如图5,点O 是△ABC 两条内角平分线的交点,求证:∠O =90∘+12∠A .(3)如图6,△ABC 中,∠ABC 的三等分线分别与∠ACB 的平分线交于点O 1,O 2,若∠1=115∘,∠2=135∘,求∠A 的度数.参考答案与试题解析2019-2020学年广东省佛山市南海区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.【答案】此题暂无答案【考点】勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】分于落理化实数【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】命体与白理【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】代入使碳古解革元一次方程组二元一都接程组的解【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】一次常数图按上点入适标特点一次射可的图象【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】非负数的常树:偶次方非负射的纳质:算术棱方础【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】平行体的省质三角形常角簧定理此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】勾体定展【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共7小题,每小题4分,共28分)【答案】此题暂无答案【考点】平方根【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】加水正均数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展实数根盖比较【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形射外角性过【解析】此题暂无解析此题暂无解答【答案】此题暂无答案【考点】等边三根形的性隐坐标正测形性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展垂因丙最短【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函较燥系式【解析】此题暂无解析【解答】此题暂无解答三、解答题(一)(本大题3小题,每小题6分,共18分)【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二元一明方息组交应先——销售问题【解析】此题暂无解析【解答】此题暂无解答此题暂无答案【考点】平行线明判轮与性质【解析】此题暂无解析【解答】此题暂无解答四、解答题(二)(本大题3小题,每小题8分,共24分)【答案】此题暂无答案【考点】作图-射对称变面【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用一元都次特等水的实常应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】众数中位数算三平最数方差【解析】此题暂无解析【解答】此题暂无解答五、解答题(三)(本大题2小题,每小题10分,共20分)【答案】此题暂无答案【考点】一次函常的头合题【解析】此题暂无解析此题暂无解答【答案】此题暂无答案【考点】三角形常角簧定理【解析】此题暂无解析【解答】此题暂无解答。
广东省佛山市八年级上学期数学期末考试试卷
广东省佛山市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共30分) (共10题;共30分)1. (3分) (2019八上·大通期中) 京剧是我国的国粹,下列京剧脸谱成轴对称图形的是()A .B .C .D .【考点】2. (3分)(2020·防城港模拟) 下列计算正确的是()A . a2•a4=a8B . =±2C . =﹣1D . a4÷a2=a2【考点】3. (3分) (2020八上·铁力期末) 已知非等腰三角形的两边长分别是2 cm和9 cm,如果第三边的长为整数,那么第三边的长为()A . 8 cm或10 cmB . 8 cm或9 cmC . 8 cmD . 10 cm【考点】4. (3分) (2016八上·顺义期末) 下列变形正确的是()A .B .C .D .【考点】5. (3分) (2019八上·双台子月考) 已知M(a,3)和N(4,b)关于y轴对称,则的值为()A . 1B . -1C .D .【考点】6. (3分) (2019八上·临颍期中) 如图,在中,是上一点,,则的度数是()A .B .C .D .【考点】7. (3分) (2019八上·海淀月考) 分式可变形为()A .B .C .D . ﹣【考点】8. (3分)已知三角形的两边长分别为3cm和8cm,则这个三角形的第三边的长可能是()A . 4cmB . 5cmC . 6cmD . 13cm【考点】9. (3分) (2019八上·渭源月考) 已知x2﹣kx+16是一个完全平方式,则k的值是()A . 8B . ﹣8C . 16D . 8或﹣8【考点】10. (3分) (2020九下·丹江口月考) 甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为()A .B .C .D .【考点】二、填空题(共24分) (共6题;共24分)11. (4分) (2017七上·深圳期末) 数91200000 用科学记数法表示为________.【考点】12. (4分) (2020九上·温州开学考) 求代数式有意义时的x的范围是________.【考点】13. (4分)(2018·张家界) 因式分解:a2+2a+1=________.【考点】14. (4分) (2016八上·东营期中) 已知与的和等于,则 =________.【考点】15. (4分) (2020八上·重庆开学考) 如图,在四边形中,,与互为补角,点在上,将沿翻折,得到,若,平分,则的度数为________ ;【考点】16. (4分) (2018八上·四平期末) 已知等腰三角形的周长为15cm,其中一边长为7 cm,则底边长为________.【考点】三、解答题(一)(共18分) (共3题;共18分)17. (6分)(1)因式分解:a(n﹣1)2﹣2a(n﹣1)+a.(2)解方程:.【考点】18. (6分) (2020八下·扬州期末) 解下列方程:(1);(2)【考点】19. (6分) (2019八下·广东月考) 已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)【考点】四、解答题(二)(共21分) (共3题;共21分)20. (7.0分) (2016七上·兴业期中) 下面的图形是由边长为1的正方形按照某种规律排列而组成的.(1)观察图形,填写下表:图形个数(n)①②③正方形的个数9________________图形的周长16________________(2)推测第n个图形中,正方形的个数为________,周长为________(都用含n的代数式表示).(3)写出第2016个图形的周长.【考点】21. (7分) (2017八上·南漳期末) 先化简,再求值:(m+2+ )• ,其中m= .【考点】22. (7.0分) (2018九上·海淀月考) 已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【考点】五、解答题(三)(共27分) (共3题;共27分)23. (9.0分)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6 600棵,若A 花木数量比B花木数量的2倍少600棵.(1) A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【考点】24. (9.0分)(2015·湖州) 已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.【考点】25. (9分) (2018七下·余姚期末) 如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值【考点】参考答案一、选择题(共30分) (共10题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(共24分) (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(一)(共18分) (共3题;共18分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:四、解答题(二)(共21分) (共3题;共21分)答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:五、解答题(三)(共27分) (共3题;共27分)答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:。
广东省佛山市顺德区、三水区2019-2020八年级上学期期末数学试卷 及答案解析
广东省佛山市顺德区、三水区2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−√2的绝对值是()A. √2B. −√2C. 2D. −22.在平面直角坐标系中,点P(−3,4)关于y轴的对称点的坐标为()A. (4,−3)B. (3,−4)C. (3,4)D. (−3,−4)3.下列计算正确的是()3=−3 D. √(−4)2=−4A. √16=±4B. ±√16=4C. √−274.下列各组数中能作为直角三角形的三边长的是()A. 4,5,6B. 1,1,√2C. 6,8,11D. 5,12,235.如图,下列条件中能判定直线l1//l2的是()A. ∠1=∠2B. ∠1+∠3=180°C. ∠1=∠5D. ∠3=∠56.下列运算正确的是()A. √7−√3=√4=2B. 3+2√2=5√2C. √(−4)2=−4D. √3×√12=67.下列命题是真命题的是()A. 顶点在圆上的角叫圆周角B. 三点确定一个圆C. 圆的切线垂直于半径D. 三角形的内心到三角形三边的距离相等8.已知一次函数y=kx+3经过点(2,1),则一次函数的图象经过的象限是()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限9. 如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B点,则最少要爬行( )cm .A. 9B. 14C. √41D. 2√2910. A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中l 1和l 2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共7小题,共28.0分)11. 比较大小:2√2______3(填“>”、“=”或“<”).12. 如图,若点E 的坐标为(−1,1),点F 的坐标为(2,−1),则点G 的坐标为______.13. 如图,△ABC 中,∠B =60°,D 为AB 上一点,且∠1=∠2,∠DCB =10°,则∠A = °.14. 已知关于x 的方程mx +n =0的解是x =−2,则直线y =mx +n 与x 轴的交点坐标是 .15. 已知{x =2y =−1是二元一次方程ax +by =−1的一组解,则b −2a +2018=____. 16. 一次数学考试中,九年级(1)班和(2)班的学生人数和平均成绩如下表所示:则这两个班的平均成绩为________分.17.计算:(−34)×113÷(−112)=________.三、计算题(本大题共1小题,共8.0分)18.我省某城市的长途客运公司规定,每人每次携带不超过10kg可免收行李费,如果超过10kg,则超过的部分按每千克0.4元收费,设行李的质量为x千克,应付行李费y元.(1)请求y与x的函数关系式;(2)当小明的行李为50kg时,他应该付多少行李费?四、解答题(本大题共7小题,共54.0分)19.计算:√48÷2√3−√27×√63+4√12.20. 解方程组:{x +2y =3 (1)2x +5y =9 (2)21. 22.某校同学组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是_____分,乙队成绩的众数是_____分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分 2,则成绩较为整齐的是_____队.22. 平面直角坐标系xOy 中,点P 的坐标为(m +1,m −1).(1)试判断点P 是否在一次函数y =x −2的图象上,并说明理由;(2)如图,一次函数y =−12x +3的图象与x 轴、y 轴分别相交于点A 、B ,若点P 在△AOB 的内部,求m 的取值范围.23.在△ABC中,AB=AC,∠BAC=50°,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)若AB=4,求BF2+FE2的值.24.如图,直线y=2x+6与直线l:y=kx+b交于点P(−1,m)(1)求m的值;(2)方程组{y =2x +6y =kx +b的解是______;25. 如图,在平面直角坐标系中,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于点C ,且△ABC 面积为10.(1)求点C 的坐标及直线BC 的解析式;(2)如图1,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作长形FGQP ,且FG :GQ =1:2,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标;(3)如图2,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,点E 为直线AM 上一动点,在x 轴上是存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请直接写出点D 的坐标;若不在,请说明理由.-------- 答案与解析 --------1.答案:A解析:解:−√2的绝对值是:√2.故选A.根据绝对值的定义,负数的绝对值是它的相反数,即可求解.本题主要考查了绝对值的定义,正确理解定义是关键.2.答案:C解析:解:点P(−3,4)关于y轴的对称点的坐标为:(3,4).故选:C.直接利用关于y轴对称点的性质进而得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.3.答案:C解析:本题考查了对平方根、算术平方根,立方根的定义的应用,主要考查学生的理解能力和计算能力.根据平方根、算术平方根,立方根的定义求出结果,再判断即可.解:A.√16=4,故本选项错误;B.±√16=±4,故本选项错误;3=−3,故本选项正确;C.√−27D.√(−4)2=4,故本选项错误;故选C.4.答案:B解析:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:A.∵42+52≠62,∴不能构成直角三角形;B. ∵12+12=(√2)2,∴能构成直角三角形;C. ∵62+82≠112,∴不能构成直角三角形;D. ∵52+122≠232,∴不能构成直角三角形.故选B.5.答案:B解析:解:A、根据∠1=∠2不能推出l1//l2,故本选项错误;B、根据∠1+∠3=180°能推出l1//l2,故本选项正确;C、根据∠1=∠5不能推出l1//l2,故本选项错误;D、根据∠3=∠5不能推出l1//l2,故本选项错误;故选:B.根据平行线的判定逐个进行判断即可.本题考查了平行线的判定的应用,能熟记平行线的判定定理是解此题的关键,注意:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.6.答案:D解析:解:A、√7与−√3不能合并,所以A选项错误;B、3与2√2不能合并,所以B选项错误;C、原式=4,所以C选项错误;D、原式=√3×12=6,所以D选项正确.故选:D.根据二次根式的加减法对A、B进行判断;根据二次根式的性质对C进行判断;根据二次根式的乘法法则对D进行判断.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.答案:D解析:解:A、顶点在圆上且两边都与圆相交的角叫圆周角,原命题是假命题;B、不在同一直线上的三点确定一个圆,原命题是假命题;C、圆的切线垂直于过切点的半径,原命题是假命题;D、三角形的内心到三角形三边的距离相等,是真命题;故选:D.根据圆周角定理、圆的条件、三角形内心以及切线的性质判断即可.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.答案:B解析:本题考查了待定系数法求函数解析式以及一次函数的图象,解题的关键是求出一次函数解析式.本题属于基础题,难度不大.将点的坐标代入到一次函数解析式中,求出k值即可得出一次函数解析式,结合k、b的值即可断定一次函数经过的象限.解:∵一次函数y=kx+3经过点(2,1),∴1=2k+3,解得:k=−1.∴一次函数的解析式为y=−x+3.∵k=−1<0,b=3>0,∴一次函数的图象经过的象限是:第一、二、四象限.故选B.9.答案:C解析:此题考查了圆柱的平面展开---最短路径问题,将圆柱展成矩形,求对角线的长即为最短路径.要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.解:将圆柱展开,侧面为矩形,如图所示:∵底面⊙O的周长为10cm,∴AC=5cm,∵高BC=4cm,∴AB=√AC2+BC2=√41cm.故选C.10.答案:C解析:观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3−1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3−1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=313(小时),1+313=413<5,∴乙先到达B地,故④正确;正确的有3个.故选:C.11.答案:<解析:解:∵2√2=√8,3=√9,∴2√2<3,故答案为:<.求出2√2=√8,3=√9,再比较即可.本题考查了二次根式的性质,实数的大小比较的应用,主要考查学生的比较能力.12.答案:(2,2)解析:解:如图所示:点G的坐标为(2,2),故答案为:(2,2).首先根据E点坐标确定原点位置,然后再画出坐标系,进而可得点G的坐标.此题主要考查了点的坐标,关键是正确确定原点位置.13.答案:40解析:本题考查的是三角形内角和定理,平角的定义的有关知识,根据题意找出角的关系,然后再进行解答即可.解:∵∠B=60°,∠DCB=10°,∴∠BDC=110°,∴∠1=180°−110°=70°,∵∠1=∠2,∴∠A=180°−2∠1=40°.故答案为40.14.答案:(−2,0)解析:【分析】本题主要考查了一次函数与一元一次方程的关系.求直线与x轴的交点坐标需使直线y= mx+n的y值为0.则mx+n=0,已知此方程的解为x=−2,因此可得答案.解:因为方程mx+n=0的解为直线y=mx+n与x轴的交点的横坐标,所以直线y=mx+n与x轴的交点坐标是(−2,0).故答案为(−2,0).15.答案:2019解析:解:根据题意将x =2、y =−1代入ax +by =−1,得:2a −b =−1,则原式=−(2a −b)+2018=1+2018=2019,故答案为:2019.把x 与y 的值代入方程求出2a −b 的值,即可确定出所求.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.答案:82.6解析:此题考查了加权平均数,熟练掌握加权平均数的定义是解本题的关键.根据加权平均数的定义计算即可得到结果.解:根据题意得:52×85+48×8052+48=82.6(分),则这两班平均成绩为82.6分.故答案为82.6. 17.答案:23解析:本题主要考查了有理数的混合运算的应用,解题的关键是熟练掌握有理数的混合运算,根据已知及有理数的混合运算,得(−34)×113÷(−112)=(−34)×43÷(−32),计算,求出值.解:(−34)×113÷(−112)=(−3)×4÷(−3) =(−1)×(−23) =23. 18.答案:解:(1)0≤x ≤10时,y =0,x >10时,y =(x −10)×0.4=0.4x −4,(2)x =50时,y =0.4×50−4=16元.答:小明应该付16元行李费.解析:(1)分0≤x ≤10和x >10时利用待定系数法求一次函数解析式解答;(2)把x =50kg 的值代入函数关系式进行计算即可得解.本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式是解题的关键.19.答案:解:原式=12√48÷3−13√27×6+2√2=2−3√2+2√2=2−√2.解析:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.先根据二次根式的乘除法则运算,然后化简后合并即可.20.答案:解:{x +2y =3①2x +5y =9②, ①×2得:2x +4y =6③,③−②得:2y =6,y =3,把y =3代入①得:x +6=3,x =−3,∴方程组的解是:{x =−3y =3.解析:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组先用加减法消元再用代入消元法求解.即可.21.答案:解:(1)9.5,10;(2)乙队的平均成绩=7+8×2+9×3+10×410=9分,方差为:s 2=110[(7−9)2+(8−9)2×2+(9−9)2×3+(10−9)2×4]=1分 2;(3)乙.解析:本题考查了平均数、中位数、众数和方差的定义,属于基础题型,掌握定义是关键.(1)根据中位数和众数的定义求解即可;(2)根据加权平均数和方差的定义求解;(3)取方差较小的即可.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是:9.5分,则甲队的中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,所以乙队成绩的众数是10分;故答案为:9.5,10;(2)见答案;(3)∵s 甲2> s 乙2,∴成绩较为整齐的是乙队.故答案为:乙.22.答案:解:(1)∵当x =m +1时,y =m +1−2=m −1,∴点P(m +1,m −1)在函数y =x −2图象上.(2)∵函数y =−12x +3,∴A(6,0),B(0,3),∵点P 在△AOB 的内部,∴0<m +1<6,0<m −1<3,m −1<−12(m +1)+3∴1<m<73.解析:(1)要判断点(m+1,m−1)是否的函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出0<m+1<6,0<m−1<3,m−1<−12(m+1)+3,解不等式组即可求得.本题考查了一次函数图象上点的坐标特征,一次函数的性质,图象上的点的坐标适合解析式.23.答案:解:(1)∵AB=AC,AC=AE.∴AB=AE,∴∠AEB=∠ABE,∵∠BAC=50°,∠CAE=90°,∴∠BAE=50°+90°=140°,∴∠AEB=12(180°−140°)=20°;(2)∵AB=AC,D是BC的中点,∴AD垂直平分BC,∵F为AD上一点,∴BF=CF,∵AB=AC,AF=AF,∴△ABF≌ACF,∴∠ABF=∠ACF,∴∠AEB=∠ACF;(3)∵∠AEB=∠ACF,∠AGE=∠CGF,∴∠CFE=∠CAE=90°,∴CF2+EF2=CE2,∵CF=BF,∴BF2+EF2=CE2,∵CE2=AC2+AE2=16+16=32,∴BF 2+EF 2=32.解析:(1)首先证明AB =AE ,利用等腰三角形的性质即可解决问题;(2)只要证明△ABF≌△ACF(SSS)即可解决问题;(3)首先证明BF 2+EF 2=CE 2,求出CE 2即可解决问题;本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.答案:解:(1)将点P(−1,m)代入直线方程y =2x +6得:−2+6=m ,所以m =4(2){x =−1y =4.解析:解:(1)见答案;(2)方程组{y =2x +6y =kx +b的解为{x =−1y =4, 故答案为{x =−1y =4, (1)将点P(−1,m)代入直线方程y =2x +6,解出m 的值.(2)因为直线y =2x +6直线y =kx +b 交于点P ,所以方程组{y =2x +6y =kx +b的解就是P 点的坐标; 本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.25.答案:解:(1)直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,则点A 、B 的坐标分别为:(−2,0)、(0,4),△ABC 面积=12×AC ×OB =12×AC ×4=10,解得:AC =5,故点C(3,0),将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =−43x +4…①;(2)设点E(m,34m +32),点D(n,0),点F 为线段AB 中点,则点F(−1,2),过点G 作x 轴的平行线MN ,过点F 、Q 分别作y 轴的平行线分别交MN 于点M 、N ,∵∠MGF +∠GFM =90°,∠MGF +∠NGQ =90°,∴∠NGQ =∠GFM ,∠GNQ =∠FMG =90°,∴△GNQ∽△FMG ,∴MFGN =MGNQ =GF GQ =12,即m−2GN =1NQ =12, 故:GN =2m −4,QN =2,故点Q(2m −4,m −2),将点Q 的坐标代入y =−43x +4并解得:m =3411,故点Q(2411,1211);(3)S △AMB =S △AOB ,则OM//AB ,则直线OM 的表达式为:y =2x …②,联立①②并解得:x =65,故点M(65,125),同理直线AM 的表达式为:y =34x +32,设点E(m,34m +32),点D(n,0),①当BC 是平行四边形的边时,点B 向右平移3个单位向下平移4个单位得到C ,同样点E(D)向右平移3个单位向下平移4个单位得到D(E),则m +3=n ,34m +32−4=0或m −3=n ,34m +32+4=0,解得:n =193或n =−313; ②当BC 是平行四边形的对角线时,由中点公式得:m +n =3,34m +32+4=0,解得:n =−13,故点D的坐标为:(193,0)或(−313,0)或(−13,0).解析:(1)直线y=2x+4与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为:(−2,0)、(0,4),△ABC面积=12×AC×OB=12×AC×4=10,解得:AC=5,故点C(3,0),将点B、C的坐标代入一次函数表达式,即可求解;(2)证明△GNQ∽△FMG,则MFGN =MGNQ=GFGQ=12,即m−2GN=1NQ=12,故点Q(2m−4,m−2),即可求解;(3)分BC是平行四边形的边、BC是平行四边形的对角线两种情况,分别求解即可.本题考查的是一次函数综合运用,涉及到平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.。
2019年佛山市八年级数学上期末试卷带答案
2019年佛山市八年级数学上期末试卷带答案一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②①3.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 4.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42B .40C .36D .325.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( )A .B .C .D .6.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3 B .1 C .﹣1 D .﹣37.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 8.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .29.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .2010.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm11.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .1012.已知a 是任何实数,若M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M <ND .M ,N 的大小由a 的取值范围 二、填空题13.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .14.如图ABC ,24AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP 全等时,v 的值为_____厘米/秒.15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.16.若2x+5y ﹣3=0,则4x •32y 的值为________.17.若m 为实数,分式()22x x x m ++不是最简分式,则m =______. 18.计算:()201820190.1258-⨯=________.19.若=2m x ,=3n x ,则2m n x +的值为_____.20.如图,在△ABC 中,BF ⊥AC 于点F ,AD ⊥BC 于点D ,BF 与AD 相交于点E .若AD=BD ,BC=8cm ,DC=3cm .则 AE= _______________cm .三、解答题21.△ABC 在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC 与关于y 轴对称的图形△A 1B 1C 1,并写出顶点A 1、B 1、C 1的坐标;(2)若将线段A 1C 1平移后得到线段A 2C 2,且A 2(a ,2),C 2(﹣2,b ),求a +b 的值.22.已知,关于x 的分式方程1235a b x x x --=+-. (1)当1a =,0b =时,求分式方程的解;(2)当1a =时,求b 为何值时分式方程1235a b x x x --=+-无解: (3)若3a b =,且a 、b 为正整数,当分式方程1235a b x x x --=+-的解为整数时,求b 的值. 23.如图是作一个角的角平分线的方法:以的顶点为圆心,以任意长为半径画弧,分别交于两点,再分别以为圆心,大于长为半径作画弧,两条弧交于点,作射线,过点作交于点. (1)若,求的度数; (2)若,垂足为,求证:. 24.如图,ABC 是等腰三角形,AB AC =,点D 是AB 上一点,过点D 作DE BC ⊥交BC 于点E ,交CA 延长线于点F .(1)证明:ADF 是等腰三角形;(2)若60B ∠=︒,4BD =,2AD =,求EC 的长.25.已知3a b -=,求2(2)a a b b -+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE+=,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.2.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH⊥AC即可.【详解】用尺规作图作△ABC边AC上的高BH,做法如下:④取一点K使K和B在AC的两侧;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;①分别以点D、E为圆心,大于DE的长为半径作弧两弧交于F;②作射线BF,交边AC于点H;故选B.【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.3.D解析:D【解析】【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0, 故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.4.A解析:A【解析】【分析】根据正多边形的内角,角的和差,可得答案.【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,∠1=360°-90°-108°-120°=42°, 故选:A .【点睛】本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算.5.C解析:C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.D解析:D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.7.A解析:A【解析】【详解】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=4-m.∵x为正数,∴4-m>0,解得m<4.∵x≠1,∴4-m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.8.C【解析】【分析】由等边三角形有三条对称轴可得答案.【详解】如图所示,n 的最小值为3.故选C .【点睛】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.9.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC 中,以点A 和点B 为圆心,大于二分之一AB 的长为半径画弧,两弧相交与点M,N ,则直线MN 为AB 的垂直平分线,则DA=DB,△ADC 的周长由线段AC,AD,DC 组成,△ABC 的周长由线段AB,BC,CA 组成而DA=DB,因此△ABC 的周长为10+7=17. 故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.10.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm.故选C.11.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选:C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.12.A解析:A【解析】【分析】将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答【详解】∵M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣32)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选A.【点睛】此题考查整式的混合运算,解题关键是在于把M,N代入到M-N中计算化简得到完全平方式为非负数,从而得到结论.二、填空题13.280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数再根据多边形的外角和定理即可求解解:如图∵∠EAB+∠5=180°∠EAB=100°∴∠5=80°∵∠1+∠2+∠3+∠解析:280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.解:如图,∵∠EAB+∠5=180°,∠EAB=100°,∴∠5=80°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360﹣80°=280°故答案为280°.考点:多边形内角与外角.14.4或6【解析】【分析】此题要分两种情况:①当BD=PC时△BPD与△CQP全等计算出BP的长进而可得运动时间然后再求v;②当BD=CQ时△BDP≌△QCP计算出BP的长进而可得运动时间然后再求v【详解析:4或6【解析】【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=12cm,∵BD=PC,∴BP=16-12=4(cm),∵点P在线段BC上以4厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=4cm,∴v=4÷1=4厘米/秒;当BD=CQ时,△BDP≌△QCP,∵BD=12cm,PB=PC,∴QC=12cm,∵BC=16cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=12÷2=6厘米/秒.故答案为:4或6.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.15.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P的度数【详解】∵BP是∠ABC的平分线CP是∠ACM的平分线∠ABP=20°∠ACP=50°∴解析:30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.16.8【解析】∵2x+5y﹣3=0∴2x+5y=3∴4x•32y=(22)x·(25)y=22x·25y=22x+5y= 23=8故答案为:8【点睛】本题主要考查了幂的乘方的性质同底数幂的乘法转化为以2为解析:8【解析】∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=(22)x·(25)y=22x·25y=22x+5y=23=8,故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.17.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因解析:0或-4【解析】【分析】由分式()22x xx m++不是最简分式可得x或x+2是x2+m的一个因式,分含x和x+2两种情况,根据多项式乘以多项式的运算法则求出m的值即可.【详解】∵分式()22x xx m++不是最简分式,∴x或x+2是x2+m的一个因式,当x是x2+m的一个因式x时,设另一个因式为x+a,则有x(x+a)=x2+ax=x2+m,∴m=0,当x或x+2是x2+m的一个因式时,设另一个因式为x+a,则有(x+2)(x+a)=x2+(a+2)x+2a=x2+m,∴202am a+=⎧⎨=⎩,解得:24 am=-⎧⎨=-⎩,故答案为:0或-4.【点睛】本题考查最简分式的定义及多项式乘以多项式,根据题意得出x或x+2是x2+m的一个因式是解题关键.18.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8 )20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯ 8= (−0.125×8)2018⨯8=8, 故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.19.18【解析】【分析】先把xm+2n 变形为xm (xn )2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm (xn )2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18; 故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.20.【解析】【分析】易证∠CAD=∠CBF 即可求证△ACD≌△BED 可得DE=CD 即可求得AE 的长即可解题【详解】解:∵BF⊥AC 于FAD⊥BC 于D∴∠CAD+∠C=90°∠CBF+∠C=90°∴∠CA解析:【解析】【分析】易证∠CAD=∠CBF ,即可求证△ACD ≌△BED ,可得DE=CD ,即可求得AE 的长,即可解题.【详解】解:∵BF ⊥AC 于F ,AD ⊥BC 于D ,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF ,∵在△ACD 和△BED 中,90CAD CBF AD BDADC BDE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD ≌△BED ,(ASA )∴DE=CD ,∴AE=AD-DE=BD-CD=BC-CD-CD=2;故答案为2.【点睛】本题考查了全等三角形的判定和性质,本题中求证△ACD ≌△BED 是解题的关键.三、解答题21.(1)如图所示见解析,A 1(2,3)、B 1(3,2)、C 1(1,1);(2)-1.【解析】【分析】(1)根据轴对称的性质确定出点A 1、B 1、C 1的坐标,然后画出图形即可;(2)由点A 1、C 1的坐标,根据平移与坐标变化的规律可规定出a 、b 的值,从而可求得a+b 的值.【详解】(1)如图所示:A 1(2,3)、B 1(3,2)、C 1(1,1).(2)∵A 1(2,3)、C 1(1,1),A 2(a ,2),C 2(-2,b ).∴将线段A 1C 1向下平移了1个单位,向左平移了3个单位.∴a=-1,b=0.∴a+b=-1+0=-1.【点睛】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a 、b 的值是解题的关键.22.(1)1011x =-;(2)5b =或112;(3)3,29,55,185b = 【解析】【分析】 (1)将a ,b 的值代入方程得11235x x x +=+-,解出这个方程,最后进行检验即可; (2)把1a =代入方程得11235b x x x --=+-,分式方程去分母转化为整式方程为(112)310b x b -=-,由分式方程有增根,得11-2b=0,或230x +=(不存在),或50x -=求出b 的值即可;(3)把3a b =代入原方程得31235b b x x x --=+-,将分式方程化为整式方程求出x 的表达式,再根据x 是正整数求出b ,然后进行检验即可.【详解】 (1)当1a =,0b =时,分式方程为:11235x x x +=+- 解得:1011x =- 经检验:1011x =-时是原方程的解 (2)解:当1a =时,分式方程为:11235b x x x --=+- (112)310b x b -=-①若1120b -=,即112b =时,有:1302x •=,此方程无解 ②若1120b -≠,即112b ≠时,则 若230x +=,即310230112b b -⨯+=-,663320b b -=-,不成立 若50x -=,即31050112b b--=-,解得5b = ∴综上所述,5b =或112时,原方程无解 (3)解:当3a b =时,分式方程为:31235b b x x x --=+- 即(10)1815b x b +=-∵,a b 是正整数∴100b +≠ ∴181510b x b-=+ 即1951810x b=-+ 又∵,a b 是正整数,x 是整数. ∴3,5,29,55,185b =经检验,当5b =时,5x =(不符合题意,舍去)∴3,29,55,185b =【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.(1)35°;(2)见解析.【解析】【分析】(1)首先根据OB∥FD,可得∠OFD+∠AOB=18O°,进而得到∠AOB的度数,再根据作图可知OP平分∠AOB,进而算出∠DOB的度数即可;(2)首先证明∴∠AOD=∠ODF,再由FM⊥OD可得∠OMF=∠DMF,再加上公共边FM=FM,可利用AAS证明△FMO≌△FMD.【详解】(1)解:∵OB∥FD,∴∠OFD+∠AOB=18O°,又∵∠OFD=110°,∴∠AOB=180°−∠OFD=180°−110°=70°,由作法知,OP是∠AOB的平分线,∴∠DOB=∠ABO=;(2)证明:∵OP平分∠AOB,∴∠AOD=∠DOB,∵OB∥FD,∴∠DOB=∠ODF,∴∠AOD=∠ODF,又∵FM⊥OD,∴∠OMF=∠DMF,在△MFO和△MFD中∴△MFO≌△MFD(AAS).【点睛】此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理.24.(1)见详解(2)4【解析】【分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】证明:(1)∵AB=AC∴∠B=∠C ,∵FE ⊥BC ,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE ,又∵∠BDE=∠FDA ,∴∠F=∠FDA ,∴AF=AD ,∴△ADF 是等腰三角形;(2)∵DE ⊥BC ,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=12BD=2 ∵AB=AC ∴△ABC 是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC-BE=4【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等,根据余角性质求得相等的角是解题关键.25.【解析】【分析】将原式因式分解,然后代入求解即可.【详解】∵3a b -=,∴2(2)a a b b -+ 222a ab b =-+()2a b =-23==9.【点睛】本题考查了整式的化简求值,将原式进行适当的变形是解题的关键.。
2019年佛山市顺德区八上期末数学试卷(附答案)
那么这 10 名学生所得分数的中位数和众数分别是 ( )
A. 85 和 85
B. 85.5 和 85
C. 85 和 82.5
8. 已知,如图,OA = OB,那么数轴上的点 A 所表示的数是 ( )
√ A. 3
√ B. 5
√ C. − 5
√ D. − 7
D x = 4, D. y = 1
D. 85.5 和 80
120 + 60 300
= 15000(人);
数学试题参考答案 !"!
②如果要估算本市初中生每天在校体育活动时间是多少,选择平均数更合适.
21. (1) “快车” 解析:观察函数图象,可知:当 x = 5 时,快车的费用更便宜.
(2) 设当 x > 5 时,“快车”的函数关系式为 y = kx + b (k ̸= 0),
初二数学第 )页共*页
24. 如图,AC 平分 ∠BAD,∠DCA = ∠CAD,在 CD 的延长线上截取 DE = DA,连 接 AE. (1) 求证:AB ∥ CD; (2) 若 AE = 5,AC = 12,求线段 CE 的长; (3) 在(2)的条件下,若线段 CD 上有一点 P ,使 △DP A 的面积是 △ACD 面积 的六分之一,求 P C 长.
∴ −2k + b = 0,
∴ k = 2,b = 4,
∴ 直线 l 的表达式为:y = 2x + 4.
(2) 由于点 B 在直线 l 上,当 x = 1 时,y = 2 + 4 = 6,
∴ 点 B 的坐标为 (1, 6).
∵ 点 B 是直线 l 与直线y = −4x + a 的交点,
∴
关于
2019-2020学年广东省佛山市南海区八年级(上)期末数学试卷
2019-2020学年广东省佛山市南海区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.(3分)在下列各组数据中,不能作为直角三角形三边边长的是()
A.3,3,3B.3,4,5C.5,12,13D.6,8,10
2.(3分)下列各数中与相乘结果为有理数的是()
A.B.C.2D.
3.(3分)点P(m+3,m+1)在x轴上,则点P的坐标为()
A.(2,0)B.(0,﹣2)C.(4,0)D.(0,﹣4)
4.(3分)下列各式中,运算正确的是()
A.B.C.D.
5.(3分)下列命题为真命题的是()
A.两个锐角之和一定是钝角
B.两直线平行,同旁内角相等
C.如果x2>0,那么x>0
D.平行于同一条直线的两条直线平行
6.(3分)二元一次方程组的解是()
A.B.C.D.
7.(3分)下列图象中,以方程y﹣2x﹣2=0的解为坐标的点组成的图象是()A.B.
C.D.
8.(3分)已知(x﹣y+3)2+=0,则x+y的值为()。
2019-2020学年佛山南海区八年级(上)期末数学模拟试卷(解析版)
2019-2020学年佛山南海区八年级(上)期末数学模拟试卷满分120分 时间100分钟一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有个是正确的)1.﹣2020的相反数是( )A .2020B .﹣2020C .20201D .20201- 2.下列实数中的无理数是( )A .B .πC .0D .3.在平面直角坐标系中,点M (﹣1,3)关于x 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.以下各组数能作为直角三角形三边长的是( )A .2,5,6B .5,8,10C .4,11,12D .5,12,13 5.一组数据4,2,x ,3,9的平均数为4,则这组数据的众数和中位数分别是( ) A .3,2 B .2,2 C .2,3 D .2,4 6.如图,AB ∥CD ,BC 平分∠ABD ,∠1=50°,则∠2的度数是( )A .50°B .60°C .70°D .80° 7.下列命题的逆命题不是真命题的是( )A .两直线平行,内错角相等B .直角三角形两直角边的平方之和等于斜边的平方C.全等三角形的面积相等D.线段垂直平分线上的点到这条线段两端点的距离相等8.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b 应满足的条件是()A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<09.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.510.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()A.B.C.D.11.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用(﹣1,0)表示,左下角方子的位置用(﹣2,﹣1)表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是()A.(﹣2,0)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)12.如图,在一个单位面积为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……是斜边在x轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,点A2019的横坐标为()A.1010B.﹣1010C.1008D.﹣1008二、填空题(本题共有6小题,每小题3分,共18分)13.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是.14.0.027的立方根为.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AED=.16.已知直线l1:y=﹣3x+b与直线l2:y=kx+1在同一坐标系中的图象交于点(1,﹣2),那么方程组的解是.17.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为S甲2S乙2(填>或<).18.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于.三、解答题(本大题共8道小题,满分66分)19.(6分)计算20.(6分)解不等式组:,并把解集在数轴上表示出来.21.(6分)如图.在平面直角坐标系中,△ABC的顶点A(0,1)、B(3,2)、C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)已知△A2B2C2和△A1B1C1关于y轴成轴对称,写出顶点A2,B2,C2的坐标.22.(8分)解方程组(1);(2)23.(8分)如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.24.(8分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.25.(10分)如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.26.(11分)已知△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B和∠ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.2019-2020学年佛山南海区八年级(上)期末数学模拟试卷参考答案与试题分析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有个是正确的)1.﹣2020的相反数是( )A .2020B .﹣2020C .20201D .20201- 【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2020的相反数是2020.故选:A .2.下列实数中的无理数是( )A .B .πC .0D .【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,0,是有理数, π是无理数,故选:B .3.在平面直角坐标系中,点M (﹣1,3)关于x 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据点的坐标确定所在象限.【解答】解:点M (﹣1,3)关于x 轴对称的点坐标为(﹣1,﹣3),在第三象限, 故选:C .4.以下各组数能作为直角三角形三边长的是( )A.2,5,6B.5,8,10C.4,11,12D.5,12,13【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【解答】解:A、22+52≠62,不能构成直角三角形;B、52+82≠102,不能构成直角三角形;C、42+112≠122,不能构成直角三角形;D、52+122=132,能构成直角三角形;故选:D.5.一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A.3,2B.2,2C.2,3D.2,4【分析】根据一组数据4,2,x,3,9的平均数为4,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的众数和中位数.【解答】解:∵一组数据4,2,x,3,9的平均数为4,∴(4+2+x+3+9)÷5=4,解得,x=2,∴这组数据按照从小到大排列是:2,2,3,4,9,∴这组数据的众数是2,中位数是3,故选:C.6.如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A.50°B.60°C.70°D.80°【分析】先根据平行线的性质求出∠ABD的度数,再由角平分线的定义即可得出结论.【解答】解:∵AB∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=100°,∴∠BDC=180°﹣∠ABD=80°,∴∠2=∠BDC=80°.故选:D.7.下列命题的逆命题不是真命题的是()A.两直线平行,内错角相等B.直角三角形两直角边的平方之和等于斜边的平方C.全等三角形的面积相等D.线段垂直平分线上的点到这条线段两端点的距离相等【分析】先分别写出各命题的逆命题,再根线段垂直平分线的性质,全等三角形的判定,平行线的判定等分别判断即可得解.【解答】解:A、逆命题为:内错角相等,两直线平行,是真命题,故本选项错误;B、逆命题为:当一边的平方等于另两边平方的和,此三角形是直角三角形,是真命题,故本选项错误;C、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项正确;D、逆命题为:到线段两端点距离相等的点在线段的垂直平分线上,是真命题,故本选项错误.故选:C.8.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b 应满足的条件是()A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0【分析】根据一次函数的性质得出即可.【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选:B.9.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.10.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()A.B.C.D.【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.【解答】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为.故选:A.11.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用(﹣1,0)表示,左下角方子的位置用(﹣2,﹣1)表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是()A.(﹣2,0)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义确定放的位置.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,左下角方子的位置用(﹣2,﹣1),则这点向右两个单位所在的纵线是y轴,则小莹将第4枚圆子放的位置是(﹣1,1)时构成轴对称图形.故选:B.12.如图,在一个单位面积为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……是斜边在x轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,点A2019的横坐标为()A.1010B.﹣1010C.1008D.﹣1008【分析】观察图形可以看出A1﹣﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2019÷4=504…3,A2019在x轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【解答】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的横坐标为﹣1008.故选:D.二、填空题(本题共有6小题,每小题3分,共18分)13.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是.【分析】本题属于比较简单的概率计算问题,用红球总数除以袋中球的总数即可.【解答】解:∵20个球中共有2个红球,∴任意摸出一个球是红球的概率是.故答案是:.14.0.027的立方根为0.3.【分析】根据立方根的定义求解可得.【解答】解:∵0.33=0.027,∴0.027的立方根为0.3,故答案为:0.3.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AED=110°.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°﹣40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣70°=110°,故答案为:110°.16.已知直线l1:y=﹣3x+b与直线l2:y=kx+1在同一坐标系中的图象交于点(1,﹣2),那么方程组的解是.【分析】根据两个一次函数组成的方程组的解就是两函数图象的交点可得答案.【解答】解:∵直线l1:y=﹣3x+b与直线l2:y=kx+1在同一坐标系中的图象交于点(1,﹣2),∴方程组的解是,故答案为:,17.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为S甲2>S乙2(填>或<).【分析】根据气温统计图可知:贵阳的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.【解答】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.18.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于10或6.【分析】分两种情况考虑,如图所示,分别在Rt△ABC与Rt△ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故答案为:10或6.三、解答题(本大题共8道小题,满分66分)19.(6分)计算【分析】先二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可.【解答】原式=4﹣+=3+2.20.(6分)解不等式组:,并把解集在数轴上表示出来.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:21.(6分)如图.在平面直角坐标系中,△ABC的顶点A(0,1)、B(3,2)、C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)已知△A2B2C2和△A1B1C1关于y轴成轴对称,写出顶点A2,B2,C2的坐标.【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可得;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,顶点A2的坐标为(0,﹣1),B2的坐标为(﹣3,﹣2),C2的坐标为(﹣1,﹣4).22.(8分)解方程组(1);(2)【分析】(1)①+②求出x,把x=3代入②求出y即可;(2)整理后②×2﹣①得出9x=﹣6,求出x,把x=﹣代入①求出y即可.【解答】解:(1)①+②,得x=3,把x=3代入②得:y﹣3=2,解得:y=5,所以原方程组的解为:;(2)整理得:②×2﹣①得:9x=﹣6,解得:x=﹣,把x=﹣代入①得:﹣+2y=2,解得:y=,所以方程组的解为:23.(8分)如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠EPM=∠2=30°,∠FPM=∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,24.(8分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【分析】(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.25.(10分)如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.【分析】(1)利用待定系数法求一次函数解析式解答即可;(2)联立两直线解析式,解方程组即可得到点C的坐标;(3)根据图形,找出点C右边的部分的x的取值范围即可.【解答】解:(1)∵直线y=kx+b经过点A(﹣5,0),B(﹣1,4),,解得,∴y=x+5(2)∵若直线y=﹣2x﹣4与直线AB相交于点C,∴,解得,故点C(﹣3,2).∵y=﹣2x﹣4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,﹣4),直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积为:DE•|∁x|=×9×3=.(3)根据图象可得x>﹣3.26.(11分)已知△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B和∠ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.【分析】(1)①先根据角平分线的定义可得:∠BAD=∠CAD=30°,由等腰三角形的性质得:∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE =,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的长;(2)如图2,作辅助线,构建等腰三角形,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质得:AG=AH,再由线段的和可得结论.【解答】解:(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°,②如图1,过D作DE⊥AC交AC于点E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=,∴AH===;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明:如图2,延长AB和CH交于点F,取BF的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.。
广东省佛山市八年级(上)期末数学试卷1
25. 如图 1,BC⊥AF 于点 C,∠A+∠1=90°. 1 求证:AB∥DE; 2 如图 2,点 P 从点 A 出发,沿线段 AF 运动到点 F 停止,连接 PB,PE.则 ∠ABP,∠DEP,∠BPE 三个角之间具有怎样的数量关系(不考虑点 P 与点 A,D,C 重合的情况)?并说明理由.
第 1 页,共 13 页
A.9:00 妈妈追上小亮 B.妈妈比小亮提前到达姥姥家 C.小亮骑自行车的平均速度是
D.12km/h 妈妈在距家 13km 处追上小亮
二、填空题(本大题共 6 小题,共 24.0 分)
11. 点 P(5,-12)到 x 轴的距离为
.
12. 一个正数的平方根分别是 x+1 和 x-5,则 x=
八年级(上)期末数学试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. 下列实数中的无理数是( )
A. 0.7
B. π
C. 12
D. −8
2. 估计 7+1 的值( )
A. 在 1 和 2 之间 B. 在 2 和 3 之间 C. 在 3 和 4 之间 D. 在 4 和 5 之间
12.【答案】2
【解析】
解:根据题意知 x+1+x-5=0, 解得:x=2, 故答案为:2. 根据正数的两个平方根互为相反数列出关于 x 的方程,解之可得. 本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解 题的关键.
13.【答案】甲
【解析】
第 8 页,共 13 页
解:∵
,
,
∴<,
3x+y=0 是二元次方程; 2x+xy=1 不是二元一次方程; 3x+y-2x=0 是二元一次方程;
2019-2020学年广东省佛山市顺德区、三水区八年级(上)期末数学试卷 (解析版)
2019-2020学年广东省佛山市顺德区、三水区八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)﹣的绝对值是()A.﹣B.C.D.﹣2.(3分)平面直角坐标系中,点P(﹣2,1)关于y轴对称点P的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(2,1)3.(3分)下列化简正确的是()A.=﹣2B.=﹣4C.=﹣2D.=4 4.(3分)下列几组数能作为直角三角形三边长的是()A.3,4,6B.1,1,C.5,12,14D.,2,5 5.(3分)如图,在四边形ABCD中,连结BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD6.(3分)给定的根式运算正确的是()A.B.C.D.7.(3分)下列命题是假命题的是()A.数0.585885888588885…(每相邻两个5之间的8的个数逐次加1)是无理数B.三角形的最大内角可能少于60°C.直角坐标系中,与x轴平行的一条直线上任意两点的纵坐标相等D.将直角三角形的三边长同时扩大相同的倍数,得到的三角形还是直角三角形8.(3分)一次函数y=kx+b的图象如图所示,则以k、b为坐标的点(k,b)在第()象限内.A.一B.二C.三D.四9.(3分)如图,圆柱的底面半径是4,高是5,一只在A点的蚂蚁想吃到B点的食物,需要爬行的最短路径是(π取3)()A.9B.13C.14D.2510.(3分)若A、B两地的距离是120km,甲和乙沿相同的路线由A地到B地的行驶路程与时间的关系如图所示.根据图象判断以下结论正确的个数有()①甲比乙晚两小时出发②甲的速度是30km/h,乙的速度是15km/h③乙出发4小时后,甲在乙的前面④甲行驶的路程y与时间x的函数关系是y=15xA.1个B.2个C.3个D.4个二、填空题(7个题,每题4分,共28分)11.(4分)比较大小:3(填:“>”或“<”或“=”)12.(4分)如图,A、B两点的坐标分别为(﹣2,1)、(4,1),在同一坐标系内点C 的坐标为.13.(4分)在△ABC中,点D是BC上一点,∠ADB=130°,∠CAD=54°,则∠C=.14.(4分)若直线y=kx+b与x轴的交点坐标为(﹣3,0),则关于x的方程kx+b=0的解是.15.(4分)若是二元一次方程2x﹣3y﹣5=0的一组解,则4a﹣6b=.16.(4分)小明调查了班内20名同学本学期购买课外书的花费情况,并将结果绘制成统计图,那么这20名同学购买课外书的平均花费是元.17.(4分)手机已成现代入生活的一个重要组成部分,它给人们生活带来了许多方便.假如你家刚刚添置了一部手机,手机资费宣传单如下表:当通话时间为200min时,选套餐更优惠.(填“A”或“B”)套餐项目月租通话A12元0.2元/minB0元0.25元/min三、解答题(一)(3个题,每题6分,共18分)18.(6分)计算:19.(6分)解方程组20.(6分)甲、乙两名同学参加青少年科技创新选拔赛,甲六次比赛的成绩如下:87,93,88,93,89,90.(1)甲成绩的中位数是,众数是;(2)若乙六次比赛的平均成绩与甲相同,且乙成绩的方差是,要选派一名发挥稳定的同学参加比赛,应该选谁?说明理由(S2=[(x1﹣)2+(x2﹣)2+…(x n﹣)2]).四、解答题(二)(3个题,每题8分,共24分)21.(8分)某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?22.(8分)如图,在平面直角坐标系xOy内有一直线l对应的一次函数是y=x+b.(1)在x轴上画出对应的点A;(2)若直线l经过点A,求直线l与坐标轴所围的三角形面积.23.(8分)如图,在△ABC中,∠BAC=90°,AB=AC=1,AF是等边△ACD的高,交BD于点E,连接CE.(1)求∠ABD的度数;(2)求CE的长.五、解答题(三)(2个题,每题10分,共20分)24.(10分)如图,一次函数y=mx+n的图象经过点A,与函数y=﹣x+6的图象交于点B,B点的横坐标为1.(1)方程组的解是(2)求出m、n的值;(3)求代数式(﹣)•的值.25.(10分)如图,在平面直角坐标系中,点D是边长为4cm的正方形ABCO的边AB的中点,直线y=x交BC于点E,连接DE并延长交x轴于点F.(1)求出点E的坐标;(2)求证:△ODE是直角三角形;(3)过D作DH⊥x轴于点H,动点P以2cm/s的速度从点D出发,沿着D→H→F方向运动,设运动时间为t,当t为何值时,△PEH是等腰三角形?参考答案一、选择题(共10小题).1.(3分)﹣的绝对值是()A.﹣B.C.D.﹣解:﹣的绝对值是.故选:B.2.(3分)平面直角坐标系中,点P(﹣2,1)关于y轴对称点P的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(2,1)解:点P(﹣2,1)关于y轴对称点P的坐标是:(2,1).故选:D.3.(3分)下列化简正确的是()A.=﹣2B.=﹣4C.=﹣2D.=4解:A、=﹣2,故此选项计算正确;B、=4,故此选项计算错误;C、=2,故此选项计算错误;D、±=±4,故此选项计算错误;故选:A.4.(3分)下列几组数能作为直角三角形三边长的是()A.3,4,6B.1,1,C.5,12,14D.,2,5解:A、32+42≠62,不符合勾股定理的逆定理,不是直角三角形,不符合题意;B、12+12≠()2,不符合勾股定理的逆定理,不是直角三角形,不符合题意;C、52+122≠142,不符合勾股定理的逆定理,不是直角三角形,不符合题意;D、()2+(2)2=52,符合勾股定理的逆定理,是直角三角形,符合题意;故选:D.5.(3分)如图,在四边形ABCD中,连结BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD解:A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能推出AD∥BC,故本选项符合题意;D、根据∠C=∠A不能推出AB∥CD,故本选项不符合题意.故选:C.6.(3分)给定的根式运算正确的是()A.B.C.D.解:A、与﹣不能合并,所以A选项错误;B、2与不能合并,所以B选项错误;C、原式==,所以C选项错误;D、原式==,所以D选项正确.故选:D.7.(3分)下列命题是假命题的是()A.数0.585885888588885…(每相邻两个5之间的8的个数逐次加1)是无理数B.三角形的最大内角可能少于60°C.直角坐标系中,与x轴平行的一条直线上任意两点的纵坐标相等D.将直角三角形的三边长同时扩大相同的倍数,得到的三角形还是直角三角形解:A、数0.585885888588885…(每相邻两个5之间的8的个数逐次加1)是无理数,本选项说法是真命题;B、∵三角形内角和等于180°,∴三角形的最大内角不可能少于60°,本选项说法是假命题;C、直角坐标系中,与x轴平行的一条直线上任意两点的纵坐标相等,本选项说法是真命题;D、将直角三角形的三边长同时扩大相同的倍数,得到的三角形还是直角三角形,本选项说法是真命题;故选:B.8.(3分)一次函数y=kx+b的图象如图所示,则以k、b为坐标的点(k,b)在第()象限内.A.一B.二C.三D.四解:根据数轴上直线的位置得:k<0,b<0,则以k、b为坐标的点(k,b)在第三象限内.故选:C.9.(3分)如图,圆柱的底面半径是4,高是5,一只在A点的蚂蚁想吃到B点的食物,需要爬行的最短路径是(π取3)()A.9B.13C.14D.25解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即4π≈12,矩形的宽是圆柱的高5.根据两点之间线段最短,知最短路程是矩形的对角线的长,即=13.,故选:B.10.(3分)若A、B两地的距离是120km,甲和乙沿相同的路线由A地到B地的行驶路程与时间的关系如图所示.根据图象判断以下结论正确的个数有()①甲比乙晚两小时出发②甲的速度是30km/h,乙的速度是15km/h③乙出发4小时后,甲在乙的前面④甲行驶的路程y与时间x的函数关系是y=15xA.1个B.2个C.3个D.4个解:由图可知,甲比乙晚两小时出发,故①正确;甲的速度为:120÷(6﹣2)=120÷4=30km/h,乙的速度为:120÷8=15km/h,故②正确;乙出发4小时后,甲在乙的前面,故③正确;设甲行驶的路程y与x的函数关系式为y=kx+b,,得,即甲行驶的路程y与x的函数关系式为y=30x﹣60,故④错误;故选:C.二、填空题(7个题,每题4分,共28分)11.(4分)比较大小:<3(填:“>”或“<”或“=”)解:∵6<9,∴<3.故答案为:<.12.(4分)如图,A、B两点的坐标分别为(﹣2,1)、(4,1),在同一坐标系内点C 的坐标为(0,3).解:点C的坐标为(0,3),故答案为:(0,3).13.(4分)在△ABC中,点D是BC上一点,∠ADB=130°,∠CAD=54°,则∠C=76°.解:∵∠ADB是△ADC的一个外角,∴∠C=∠ADB﹣∠CAD=130°﹣54°=76°,故答案为:76°14.(4分)若直线y=kx+b与x轴的交点坐标为(﹣3,0),则关于x的方程kx+b=0的解是x=﹣3.解:∵直线y=kx+b与x轴的交点坐标为(﹣3,0),∴关于x的方程kx+b=0的解是:x=﹣3.故答案为:x=﹣3.15.(4分)若是二元一次方程2x﹣3y﹣5=0的一组解,则4a﹣6b=10.解:把代入方程得:2a﹣3b﹣5=0,整理得:2a﹣3b=5,则原式=2(2a﹣3b)=10,故答案为:10.16.(4分)小明调查了班内20名同学本学期购买课外书的花费情况,并将结果绘制成统计图,那么这20名同学购买课外书的平均花费是69元.解:这20名同学购买课外书的平均花费是:100×20%+80×30%+50×50%=69(元).故答案为:69.17.(4分)手机已成现代入生活的一个重要组成部分,它给人们生活带来了许多方便.假如你家刚刚添置了一部手机,手机资费宣传单如下表:当通话时间为200min时,选套餐B更优惠.(填“A”或“B”)套餐项目月租通话A12元0.2元/minB0元0.25元/min 解:选择A套餐费用为:12+0.2×200=52(元),选择B套餐的费用为:0.25×200=50(元),50<52,∴选择B套餐更优惠,故答案为B.三、解答题(一)(3个题,每题6分,共18分)18.(6分)计算:解:原式=+=+=.19.(6分)解方程组解:,①×2﹣②得:7y=14,解得:y=2,把y=2代入①得:x=4,则方程组的解为.20.(6分)甲、乙两名同学参加青少年科技创新选拔赛,甲六次比赛的成绩如下:87,93,88,93,89,90.(1)甲成绩的中位数是89.5,众数是93;(2)若乙六次比赛的平均成绩与甲相同,且乙成绩的方差是,要选派一名发挥稳定的同学参加比赛,应该选谁?说明理由(S2=[(x1﹣)2+(x2﹣)2+…(x n﹣)2]).解:(1)将甲六次比赛的成绩从小到大排列为:87,88,89,90、93,93,所以甲成绩的中位数为=89.5,众数为93,故答案为:89.5、93;(2)选择甲参加比赛,∵甲成绩的平均数为=90,∴甲成绩的方差为×[(87﹣90)2+(88﹣90)2+(89﹣90)2+(90﹣90)2+2×(93﹣90)2]=,∵<,∴应该选择甲.四、解答题(二)(3个题,每题8分,共24分)21.(8分)某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?解:(1)设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b由题意得,解得k=,b=﹣5∴该一次函数关系式为(2)∵,解得x≤30∴旅客最多可免费携带30千克的行李.答:(1)行李费y(元)关于行李质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行李.22.(8分)如图,在平面直角坐标系xOy内有一直线l对应的一次函数是y=x+b.(1)在x轴上画出对应的点A;(2)若直线l经过点A,求直线l与坐标轴所围的三角形面积.解:(1)取点B(1,2),连接OB,则OB==,以OB长为半径画弧,交x轴正半轴于点A,点A即是所求.(2)由(1)可知点A的坐标为(,0).∵直线l经过点A,∴×+b=0,∴b=﹣5.当x=0时,y=x﹣5=﹣5,∴点C的坐标为(0,﹣5),∴S△OAC=OA•OC=.23.(8分)如图,在△ABC中,∠BAC=90°,AB=AC=1,AF是等边△ACD的高,交BD于点E,连接CE.(1)求∠ABD的度数;(2)求CE的长.解:(1)∵△ACD是等边三角形,∴AC=AD=CD,∠CAD=∠ACD=∠ADC=60°,∵∠CAB=90°,AB=AC,∴AB=AD,∠BAD=90°+60°=150°,∴∠ABD=∠ADB=(180°﹣150°)=15°.(2)∵AF⊥CD,AC=AD,∴EC=ED,∵∠ADC=60°,∠ADB=15°,∴∠EDC=∠ECD=45°,∴∠CED=90°,∴CE=CD=.五、解答题(三)(2个题,每题10分,共20分)24.(10分)如图,一次函数y=mx+n的图象经过点A,与函数y=﹣x+6的图象交于点B,B点的横坐标为1.(1)方程组的解是(2)求出m、n的值;(3)求代数式(﹣)•的值.解:(1)当x=1时,y=﹣x+6=5,则B点坐标为(1,5),所以方程组的解是;故答案为;(2)把A(﹣1,1),B(1,5)代入y=mx+n得,解得;(3)原式=﹣=﹣n(n>0),当m=2,n=3时,原式=﹣3.25.(10分)如图,在平面直角坐标系中,点D是边长为4cm的正方形ABCO的边AB的中点,直线y=x交BC于点E,连接DE并延长交x轴于点F.(1)求出点E的坐标;(2)求证:△ODE是直角三角形;(3)过D作DH⊥x轴于点H,动点P以2cm/s的速度从点D出发,沿着D→H→F方向运动,设运动时间为t,当t为何值时,△PEH是等腰三角形?解:(1)D是边长为4cm的正方形ABCO的边AB的中点,则点D(2,4),当x=4时,y=x=,故点E(4,3);(2)点O、D、E的坐标分别为:(0,0)、(2,4)、(4,3),则DO2=20,OE2=25,DE2=5,故OE2=OD2+ED2,故:△ODE是直角三角形;(3)点E、H的坐标分别为:(4,3)、(2,0),①当点P在HD上时,此时0<t≤2,点P(2,4﹣2t),则PH2=(4﹣2t)2,PE2=4+(1﹣2t)2,HE2=13,当PH=PE时,(4﹣2t)2=4+(1﹣2t)2,解得:t=;当PH=HE时,同理可得:t=(不合题意值已舍去);当PE=HE时,同理可得:t=2;②当点P在HF上时,由点D、E的坐标得,直线ED的表达式为:y=﹣x+5,令y=0,则x=10,即点F (10,0),则2<t≤6;PE2=(2t﹣8)2+9,PH2=(2t﹣6)2,EH2=13;当PE=PH时,(2t﹣8)2+9=(2t﹣6)2,解得:t=;当PE=EH时,同理可得:t=6(不合题意值已舍去);当PH=EH时,同理可得:t=(不合题意值已舍去).综上,当t=或2或或或6或.。
广东省佛山市2019-2020学年数学八上期末模拟调研试卷(1)
广东省佛山市2019-2020学年数学八上期末模拟调研试卷(1)一、选择题1.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1 B .x≥2 C .x >1 D .x >22.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯的理论厚度仅0.00000000034米,将这个数用科学记数法表示为( )A .0.34×10-9B .3.4×10-9C .3.4×10-10D .3.4×10-113.某次列车平均提速/vkm h ,用相同的时间,列车提速前行驶skm ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?若设提速前这次列车的平均速度为/xkm h ,则根据行驶时间的等量关系可以列出的方程为( ) A.50s s x x v +=+ B.50s s x x v -=- C.50s s x x v +=- D.50s s x x v-=+ 4.若1a b -=,2213a b +=,则ab 的值为( )A .6B .7C .8D .9 5.下列各式由左到右的变形中,属于因式分解的是( ) A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 6.下列计算结果是6x 的为( )A .()23xB .7x x -C .122x x ÷D .23x x ⋅7.如图,在△AB C 中,AB =AC ,BD 和CD 分别是∠ABC 和∠ACB 的平分线,EF 过D 点,且EF ∥BC ,图中等腰三角形共有( )A .2个B .3个C .4个D .5个8.如图,在Rt ABC ∆中,ED 是AC 的垂直平分线,分别交BC ,AC 于E ,D ,已知10BAE ∠=,则C ∠为( )A .30B .40C .50D .609.如图,正方形ABCD 的面积为9,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .3B .6C .9D .410.如图,△ABC ≌△ADE ,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A.40°B.30°C.35°D.25°11.如图,已知△ABC 是等腰直角三角形,∠A =90°,BD 是∠ABC 的平分线,DE ⊥BC 于E ,若BC =10cm ,则△DEC 的周长为( )A.8cmB.10cmC.12cmD.14cm12.如图,BD 平分∠ABC ,AD ∥BC ,则下列结论正确的是 ( )A .BC=BDB .AB=ADC .DB=DCD .AD=DC13.如图,在ABC ∆中,44B ∠=,56C ∠=,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC交AB 于点E ,则ADE ∠的大小是( )A .56B .50C .44D .4014.一个正多边形的内角和是1440°,则它的每个外角的度数是( )A .30° B.36° C.45° D.60°15.若(a ﹣4)2+|b ﹣8|=0,则以a 、b 为边长的等腰三角形的周长为( )A .18B .16C .16或20D .20二、填空题16.当x_____时,分式的值为正. 17.已知2,3x y xy +=-=,则22x y xy += ___________【答案】-618.如图,AD ∥BC ,CP 和DP 分别平分∠BCD 和∠ADC ,AB 过点P ,且与AD 垂直,垂足为A ,交BC 于B ,若AB =10,则点P 到DC 的距离是_____.19.如图,BP 和CP 是ABC ∠和ACB ∠的平分线,88A ∠=,则BPC ∠的度数为_______.20.如图,平面直角坐标系内有一点A (1,1),O 为坐标原点.点B 在x 轴上,且构成的△AOB 为等腰三角形,则符合条件的点B 有_______个.三、解答题21.解下列分式方程:(1)231x x =+;(2)解方程:22411a a a+=--. 22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n 个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(12x 2+x)(12x 2+x+1)+1因式分解. 23.类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整. 已知ABC ∆.(1)观察发现如图①,若点D 是ABC ∠和ACB ∠的角平分线的交点,过点D 作//EF BC 分别交AB 、AC 于、E ,F 填空: EF 与BE 、CF 的数量关系是________________________________________.(2)猜想论证如图②,若D 点是外角CBE ∠和BCF ∠的角平分线的交点,其他条件不变,填: EF 与BE 、CF 的数量关系是_____________________________________.(3)类比探究如图③,若点D 是ABC ∠和外角ACM ∠的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.24.如图,已知BD 是△ABC 的角平分线,ED 是BC 的垂直平分线,∠BAC=90°,AD=3.①求∠C 的度数,②求CE 的长.25.如图,O 为直线AB 上一点,OC 为一射线,OE 平分∠AOC ,OF 平分∠BOC .求∠EOF 的度数.【参考答案】***一、选择题16.>17.无18.519.134o20.4三、解答题21.(1)x=2;(2)a=-222.(1)4×2016×2017+1=40332;(24n(n+1)+1=(2n+1)2;(3)4(12x 2+x)(12x 2+x+1)+1=(x+1)4. 23.(1)EF BE CF =+;(2)EF BE CF =+;(3)不成立, EF BE CF =-,证明详见解析.【解析】【分析】(1)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;(2)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;(3)根据平行线的性质与角平分线的定义得出 EF 与 BE 、 CF 的数量关系.【详解】(1)EF=BE+CF.∵ 点 D 是 ∠ABC 和 ∠ACB 的角平分线的交点,∴∠EBD=∠DBC , ∠FCD=∠DCB .∵EF ∥BC ,∴∠EDB=∠DBC ,∠FDC=∠DCB .∴∠EDB=∠EBD ,∠FCD=∠FDC .∴EB=ED ,DF=CF .∴EF=BE+CF .故本题答案为:EF=BE+CF .(2)EF=BE+CF.∵D 点是外角∠CBE 和∠BCF 的角平分线的交点,∴∠EBD=∠DBC ,∠FCD=∠DCB .∵EF∥BC ,∴∠EDB=∠DBC ,∠FDC=∠DCB .∴∠EDB=∠EBD ,∠FCD=∠FDC .∴EB=ED ,DF=CF .∴EF=BE+CF .故本题答案为:EF=BE+CF .(3)不成立;EF=BE−CF ,证明详见解析.∵点 D 是∠ABC 和外角∠ACM 的角平分线的交点,∴∠EBD=∠DBC ,∠ACD=∠DCM .∵EF∥BC ,∴∠EDB=∠DBC ,∠FDC=∠DCM .∴∠EBD=∠EDB ,∠FDC=∠FCD .∴BE=ED ,FD=FC .∵EF=ED−FD ,∴EF=BE−CF .【点睛】本题考查了平行线的性质,等腰三角形的判定,以及角平分线的定义等知识.解决本题的关键突破口是掌握平行线的性质与等腰三角形的概念.24.①∠C=30度;②CE=【解析】【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据30°角所对直角边等于斜边的一半及勾股定理即可得到CE的长.【详解】(1)∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC.∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°.(2)∵∠ABD=30°,∴BD=2AD=6,∴CD=DB=6,∴DE=3,∴【点睛】本题考查了线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.25.90°.。
(汇总3份试卷)2020年佛山市八年级上学期期末经典数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.解分式方程11322x x x-=---时,去分母变形正确的是( ) A .113(2)x x -+=+- B .113(2)x x -+=---C .113(2)x x -=---D .113(2)x x -=-- 【答案】C【分析】分式方程去分母转化为整式方程,即可得到结果.【详解】解:去分母得:1-x=-1-3(x-2),故选:C .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.2.25的平方根是( )A .±5B .﹣5C .5D .25【答案】A【分析】如果一个数x 的平方等于a ,那么x 是a 是平方根,根据此定义即可解题.【详解】∵(±1)2=21∴21的平方根±1.故选A.3.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC【答案】C 【解析】试题分析:解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误;选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误;选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误.考点:全等三角形的判定.∆中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、4.如图,ABC∠的度数为何?()AF.根据图中标示的角度,求EAFA.113︒B.124︒C.129︒D.134︒【答案】D【分析】连接AD,利用轴对称的性质解答即可.【详解】解:连接AD,D点分别以AB、AC为对称轴,画出对称点E、F,∠=∠,∴∠=∠,FAC CADEAB BAD∠=︒,5162B∠,C=︒180625167∴∠=∠+∠=︒-︒-︒=︒,BAC BAD DAC∴∠=∠=︒,2134EAF BAC故选D.【点睛】本题考查轴对称的性质,关键是利用轴对称的性质解答.5.若a-2b=1,则代数式a2-2ab-2b的值为()A.-1 B.0 C.1 D.2【答案】C【分析】已知a−2b的值,将原式变形后代入计算即可求出值.【详解】解:∵a−2b=1,∴2b=a-1,∴a2-2ab-2b=a2-a(a-1)-(a-1)=a2-a2+a-a+1)=1,故选:C.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知二元一次方程组28212a ba b+=⎧⎨-=⎩,则a的值是()A.3 B.5 C.7 D.9 【答案】B【分析】直接利用加减消元法解二元一次方程组即可.【详解】解:28212a ba b+=⎧⎨-=⎩①②,①+②得:4a=20,解得:a=1.故选:B.【点睛】本题考查了加减消元法解二元一次方程组.7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.43【答案】A【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC ﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.8.已知3a=6,3b=4,则23a b-的值为()【分析】逆用同底数幂的除法法则以及幂的乘方法则进行计算,即可解答.【详解】∵3a=6,3b=4,∴23a b-=(3a)2÷3b=36÷4=9,故选D.【点睛】本题考查同底数幂的除法法则以及幂的乘方法则,解题的关键是掌握相关法则的逆用.9.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+【答案】D【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.10.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°【答案】C【解析】试题分析:如图,根据平行线的性质可得∠1=∠4=75°,然后根据三角形的外角等于不相邻两内角的和,可知∠4=∠2+∠3,因此可求得∠3=75°-35°=40°.故选C考点:平行线的性质,三角形的外角性质二、填空题11.如果32x y =⎧⎨=⎩是方程5x+by =35的解,则b =_____. 【答案】1【分析】由方程的解与方程的关系,直接将给出的解代入二元一次方程即可求出b .【详解】解:∵32x y =⎧⎨=⎩是方程5x+by =35的解, ∴3×5+2b =35,∴b =1,故答案为1.【点睛】本题考查方程的解与方程的关系,解题的关键是理解并掌握方程的解的意义:能使方程左右两边的值都相等.12.若不等式(1)(1)a x a +>+的解集为1x <,则a 满足________.【答案】1a <-【分析】根据(1)(1)a x a +>+的解集为1x <,列不等式求解即可.【详解】解:∵(1)(1)a x a +>+的解集为1x <,∴a+1<0,∴1a <-.故答案为1a <-.【点睛】本题考查了根据不等式解集的情况求参数,根据题意列出关于a 的不等式是解答本题的关键. 13.x 的3倍与2的差不小于1,用不等式表示为_________.【答案】321x -≥【分析】首先表示“x 的3倍与2的差”为32x -,再表示“不小于1”为321x -≥即可得到答案.【详解】根据题意,用不等式表示为321x -≥故答案是:321x -≥【点睛】本题考查了列不等式,正确理解题意是解题的关键.14.比较大小:.(填“>”、“<“、“=“)【分析】利用估算法比较两实数的大小.<<,【详解】解:∵489∴2<8<3,∴3>8.故答案是:>.【点睛】本题考查实数的大小比较,正确对无理数进行估算是解题关键.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是_____,点B n的坐标是_____.【答案】 (7,4)B n(2n-1,2n-1)【详解】解:已知B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,所以A1的坐标是(0,1),A2的坐标是(1,2),用待定系数法求得直线A1A2解析式为y=x+1.已知点B1的坐标为(1,1),点B2的坐标为(3,2),可得点B3的坐标为(7,4),所以B n的横坐标是:2n-1,纵坐标是:2n-1.即可得B n的坐标是(2n-1,2n-1).故答案为:(7,4);B n(2n-1,2n-1)【点睛】本题主要考查了一次函数图象上点的坐标性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.16.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.【答案】70°或40°.【分析】已知等腰三角形的一个内角为70°,根据等腰三角形的性质可分情况解答:当70°是顶角或者70°是底角两种情况.【详解】此题要分情况考虑:①70°是它的顶角;②70°是它的底角,则顶角是180°−70°×2=40°.故答案为70°或40°.本题考查等腰三角形的性质, 三角形内角和定理.掌握分类讨论思想是解决此题的关键.17.如图,数轴上,A B 两点到原点的距离相等,点A 表示的数是__________.【答案】2- 【解析】根据题意可知A ,B 两点表示的数互为相反数,即可得出答案.【详解】∵A ,B 两点到原点的距离相等,且在原点的两侧∴A ,B 两点表示的数互为相反数又∵B 点表示的数为2∴A 点表示的数为2-故答案为:2-.【点睛】本题考查了相反数的几何意义,掌握相反数在数轴上的位置关系是解题的关键.三、解答题18.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,90AC BC ACB =∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合.(1)求证:ADC CEB ∆≅∆;(2)求两堵木墙之间的距离.【答案】(1)证明见解析;(2)两堵木墙之间的距离为20cm .【分析】(1)根据同角的余角相等可证BCE DAC ∠=∠,然后利用AAS 即可证出ADC CEB ∆≅∆; (2)根据题意即可求出AD 和BE 的长,然后根据全等三角形的性质即可求出DC 和CE ,从而求出DE 的长.【详解】(1)证明:由题意得:AC BC =,90,,ACB AD DE BE DE ∠=︒⊥⊥,∴90ADC CEB ∠=∠=︒,∴90,90ACD BCE ACD DAC ∠+∠=︒∠+∠=︒,在ADC ∆和CEB ∆中ADC CEB DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADC CEB AAS ∆≅∆;(2)解:由题意得:236,7214AD cm BE cm =⨯==⨯=,∵ADC CEB ∆≅∆,∴6,14EC AD cm DC BE cm ====,∴()20DE DC CE cm =+=,答:两堵木墙之间的距离为20cm .【点睛】此题考查的是全等三角形的应用,掌握全等三角形的判定及性质是解决此题的关键.19.计算:(1) ()()2211x x x x ---+ (2) ()()222299n m m n -++ (3) 2244112a a a a a -+-⨯-- 【答案】 (1) 231x x -+(2) 4481m n -(3) 21a a -+ 【分析】(1)根据整式的乘法运算法则即可求解;(2)根据平方差公式即可求解;(3)根据分式的乘法运算法则即可求解.【详解】(1) ()()2211x x x x ---+ =22221x x x x -+--=231x x -+(2) ()()222299n m m n -++=4481m n - (3) 2244112a a a a a -+-⨯-- =()()2(2)1112a a a a a --⨯+--【点睛】此题主要考查整式与分式的运算,解题的关键是熟知其运算法则.20.某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?【答案】(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台【分析】(1)根据每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等,可以列出相应的分式方程,从而可以解答本题;(2)根据题意和(1)中的结果,可以计算出两种方案下获得的利润,然后比较大小,即可解答本题.【详解】解:(1)设每台空调的进件为x 元,则每台电冰箱的进件为(x+400)元,60004800400x x=+, 解得,x =1600,经检验,x =1600是原分式方程的解,则x+400=2000元,答:每台电冰箱与空调的进价分别是2000元,1600元;(2)当购进冰箱30台,空调70台,所得利润为:(2100﹣2000)×30+(1750﹣1600)×70=13500(元), 当购进冰箱50台,空调50台,所得利润为:(2100﹣2000)×50+(1750﹣1600)×50=12500(元), ∵13500>12500,∴该商店要获得最大利润应购进冰箱30台,空调70台.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,利用分式方程的知识解答,注意分式方程一定要检验.21.如图,P 为正方形ABCD 的边BC 的延长线上一动点,以DP 为一边做正方形DPEM ,以E 为一顶点作正方形EFGH ,且FG 在BC 的延长线上(提示:正方形四条边相等,且四个内角为90︒)(1)若正方形ABCD 、DPEM 的面积分别为a ,b ,则正方形EFGH 的面积为 (直接写结果). (2)过点P 做BC 的垂线交PDC ∠的平分线于点Q ,连接QE ,试探求在点P 运动过程中,DQE ∠的大小是否发生变化,并说明理由.【答案】(1)b a -;(2)DQE ∠的大小不会发生变化,理由见解析.【分析】(1)先通过全等,得到EF=CP ,通过勾股定理求222CP DP CD =-=b a -,则正方形EFGH 的面积=2EF =2CP =b a -(2)先通过证明PD PQ =,再通过正方形的性质得到PQ PE =,再通过证明得到1()2DQE DQP PQE CDP PEF ∠=∠+∠=∠+∠=45°,所以DQE ∠的大小不会发生变化. 【详解】(1) ∵四边形ABCD 、四边形EFGH 、四边形DPEM 是正方形∴DP=PE,∠DPE=90°,∠BCD=90°,∠EFG=90°∴∠PCD=∠EFP=90°,∠DPC+∠PDC=90°, ∠EPF+∠DPC=90°,∴∠PDC= ∠EPF∴△CDP ≌△FEP∴EF=CP∵在Rt △CDP 中,222CP DP CD =-,正方形ABCD 的面积=2CD =a ,正方形DPEM 的面积=2DP =b ∴正方形EFGH 的面积=2EF =222CP DP CD =-=b a -(2)DQE ∠的大小不会发生变化,理由如下,,,DC BC DQ BC EF BC ⊥⊥⊥//,//DC QP QP EF ∴CDQ PQD ∴∠=∠ DQ 平分CDP ∠CDQ QDP PQD ∴∠=∠=∠PD PQ ∴=在正方形DPEM 中,DP PE =PQ PE ∴=//PQ EFPQE FEQ ∴∠=∠12PQE PEF ∴∠=∠ 1()2DQE DQP PQE CDP PEF ∠=∠+∠=∠+∠ 90,90CDP CPD CPD EPF ∠+∠=︒∠+∠=︒CDP EPF ∴∠=∠90CDP PEF ∴∠+∠=︒1()2DQE CDP PEF ∠=∠+∠ 190452DQE ∴∠=⨯︒=︒ ∴DQE ∠的大小不会发生变化.【点睛】本题考查的正方形与全等的综合性题目,灵活运用正方形的特征是解答此题的关键.22.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口490km 的普通公路升级成了比原来长度多35km 的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,求公路升级以后汽车的平均速度【答案】105/km h【分析】设公路升级以前汽车的平均速度为/xkm h ,则公路升级以后汽车的平均速度为(150%)/xkm h +,根据时间=路程÷速度结合升级后行驶时间缩短了2h ,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设公路升级以前汽车的平均速度为/xkm h ,则公路升级以后汽车的平均速度为(150%)/xkm h +, 依题意,得:()490490352150%x x +-=+, 解得:70x =,经检验,70x =是所列分式方程的解,且符合题意,(150%)105x ∴+=. 答:公路升级以后汽车的平均速度为105/km h .【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.已知8a -的平方根是3是b 的算术平方根,求ab 的立方根.【答案】1【分析】利用平方根,算术平方根定义求出a 与b 的值,进而求出ab 的值,利用立方根定义计算即可求出值.【详解】解:根据题意得:85a -=,23b =,解得:3a =,9b =,即27ab =,27的立方根是1,即ab 的立方根是1.【点睛】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.24.已知a+b=2,求(11a b+)•2()4ab a b ab -+的值. 【答案】12【分析】首先把该分式进行化简,把括号里面的分式进行通分,然后把括号外面的分母由完全平方差和完全平方和的互化公式22()4()a b ab a b -+=+,可把分母化成2()a b +,最后进行相同因式的约分得到化简结果,再把2a b +=整体代入求值.【详解】解:原式=21()a b ab ab a b a b +⋅=++() 当2a b +=时原式=112a b =+ 【点睛】本题考查了分式的化简求值,化简过程需要用到通分约分,通分时要找准最简公分母,约分时先把分子分母因式分解,得到各个因式乘积的形式,再找相同的因式进行约分得到最简分式.代入求值时,要有整体代入的思维.25.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的16,求港珠澳大桥的设计时速是多少. 【答案】港珠澳大桥的设计时速是每小时100千米.【解析】设港珠澳大桥的设计时速是x 千米/时,按原来路程行驶的平均时速是(x ﹣40)米/时.根据“从香港到珠海的车程由原来的180千米缩短到50千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的16”列方程,求解即可. 【详解】设港珠澳大桥的设计时速是x 千米/时,按原来路程行驶的平均时速是(x ﹣40)米/时.依题意得:501180·640x x =- 解得:100x =.经检验:100x =是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.【点睛】本题考查了分式方程的应用.解题的关键是找出相等关系,根据相等关系列方程.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.4的平方根是( )A .2B .16C .±2D .± 【答案】C【分析】根据平方根的概念:如果一个数x 的平方等于a,即2x a = ,那么这个数x 叫做a 的平方根,即可得出答案.【详解】2(2)4±= ,∴4的平方根是2± ,故选:C .【点睛】本题主要考查平方根的概念,掌握平方根的概念是解题的关键.2.已知二元一次方程组12411x y x y -=⎧⎨+=⎩,则222()x y x y --的值为( ) A .2B .12C .4D .14 【答案】D【分析】解方程组求出x 、y 的值,再把所求式子化简后代入即可.【详解】解:12411x y x y -=⎧⎨+=⎩①②②−①×2得,6y =9,解得32y =, 把32y =代入①得,312x -=,解得52x =, ∴()()()()22225312253422x y x y x y x y x y x y x y ----====-+-++, 故选:D .【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 3.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( )A .88203x x +=B .88133x x =+ C .88203x x =+ D .81833x x += 【答案】B 【分析】关键描述语为:“乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟”;等量关系为:乘公交车所用时间=乘坐私家车所用时间+13.【详解】解:设乘公交车平均每小时走x 千米,根据题意可列方程为:88133x x =+.故选:B .【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解题关键.4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是( ) A . B .C .D .【答案】A【分析】根据轴对称图形的概念求解.【详解】A 、是轴对称图形.故选项正确;B 、不是轴对称图形.故选项错误;C 、不是轴对称图形.故选项错误;D 、不是轴对称图形.故选项错误.故选:A .【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.5.计算(1524555⎛÷- ⎝的结果为( )A .7B .-5C .5D .-7【答案】C【分析】利用最简二次根式的运算即可得.【详解】()()()()()152455565555555⎛⎫-÷-=-÷-=-÷-= ⎪ ⎪⎝ 故答案为 C【点睛】本题考查二次根式的运算,掌握同类二次根式的运算法则及分母有理化是解题的关键.6.如图,已知OAC ≌OBD ,若13OC =,7OB =,则AD 的长为( ).A .5B .6C .7D .8【答案】B 【分析】根据全等三角形的性质即可得到结论.【详解】解:∵OAC ≌OBD ,∴OC OD =,OB OA =,∵13OC =,7OB =,∴1376AD OD OA OC OB =-=-=-=.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.7.我国民间,流传着许多含有吉祥意义的图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”“禄”“寿”“喜”,其中是轴对称图形的有几个( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据轴对称图形的概念即可确定答案.【详解】解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,共3个轴对称图形,故答案为C .【点睛】本题考查了轴对称图形的定义,掌握轴对称图形的定义是解答本题的关键.8.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x+y ,a+b ,x 2﹣y 2,a 2﹣b 2分别表示下列六个字兴、爱、我、义、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码可能是( )A .我爱美B .兴义游C .美我兴义D .爱我兴义【答案】D【分析】将所给整式利用提取公因式法和平方差公式进行因式分解,再与所给的整式与对应的汉字比较,即可得解.【详解】解:∵(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2=(x 2﹣y 2)(a 2﹣b 2)=(x+y )(x ﹣y )(a+b )(a ﹣b )∵x ﹣y ,x+y ,a ﹣b ,a+b 四个代数式分别对应:爱、我、兴、义∴结果呈现的密码可能是爱我兴义.故选:D .【点睛】本题主要考查因式分解,掌握提取公因式和因式分解的方法是解题的关键. 9.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a≥1B .a>1C .a≤-1D .a<-1【答案】A 【解析】0{122x a x x ->->-①②, 由①得,x<1,由②得,x>a ,∵此不等式组无解,∴a ⩾1.故选A.点睛:此题主要考查了已知不等式的解集,求不等式中另一未知数的问题.可以先将另一未知数当做已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.10.如图,ABC 中,AD BC ⊥于D,BE AC ⊥于E,AD 交BE 于点F,若BF AC =,则ABC ∠等于( )A .45︒B .48︒C .50︒D .60︒【答案】A 【分析】根据垂直的定义得到∠ADB=∠BFC=90°,得到∠FBD=∠CAD ,证明△FDB ≌△CAD ,根据全等三角形的性质解答即可.【详解】解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADB=∠BEC=90°,∴∠FBD=∠CAD ,在△FDB 和△CAD 中,FBD CAD BDF ADC BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FDB ≌△CDA ,∴DA=DB ,∴∠ABC=∠BAD=45°,故选:A .【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.二、填空题11.当a =_______时,分式2123a a a +--的值为1. 【答案】-3【分析】根据题意列出方程,解出a 即可. 【详解】解:根据题意得:2123a a a +--=1, 即可得到 2123a a a +-=-解得 :3a =± 根据2123a a a +--中 30a -≠ 得到3a ≠舍弃3a =所以3a =-故答案为:-3.【点睛】此题主要考查了可化为一元二次方程的分式方程,关键是根据题意列出分式方程.12.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为_____小时.【答案】213【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.【详解】沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=213(小时). 故答案为:213. 【点睛】本题考查了一次函数的运用,学会看函数图象,理解函数图象所反映的实际意义,从函数图象中获取信息,并且解决有关问题. 13.计算221164a a a ---的结果是___________ 【答案】14a + 【分析】先通分,然后根据同分母分式加减法法则进行计算即可.【详解】原式=()()()()244444a a a a a a +-+-+-=()()()2444a a a a -++-=()()444a a a -+- =14a +, 故答案为14a +. 【点睛】本题考查了异分母分式的加减法,熟练掌握异分母分式加减法的运算法则是解题的关键.14.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.【答案】9.2×10﹣1. 【分析】根据科学记数法的正确表示为()10110n a a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为: 9.2×10﹣1.【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式. 15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b )n (n 为非负整数)展开式的各项系数的规律,例如:(a+b )0=1,它只有一项,系数为1;(a+b )1=a+b ,它有两项,系数分别为1,1;(a+b )2=a 2+2ab+b 2,它有三项,系数分别为1,2,1;(a+b )3=a 3+3a 2b+3ab 2+b 3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b )5展开式共有六项,系数分别为______,拓展应用:(a ﹣b )4=_______.【答案】1,5,10,10,5,1 a 4﹣4a 3b+6a 2b 2﹣4ab 3+b 4【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【详解】(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.(a ﹣b )4=a 4﹣4a 3b+6a 2b 2﹣4ab 3+b 4.故答案为:1、5、10、10、5、1,a 4﹣4a 3b+6a 2b 2﹣4ab 3+b 4.【点睛】此题考查完全平方公式,正确观察已知的式子与对应的三角形之间的关系是关键.16.已知:23x =,45y =,则22x y -=__________.【答案】35【分析】将45y =转化为()224225y y y ===,再把22x y -转化为222x y ,则问题可解 【详解】解:∵()224225y y y ===22232=25x x y y -= 【点睛】本题考查了同底数幂的除法和幂的乘方的逆运算,解答关键是将不同底数的幂运算转化成同底数幂进行计算.17.不等式组24124(1)x x x x -<+⎧⎨->-+⎩的解集为__________ 【答案】15x <<【分析】由题意分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,确定不等式组的解集即可.【详解】解:24124(1)x x x x -<+⎧⎨->-+⎩,解得51x x <⎧⎨>⎩, 所以不等式组的解集为:15x <<.故答案为:15x <<.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础以及熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题18.已知△ABC 是等边三角形,点D 、E 分别在AC 、BC 上,且CD=BE(1)求证:△ABE≌△BCD ;(2)求出∠AFB 的度数.【答案】(1)见解析;(2)120°.【解析】试题分析:(1)根据等边三角形的性质得出AB=BC ,∠BAC=∠C=∠ABE=60°,根据SAS 推出△ABE ≌△BCD ;(2)根据△ABE ≌△BCD ,推出∠BAE=∠CBD ,根据三角形的外角性质求出∠AFB 即可.解:(1)∵△ABC 是等边三角形,∴AB=BC (等边三角形三边都相等),∠C=∠ABE=60°,(等边三角形每个内角是60°).在△ABE 和△BCD 中,,∴△ABE≌△BCD(SAS).(2)∵△ABE≌△BCD(已证),∴∠BAE=∠CBD(全等三角形的对应角相等),∵∠AFD=∠ABF+∠BAE(三角形的一个外角等于与它不相邻的两个内角之和)∴∠AFD=∠ABF+∠CBD=∠ABC=60°,∴∠AFB=180°﹣60°=120°.考点:全等三角形的判定与性质;等边三角形的性质.19.如图,直线l:y1=﹣5 4x﹣1与y轴交于点A,一次函数y2=34x+3图象与y轴交于点B,与直线l交于点C,(1)画出一次函数y2=34x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是______.【答案】 (1)画图见解析;(1)点C坐标为(﹣1,32);(3)x<﹣1.【解析】(1)分别求出一次函数y1=34x+3与两坐标轴的交点,再过这两个交点画直线即可;(1)将两个一次函数的解析式联立得到方程组514334y xy x⎧=--⎪⎪⎨⎪=+⎪⎩,解方程组即可求出点C坐标;(3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.【详解】解:(1)∵y1=34x+3,∴当y1=0时,34x+3=0,解得x=﹣4,当x=0时,y1=3,∴直线y1=34x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(1)解方程组514334y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩,得232x y =-⎧⎪⎨=⎪⎩, 则点C 坐标为(﹣1,32); (3)如果y 1>y 1,那么x 的取值范围是x <﹣1. 故答案为(1)画图见解析;(1)点C 坐标为(﹣1,32);(3)x <﹣1. 【点睛】本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握. 20.为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电的费用是0.3元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是x 元,则每千米用油的费用为()0.6x +元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中每千米用油的费用,设汽车用电行驶ykm ,然后根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设汽车行驶中每千米用电的费用是x 元,则每千米用油的费用为()0.6x +元,列方程得108360.6x x=+, 解得0.3x =,经检验0.3x =是原方程的解,则甲、乙两地之间的距离是360.3120÷=千米.答:汽车行驶中每千米用电的费用是0.3元,甲、乙两地之间的距离是360.3120÷=千米.(2)汽车行驶中每千米用油的费用为0.30.60.9+=元.设汽车用电行驶ykm ,可得()0.30.912060y y +-≤,解得80y ≥,答:至少需要用电行驶81千米.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.21.甲、乙两名同学参加少年科技创新选拔赛,六次比赛的成绩如下:甲:87 93 88 93 89 90乙:85 90 90 96 89 a(1)甲同学成绩的中位数是__________;(2)若甲、乙的平均成绩相同,则a =__________;(3)已知乙的方差是313,如果要选派一名发挥稳定的同学参加比赛,应该选谁?说明理由. 【答案】(1)89.5;(2)90;(3)甲,理由见解析.【分析】(1)将甲的成绩按照从大到小重新排列,中间两个数的平均数即是中位数;(2)求出甲的成绩总和得到乙的成绩总和,减去其他成绩即可得到a ;(3)求出甲的平均数,计算出方差,根据甲、乙的方差大小即可做出选择.【详解】(1)将成绩从大到小重新排列为:93、93、90、89、88、87,∴中位数为: 908989.52+=, 故答案为:89.5;(2)∵甲、乙的平均成绩相同,∴甲、乙的总成绩相同,∴a=(87+93+88+93+89+90)-(85+90+90+96+89)=90;故答案为:90;(3)先甲,理由如下:。
┃精选3套试卷┃2019届佛山市八年级上学期数学期末考试试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水的标志,在下列这些示意图标中,是轴对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形的定义即可解答.【详解】根据轴对称图形的定义可知:选项A不是轴对称图形;选项B是轴对称图形;选项C不是轴对称图形;选项D不是轴对称图形.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.一个多边形的内角和是720°,这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】B【解析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,故这个多边形是六边形.故选B.3.下列四个图案中,不是轴对称图案的是()A.B.C.D.【答案】B【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A、是轴对称图案,故本选项不符合题意;B、不是轴对称图案,故本选项符合题意;C、是轴对称图案,故本选项不符合题意;D、是轴对称图案,故本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.4.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论【答案】B【分析】利用反例判断命题为假命题的方法对各选项进行判断.【详解】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.【点睛】此题主要考查命题真假的判断,解题的关键是熟知举反例的方法.5.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处【答案】D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键. 6.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 的坐标是(a ,b ),经过第2019次变换后所得的点A 的坐标是( )A .(﹣a ,b )B .(﹣a ,﹣b )C .(a ,﹣b )D .(a ,b )【答案】A 【分析】观察图形,可知每四次对称为一个循环组依次循环,用2019除以4,然后根据商和余数的情况,确定变换后点A 所在的象限,即可求解.【详解】解:点A 第一次关于x 轴对称后在第四象限,点A 第二次关于y 轴对称后在第三象限,点A 第三次关于x 轴对称后在第二象限,点A 第四次关于y 轴对称后在第一象限,即点A 回到原始位置,所以,每四次对称为一个循环组依次循环,∵2019÷4=504余3,∴经过第2019次变换后所得的A 点与第三次变换的位置相同,在第二象限,坐标为(﹣a ,b ).故选:A .【点睛】本题考查了轴对称的性质,点的坐标变换规律,认真读题找出每四次对称为一个循环组来解题是本题的关键.7.如图,在四边形ABCD 中,点P 是边CD 上的动点,点Q 是边BC 上的定点,连接AP PQ ,,E F ,分别是AP PQ ,的中点,连接EF .点P 在由C 到D 运动过程中,线段EF 的长度( )A .保持不变B .逐渐变小C .先变大,再变小D .逐渐变大【分析】连接AQ ,则可知EF 为△PAQ 的中位线,可知EF =12AQ ,可知EF 不变. 【详解】如图,连接AQ ,∵E 、F 分别为PA 、PQ 的中点,∴EF 为△PAQ 的中位线,∴EF =12AQ , ∵Q 为定点,∴AQ 的长不变,∴EF 的长不变,故选:A .【点睛】 本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键. 8.如图,在钝角三角形ABC 中,ABC ∠为钝角,以点B 为圆心,AB 长为半径画弧;再以点C 为圆心,AC 长为半径画弧;两弧交于点,D 连结,AD CB 的延长线交AD 于点E .下列结论:CE ①垂直平分AD ;CE ②平分ACD ∠;ABD ③是等腰三角形;ACD ④是等边三角形.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】依据作图可得CA=CD ,BA=BD ,即可得到CB 是AD 的垂直平分线,依据线段垂直平分线的性质以及三角形内角和定理,即可得到结论.【详解】由作图可得,CA=CD ,BA=BD ,∴CB 是AD 的垂直平分线,即CE 垂直平分AD ,故①正确;∴∠CAD=∠CDA ,∠CEA=∠CED ,∴∠ACE=∠DCE ,即CE 平分∠ACD ,故②正确;∵DB=AB ,∴△ABD 是等腰三角形,故③正确;∵AD 与AC 不一定相等,∴△ACD 不一定是等边三角形,故④错误;综上,①②③正确,共3个,故选:C .【点睛】本题主要考查了线段垂直平分线的判定和性质以及等腰三角形的判定、等边三角形的判定,解题时注意:垂直平分线上任意一点,到线段两端点的距离相等.9.如图是金堂县赵镇某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8C ︒B .中位数是24C ︒ C .平均数是22C ︒D .众数是24C ︒【答案】D 【分析】根据折线统计图中的数据及极差、中位数、平均数、众数的概念逐项判断数据是否正确即可.【详解】由图可得,极差:26-16=10℃,故选项A 错误;这组数据从小到大排列是:16、18、20、22、24、24、26,故中位数是22℃,故选项B 错误; 平均数:1618202224242615077++++++=(℃),故选项C 错误; 众数:24℃,故选项D 正确.故选:D .【点睛】本题考查折线统计图及极差、中位数、平均数、众数,明确概念及计算公式是解题关键.10.下列运算正确的是:( )A .236x x x ⋅=B .22(1)1x x -=-C .()32622x x -=-D .826a a a ÷=【答案】D【分析】根据幂的运算法则和完全平方公式逐项计算可得出正确选项.【详解】解:A. 235x x x ,故错误;B. 22(1)21x x x -=-+,故错误;C. ()32628x x -=-,故错误;D. 826a a a ÷=,正确.故选:D【点睛】本题考查了幂的运算和完全平方公式,熟练掌握幂的运算法则是解题关键.二、填空题11.函数3 4y x=-自变量x 的取值范围是______. 【答案】4x ≠【分析】根据分母不为零分式有意义,可得答案.【详解】解:由题意,得1-x≠0,解得x≠1,故答案为x≠1.【点睛】本题考查了函数值变量的取值范围,利用分母不为零得出不等式是解题关键.12.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可. 【详解】这个正多边形的边数为36060︒︒=6, 所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n ﹣2)•180 (n≥3)且n 为整数);多边形的外角和等于360度.13.在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别是a ,b 、c ,若a+b-c=1.s 表示Rt △ABC 的面积,l 表示Rt △ABC 的周长,则s l =________. 【答案】1【分析】已知a+b-c=1,△ABC 是直角三角形,将s=ab 2,l=a+b+c 用含c 的代数式表示出来,再求解s l即可.【详解】∵a+b-c=1∴a+b=1+c∴(a+b)2=a2+2ab+b2=c2+8c+16 又∵a2+b2=c2∴2ab=8c+16∴s=ab2=2c+1l=a+b+c=2c+1∴sl=1故答案为:1【点睛】本题考查了勾股定理的应用,完全平方式的简单运算,直角三角形面积和周长计算方法.14.若多项式29x mx++是一个完全平方式,则m=______.【答案】-1或1【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=1或-1.故答案为-1或1.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.如图,正比例函数y=2x的图象与一次函数y=-3x+k的图象相交于点P(1,m),则两条直线与x轴围成的三角形的面积为_______.【答案】5 3【解析】根据待定系数法将点P(1,m)代入函数中,即可求得m,k的值;即可求得交点坐标,根据三角形的面积公式即可得出结论.【详解】∵正比例函数y=1x 的图象与一次函数y=﹣3x+k 的图象交于点P (1,m ),∴把点P (1,m )代入得:23m m k ①②=⎧⎨=-+⎩,把①代入②得:m=1,k=5,∴点P (1,1),∴三角形的高就是1. ∵y=﹣3x+5,∴A (53,0),∴OA 53=,∴S △AOP 1552233=⨯⨯=. 故答案为:53.【点睛】本题考查了待定系数法求解析式;解题的关键是根据正比例函数和一次函数的图象性质进行计算即可. 16.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.【答案】9.2×10﹣1.【分析】根据科学记数法的正确表示为()10110n a a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为: 9.2×10﹣1. 【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式. 17.已知14a a -=,那么221+=a a ______. 【答案】1【分析】由完全平方公式变形,把14a a -=两边同时平方,然后移项即可得到答案. 【详解】解:∵14a a -=, ∴21()16a a -=,∴221216a a+-=, ∴22118a a +=; 故答案为:1.【点睛】本题考查了完全平方公式的运用,解题的关键是熟练掌握完全平方公式进行解题.三、解答题18.如图,在长方形ABCO 中,点O 为坐标原点,点B 的坐标为(8,6),点A ,C 在坐标轴上,直线y=2x+b 经过点A 且交x 轴于点F .(1)求b 的值和△AFO 的面积; (2)将直线y=2x+b 向右平移6单位后交AB 于点D ,交y 轴于点E ;①求点D ,E 的坐标;②动点P 在BC 边上,点Q 是坐标平面内第一象限内的点,且在平移后的直线上,若△APQ 是等腰直角三角形,求点Q 的坐标.【答案】(1)b=6,S △ADO =12×3×6=9;(2)①D(6,6),E(0,-6);②点Q 的坐标可以为(283,383),(4,2),(203,223). 【分析】(1)由矩形的性质和点B 坐标求得A 坐标,代入直线方程中即可求得b 值,进而求得点F 坐标,然后利用三角形面积公式即可解答;(2)①根据图象平移规则:左加右减,上加下减得到平移后的解析式,进而由已知可求得点D 、E 的坐标; ②根据题意,分三种情况:若点A 为直角顶点时,点Q 在第一象限;若点P 为直角顶点时,点Q 在第一象限;若点Q 为直角顶点,点Q 在第一象限,画出对应的图象分别讨论求解即可.【详解】(1)由题意得A(0,6) ,代入y=2x+b 中,解得:b=6,即y=2x+6,令y=0,由0=2x+6得:x=-3,即F(-3,0)∴OA=6,OF=3,∴S △ADO =12×3×6=9;(2)①由题意得平移后的解析式为:y=2(x-6)+6=2x-6当y=6时,2x-6=6,解得:x=6∴D(6,6),E(0,-6)②若点A为直角顶点时,点Q在第一象限,连结AC,如图2,∠APB>∠ACB>45°,∴△APQ不可能为等腰直角三角形,∴点Q不存在;若点P为直角顶点时,点Q在第一象限,如图3,过点Q作QH⊥CB,交CB的延长线于点H,则Rt△ABP≌Rt△PHQ,∴AB=PH=8,HQ=BP,设Q(x,2x−6),则HQ=x−8,∴2x−6=8+6−(x−8),∴x=283,∴Q(283,383)若点Q为直角顶点,点Q在第一象限,如图4,设Q′(x,2x−6),∴AG′=Q′H′=6−(2x−6),∴x+6−(2x−6)=8,∴x=4,∴Q′(4,2),设Q′′(x,2x−6),同理可得:x+2x−6−6=8,∴x=203,∴Q′′(203,223),综上所述,点Q的坐标可以为(283,383),(4,2),(203,223).【点睛】本题是一道一次函数与几何图形的综合题,涉及图形与坐标、求一次函数的表达式、直线与坐标轴围成的面积、图象平移的坐标变化、等腰直角三角形的判定、解一元一次方程等知识,解答的关键是认真审题,从图象中获取相关信息,利用数形结合法、待定系数法、分类讨论的思想方法确定解题思路,进而推理、探究和计算.19.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.【答案】见解析.【分析】先求出∠CAE=∠BAD再利用ASA证明△ABD≌△ACE,即可解答【详解】∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.【点睛】此题考查全等三角形的判定与性质,解题关键在于判定三角形全等20. (1)已知2=2+x x ,求()()()2()2311x x x x x ++++﹣﹣的值. (2)化简:259123-⎛⎫-÷ ⎪++⎝⎭x x x ,并从±2,±1,±3中选择一个合适的数求代数式的值. 【答案】(1)原式=23x x ++,把22x x +=代入得;原式235=+=;(2)原式12x =+,当1x =时,原式13=. 【分析】(1)先进行整式运算,再代入求值;(2)先进行分式计算,根据题意选择合适的值代入求解.【详解】解:(1)原式2224431x x x x x =++--+-23x x =++,把22x x +=代入得,原式235=+=;(2)原式2322(3)(35)x x x x x x ++⎛⎫=-⨯ ⎪++-+⎝⎭ 332(3)(3)x x x x x -+=⨯+-+ 12x =+, 由分式有意义条件得 当x 为-2,±3时分式无意义, ∴当1x =时,原式13=. 【点睛】(1)整体代入求值是一种常见的化简求值的方法,要熟练掌握;(2)遇到分式化简求值时,要使选择的值确保原分式有意义.21.甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发xh 后,两人相距ykm ,图中折线表示从两人出发至乙到达丙地的过程中y 与x 之间的函数关系.根据图中信息,求:(1)点B 的坐标,并说明它的实际意义;(2)甲、乙两人的速度.【答案】(1)B (1,0),点B 的实际意义是甲、乙两人经过1小时相遇;(2)6km/h ,4km/h .【分析】(1)两人相向而行,当相遇时y=0本题可解;(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到丁地只用23小时,乙走这段路程要用1小时,依此可列方程.【详解】(1)设AB 解析式为y kx b =+把已知点P(0,10),(14,152), 代入得1154210k b b ⎧+=⎪⎨⎪=⎩,解得:1010k b =-⎧⎨=⎩∴1010y x =-+,当0y =时,1x =,∴点B 的坐标为(1,0),点B 的意义是:甲、乙两人分别从丙、丁两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为/akm h ,乙的速度为/bkm h , 由已知第53小时时,甲到丁地,则乙走1小时路程,甲只需要52133-=小时, ∴()11023a b b a ⎧+⨯=⎪⎨=⎪⎩, ∴64a b =⎧⎨=⎩,∴甲、乙的速度分别为6/km h 、4/km h .【点睛】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.22.已知222111x x x A x x -+-=-+,其中A 是一个含x 的代数式. (1)求A 化简后的结果;(2)当x 满足不等式组3010x x +>⎧⎨+≤⎩,且x 为整数时,求A 的值. 【答案】(1)11x -+;(2)1 【分析】(1)原式变形后,通分并利用同分母分式的减法法则计算即可得到结果;(2)求出不等式组的解集,确定出整数x 的值,代入计算即可求出A 的值.【详解】解:(1)根据题意得:22221(1)11111(1)(1)11111x x x x x x x x x A x x x x x x x x x -+----=-=-=-==--++-+++++; (2)不等式组3010x x +>⎧⎨+≤⎩, 得:31x -<-≤,∵x 为整数,2x ∴=-或1x =-,由11A x =-+,得到1x ≠-, 则当2x =-时,111A x =-=+. 【点睛】此题考查了分式的加减法,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.23.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .【答案】答案见解析【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.24.已知直线1l :4y x =+与 y 轴交于点B ,直线2l : 4y kx =+与x 轴交于点A ,且直线1l 与直线2l 相交所形成的的角中,其中一个角的度数是 75°,则线段AB 长为__.【答案】8或83 【分析】先求得()04B ,,()40C -,,继而证得45BCO ∠=︒,分两种情况讨论,根据“30︒角所对直角边等于斜边的一半”即可求解.【详解】令直线4y x =+与x 轴交于点C ,令4y x =+中0x =,则4y =,∴()04B ,, 令4y x =+中0y =,则4x =-,∴()40C -,, ∴4BO CO ==,∴45BCO ∠=︒,如图1所示,当75α=︒时,∵75BCO BAO α∠∠=+=︒,∴∠30BAO =︒,∴28AB OB ==;如图2所示,当∠75CBA =︒时,∵75CBO ABO α∠∠=+=︒,∴30ABO ∠=︒,∴2AO AB =,∵222AO BO AB +=,∴()22242AO AO +=, 解得:43AO =, ∴833AB =, 故答案为: 8或83. 【点睛】本题考查了一次函数图象上点的坐标特征以及“30︒角所对直角边等于斜边的一半”,解题的关键是求出∠30BAO =︒或30ABO ∠=︒.25.如图,在△ABC 的一边AB 上有一点P .(1)能否在另外两边AC 和BC 上各找一点M 、N ,使得△PMN 的周长最短.若能,请画出点M 、N 的位置,若不能,请说明理由;(2)若∠ACB=40°,在(1)的条件下,求出∠MPN 的度数.【答案】(1)详见解析.(2)100°.【分析】(1)如图:作出点P 关于AC 、BC 的对称点D 、G ,然后连接DG 交AC 、BC 于两点,标注字母M 、N ;(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,即而求得答案.【详解】解:(1)①作出点P关于AC、BC的对称点D、G,②连接DG交AC、BC于两点,③标注字母M、N;(2)∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=40°,∴∠EPF=140°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=40°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=40°,∴∠MPN=140°-40°=100°.【点睛】此题考查了最短路径问题以及线段垂直平分线的性质,注意数形结合思想在解题中的应用.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.以下列各组数据为三角形的三边,能构成直角三角形的是( )A .4cm ,8cm ,7cmB .2cm ,2cm ,2cmC .2cm ,2cm ,4cmD .6cm ,8cm ,10cm【答案】D【解析】分析:本题用勾股定理的逆定理.即可得出.解析:A 选项中22247658+=≠ ,所以不能构成直角三角形,B 选项是等边三角形,所以不能构成直角三角形,C 选项不能构成三角形,所以不能构成直角三角形,D 选项中2226810+= ,所以能构成直角三角形,故选D.2.如果m 是任意实数,则点()P m 4m 1-+,一定不在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】求出点P 的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵()()m 1m 4m 1m 450+--=+-+=>,∴点P 的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P 一定不在第四象限.故选D .3.如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE=ECB .BC=EFC .AC=DFD .△ABC ≌△DEF【答案】A 【解析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt △ABC 与Rt △DEF 的形状和大小完全相同,即Rt △ABC ≌Rt △DEF ,再根据性质得到相应结论.【详解】解:∵Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF∴Rt △ABC ≌Rt △DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选A.【点睛】本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.4.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!5.如果解关于x的分式方程233x ax x---=5时出现了增根,那么a的值是()A.﹣6 B.﹣3 C.6 D.3【答案】A【解析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可.【详解】解:去分母得:2x+a=5x﹣15,由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:6+a=0,解得:a=﹣6,故选A.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点【答案】B【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【详解】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O 在线段AC 的垂直平分线上,∵OB=OC ,∴O 在线段BC 的垂直平分线上,即O 是△ABC 的三边垂直平分线的交点,故选:B .【点睛】本题考查了对线段垂直平分线性质的理解和运用,注意:线段两端点的距离相等的点在这条线段的垂直平分线上.7.如图所示,在ABC 中,BD 是AC 边上的中线,BD BC ⊥,120ABC ∠=︒,8AB =,则BC 的值为( )A .3B .4C .5D .6【答案】B 【分析】首先过点A 作AE ⊥BC ,交CB 的延长线于E ,由AE ⊥BC ,DB ⊥BC ,得出AE ∥BD ,由中位线的性质得出BC=BE ,然后由∠ABC=120°,得出∠ABE=60°,∠BAE=30°,AB=2BE=2BC ,即可得解.【详解】过点A 作AE ⊥BC ,交CB 的延长线于E ,如图所示:∵AE ⊥BC ,DB ⊥BC ,∴AE ∥BD ,∵AD=CD ,∴BD 是△ACE 的中位线,∴BC=BE ,∵∠ABC=120°,∴∠ABE=60°,∴∠BAE=30°,∴AB=2BE=2BC,AB∵8∴BC=4故答案为B.【点睛】此题主要考查平行线的判定与性质以及中位线的性质、特殊直角三角形的性质,熟练掌握,即可解题. 8.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.在下列长度的四根木棒中,能与4cm,9cm长的两根木棒钉成一个三角形的是()A.3cm B.8cm C.13cm D.16cm【答案】B【分析】首先设第三根木棒长为xcm,根据三角形的三边关系定理可得9−4<x<9+4,计算出x的取值范围,然后可确定答案.【详解】设第三根木棒长为xcm,由题意得:9−4<x<9+4,5<x<13,故选B.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.10.下列图形中,不一定是轴对称图形的是()A.正方形B.等腰三角形C.直角三角形D.圆【答案】C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C二、填空题11.函数21yx=-中,自变量x的取值范围是_____.【答案】x≠1【分析】根据分母不等于0,可以求出x的范围;【详解】解:(1)x-1≠0,解得:x≠1;故答案是:x≠1,【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.在一次知识竞赛中,有25道抢答题,答对一题得4分,答错或不答每题扣2分,成绩不低于60分就可获奖.那么获奖至少要答对___________道题.【答案】1【分析】设答对x道题可以获奖,则答错或不答(25-x)道题,根据成绩=4×答对的题目数-2×答错或不答的题目数,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:设答对x道题可以获奖,则答错或不答(25-x)道题,依题意,得:4x-2(25-x)≥60,解得:x≥553,又x为整数,故x的最小为1,故答案为:1.【点睛】题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.在△ABC中,∠ACB=50°,CE为△ABC的角平分线,AC边上的高BD与CE所在的直线交于点F,若∠ABD:∠ACF=3:5,则∠BEC的度数为______.【答案】100°或130°.【分析】分两种情形:①如图1中,当高BD在三角形内部时.②如图2中,当高BD在△ABC外时,分别求解即可.【详解】①如图1中,当高BD在三角形内部时,∵CE 平分∠ACB ,∠ACB=50°,∴∠ACE=∠ECB=25°.∵∠ABD :∠ACF=3:5,∴∠ABD=15°.∵BD ⊥AC ,∴∠BDC=90°,CBD=40°,∴∠CBE=∠CBD+∠ABD=40°+15°=55°,∴∠BEC=180°﹣∠ECB ﹣∠CBE=180°﹣25°﹣55°=100°②如图2中,当高BD 在△ABC 外时,同法可得:∠ABD=25°,∠ABD=15°,∠CBD=40°,∴∠CBE=∠CBD ﹣∠ABD=40°﹣15°=25°,∴∠BEC=180°﹣25°﹣25°=130°,综上所述:∠BEC=100°或130°.故答案为:100°或130°.【点睛】本题考查了三角形内角和定理,三角形的外角的性质,三角形的角平分线的定义,三角形的高等知识,解题的关键是世界之外基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.14.如图,,3,5ABC EBD AB cm BD cm ==≌,则CE 的长度为__________.【答案】2cm【分析】根据全等三角形的对应边都相等,得到BC 、BE 的长,即可求出CE 的长.【详解】解:,3,5ABC EBD AB cm BD cm ∆∆==≌5,3BC BD cm EB AB cm ∴====532CE BC EB cm ∴=-=-=故答案为:2cm .【点睛】本题考查的主要是全等三角形的性质,对应的边都相等,注意到全等三角形的对应顶点写在对应的位置,正确判断对应边即可.15.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .【答案】a=1【解析】本题是平方差公式的应用,设这个正方形的边长为a ,根据正方形面积公式有(a+2)2-a 2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有(a+2)2-a 2=24,(a+2)2-a 2=(a+2+a )(a+2-a )=4a+4=24,解得a=1.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.16.如下图,在△ABC 中,∠B =90°,∠BAC =40°,AD =DC ,则∠BCD 的度数为______.【答案】10°【分析】由余角的性质,得到∠ACB=50°,由AD=DC ,得∠ACD=40°,即可求出∠BCD 的度数.【详解】解:在△ABC 中,∠B =90°,∠BAC =40°,∴∠ACB=50°,∵AD=DC ,∴∠ACD=∠A=40°,∴∠BCD=50°-40°=10°;故答案为:10°.【点睛】本题考查了等边对等角求角度,余角的性质解题的关键是熟练掌握等边对等角的性质和余角的性质进行解题.17.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=14BC1.其中正确结论是_____(填序号).【答案】①②【解析】分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.详解:∵∠B=45°,AB=AC∴点D为BC的中点,∴AD=CD=BD故①正确;由AD⊥BC,∠BAD=45°可得∠EAD=∠C∵∠MDN是直角∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°∴∠ADE=∠CDF∴△ADE≌△CDF(ASA)故②正确;∴DE=DF,AE=CF,∴AF=BE∴BE+AE=AF+AE∴AE+AF>EF故③不正确;由△ADE≌△CDF可得S△ADF=S△BDE∴S四边形AEDF=S△ACD=12×AD×CD=12×12BC×12BC=18BC1,故④不正确.故答案为①②.点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.三、解答题18.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.【答案】见解析AP BC于P,根据等腰三角形的三线合一得出BP=PC,DP=PE,进而根据【分析】如图,过点A作⊥等式的性质,由等量减去等量差相等得出BD=CE.AP BC于P.【详解】如图,过点A作⊥=,∵AB AC=;∴BP PC=,∵AD AE=,∴DP PE-=-,∴BP DP PC PE∴BD=CE.【点睛】本题考查了等腰三角形的性质,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.19.(1)分解下列因式,将结果直接写在横线上:x2+4x+4=,16x2+24x+9=,9x2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系.①请你用数学式子表示a、b、c之间的关系;②解决问题:若多项式x2﹣2(m﹣3)x+(10﹣6m)是一个完全平方式,求m的值.【答案】(1)(x+2)2,(4x+3)2,(3x﹣2)2;(2)①b2=4ac,②m=±1【解析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b2=4ac,即可得出答案;②利用①的规律解题.。
佛山市重点中学市联考2019-2020学年数学八上期末模拟考试试题(4)
佛山市重点中学市联考2019-2020学年数学八上期末模拟考试试题(4)一、选择题1.若有增根,则m 的值是( ) A.3 B.2 C.﹣3 D.﹣22.若(-2x+a)(x-1)的展开式中不含x 的一次项,则a 的值是( )A .-2B .2C .-1D .任意数 3.解分式方程12211x x x +=-+时,在方程的两边同时乘以(x ﹣1)(x+1),把原方程化为x+1+2x (x ﹣1)=2(x ﹣1)(x+1),这一变形过程体现的数学思想主要是( ) A.类比思想B.转化思想C.方程思想D.函数思想 4.纳米是非常小的长度单位,已知1纳米610-=毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( )A.410B.610C.810D.9105.如图,从边长为+a b 的正方形纸片中剪去一个边长为-a b 的正方形(a b >),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .4abB .2abC .2bD .2a6.如果924a ka -+是完全平方式,那么k 的值是( )A .一12B .±12C .6D .±67.点 ()1,3P -- 关于 y 轴对称的点的坐标是 ( )A .()1,3-B .()1,3C .()3,1-D .()1,3-8.如图,将等边△ABC 沿直线BC 平移到△DEF ,使点E 与点C 重合,连接BD ,若AB =2,则BD 的长为( )A.2B.C.3D.29.如图,在ABC 中,BAC 120∠=,AB AC =,点M 、N 在边BC 上,且MAN 60∠=,若BM 2=,CN 3=,则MN 的长为( )A B . C . D10.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2.若∠3=25°,为了使白球反弹后能将黑球直接撞入底袋中,那么击打白球时,必须保证∠1为( )A .65°B .75°C .55°D .85°11.如图,在△ABC 和△DEF 中,AB=DE ,∠A=∠D ,添加一个条件不能判定这两个三角形全等的是( )A.AC=DFB.∠B=∠EC.BC=EFD.∠C=∠F12.如图,已知ABC ∆和CDE ∆都是等边三角形,点B 、C 、D 在同一条直线上,BE 交AC 于点M ,AD 交CE 于点N ,AD 、BE 交于点O .则下列结论:①AD BE =;②DE ME =;③MNC ∆为等边三角形;④120BOD ∠=︒.其中正确的是( )A .①②③B .①②④C .②③④D .①③④ 13.三角形的两边长分别为3和6,则它的第三边长可以为( )A .3B .4C .9D .10 14.一个三角形的三边长分别为x 、2、3,那么x 的取值范围是( )A .2<x <3B .1<x <5C .2<x <5D .x >215.若(a ﹣4)2+|b ﹣8|=0,则以a 、b 为边长的等腰三角形的周长为( )A .18B .16C .16或20D .20二、填空题16.分式221a b -与22b a b-的最简公分母是_____. 17.10m = 3,,10n = 5,则103m-n = ______ 【答案】27518.△ABC ,AB=AC ,AC 的垂直平分线与AB 所在直线相交所得的锐角为40°,∠C=______.19.如图,在四边形ABCD 中,0210C D ∠+∠=, E 、F 分别是AD ,BC 上的点,将四边形CDEF 沿直线EF 翻折,得到四边形''C D EF ,'C F 交AD 于点G ,若EFG ∆有两个角相等,则EFG ∠=___0.20.如果等腰三角形一边长是5cm ,另一边长是8cm ,则这个等腰三角形的周长是______________.三、解答题21.先化简22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,然后在0、±1、±2这5个数中选取一个作为x 的值代入求值. 22.(1)当 x 取下列数值时,比较 4x +1 与 x 2+5 的大小,用等号或不等号填空:①当 x =-1 时,4x +1 ▲ x 2+5;②当 x =0 时,4x +1 ▲ x 2+5;③当 x =2 时,4x +1 ▲ x 2+5;④当 x =5 时,4x +1 ▲ x 2+5.(2)再选一些 x 的数值代入 4x +1 与 x 2+5,观察它们的大小关系,猜猜 x 取任意数值时, 4x +1 与 x 2+5 的大小关系应该怎样?并请说明理由.23.如图四边形中,.求证:.24.如图,15AOC ∠=o ,45BOC ∠=o ,OD 平分AOB ∠,求COD ∠的度数.(补全下面的解题过程)解:∵15AOC ∠=o ,45BOC ∠=o∴____________AOB ∠=∠+∠=o∵OD 平分AOB ∠ ∴1________2BOD ∠=∠=o ∴____________COD ∠=∠-∠=o答:COD ∠的度数是______o .25.如图①,线段AB=8cm,点C 为线段AB 上的一个动点(点C 不与点A 、B 重合),D 、E 分别是线段AC 和线段BC 的中点.(1)求DE 的长;(2)知识迁移:如图②,已知∠AOB=α,射线OC 在∠AOB 的内部,若OD 、OE 分别平分∠AOC 和∠BOC,求∠DOE 的度数(用含α的代数式表示).【参考答案】***一、选择题16.()()2a b a b +-17.无18.65°或25°19.40或5020.21或18三、解答题21.12x x +-,-1222.(1)①<;②<;③=;④<;(2)4x +1≤x 2+5,理由见解析.23.证明见解析.【解析】【分析】如图,在CD 上取一点E ,使AE =CE.想办法证明EB =EC =EA ,∠AEB =60°,推出点E 是△ABC 的外接圆的圆心,可得∠ACB =∠AEB=30°.【详解】证明:如图,在CD 上取一点E ,使AE =CE∴∠ACE =∠CAE∠AED =∠ACE+∠CAE∴∠AED =2∠ACE ,∠ADC =2∠ACE ,∴∠AED =∠ADC ,∴AE=ADAB=AD∴AB =AE∠BAC+∠ACE =∠BAC+∠CAE =∠BAE =60°,∴△ABE 是等边三角形∴EB =EC =EA ,∠AEB =60°,∴点E 是△ABC 的外接圆的圆心∠ACB =∠AEB=30°.【点睛】本题考查等边三角形的判定和性质,等三角形的判定和性质,三角形的外接圆等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.24.AOC ;BOC ;60;AOB ;30;BOC ;BOD ;15;15【解析】【分析】先求出AOB ∠,再根据角平分线的定义求出BOD ∠,然后根据COD BOC BOD ∠=∠-∠,即可得解.【详解】解:∵15AOC ∠=o ,45BOC ∠=o∴_____60___AOB AOC BOC ∠=∠+∠=o∵OD 平分AOB ∠ ∴1______30__2BOD AOB ∠=∠=o (角平分线定义) ∴__________15__COD BOC BOD ∠=∠-∠=o答:COD ∠的度数是___15___o .【点睛】本题考查了角平分线的定义,熟练掌握角平分线定义是解答本题的关键.学生在本阶段需要掌握基本的几何证明过程.25.(1)4cm ;(2)2α.。
(汇总3份试卷)2020年佛山市八年级上学期期末学业水平测试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若关于x 的分式方程2142x m x x x ++=--无解,则m 的值是( ) A .2m =或6m =B .2m =C .6m =D .2m =或6m =- 【答案】A【分析】分式方程去分母转化为整式方程,由分式方程无解,得到最简公分母为0,求出x 的值,代入整式方程求出m 的值即可.【详解】解: 2142x m x x x ++=-- 方程去分母得:-(x+m )+x (x+1)=(x+1)(x-1),由分式方程无解,得到240x -=,解得:x=1或x=-1,把x=1代入整式方程得:m=6;把x=-1代入整式方程得:m=1.故选:A .【点睛】本题考查分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.2.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .76【答案】B 【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.3.下列各数中,不是无理数的是( )A .13B .5C .πD .32【答案】A【分析】根据无理数是无限不循环小数解答即可.【详解】13是分数,是有理数. 故选:A【点睛】本题考查的是无理数的识别,掌握无理数的定义是关键. 4.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC 为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个【答案】A 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰△ABC 底边;②AB 为等腰△ABC 其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有2个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有4个.故选:C .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.5.若四边形ABCD 中,∠A :∠B :∠C :∠D =1:4:2:5,则∠C+∠D 等于( )A .90°B .180°C .210°D .270° 【答案】C【分析】利用四边形内角和为360︒解决问题即可.【详解】解:∵∠A :∠B :∠C :∠D =1:4:2:5,∴∠C+∠D =360︒×251425++++=210︒, 故选:C .【点睛】本题考查四边形内角和定理,解题的关键是熟练掌握基本知识,属于中考常考题型.6.将△ABC 各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确的是( ) A . B .C .D .【答案】A【解析】根据将△ABC 各顶点的横坐标都乘以﹣1,纵坐标不变,可得出对应点关于y 轴对称,进而得出答案.【详解】解:∵将△ABC 各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,∴对应点的坐标关于y 轴对称,只有选项A 符合题意.故选:A .【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标变化与坐标轴的关系是解题关键. 7380,2π,﹣227,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数的个数共有( )A .2个B .3个C .4个D .5个【答案】A 【解析】根据无理数的定义对每个数进行判断即可. 【详解】在38,1,2π,﹣227,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)这六个数中,无理数有:2π,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)共2个. 故选:A .【点睛】本题考查了无理数的定义,掌握无理数的定义以及判定方法是解题的关键.8.如图,在△ABC 中,∠ABC=90°,∠C=20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A .20°B .40°C .50°D .70°【答案】C 【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质求出CE=AE ,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC 中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE 是边AC 的垂直平分线,∠C=20°,∴CE=AE ,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.9.表示实数a 与1的和不大于10的不等式是( )A .a+1>10B .a+1≥10C .a+1<10D .a+1≤10【答案】D【分析】根据题意写出不等式即可.【详解】由题意可得:a+1≤1.故选D .【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.10.下列运算正确的是( )A .(3a 2)3=27a 6B .(a 3)2=a 5C .a 3•a 4=a 12D .a 6÷a 3=a 2 【答案】A【分析】根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【详解】解:∵(3a 2)3=27a 6,∴选项A 符合题意;∵(a 3)2=a 6,∴选项B 不符合题意;∵a 3•a 4=a 7,∴选项C 不符合题意;∵a 6÷a 3=a 3,∴选项D 不符合题意.故选:A .【点睛】本题考查的知识点是同底数幂的乘除法的运算法则以及幂的乘方,积的乘方的运算法则,熟练掌握以上知识点的运算法则是解此题的关键.二、填空题11的倒数是____.1.,然后利用分母有理化的知识求解即可求得答案.1=.1.1.【点睛】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.12.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ),∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.13.一组数据4,1-,2-,4,3-,4,4-,4中,出现次数最多的数是4,其频率是__________.【答案】0.5【分析】根据频率=某数出现的次数÷数字总数,4在这组数据中出现了4次,这组数据总共有8个数字,代入公式即可求解.【详解】解:4÷8=0.5故答案为:0.5【点睛】本题主要考查的是频率的计算,正确的掌握频率的计算公式,将相应的数据代入是解本题的关键. 14.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____.【答案】(3,﹣2).【分析】根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,可得答案.【详解】设P(x ,y),∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴32x y ==,, ∵点P 在第四象限内,即:00x y ><,∴点P 的坐标为(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查平面直角坐标系中,点的坐标,掌握“点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值”,是解题的关键.15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.【答案】1.1.【分析】首先设当40≤t≤60时,距离y (千米)与时间t (分钟)的函数关系为y=kt+b ,然后再把(40,2)(60,0)代入可得关于k 、b 的方程组,解出k 、b 的值,进而可得函数解析式,再把t=41代入即可.【详解】设当40≤t≤60时,距离y (千米)与时间t (分钟)的函数关系为y=kt+b .∵图象经过(40,2)(60,0),∴240060k bk b=+⎧⎨=+⎩,解得:1106kb⎧=-⎪⎨⎪=⎩,∴y与t的函数关系式为y=﹣1610t+,当t=41时,y=﹣110×41+6=1.1.故答案为1.1.【点睛】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.16.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.【答案】1【详解】试题解析:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=12AC•BD=12×8×6=1.考点:菱形的性质.17.若分式方程3xx-﹣3ax-=2有增根,则a=_____.【答案】3-【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a 的值.【详解】解:去分母得:x+a=2x﹣6,解得:x=a+6,由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:a+6=3,解得:a=﹣3,故答案为:﹣3【点睛】考核知识点:分式方程增根问题.去分母是关键.三、解答题18.解分式方程:2311xx x x+=--.【答案】x=3【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:解:去分母得:3+x 2﹣x=x 2,解得:x=3,经检验x=3是分式方程的解.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.如图,在等腰直角三角形ABC 中,4AC BC ==,90ACB ∠=︒,CD AB ⊥.将等腰直角形ABC 沿高CD 剪开后,拼成图2所示的正方形EFGH .(1)如图1,等腰直角三角形ABC 的面积是______________.(2)如图2,求正方形EFGH 的边长是多少?(3)把正方形EFGH 放到数轴上(如图3),使得边EF 落到数轴上,其中一个端点所对应的数为-1,直接..写出另一个端点所对应的数.【答案】(1)8;(2)23)-1+22-1-2【分析】(1)根据面积公式进行计算;(2)根据所拼图形,可知正方形的边长为△ABC 的高,从而计算可得;(3)根据(2)中所求边长,当点E 在-1,和点F 在-1处分别得出另一个点对应的数.【详解】解:(1)1=2ABC S AC BC ⨯△=1442⨯⨯=8; (2)由题意可知,拼成正方形EFGH 后,△ABC 的高CD 变成了正方形的边长,∵CD=12AB =221442+22 ∴正方形EFGH 的边长为2(3)当点E 在-1处时,F 所对应的数为:-1+22当点F 在-1处时,F 所对应的数为:-1-22∴另一个端点所对应的的数为-1+2-1-22【点睛】本题考查了等腰直角三角形的性质,数轴上的点表示数,实数的加减运算,关键是数形结合,了解拼图的过程,并且注意在数轴上分类讨论.20.已知:如图,点A是线段CB上一点,△ABD、△ACE都是等边三角形,AD与BE相交于点G,AE与CD相交于点F.求证:△AGF是等边三角形.【答案】见解析【分析】由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.【详解】证明:∵△ABD,△ACE都是等边三角形,∴AD=AB,AE=AC,∴∠DAE=∠BAD=∠CAE=60°∴∠BAE=∠DAC=120°,在△BAE和△DAC中AD=AB,∠BAE=∠DAC,AE=AC,∴△BAE≌△DAC.∴∠1=∠2在△BAG和△DAF中∠1=∠2,AB=AD,∠BAD=∠DAE,∴△BAG≌△DAF,∴AG=AF,又∠DAE=60°,∴△AGF是等边三角形.【点睛】本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.21.(1)计算:(﹣1)2020||+(π﹣2019)0(2)解方程组:2238 x yx y+=⎧⎨-=⎩【答案】(1;(2)22xy=⎧⎨=-⎩【分析】(1)利用乘方的意义,立方根定义,求绝对值的法则,以及零指数幂法则,进行计算即可求出值;(2)利用加减消元法,求出解即可.【详解】(1)原式=1﹣2+1;(2)2238x yx y+=⎧⎨-=⎩①②,①×3+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣2,∴方程组的解为22 xy=⎧⎨=-⎩.【点睛】本题主要考查实数的混合运算以及解二元一次方程组,掌握乘乘方的意义,立方根定义,求绝对值的法则,以及零指数幂法则,加减消元法,是解题的关键.22.定义abcd=ad﹣bc,若1371x xx x--+-=10,求x的值.【答案】1【分析】根据a bc d=ad﹣bc和1371x xx x--+-=10,可以得到相应的方程,从而可以得到x的值.【详解】解:∵a bc d=ad﹣bc,1371x xx x--+-=10,∴(x﹣1)(x﹣1)﹣(x﹣3)(x+7)=10,∴x1﹣1x+1﹣x1﹣7x+3x+11=10∴﹣6x+11=10,解得:x=1.【点睛】本题主要考查多项式乘多项式、解一元一次方程,根据新定义的运算法则列出方程是解题的关键.23.在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.【答案】(1)见解析(2)2【分析】(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求.(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案:【详解】解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求.(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线.∵BC=6,BC边上的高为1,∴DE=3,DD′=1.∴2222345'=+'=+=.D E DE DD∴△PDE周长的最小值为:DE+D′E=3+5=2.24.已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.【答案】∠EDC=20°.【分析】三角形的外角性质知:∠EDC+∠1=∠B+40°,∠2=∠EDC+∠C,结合∠1=∠2,∠B=∠C,进行等量代换,即可求解.【详解】∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°,①同理:∠2=∠EDC+∠C,∵∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B,②把②代入①得:2∠EDC+∠B=∠B+40°,解得:∠EDC=20°.【点睛】本题主要考查三角形外角的性质,熟练掌握外角的性质,列出等式,是解题的关键.25.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图(1)中,画一个三角形,使它的三边长都是有理数;(2)在图(2)中,画一个直角三角形,使它们的三边长都是无理数;(3)在图(3)中,画一个正方形,使它的面积是10.【答案】详见解析.【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为无理数的线段,画三角形即可;(3)画边长为10的正方形即可.【详解】三边分别为3,4,5(如图);(2)(3)画一个边长为10的正方形.【点睛】考查了格点三角形的画法.本题需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算错误的是A.()()22a b1b a-=-B.a b1a b--=-+C.0.5a b5a10b0.2a0.3b2a3b++=--D.a b b aa b b a--=++【答案】D【解析】试题分析:根据分式的运算法则逐一计算作出判断:A.()()()()2222a b a b1b a a b--==--,计算正确;B.a b a b1a b a b--+=-=-++,计算正确;C.()()100.5a b0.5a b5a10b0.2a0.3b100.2a0.3b2a3b+++==---,计算正确;D.()b aa b b aa b b a b a----==-+++,计算错误.故选D.2.下列各数是无理数的是()A.3.14 B.-πC.0.21D【答案】B【分析】根据无理数的定义判断.【详解】A、3.14是有限小数,是有理数,故不符合题意;B、-π是无限不循环小数,是无理数,故符合题意;C、0.21是无限循环小数,是有理数,故不符合题意;D10,是有理数,故不符合题意;故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.如图,若△ABC≌△DEF,且BE=5,CF=2,则BF的长为()A .2B .3C .1.5D .5【答案】C 【分析】根据全等三角形的对应边相等得到BC =EF ,故BF =CE ,然后计算即可.【详解】∵△ABC ≌△DEF ,∴BC =EF ,∵BF =BC ﹣FC ,CE =FE ﹣FC ,∴BF =CE ,∵BE =1,CF =2,∴CF =BE ﹣CE ﹣BF ,即2=1﹣2BF .∴BF =1.1.故选C .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.4.下列式子是分式的是( )A .2xB .x πC .2x +yD .1x x + 【答案】D 【分析】根据分式的定义:形如A B ,A 、B 是整式,B 中含有字母且B 不等于0的式子叫做分式 【详解】A.x 2属于整式,不是分式; B.x π属于整式,不是分式; C.x +y 2属于整式,不是分式; D.x x+1属于分式; 故答案选D【点睛】本题主要考查了分式的概念,分式的分母必须含有字母,而分子可以含有字母,也可以不含字母. 5.若分式13x x --的值为0,则x 的值应为( ) A .1B .1-C .3D .3-【答案】A【解析】根据分式的值为零的条件可以求出x的值.【详解】由分式的值为零的条件得x﹣1=2,且x﹣3≠2,解得:x=1.故选A.【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.6.反映东方学校六年级各班的人数,选用()统计图比较好.A.折线B.条形C.扇形D.无法判断【答案】B【分析】条形统计图是用一个单位长度表示一定的数量,从条形统计图中很容易看出各种数量的多少.【详解】反映东方学校六年级各班的人数,选用条形统计图比较好.故选:B.【点睛】本题主要考查了统计图的选择,条形统计图是用一个单位长度表示一定的数量,从条形统计图中很容易看出各种数量的多少;扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,可以很清楚的表示出各部分数量同总数之间的关系.折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况.7.如图,△DEF为直角三角形,∠EDF =90°,△ABC的顶点B,C分别落在Rt△DEF两直角边DE和DF 上,若∠ABD+∠ACD=55°,则∠A的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】由∠EDF =90°,则∠DBC+∠DCB=90°,则得到∠ABC+∠ACB=145°,根据三角形内角和定理,即可得到∠A的度数.【详解】解:∵∠EDF =90°,∴∠DBC+∠DCB=90°,∵∠ABD+∠ACD=55°,∴∠ABC+∠ACB=90°+55°=145°,︒-︒=︒;∴∠A=18014535故选:B.【点睛】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和定理进行解题.8.下列说法正确的有( )①无理数是无限小数;②无限小数是无理数;③开方开不尽的数是无理数;④两个无理数的和一定是无理数;⑤无理数的平方一定是有理数;A .1个B .2个C .3个D .4个【答案】B【分析】根据无理数的定义即可作出判断.【详解】无理数是无限不循环小数,故①正确,②错误;开方开不尽的数是无理数,则③正确;0=是有理数,故④错误;2π是无理数,故⑤错误;正确的是:①③;故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 9.下列命题中是真命题的是( )A .平面内,过一点有且只有一条直线与已知直线平行B ,227,3.14,π,0.301001…等五个数都是无理数 C .若0m <,则点()5P m -,在第二象限 D .若三角形的边a 、b 、c 满足: ()()2a b c a b c ab +-++=,则该三角形是直角三角形【答案】D【分析】根据平行公理、无理数的概念、点坐标特征、勾股定理的逆定理判断即可.【详解】解:A 、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,本选项说法是假命题;B ,227,3.14,π,0.301001…中只有π,0.301001…两个数是无理数,本选项说法是假命题; C 、若0m <,则点()5P m -,在第一象限,本选项说法是假命题; D 、()()2a b c a b c ab +-++=,化简得222=a b c +,则该三角形是直角三角形,本选项说法是真命题; 故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.下列几组数中,能组成直角三角形的是( )A .111,,345B .3,4,7C .5,12,13D .0.8,1.2,1.5 【答案】C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.【详解】解:A 、222111453⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴以111,,345为三边的三角形不能组成直角三角形, 故本选项不符合题意;B 、222347+≠,∴以3,4,7为三边的三角形不能组成直角三角形,故本选项不符合题意;C 、22251213+=,∴以5,12,13为三边的三角形能组成直角三角形,故本选项符合题意;D 、2220.8 1.2 1.5+≠,∴以0.8,1.2,1.5为三边的三角形不能组成直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查的是勾股定理的逆定理,熟记勾股定理的逆定理的内容以及正确计算是解题的关键.二、填空题11.如图,一次函数y kx b =+的图象经过()2,0A 和()0,1B -,则关于x 的不等式0kx b +≥的解集为______.【答案】x ≥2【分析】根据一次函数的性质及与一元一次不等式的关系即可直接得出答案.【详解】∵一次函数图象经过一、三象限,∴y 随x 的增大而增大,∵一次函数y=k x+b的图象经过A(2,0)、B(0,﹣1)两点,∴x≥2时,y≥0,即kx+b≥0,故答案为:x≥2【点睛】本题主要考查一次函数和一元一次不等式的知识点,解答本题的关键是进行数形结合,此题比较简单.12.若12x yy-=,则xy=___________.【答案】32【解析】由x y1y2-=,得x−y=12y,即x=32y,故xy=32.故答案为32.13.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为_____.【答案】x>﹣2【分析】根据两函数的交点坐标,结合图象即可确定出所求不等式的解集.【详解】解:由题意及图象得:不等式3x+b>ax﹣3的解集为x>﹣2,故答案为:x>﹣2【点睛】本题考查了一次函数与一元一次不等式,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键.14.如图,直线y=x+1与直线y=mx-n相交于点M(1,b),则关于x,y的方程组1x ymx y n+⎧⎨-⎩==的解为:________.【答案】12x y ==⎧⎨⎩ 【分析】首先利用待定系数法求出b 的值,进而得到M 点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】∵直线y=x+1经过点M (1,b ),∴b=1+1,解得b=2,∴M (1,2),∴关于x 的方程组1x y mx y n +⎧⎨-⎩== 的解为12x y ==⎧⎨⎩, 故答案为12x y ==⎧⎨⎩. 【点睛】 此题考查二元一次方程组与一次函数的关系,解题关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.15.如图,边长为acm 的正方形,将它的边长增加bcm ,根据图形写一个等式_____.【答案】2222()a ab b a b ++=+.【解析】依据大正方形的面积的不同表示方法,即可得到等式.【详解】由题可得,大正方形的面积=a 2+2ab+b 2;大正方形的面积=(a+b)2;∴a 2+2ab+b 2=(a+b)2,故答案为a 2+2ab+b 2=(a+b)2【点睛】本题主要考查了完全平方公式的几何应用,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.16.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.【答案】45435 3x y x y +=⎧⎨-=⎩ 【分析】根据总费用列出一个方程,根据单价关系列出一个方程,联立方程即可.【详解】由题意得:4个篮球和5个足球共花费435元,可列方程:4x+5y=435,篮球的单价比足球的单价多3元,可列方程:x-y=3,联立得45435 3x y x y +=⎧⎨-=⎩. 【点睛】本题考查二元一次方程的应用,根据题意列出方程是关键.17.一次函数的图象经过(-1,0)且函数值随自变量增大而减小,写出一个符合条件的一次函数解析式__________.【答案】y=-x-1 ,满足()y=ax+a a 0<即可【分析】根据题意假设解析式,因为函数值随自变量增大而减小,所以解析式需满足a 0< ,再代入(-1,0)求出a 和b 的等量关系即可.【详解】设一次函数解析式()y=ax+b a <0代入点(-1,0)得0=-a+b ,解得()a=b a 0<所以()y=ax+a a 0<我们令a=-1 y=-x-1故其中一个符合条件的一次函数解析式是y=-x-1.故答案为:y=-x-1.【点睛】本题考察了一次函数的解析式,根据题意得出a 和b 的等量关系,列出其中一个符合题意的一次函数解析式即可.三、解答题18.因式分解(1)a 3﹣16a ;(2)8a 2﹣8a 3﹣2a【答案】(1)a (a+4)(a ﹣4);(1)﹣1a (1a ﹣1)1.【分析】(1)首先提公因式a ,再利用平方差进行分解即可;(1)首先提公因式﹣1a ,再利用完全平方公式进行分解即可.【详解】(1)原式=a (a 1﹣16)=a (a+4)(a ﹣4);(1)原式=﹣1a (4a 1﹣4a+1)=﹣1a (1a ﹣1)1.【点睛】此题主要考查因式分解,解题的关键是熟知提取公因式法与公式法的应用.19.计算()10213(31)(5)1--+----【答案】-2. 【解析】根据二次根式的性质,任何非0数的0次幂等于1,绝对值以及有理数的负整数指数次幂等于正整数指数次幂的倒数进行计算即可.【详解】解:原式=1+3-5-1=4-6= -2.故答案为:-2.【点睛】本题考查实数的运算,利用零指数幂,负整数指数幂,二次根式的性质,绝对值正确化简各数是解题的关键.20.在ABC 中,AB AC =,120BAC ∠=︒,AD BC ⊥,垂足为G ,且AD AB =.60EDF ∠=︒,其两边分别交边AB ,AC 于点E ,F .(1)求证:ABD △是等边三角形;(2)求证:BE AF =.【答案】 (1)详见解析;(2)详见解析.【分析】(1)连接BD ,根据等腰三角形性质得∠BAD=∠DAC=12×120°,再根据等边三角形判定可得结论;(2)根据等边三角形性质得∠ABD=∠ADB=60°,BD=AD ,证△BDE ≌△ADF (ASA )可得.【详解】(1)证明:连接BD ,∵AB=AC ,AD ⊥BC ,∴∠BAD=∠DAC=12∠BAC , ∵∠BAC=120°, ∴∠BAD=∠DAC=12×120°=60°, ∵AD=AB ,∴△ABD 是等边三角形;(2)证明:∵△ABD 是等边三角形,∴∠ABD=∠ADB=60°,BD=AD∵∠EDF=60°,∴∠BDE=∠ADF ,在△BDE 与△ADF 中,60DBE DAF BD ADBDE ADF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△BDE ≌△ADF (ASA ),∴BE=AF .【点睛】本题考查了全等三角形的性质定理与判定定理、等边三角形的性质,解决本题的关键是证明△BDE ≌△ADF .21.在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC (顶点是网格线交点的三角形)的顶点A 、C 的坐标分别是(-5,5),(-2,3).(1)请在图中的网格平面内画出平面直角坐标系xOy ;(2)请画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出顶点A 1,B 1,C 1的坐标(3)请在x 轴上求作一点P ,使△PB 1C 的周长最小.请标出点P 的位置(保留作图痕迹,不需说明作图方法)【答案】(1)见解析;(2)A 1(5,5) B 1(3,3) C 1(2,3),见解析;(3)见解析。
广东省佛山市2019-2020学年数学八上期末模拟调研试卷(2)
广东省佛山市2019-2020学年数学八上期末模拟调研试卷(2)一、选择题1.化简22x y x y x y---的结果是( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.分式3(1)(2)x x x -+-有意义,则x 的取值范围是( ) A .x≠2B .x≠2且x≠3C .x≠﹣1或x≠2D .x≠﹣1且x≠2 3.若关于x 的方程1011m x x x -+=--有增根,则m 的值是( ) A .3 B .2 C .1 D .1-4.下列各式能用平方差公式计算的是( )①()()22x y y x -+; ②()()22x y x y ---;③()()22x y x y --+; ④()()22x y x y --+.A .①②B .②③C .①③D .③④ 5.下列运算正确的是( ) A .224358a a a +=B .524a a a -÷=C .222()a b a b -=-D .()0211a +=6.下列式子计算正确的是( ) A .660a a ÷=B .236(2)6a a -=-C .222()2a b a ab b --=-+D .22()()a b a b a b ---+=-7.下列图案属于轴对称图形的是( ).A .B .C .D .8.已知两点A (3,2)和B (1,-2),点P 在y 轴上且使AP +BP 最短,则点P 的坐标为( )A .(0,1)B .(0,-1)C .(0,2)D .(0,-2)9.如图,中,,,平分交于,若,则的面积为( )A. B. C. D.10.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A.3对B.4对C.5对D.6对11.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:512.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40°B.50°C.60°D.75°13.若一个五边形有三个内角都是直角,另两个内角的度数都等于α,则α等于( )A.30B.120C.135D.10814.若一个正多边形的一个外角是30°,则这个正多边形的边数是( )A.9 B.10 C.11 D.1215.如图,在△AEC中,点D和点F分别是AC和AE上的两点,连接DF,交CE的延长线于点B,若∠A =25°,∠B=45°,∠C=36°,则∠DFE=()A.103°B.104°C.105°D.106°二、填空题16.计算:-22+20-|-3|×(-3)-1=________;(-0.2)2 019×52 018=________.17.计算:(x-1)(x+3)=____.18.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中 AB=CB,AD=CD,詹姆斯在探究筝形的性质时,得到如下结论:① AC^BD;②AO=CO=12AC;③△ABD≌△CBD;④四边形ABCD的面积=12AC´BD,其中,正确的结论有_____.19.对于下列四个条件:①∠A+∠B=∠C;②∠A:∠B:∠C=3:4:5,③∠A=90°-∠B ;④∠A=∠B=0.5∠C ,能确定ΔABC 是直角三角形的条件有________.(填序号即可)20.如图,等边△ABC 的边长为12,D ,E 为BC 的三等分点,M ,N 分别为AB ,AC 上的动点,则四边形DENM 周长的最小值是_________.三、解答题21.化简并求值:22222421a a a a a ⎛⎫-+-÷ ⎪⎝⎭,其中a =22.(1)计算:[(x+2y)2﹣(x+y)(x ﹣y)﹣5y 2]÷(2x);(2)完成下面推理过程:如图,已知∠1=∠2,∠B =∠C ,可得AB ∥CD .理由是:∵∠1=∠2(已知),∠1=∠CGD(_____),∴∠2=∠CGD(等量代换).∴CE ∥BF(______).∴∠BFD =∠C(_______).∵∠B =∠C(已知),∴∠______=∠B(等量代换),∴AB ∥CD(_______).23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点ABC ∆(顶点均在格点上)关于直线DE 对称的111A B C ∆;(2)在DE 上画出点Q ,使QA QC +最小.24.如图,在ABC ∆中,点M 、N 是ABC ∠与ACB ∠三等分线的交点,连接MN(1)求证:MN 平分BMC ∠;(2)若60A ∠=︒,求BMN ∠的度数.25.如图,点A 、O 、B 在一直线上,已知∠AOC =50°,OD 是∠COB 的平分的角平分线,求∠AOD 的度数.【参考答案】***一、选择题16.-2 -0.217.x2+2x-318.①②③④.19.①③④20.20三、解答题21.2a a-,122.(1)2y ;(2)对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;BFD ;内错角相等,两直线平行23.(1)见解析;(2)见解析.【解析】【分析】(1)根据网格结构找出点A 、B 、C 关于直线DE 对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题连接A1C 与DE 的交点即为所求点Q .【详解】(1)111A B C ∆如图所示;(2)连接1A C ,交DE 于点Q ,点Q 如图所示.【点睛】此题考查轴对称-最短路线问题,作图-轴对称变换,解题关键在于掌握作图法则.24.(1)见解析;(2)50°.【解析】【分析】(1)过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,FN ⊥CM 于F ,根据角平分线上的点到角的两边的距离相等可得FG=FM=FN ,再根据到角的两边距离相等的点在角的平分线上判断出MN 平分∠BMC(2)根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角的三等分求出∠EBC+∠ECB 的度数,然后利用三角形内角和定理求出∠BEC 的度数,从而得解【详解】(1)如图,过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,FN ⊥CM 于F ,∵∠ABC 的三等分线与∠ACB 的三等分线分别交于点M,N ,∴BN 平分∠MBC ,CN 平分∠MCB ,∴CN=EN ,CN=FN ,∴EN=FN ,∴MN 平分BMC ∠;(2)∵MN 平分BMC ∠;∴∠BMN=12∠BMC , ∵∠A=60∘,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°根据三等分,∠MBC+∠MCB=23 (∠ABC+∠ACB)=23×120°=80° 在△BMC 中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°∴BMN ∠=12×100°=50°【点睛】此题主要考查三角形的角度计算,解题的关键是熟知角平分线的判定与性质及三角形的内角和. 25.∠AOD=115°.。
2019-2020学年广东省佛山市八年级上册期末数学试卷
2019-2020学年广东省佛山市八年级上册期末数学试卷第I 卷(选择题)一、选择题(本大题共10小题,共30.0分)1. 下列各组数据中能作为直角三角形的三边长的是( )A. 5,11,13B. 3,√2,√5C. 9,12,15D. 32,42,522. √2×√8=( )A. 4√2B. 4C. √10D. 2√23. 如果点M(m +3,2m +4)在x 轴上,那么点M 的坐标是( )A. (−2,0)B. (0,−2)C. (1,0)D. (0,1)4. 下列各式的计算中,正确的是( )A. √(−16)×(−25)=√(−16)×√(−25)=20B. √32+42=3+4=7C. √412−402=√81×1=9D. 3√23=√2 5. 下列命题中,为真命题的是( )A. 对顶角相等B. 同位角相等C. 若a 2=b 2,则a =bD. 若a >b ,则−2a >−2b6. 解方程组{x =y −13x −y =7时,利用代入消元法可得正确的方程是( )A. 3y −1−y =7B. 3y −3−y =7C. 3y −3=7D. y −1−y =77. 已知,函数y =−2x +4,则下列直线是该直线的函数的图象的是( )A. B.C. D.8.如果(x+y−4)2+√3x−y=0,那么2x−y的值为()A. −3B. 3C. −1D. 19.如图所示,已知DE//BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC等于()A. 78°B. 90°C. 88°D. 92°10.如图,在Rt△ABC中,∠ACB=90°,AB=16,则正方形ADEC和正方形BCFG的面积和为()A. 16B. 32C. 160D. 256第II卷(非选择题)二、填空题(本大题共7小题,共28.0分)11.36的平方根是______.12.某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师的笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分.13.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2√3,AB=3√2,则CD为______ .14.一副分别含有30°和45°的两个直角三角板,拼成如图图形,其中∠C=90°,∠B=45°,∠E=30°.则∠BFD的度数是______ .15.如图,在等边△ABC中A(0,4),B(0,−2),点C在第二象限,则点C的坐标为______.16.如图,∠ABC=30°,AB=8,F是射线BC上一动点,D在线段AF上,以AD为腰作等腰直角三角形ADE(点A,D,E以逆时针方向排列),且AD=DE=1,连接EF,则EF的最小值为________.17.一块长方形花圃,长为x米,宽为y米,周长为18米,那么y与x的函数关系式为______ .三、计算题(本大题共1小题,共10.0分)18.已知:△ABC中,∠ABC和∠ACB的平分线BD,CE相交于点O,∠ABC=40°,∠ACB=80°,求∠BOC的度数.四、解答题(本大题共7小题,共52.0分)19.计算+√2;(1)2√3−√8−3√13(2)√27×√2÷√6.320.现有20元和50元的新版人民币28张,共是1160元.其中20元和50元的人民币各是多少张?21.如图所示,已知∠ADE=∠B,FG⊥AB,∠EDC=∠GFB,求证:CD⊥AB.22.下面的方格图是由边长为1的若干个小正方形拼成的,ABC的顶点A,B,C均在小正方形的顶点上.(1)在图中建立恰当的平面直角坐标系,取小正方形的边长为一个单位长度,且使点A的坐标为(−4,2);(2)在(1)中建立的平面直角坐标系内画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标.23.我国很多城市水资源缺乏,为了增强居民的节水意识,某市制定了每月用水18立方米以内(不含18立方米)和用水18立方米及以上两种收费标准(收费标准指每立方米水的价格),某用户每月应交水费y(元)是用水量x(立方米)的函数,其函数图象如图所示.(1)根据图象,求出y关于x的函数表达式.(2)请根据自来水公司在这两个用水范围内的收费标准,计算以下各家应交的水费,直接填入下表:用水量/立方米水费/元小刚 15______小丽 25______(3)若某用户计划某个月水费不超过51.6元,则这个月最多可用多少立方米水?24.甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.(1)请你根据图中的数据填写下表:平均数/环众数/环方差甲7乙6 2.8(2)从平均数和方差的角度分析谁的成绩好些.25.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)x+b过点C.为直线y=x+2上一点,直线y=−12(1)求m和b的值;x+b与x轴交于点D,动点P在线段DA上从点D开始以每秒1个(2)直线y=−12单位的速度向A点运动.设点P的运动时间为t秒.①若△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】【分析】本题主要考查的是勾股定理的逆定理的有关知识.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,如果没有这种关系,这个就不是直角三角形,进行求解即可.【解答】解:A.52+112≠132,不符合勾股定理的逆定理,故不能作为直角三角形的三边长;B.(√2)2+(√5)2≠9,不符合勾股定理的逆定理,故不能作为直角三角形的三边长;C.92+122=152,符合勾股定理的逆定理,故能作为直角三角形的三边长;D.92+162≠252,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选C.2.【答案】B【解析】解:√2×√8=√16=4.故选:B.直接利用二次根式的乘法运算法则计算得出答案.此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.3.【答案】C【解析】解:∵点M(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点M(1,0).故选:C.根据x轴上点的纵坐标为0列出方程求出m的值,再求出横坐标即可得解.本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.4.【答案】C【解析】【分析】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.根据二次根式的乘法法则对A 进行判断;根据完全平方公式对B进行判断;根据平方差公式和二次根式的乘法法则对C进行判断;利用二次根式的性质对D进行判断.【解答】解:A、√(−16)无意义,故该选项错误;B、原式=√32+42=5,故该选项错误;C、原式=√412−402=√81×1=9,故该选项正确;D、原式=3×√6=√6,故该选项错误.3故选C.5.【答案】A【解析】【分析】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.分别判断四个选项的正确与否即可确定真命题.【解答】解:A、对顶角相等为真命题;B、两直线平行,同位角相等,故为假命题;C、a2=b2,则a=±b,故为假命题;D、若a>b,则−2a<−2b,故为假命题;故选:A.6.【答案】B【解析】【分析】利用代入消元法变形得到结果,即可作出判断.【详解】解:解方程组{x =y −13x −y =7时,利用代入消元法可得正确的方程是3y −3−y =7, 故选:B .【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.【答案】C【解析】【解答】解:当x =0时,y =4,∴函数y =−2x +4的图象与y 轴交点为(0,4);当y =0时,x =2,∴函数y =−2x +4的图象与x 轴交点为(2,0).故选C .【分析】根据一次函数图象上点的坐标特征找出函数图象与x 、y 轴交点的坐标,再结合四个选项即可得出结论.本题考查了一次函数图象上点的坐标特征以及一次函数的图象,利用一次函数图象上点的坐标特征找出函数图象与坐标轴的交点坐标是解题的关键.8.【答案】C【解析】【分析】本题考查非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.根据非负数的性质列出关于x 、y 的二元一次方程组求解得到x 、y 的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,{x +y −4=0 ①3x −y =0 ②, 由②得,y =3x③,把③代入①得,x +3x −4=0,解得x =1,把x =1代入③得,y =3,所以方程组的解是{x =1y =3, 所以2x −y =2×1−3=−1.故选:C .9.【答案】C【解析】【分析】本题考查了角平分线的定义,属于基础题.根据角平分线的定义求出∠BCD ,再根据三角形的内角和定理求出∠BDC .【解答】解:∵ CD 是∠ACB 的平分线,∠ACB =40°,∴∠BCD =∠ACD =20°,∵ ∠B =72°,∴∠BDC =180°−72°−20°=88°,故选C .10.【答案】D【解析】【分析】本题考查了勾股定理的应用,勾股定理的前提条件是在直角三角形中应用.小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2.AB长度已知,故可以求出两正方形面积的和.【解答】解:在Rt△ACB中,AC2+BC2=AB2=256,则正方形ADEC和正方形BCFG的面积和=AC2+BC2=256,故选:D.11.【答案】±6【解析】【分析】本题考查了平方根的定义,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.根据平方根的定义求解即可.【解答】解:36的平方根是±6,故答案为±6.12.【答案】78.8【解析】【分析】本题考查加权平均数,关键是掌握加权平均数的计算公式,根据加权平均数的计算公式计算,再比较大小即可解答.【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分.13.【答案】2【解析】解:根据题意得:BC=√AB2−AC2=√(3√2)2−(2√3)2=√6.∵△ABC的面积=12⋅AC⋅BC=12⋅AB⋅CD,∴CD=AC⋅BCAB =√3×√632=2.根据勾股定理就可求得AB的长,再根据△ABC的面积=12⋅AC⋅BC=12⋅AB⋅CD,即可求得.本题主要考查了勾股定理,根据三角形的面积建立CD与已知边的关系是解决本题的关键.14.【答案】15°【解析】【分析】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.先根据三角形内角和定理求出∠CDF的度数,由三角形外角的性质即可得出结论.【解答】解:∵△CDE中,∠C=90°,∠E=30°,∴∠CDF=60°,∵∠CDF是△BDF的外角,∠B=45°,∴∠BFD=∠CDF−∠B=60°−45°=15°.故答案为15°.15.【答案】(−3√3,1),【解析】解:∵在等边△ABC中A(0,4),B(0,−2),∴AC=AB=BC=6,过C作CD⊥AB,∴BD=3,CD=3√3,∵C在第二象限,∴点C的坐标为(−3√3,1),故答案为:(−3√3,1),根据等边三角形的性质解答即可.此题考查了等边三角形的性质等知识.此题难度适中,解题的关键是注意数形结合思想的应用.16.【答案】√10【解析】【分析】本题考查等腰直角三角形的性质,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.由题意EF=√DE2+DF2=√1+DF2,推出当DF的值最小时,EF的值最小,根据垂线段最短即可解决问题;【解答】解:∵△ADE是等腰直角三角形,∴∠ADE=∠EDF=90°,∵AD=DE=1,∴EF=√DE2+DF2=√1+DF2,∴当DF的值最小时,EF的值最小,∵AF⊥BC时,AF的值最小,∴DF的值最小,∵∠B=30°,∴此时AF=12AB=4,∴DF=3,EF=√10,故答案为√10.17.【答案】y=9−x【解析】【分析】本题考查了函数关系式,解决本题的关键是熟记长方形的周长=2(长+宽).根据长方形的周长=2(长+宽),即可解答.【解答】解:2(x+y)=18x+y=9,y=9−x,故答案为y=9−x.18.【答案】解:∵∠ABC和∠ACB的平分线BD,CE相交于点O,∠ABC=40°,∠ACB=80°,∴∠DBC=12∠ABC=20°,∠ECB=12∠ACB=40°,∴∠BOC=180°−∠DBC−∠ECB=180°−20°−40°=120°.【解析】先利用角平分线的定义求出∠DBC和∠ECB的度数,再运用△BOC的内角和是180°,求解∠BOC的度数.本题考查三角形内角和定理、角平分线的定义等知识,解题的关键是熟练掌握三角形内角和定理,属于中考常考题型.19.【答案】解:(1)原式=2√3−2√2−√3+√2=√3−√2;(2)原式=13√27×2×16=1.【解析】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式化的乘除法则运算.20.【答案】解:设20元人民币有x 张,50元人民币y 张.由题意列方程组得{x +y =2820x +50y =1160, 解得{x =8y =20. 答:20元人民币有8张,50元人民币20张.【解析】本题考查对二元一次方程组的应用能力,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组,求出未知数的值.设20元人民币有x 张,50元人民币y 张,根据题意得出{x +y =2820x +50y =1160,求出x 、y 的值即可.21.【答案】证明:∵∠ADE =∠B ,∴DE//BC ,∴∠EDC =∠BCD ,又∵∠EDC =∠GFB ,∴∠BCD =∠GFB ,∴GF//CD ,∵FG ⊥AB ,即∠BGF =90°,∴∠BDC =90°,即CD ⊥AB .【解析】易证DE//BC ,根据平行线的性质,可得∠EDC =∠BCD ,又∠EDC =∠GFB ,则∠BCD =∠GFB ,所以,GF//CD ,根据平行线的性质可证;本题主要考查了平行线的判定与性质,解答过程中,注意平行线的性质和判定定理的综合运用.22.【答案】解:(1)如图所示;(2)如图所示,A 1(4,2),B 1(1,2),C 1(2,5).【解析】(1)根据点A 的坐标为(−4,2)建立坐标系即可;(2)作出各点关于y 轴的对称点,再顺次连接,写出三角形各顶点的坐标即可.本题考查的是作图−轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 23.【答案】解:(1)当0≤x <18时,设y =kx ,由题意45=18k ,解得k =2.5.∴y =2.5x .当x ⩾18时,设y =k′x +b ,由题意{18k′+b =4528k′+b =78, 解得{k ′=3.3b =−14.4, ∴y =3.3x −14.4;∴y ={2.5x (0≤x <18)3.3x −14.4(x ≥18); (2)37.5;68.1;(3)当y ≤51.6时,3.3x −14.4≤51.6,解得,x ≤20,所以这个月最多可用20立方米水.【解析】【分析】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是学会利用待定系数法确定函数解析式,读懂图象信息,学会利用不等式解决实际问题,属于中考常考题型.(1)根据图象利用待定系数法分0≤x <18和x ≥18两种情形,分别求解即可.(2)利用(1)的结论计算即可.(3)根据条件列出不等式即可解决问题.【解答】解:(1)见答案;(2)x =15时,y =2.5×15=37.5,x =25时,y =3.3×25−14.4=68.1.故答案为37.5,68.1;(3)见答案.24.【答案】解:(1)甲的平均数6+7+8+7+75=7,方差=15[(6−7)2+(7−7)2+(8−7)2+(7−7)2+(7−7)2]=0.4,由图知乙的众数是6,(2)由甲、乙两人射靶成绩的平均数来看:甲的成绩优于乙的,并且甲比乙的方差要小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.【解析】本题考查方差、平均数、中位数、众数.(1)根据平均数,方差的公式分别计算即可得出答案;(2)根据平均数和方差的意义分析得出答案即可.25.【答案】解:(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,∴点C(2,4),∵直线y=−12x+b过点C,4=−12×2+b,b=5;(2)①由题意得:PD=t,y=x+2中,当y=0时,x+2=0,x=−2,∴A(−2,0),y=−12x+5中,当y=0时,−12x+5=0,x=10,∴D(10,0),∴AD=10+2=12,∵△ACP的面积为10,∴12(12−t)⋅4=10,t=7,则t的值7秒;②设点P(10−t,0),点A、C的坐标为:(−2,0)、(2,4),当AC=PC时,则点C在AP的中垂线上,即2×2=10−t−2,解得:t=4;当AP=CP时,则点P在点C的正下方,故2=10−t,解得:t=8;当AC=AP时,同理可得:t=12−4√2故:当t=4秒或(12−4√2)秒或8秒时,△ACP为等腰三角形.【解析】(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,则点C(2,4),直线y=−12x+b过点C,4=−12×2+b,b=5;(2)①由题意得:PD=t,A(−2,0),y=−12x+5中,当y=0时,−12x+5=0,D(10,0),AD=10+2=12,12(12−t)⋅4=10,即可求解;②分AC=PC、AP=CP、AC=AP三种情况,分别求解即可.本题考查的是一次函数综合运用,涉及到等腰三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2019-2020学年广东省佛山市中学八年级上册期末检测NO2
A. go B. to not go C. to go D. not t man over there -I'm not sure. It ____ our math teacher.
A. may B.is C. maybe D. may be
36. He didn 't come to school on time ____ the heavy rain.
52. If you____, you will be Billy ' s friend.
A. help him do cooking
B. make him happy
C. pick up his mistakes
D. care about him truly
53. Carol doesn 't like the friend who ______ .
…
…
…
…
…
…
○
○
…
…
…
…
…
…
…
…
线
线
…
…
…
…
…
…
…
…
○
○
…
…
…
…
…
…
…
…
订
:
订
…
话 电
…
…系…
…
联
…
…
…
○
○
…
…
…
…
…
…
…
: 名
…
装姓装
…
…
…
…
…
…
…
…
○
○
…
…
…
…
…
…
广东省佛山市2019届数学八上期末考试试题
广东省佛山市2019届数学八上期末考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.要使分式52x x +有意义,则x 的取值满足的条件是( ) A.2x =- B.2x ≠- C.0x = D.0x ≠ 2.要使分式24a a +-有意义,则a 的取值范围是( ) A.4a > B.4a < C.4a ≠ D.2a ≠-3.若关于 x 的分式方程x 1x 2--﹣2=m x 2- 无解,则 m 的值为( ) A .2B .0C .1D .﹣1 4.下列等式从左到右的变形,属于因式分解的是 A .8a 2b=2a·4abB .-ab 3-2ab 2-ab=-ab(b 2+2b)C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1)5.下列计算正确的是( )A .236a a a ⋅=B .()325a a =C .()2222a b a b =D .32a a a ÷=6.下列各式中,运算结果是9a 2 -25b 2的是( )A.()()5353b a b a -+--B.()()3535a b a b -+--C.()()5353b a b a +-D.()()3535a b a b +--7.下列图形中,不是轴对称图形的是( )A .B .C .D .8.如图,过边长为1的等边ABC △的边AB 上一点,作PE AC ⊥于,E Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 于D ,则DE 的长为( )A.13B.12C.23D.349.如图,中,,,平分交于,若,则的面积为( )A. B. C. D.10.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是( )A.①②B.②③C.①③D.①②③11.如图,在Rt△ABC中,∠A=30°,DE是斜边AC的中垂线,分别交AB,AC于D、E两点,若BD=2,则AC的长是()A.B.C.D.12.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°13.如图,直线与相交于点,平分,且,则的度数为()A. B. C. D.14.如图,在△ABC中,∠ABC、∠ACB的平分线BE,CD相交于点F,且∠ABC=42°,∠A=60°,则∠BFC等于()A.121°B.120°C.119°D.118°15.如图,在△AEC 中,点D 和点F 分别是AC 和AE 上的两点,连接DF ,交CE 的延长线于点B ,若∠A =25°,∠B =45°,∠C =36°,则∠DFE =( )A .103°B .104°C .105°D .106°二、填空题 16.一根头发的直径约为0.0000715米,该数用科学记数法表示为______.17.已知实数m ,n 满足13m n m n -=⎧⎨+=⎩,则代数式22m n -的值为_____. 【答案】3.18.如图,AC ⊥BC ,AD ⊥DB ,下列条件中: ①∠ABD=∠BAC ;②∠DAB=∠CBA ;③AD=BC ;④∠DAC=∠CBD ,能使△ABC ≌△BAD 的有_____(把所有正确结论的序号都填在横线上)19.小明家装修卫生间所用的地砖是一个六边形的图形,这个六边形图形的内角和是_____.20.如图,等边三角形的边长为4,点是△ABC 的中心,,的两边与分别相交于,绕点顺时针旋转时,下列四个结论正确的个数是( )①;②;③;④周长最小值是9.A.1个B.2个C.3个D.4个 三、解答题21.计算:(1)20180311(-3)()2π--++- (2)(3)(2)(2)x x x x +-+- 22.把下列各式分解因式:(1)3a 2-12:(2) (2x+3y)2-2x(2x+3y)+x 2.23.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:CD平分∠ECA.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.24.如图①,在四边形ABCD中,∠A=x°,∠C=y°(0°<x<180°,0°<y<180°).(1)∠ABC+∠ADC=°.(用含x,y的代数式表示)(2)如图1,若x=y=90°,DE平分∠ADC,BF平分与∠ABC相邻的外角,请写出DE与BF的位置关系,并说明理由.(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角,①当x<y时,若x+y=140°,∠DFB=30°,试求x、y.②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.25.如图,在△ABC中,∠B=32°,∠C=70°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F.(1)求∠BAE的度数;(2)求∠ADF的度数.【参考答案】一、选择题二、填空题16.57.1510-⨯17.无18.①②③19.720°20.B三、解答题21.(1)-8;(2)3x+4.22.(1)3(a +2)(a -2);(2)(x +3y) 223.(1)见解析;(2)∠BDC=12∠BAC ,见解析. 【解析】【分析】(1)根据平行线的性质得到∠ADB=∠DBC ,由角平分线的定义得到∠ABD=∠DBC ,等量代换得到∠ABD=∠ADB ,根据等腰三角形的判定即可得到AB=AD 根据平行线的性质得到∠ADC=∠DCE ,由①知AB=AD ,等量代换得到AC=AD ,根据等腰三角形的性质得到∠ACD=∠ADC ,求得∠ACD=∠DCE ,即可得到结论; (2)根据角平分线的定义得到∠DBC=12∠ABC ,∠DCE=12∠ACE ,由于∠BDC+∠DBC=∠DCE 于是得到∠BDC+12∠ABC=12∠ACE ,由∠BAC+∠ABC=∠ACE ,于是得到∠BDC+12∠ABC=12∠ABC+12∠BAC ,即可得到结论.【详解】(1)∵AD ∥BE ,∴∠ADB=∠DBC ,∵ BD 平分∠ABC ,∴∠ABD=∠DBC ,∴∠ABD=∠ADB ,∴ AB=AD ;又∵AD ∥BE ,∴∠ADC=∠DCE ,又∵AB=AC ,AB=AD ,∴ AC=AD ,∴∠ACD=∠ADC ,∴ ∠ACD=∠DCE ,∴ CD平分∠ACE;(2)∠ BDC=12∠ BAC,∵ BD、CD分别平分∠ABE,∠ACE,∴∠DBC=12∠ABC,∠DCE=12∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+12∠ABC=12∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+12∠ABC=12∠ABC+12∠BAC,∴∠BDC=12∠BAC.【点睛】本题考查了等腰三角形的判定和性质,角平分线的定义,平行线的性质,及三角形外角的性质,熟练掌握等腰三角形的判定和性质是解题的关键.24.(1)360°-x-y;(2)DE⊥BF;(3)①x=40°,y=100°;②x=y.【解析】【分析】(1)利用四边形内角和定理得出答案即可;(2)利用角平分线的性质结合三角形外角的性质得出即可;(3)①利用角平分线的性质以及三角形内角和定理,得出∠DFB=12y-12x=30°,进而得出x,y的值;②当x=y时,∠ABC、∠ADC相邻的外角平分线所在直线互相平行,此时∠DFB不存在.【详解】(1)∠ABC+∠ADC=360°-x-y;故答案为:360°-x-y;(2)如图1,延长DE交BF于G∵DE平分∠ADC,BF平分∠MBC,∴∠CDE=12∠ADC,∠CBF=12∠CBM,又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC)=∠ADC,∴∠CDE=∠CBF,又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,∴∠BGE=∠C=90°,∴DG⊥BF(即DE⊥BF);(3)①由(1)得:∠CDN+∠CBM=x+y,∵BF、DF分别平分∠CBM、∠CDN,∴∠CDF+∠CBF=12(x+y),如图2,连接DB,则∠CBD+∠CDB=180°-y,得∠FBD+∠FDB=180°-y+12(x+y)=180°-12y+12x,∴∠DFB=12y-12x=30°,解方程组:1401130 22x yy x==+︒⎧⎪⎨-︒⎪⎩,解得:40100xy︒⎧⎨︒⎩==;②当x=y时,∠ABC、∠ADC相邻的外角平分线所在直线互相平行,此时∠DFB不存在.【点睛】此题主要考查了多边形的内角和角平分线的性质以及三角形内角和定理等知识,正确应用角平分线的性质是解题关键.25.(1)20︒(2)71︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年广东省佛山市顺德区、三水区八年级(上)期末数学试卷一、选择题(10个题,每题3分,共30分)1. −√2的绝对值是()A.√2B.−√2C.√22D.−√222. 平面直角坐标系中,点P(−2, 1)关于y轴对称点P的坐标是()A.(2, −1)B.(−2, 1)C.(2, 1)D.(−2, −1)3. 下列化简正确的是()A.√16=−4B.√−83=−2 C.±√16=4 D.√(−2)2=−24. 下列几组数能作为直角三角形三边长的是()A.1,1,√3B.3,4,6C.√5,2√5,5D.5,12,145. 如图,在四边形ABCD中,连结BD,判定正确的是()A.若∠3=∠4,则AD // BCB.若∠1=∠2,则AB // CDC.若∠C=∠A,则AB // CDD.若∠A+∠ABC=180∘,则AD // BC6. 给定的根式运算正确的是()A.2+√2=2√2B.√5−√3=√2C.√2⋅√3=√6D.√84=√27. 下列命题是假命题的是()A.三角形的最大内角可能少于60∘B.数0.585885888588885…(每相邻两个5之间的8的个数逐次加1)是无理数C.将直角三角形的三边长同时扩大相同的倍数,得到的三角形还是直角三角形D.直角坐标系中,与x轴平行的一条直线上任意两点的纵坐标相等8. 一次函数y=kx+b的图象如图所示,则以k、b为坐标的点(k, b)在第()象限内.A.二B.一C.四D.三9. 如图,圆柱的底面半径是4,高是5,一只在A点的蚂蚁想吃到B点的食物,需要爬行的最短路径是(π取3)( )A.13B.9C.25D.1410. 若A、B两地的距离是120km,甲和乙沿相同的路线由A地到B地的行驶路程与时间的关系如图所示.根据图象判断以下结论正确的个数有()①甲比乙晚两小时出发②甲的速度是30km/ℎ,乙的速度是15km/ℎ③乙出发4小时后,甲在乙的前面④甲行驶的路程y与时间x的函数关系是y=15xA.2个B.1个C.4个D.3个二、填空题(7个题,每题4分,共28分)比较大小:√6________3(填:“>”或“<”或“=”)如图,A、B两点的坐标分别为(−2, 1)、(4, 1),在同一坐标系内点C的坐标为________.在△ABC 中,点D 是BC 上一点,∠ADB =130∘,∠CAD =54∘,则∠C =________.若直线y =kx +b 与x 轴的交点坐标为(−3, 0),则关于x 的方程kx +b =0的解是________.若{x =ay =b 是二元一次方程2x −3y −5=0的一组解,则4a −6b =________.小明调查了班内20名同学本学期购买课外书的花费情况,并将结果绘制成统计图,那么这20名同学购买课外书的平均花费是________元.手机已成现代入生活的一个重要组成部分,它给人们生活带来了许多方便.假如你家刚刚添置了一部手机,手机资费宣传单如下表:当通话时间为200min 时,选套餐________更优惠.(填“A ”或“B ”)18分)计算:√8×√1126解方程组{x +2y =82x −3y =2甲、乙两名同学参加青少年科技创新选拔赛,甲六次比赛的成绩如下:87,93,88,93,89,90.(1)甲成绩的中位数是________,众数是________;(2)若乙六次比赛的平均成绩与甲相同,且乙成绩的方差是313,要选派一名发挥稳定的同学参加比赛,应该选谁?说明理由(S 2=1n [(x 1−x ¯)2+(x 2−x ¯)2+...(x n −x ¯)2]).四、解答题(二)(3个题,每题8分,共24分)某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元. (1)写出y 与x 之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?如图,在平面直角坐标系xOy 内有一直线l 对应的一次函数是y =√5x +b .(1)在x 轴上画出√5对应的点A ;(2)若直线l 经过点A ,求直线l 与坐标轴所围的三角形面积.如图,在△ABC 中,∠BAC =90∘,AB =AC =1,AF 是等边△ACD 的高,交BD 于点E ,连接CE .(1)求∠ABD 的度数;(2)求CE 的长.五、解答题(三)(2个题,每题10分,共20分)如图,一次函数y =mx +n 的图象经过点A ,与函数y =−x +6的图象交于点B ,B 点的横坐标为1.(1)方程组{y =mx +ny =−x +6 的解是________(2)求出m 、n 的值;(3)求代数式(√1m −√n)⋅√mn 的值.如图,在平面直角坐标系中,点D 是边长为4cm 的正方形ABCO 的边AB 的中点,直线y =34x 交BC 于点E ,连接DE 并延长交x 轴于点F .(1)求出点E 的坐标;(2)求证:△ODE 是直角三角形;(3)过D 作DH ⊥x 轴于点H ,动点P 以2cm/s 的速度从点D 出发,沿着D →H →F 方向运动,设运动时间为t ,当t 为何值时,△PEH 是等腰三角形?参考答案与试题解析2019-2020学年广东省佛山市顺德区、三水区八年级(上)期末数学试卷一、选择题(10个题,每题3分,共30分)1.【答案】此题暂无答案【考点】实根的冬质【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】关于较洗、y装对氢的点的坐标【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】平方根立方于的性术算三平最根【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答5. 【答案】此题暂无答案【考点】平行水因判定【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】命体与白理【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】待定正数键求一程植数解析式一次都数资象与纳数鱼关系【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】平于叫开施护短路径问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答二、填空题(7个题,每题4分,共28分)【答案】此题暂无答案【考点】实数根盖比较【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形射外角性过三角形常角簧定理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一使函凝亚一卵一次方程【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二元一明方织的解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】加水正均数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】有理数三混合运臂【解析】此题暂无解析【解答】此题暂无解答三、解答题(一)(3个题,每题6分,共18分)【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】加减正元东树说元一次方程组代入使碳古解革元一次方程组二元一都接程组的解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】方差中位数众数算三平最数【解析】此题暂无解析【解答】此题暂无解答四、解答题(二)(3个题,每题8分,共24分)【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次常数图按上点入适标特点一次水体的性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等边三根形的性隐等腰于角三旋形勾体定展【解析】此题暂无解析【解答】此题暂无解答五、解答题(三)(2个题,每题10分,共20分)【答案】此题暂无答案【考点】一次于数与旋恒一次普程(组)一次都数资象与纳数鱼关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次函常的头合题【解析】此题暂无解析【解答】此题暂无解答。