高考圆锥曲线中的最值与定值问题求解策略

合集下载

高考数学圆锥曲线复习策略.docx

高考数学圆锥曲线复习策略.docx

高考数学圆锥曲线复习策略一.圆锥曲线高考大纲文科(1)掌握椭圆的定义、几何图形、标准方程和简单的几何性质(范围、对称性、顶点、离心率)(2)了解双曲线的定义、几何图形、标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线)(3)了解抛物线的的定义、儿何图形、标准方程,知道其简单的儿何性质(范围、对称性、顶点、离心率)(4)理解数形结合的思想。

(5)了解圆锥曲线的简单应用。

理科.(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、儿何图形、标准方程及简单儿何性质.(范围、对称性、顶点、离心率)(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、顶点、离心率、渐近线).(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.锥曲线知识网络'对称轴兀轴 住占 八、、八、、标准方程y 2=2P x\顶点 离心率 准线 (卩>0)二.试题趋势近年來圆锥1111线在高考中比较稳定,解答题往往以屮档题或以押轴题形式出现,主要考察学 生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。

但圆锥曲线在新 课标中化归到选学内容,要求有所降低,估计2011年高考对本讲的考察,主要考察热点有:(1) 圆锥Illi 线的定义及标准方程; (2) 与圆锥曲线有关的轨迹问题;(3) 与圆锥曲线有关的最值、定值问题;(4) 与平面向量、导数等知识相结合的交汇试题(1)圆锥曲线的定义及标准方程;1. (2010北京文理)(13)已知双曲线二—1的离心率为2,焦点与椭圆—= 1的a 2b 225 9焦点相同,那么双Illi 线的焦点坐标为 _______ ;渐近线方程为 ________ o定义::椭圆l + IF2PI=2a(2a >1 F.F 2 I)标准方程召+令(a > b > 0)2 f 2a =b +对称轴 兀轴,长轴长为2d y 轴,短轴长为2b隹占 八、、八、、定义::< 双曲线{lIFfl —IF2PII=2a(2a<F }F 2 I)2 2 标准方程才*卄严轴卜轴,实轴长为2d 对称轴彳I 》轴,虚轴长为"隹占八、、JW\(Q 〉O,b 〉O )彳顶点21 2 a +b =c离心率 渐近线定义• 抛物线 <・\MF\=d答案:(±4,0)= 02 ,22.(2010天津文数)(13)已知双Illi线罕―仝=1«〉0上〉0)的一条渐近线方程是a b厶y = ^x ,它的一个焦点与抛物线r =16x的焦点相同。

圆锥曲线的综合应用及其求解策略

圆锥曲线的综合应用及其求解策略

圆锥曲线的综合应用及其求解策略有关圆锥曲线的综合应用的常见题型有:①、定点与定值问题;②、最值问题;③、求参数的取值范围问题;④、对称问题;⑤、实际应用问题。

解答圆锥曲线的综合问题,应根据曲线的几何特征,熟练运用圆锥曲线的相关知识,将曲线的几何特征转化为数量关系(如方程、不等式、函数等),再结合代数知识去解答。

解答过程中要重视函数思想、方程与不等式思想、分类讨论思想和数形结合思想的灵活应用。

一、定点、定值问题:这类问题通常有两种处理方法:①、第一种方法:是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;②、第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

★【例题1】(2007年高考〃湖南文科〃19题〃13分)已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A 、B 两点,又已知点C 的坐标是(10),.(I )证明CA 〃CB 为常数;(II )若动点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程.◆解:由条件知(20)F ,,设11()A x y ,,22()B x y ,. (I )当AB 与x 轴垂直时,可求得点A 、B的坐标分别为(2,(2,,此时则有(12)(11CA CB =⨯=-,.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=,则有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是212121212(1)(1)(1)(1)(2)(2)CA CB x x y y x x k x x =--+=--+--2221212(1)(21)()41k x x k x x k =+-++++2222222(1)(42)4(21)4111k k k k k k k +++=-++--22(42)411k k =--++=-.∴ 综上所述,CA CB 为常数1-.(II )设()M x y ,,则(1)CM x y =-,,11(1)CA x y =-,,22(1)CB x y =-,,(10)CO =-,,由CM CA CB CO =++得:121213x x x y y y -=+-⎧⎨=+⎩,即12122x x x y y y +=+⎧⎨+=⎩,于是AB 的中点坐标为222x y +⎛⎫⎪⎝⎭,.当AB 不与x 轴垂直时,12122222yy y y x x x -==---,即1212()2y y y x x x -=--. 又因为A 、B 两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(2)()x x x y y y -+=-.将1212()2yy y x x x -=--代入上式,化简得224x y -=. 当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程.所以点M 的轨迹方程是224x y -=. ▲ 点拨:本题中“CA 〃CB 为常数”的证明,采用特殊位置“当AB 与x 轴垂直时”可轻易得出CA 〃CB = -1;接下来再从一般情况“当AB 不与x 轴垂直时”去加以论证,有了明确的目标,推理计算就要容易得多了!★【例题2】已知A,B 为椭圆22221x y a b +=(a>b>0)和双曲线22221x y a b-=的公共顶点,P,Q 分别为双曲线和椭圆上不同于A,B 的动点,且有→AP+→BP=λ(→AQ+→BQ)(λ∈R,|λ|>1),设AP,BP,AQ,BQ 斜率分别为k 1,k 2,k 3,k 4,求证:k 1+k 2+k 3+k 4为一个定值.◆解、点A(-a,0);B(a,0);∵由→AP+→BP=λ(→AQ+→BQ),依据向量加法的平行四边形法则,则有O 、Q 、P 三点共线;设P(x 1,y 1)、Q (x 2,y 2),则x 12a 2 - y 12b 2 =1,则x 12-a 2= a 2b 2〃y 12;∴ k 1+k 2 = y 1x 1+a + y 1x 1-a = 2x 1y 1x 12-a 2 = 2b 2a 2〃x 1y 1;同样有k 3+k 4= -2b 2a 2〃x 2y 2;由于x 1y 1 = x 2y 2,∴ 所求的定值为0。

【智博教育原创专题】圆锥曲线的定值、最值与定点问题解题策略

【智博教育原创专题】圆锥曲线的定值、最值与定点问题解题策略

探讨圆锥曲线的定值、最值与定点问题圆锥曲线中的最值与定值问题,是解析几何中的综合问题,是一种典型题型,将函数与解析融为一体,要求有较强的综合能力,例析如下: 【题型1】定值问题解决定值问题的方法:将问题涉及的几何式转化为代数式或三角式,证明该式的值与参数无关. 【例1】,A B 是抛物线22(0)y px p =>上的两点,且OA OB ⊥,求证:⑴,A B 两点的横坐标之积,纵坐标之积分别都是定值;⑵直线AB 经过一个定点。

【证明】⑴设1122(,),(,)A x y B x y ,则2222221122121212122,2,2244y px y px y y px px p x x p y y ==⋅=⋅==- 2124y y p =-为定值,212124x x y y p =-=也为定值;⑵222121************2()()2(),,,y y py y y y y y p x x x x x x y y --=+-=-≠∴=∴-+ 直线AB 的方程为:221112121212122242(2),y p p p py x y x x p y y y y y y y y y y =-+=-=-∴+++++直线AB 过定点(2,0)p 。

【例2】已知抛物线方程为212y x h =-+,点,A B 及点(2,4)P 都在抛物线上,直线PA 与PB 的倾斜角互补。

⑴试证明直线AB 的斜率为定值;⑵当直线AB 的纵截距为(0)m m >时,求PAB ∆的面积的最大值。

【分析】这类问题一般运算量大,要注意函数与方程、数形结合、分类讨论等思想方法的灵活运用。

【解析】⑴证明:把(2,4)P 代入212y x h =-+,得6h =,所以抛物线方程为:4(2)y k x -=-,由24(2)162y k x y x -=-⎧⎪⎨=-+⎪⎩,消去y ,得22440x k x k +--=,所以244222244A A k x k y k k --⎧==--⎪⎨⎪=-++⎩,因为PA 与PB 的倾角互补,所以PB PA k k k =-=-,用k -代k ,得222244B Bx k y k k =-⎧⎪⎨=-++⎪⎩,所以22448222(22)4B A AB A B y y k k k k x x k k k---+====-----。

如何利用定义法解答圆锥曲线最值问题

如何利用定义法解答圆锥曲线最值问题

定义法是用圆锥曲线的定义解题的方法.圆锥曲线的定义是解题的重要依据.在解答圆锥曲线最值问题时,灵活运用椭圆、双曲线、抛物线的定义,可简化运算,有效提升解题的效率.下面结合实例,谈一谈运用圆锥曲线定义解答最值问题的一些技巧.一、利用椭圆的定义求最值若平面内一个动点M 与两个定点F 1、F 2的距离的和等于常数2a (大于|F 1F 2|),则该点的轨迹叫做椭圆,这两个焦点之间的距离叫做椭圆的焦距,常用|F 1F 2|或2c 表示.由椭圆的定义可得:|MF 1|+|MF 2|=2a ,|F 1F 2|=2c ,其中c 2=a 2-b 2,a >0,c >0,且a 、c 为常数.运用椭圆的定义求最值,需先确定两个定点的位置;然后根据椭圆的定义,建立关于动点到定点的距离的关系式.例1.已知椭圆x 24+y 23=1上有一动点P ,圆()x -12+y 2=19上有一动点Q ,圆()x +12+y 2=49上有一动点R ,则||PQ +||PR 的最大值为().A.3 B.5C.8D.9解:由椭圆的方程x 24+y 23=1得a =2,b =3,c =1,所以其焦点为F 1()-1,0,F 2()1,0,由圆的方程()x -12+y 2=19可得其圆心为F 2()1,0,半径为r 1=13,由圆的方程()x +12+y 2=49可得其圆心为F 1()-1,0,半径为r 2=23,则P 点到圆F 1上动点R 的最大值为||PR max =||PF 1+r 2=||PF 1+23,P 点到圆F 2上动点Q 的最大值为||PQ max =||PF 2+r 1=||PF 2+13,所以()||PQ +||PR max=||PQ max +||PR max =||PF 1+||PF 2+1,由椭圆的定义知||PF 1+||PF 2=2a =4,得()||PQ +||PR max=5.故选B 项.此题中涉及了三个动点,需根据圆的性质:圆外一点M 到圆上一点的最大距离为圆心到M 的距离加上半径,求得P 点到圆F 1上动点R 的最大值||PR max =||PF 1+r 2,以及P 点到圆F 2上动点Q 的最大值||PQ max =||PF 2+r 1,进而得到()||PQ +||PR max =||PF 1+||PF 2+1.而F 1、F 2是两个定点,P 为动点,即可根据椭圆的定义,求得||PF 1+||PF 2的值,从而求得最值.解答本题的关键在于结合图形,明确两圆、椭圆、动点的位置关系,以根据圆的性质、椭圆的定义求得最值.例2.已知椭圆C :x 24+y 23=1的左右焦点分别为F 1,F 2,M 为椭圆C 上任意一点,N 为圆E :()x -42+()y -32=1上任意一点,则||MN -||MF 1的最小值为______.解:因为N 为圆E :()x -42+()y -32=1上的任意一点,所以||MN min =||ME -r ,由圆E :()x -42+()y -32=1,得其圆心为E ()4,3,半径为r =1,所以()||MN -||MF 1min=()||MN min-||MF 1min =()||ME -r -||MF 1min=()||ME -||MF 1-1min,根据椭圆的定义知||MF 1+||MF 2=2a =4,由三角形的三边关系知()||ME -||MF 1-1min=()||ME +||MF 2-5min=||EF 2-5,由椭圆C :x 24+y 23=1得其焦点为F 2()1,0,则||EF 2=()4-12+()3-02=32,所以||MN -||MF 1的最小值为32-5.此最值问题中涉及了两个动点和一个定点,需根据圆的性质:圆外一点P 到圆上一点的最小距离为圆心到P 的距离减去半径,求得M 点到圆E 上的动点N 的最小值||MN min =||ME -r .然后根据椭圆的定义和三角形三边之间的关系,将求||MN -||MF 1的最小值转化为求焦半径||EF 2的值.解答此类题,需灵活运用数形结合思想和转化思想.二、利用双曲线的定义求最值平面内与两个定点F 1,F 2的距离的差的绝对值等于常数2a (小于|F 1F 2|)的点M 的轨迹叫做双曲线.这两个定46点之间的距离|F 1F 2|叫做双曲线的焦距.由双曲线的定义可得||MF 1|-|MF 2||=2a ,|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0.在运用双曲线的定义求最值时,要注意:(1)明确动点与两定点距离之间的关系;(2)确保a <c .例3.已知点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:()x +52+y 2=1上,点R 在曲线C 3:()x -52+y 2=1上,则||PQ -||PR 的最大值是().A.6B.8C.10D.12解:画出如图1所示的图形.由曲线C 2:()x +52+y 2=1,得其圆心为C 2()-5,0,半径为1,由曲线C 3:()x -52+y 2=1,得其圆心为C 3()5,0,半径为1,则||PQ max =||PC 2+1,||PR min =||PC 3-1,则()||PQ -||PR max =||PC 2-||PC 3+2,由曲线C 1:x 216-y 29=1可知其左右焦点分别为F 1()-5,0,F 2()5,0,根据双曲线的定义得||PF 1-||PF 2=2a =8,所以()||PQ -||PR max=||PC 2-||PC 3+2=||PF 1-||PF 2+2=8+2=10.故答案选C 项.此问题中的三个动点分别在两个圆和双曲线上,需先根据圆的性质确定||PQ max =||PC 2+1,||PR min =||PC 3-1,将求||PQ -||PR 的最大值转化为求||PC 2-||PC 3的值.而C 2()-5,0、C 3()5,0为定点,于是根据双曲线的定义建立关系式,求得||PC 2-||PC 3的值,即可求得最值.例4.已知A ()-4,0,B 是圆()x -12+()y -42=1上的一点,点P 在双曲线x 29-y27=1的右支上,则||PA +||PB 的最小值为().A.9B.25+6C.10D.12解:由题意画出如图2所示的图形,由圆()x -12+()y -42=1,得其圆心为C ()1,4,半径为1,所以||PB min =||PC -r =||PC -1,因此()||PA +||PB min =||PA +||PC -1,由双曲线x 29-y 27=1得其左右焦点为F 1()-4,0,F 2()4,0,根据双曲线定义可知||PF 1-||PF 2=2a =6,因为A ()-4,0,所以||PA -||PF 2=6,所以()||PA +||PB min =()||PA +||PC -1min=()6+||PF 2+||PC -1min=()5+||PF 2+||PC min,根据三角形三边之间的关系,()||PF 2+||PC min=||CF 2=()1-42+()4-02=5,所以()||PA +||PB min =10.故答案选C 项.我们根据题意画出图形,即可明确问题中两个动点和一个定点的位置,于是根据圆的性质,将求||PA +||PB 转化为求()5+||PF 2+||PC min.而F 1()-4,0、F 2()4,0为定点,便联想到双曲线的定义,得到||PF 1-||PF 2=2a =6,将问题转化为求焦半径||CF 2的值.为了确定最值,往往需根据P 、A 、B 三点的位置关系,利用圆的性质和三角形三边关系确定取得最值的临界情形.三、利用抛物线的定义求最值平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.直线l 叫作抛物线的准线.利用抛物线的定义解题时,应将抛物线上的点到焦点的距离与其到准线距离进行等价转化,以确定取得最值时的临界情形.例5.已知抛物线y 2=4x 的焦点是F ,点P 是抛物线上的动点.若点B ()3,2,则||PB +||PF 的最小值为_____.解:由抛物线C 2:y 2=4x 知其焦点为F ()1,0,准线为x =-1,由抛物线定义可知,||PF =||PA ,则()||PB +||PF min =()||PB +||PA min =||AB ,而B ()3,2,则||AB =3+1=4,所以()||PB +||PF min =4.故答案为4.本题中P 为动点,B 、F 为定点,要求||PB +||PF 的最小值,需先确定其临界的情形.因为F 为抛物线的焦点,由抛物线的定义,得||PF =||PA ,于是将||PB +||PF 转化为||PB +||PA .显然当P 、B 、F 三点共线时,||PB +||PA 最小,此时||PB +||PA =||AB ,求得||AB 的值,即可求得最值.总之,运用圆锥曲线的定义解题,需先确定动点与定点之间距离的关系:相等、和为定值、差为定值;然后根据椭圆、双曲线、抛物线的定义建立焦半径之间的关系式;再结合图形将最值问题进行转化,以快速确定取得最值的情形,求得最值.(作者单位:江苏省淮北中学)图1xy图247。

圆锥曲线中的定值问题(解析版)

圆锥曲线中的定值问题(解析版)

圆锥曲线中的定值问题一、考情分析求定值是圆锥曲线中颇有难度的一类问题,也是备受高考关注的一类问题,由于它在解题之前不知道定值的结果,因而更增添了题目的神秘色彩.解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.二、解题秘籍(一)定值问题解题思路与策略1.定值问题肯定含有参数, 若要证明一个式子是定值, 则意味着参数是不影响结果的, 也就是说参数在解式子的过程中都可以消掉, 因此解决定值问题的关键是设参数:(1)在解析几何中参数可能是点(注意如果设点是两个参数时, 注意横坐标要满足圆锥曲线方程)(2)可能是角(这里的角常常是将圆锥曲线上的点设为三角函数角的形式),(3)也可能是斜率(这个是最常用的, 但是既然设斜率了, 就要考虑斜率是否存在的情况)常用的参数就是以上三种, 但是注意我们设参数时要遵循一个原则:参数越少越好.因此定值问题的解题思路是:(1)设参数;(2)用参数来表示要求定值的式子;(3)消参数.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【例1】(2023届湖湘名校教育联合体高三上学期9月大联考)已知椭圆C:x22+y2=1,F1为右焦点,直线l:y=t(x-1)与椭圆C相交于A,B两点,取A点关于x轴的对称点S,设线段AS与线段BS的中垂线交于点Q.(1)当t=2时,求QF1;(2)当t≠0时,求QF1|AB|是否为定值?若为定值,则求出定值;若不为定值,则说明理由.【解析】(1)设A x1,y1,B x2,y2,线段AB的中点M坐标为x M,y M,联立得x2+2y2-2=0,y=2(x-1),消去y可得:9x2-16x+6=0,所以x1+x2=169, x1x2=69,所以x M=89,代入直线AB方程,求得y M=-29,因为Q为△ABS三条中垂线的交点,所以MQ⊥AB,有k MQ k AB=-1,直线MQ方程为y+29=-12×x-89.令y=0,x Q=49,所以Q49,0.由椭圆C :x 22+y 2=1可得右焦点F 11,0 ,故QF 1 =59.(2)设A x 1,y 1 ,B x 2,y 2 ,中点M 坐标为x M ,y M .x 212+y 21=1,x 222+y 22=1, 相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2=-x M 2y M ,k AB k OM =-12.又Q 为△ABS 的外心,故MQ ⊥AB ,k MQ k AB =-1,所以k MQ =2k OM =2y M x M ,直线MQ 方程为y -y M =2y Mx Mx -x M ,令y =0,x Q =x M 2=x 1+x 24,所以Q x 1+x 24,0 而F 11,0 ,所以QF 1 =1-14x 1+x 2 ,AF 1 =x 1-1 2+y 21=x 1-1 2+1-x 212=x 212-2x 1+2=2-12x 1,同理BF 1 =2-12x 2,|AB |=AF 1 +BF 1 =22-12x 1+x 2 ,QF 1 |AB |=1-14x 1+x 2 22-12x 1+x 2 =24,所以当t 变化时,QF 1 |AB |为定值24.【例2】(2023届河南省濮阳市高三上学期测试)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,圆O :x 2+y 2=a 2,过F 且垂直于x 轴的直线被椭圆C 和圆O 所截得的弦长分别为433和2 2.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线l 1,l 2,记l 1,l 2的斜率分别为k 1,k 2,直线OP 的斜率为k 3,证明:k 1+k 2 k 3为定值.【解析】(1)设椭圆C 的半焦距为c c >0 ,过F 且垂直于x 轴的直线被椭圆C 所截得的弦长分别为433,则2b 2a =433;过F 且垂直于x 轴的直线被圆O 所截得的弦长分别为22,则2a 2-c 2=22,又a 2-b 2=c 2,解得a =3b =2 ,所以C 的方程为x 23+y 22=1.(2)设P x 0,y 0 x 0y 0≠0 ,则x 20+y 20=3.①设过点P 与椭圆C 相切的直线方程为y -y 0=k x -x 0 ,联立2x 2+3y 2=6y -y 0=k x -x 0 得3k 2+2 x 2+6k y 0-kx 0 x +3y 0-kx 0 2-2 =0,则Δ=6k y 0-kx 0 2-4×3k 2+2 ×3y 0-kx 0 2-2 =0,整理得x 20-3 k 2-2x 0y 0k +y 20-2=0.②由题意知k 1,k 2为方程②的两根,由根与系数的关系及①可得k 1+k 2=2x 0y 0x 20-3=2x 0y 0-y 20=-2x 0y 0.又因为k 3=k OP =y 0x 0,所以k 1+k 2 k 3=-2x 0y 0⋅y 0x 0=-2,所以k 1+k 2 k 3为定值-2.(二)与线段长度有关的定值问题与线段长度有关的定值问题通常是先引入参数,利用距离公式或弦长公式得到长度解析式,再对解析式化简,得出结果为定值【例3】(2023届辽宁省朝阳市高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,点P 3,-1 在双曲线C 上.(1)求双曲线C 的方程;(2)点A ,B 在双曲线C 上,直线PA ,PB 与y 轴分别相交于M ,N 两点,点Q 在直线AB 上,若坐标原点O 为线段MN 的中点,PQ ⊥AB ,证明:存在定点R ,使得QR 为定值.【解析】(1)由题意,双曲线C :x 2a 2-y 2b2=1的离心率为2,且P 3,-1 在双曲线C 上,可得9a 2-1b 2=1e =c a =2c 2=a 2+b 2,解得a 2=8,b 2=8,所以双曲线的方程为x 28-y 28=1.(2)由题意知,直线的AB 的斜率存在,设直线AB 的方程为y =kx +m ,联立方程组y =kx +mx 2-y 2=8,整理得(1-k 2)x 2-2km x -m 2-8=0,则Δ=(-2km )2-4(1-k 2)(-m 2-8)=4(m 2-8k 2+8)>0且1-k 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2km 1-k 2,x 1x 2=-m 2-81-k 2,直线PA 的方程为y +1=y 1+1x 1-3(x -3),令x =0,可得y =-1-3y 1+3x 1-3,即M 0,-1-3y 1+3x 1-3 ,同理可得N 0,-1-3y 2+3x 2-3,因为O 为MN 的中点,所以-1-3y 1+3x 1-3 +-1-3y 2+3x 2-3=0,即-1-3(kx 1+m )+3x 1-3-1+3(kx 2+m )+3x 2-3)=0,可得(6k +2)x 1x 2-(3+9k -3m )(x 1+x 2)-18m =0,即(m +8)(m +3k +1)=0,所以m =-8或m +3k +1=0,若m +3k +1=0,则直线方程为y =kx -3k -1,即y +1=k (x -3),此时直线AB 过点P 3,-1 ,不合题意;若m =-8时,则直线方程为y =kx -8,恒过定点D (0,-8),所以PD =32+(-1-8)2=58为定值,又由△PQD 为直角三角形,且PD 为斜边,所以当R 为PD 的中点32,-92时,RQ =PD =582.(三)与面积有关的定值问题与面积有关的定值问题通常是利用面积公式把面积表示成某些变量的表达式,再利用题中条件化简.【例4】(2023届河南省部分学校高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1-1,0 ,上、下顶点分别为A ,B ,∠AF 1B =90°.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM =OP +OQ ,证明:四边形OPMQ 的面积为定值.【解析】(1)依题意c =1,又∠AF 1B =90°,所以b =c =1,所以a =b 2+c 2=2,所以椭圆方程为x 22+y 2=1.(2)证明:设M x ,y ,P x 1,y 1 ,Q x 2,y 2 ,因为OM =OP +OQ,所以四边形OPMQ 为平行四边形,且x =x 1+x 2y =y 1+y 2 ,所以x 1+x 2 22+y 1+y 2 2=1,即x 122+y 12+x 222+y 22+x 1x 2+2y 1y 2=1,又x 122+y 12=1,x 222+y 22=1,所以x 1x 2+2y 1y 2=-1,若直线PQ 的斜率不存在,M 与左顶点或右顶点重合,则x P =x Q =22,所以y P =y Q =32,所以S OPMQ =12×2x P ×2y P =62,若直线PQ 的斜率存在,设直线PQ 的方程为y =kx +t ,代入椭圆方程整理得1+2k 2 x 2+4ktx +2t 2-2=0,所以Δ=82k 2+1-t 2 >0,x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2,所以y 1y 2=kx 1+t kx 2+t =k 2x 1x 2+kt x 1+x 2 +t 2=k 2⋅2t 2-21+2k 2+kt ⋅-4kt 1+2k2 +t 2所以2k 2+1 ⋅2t 2-21+2k 2+2kt ⋅-4kt 1+2k2 +2t 2=-1,整理得4t 2=1+2k 2,又PQ =k 2+1x 1-x 2 =k 2+1⋅81+2k 2-t 21+2k 2,又原点O 到PQ 的距离d =tk 2+1,所以S △POQ =12PQ d =2⋅1+2k 2-t 2⋅t 1+2k 2,将4t 2=1+2k 2代入得S △POQ =2⋅3t 2⋅t 4t2=64,所以S OPMQ =2S △POQ =62,综上可得,四边形OPMQ 的面积为定值62.(四)与斜率有关的定值问题与斜率有关的定值问题常见类型是斜率之积商或斜率之和差为定值,求解时一般先利用斜率公式写出表达式,再利用题中条件或韦达定理化简.【例5】(2023届江苏省南通市高三上学期第一次质量监测)已知A,A 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点,B ,F 分别是C 的上顶点和左焦点.点P 在C 上,满足PF ⊥A A ,AB ∥OP ,FA =2- 2.(1)求C 的方程;(2)过点F 作直线l (与x 轴不重合)交C 于M ,N 两点,设直线AM ,AN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)因为PF ⊥A A ,故可设P -c ,y 0 ,因为AB ∥OP ,故k AB ∥k OP ,即-b a =-y 0c ,解得y 0=bca.又P -c ,bc a 在椭圆C 上,故c 2a 2+b 2c 2a 2b2=1,解得a 2=2c 2=2a 2-2b 2,故a =2b =2c .又FA =2-2,故FA =a -c =2-1 c =2-2,故c =2,a =2,b =2.故C 的方程为x 24+y 22=1.(2)因为椭圆方程为x 24+y 22=1,故F -2,0 ,A 2,0 ,当l 斜率为0时A ,M 或A ,N 重合,不满足题意,故可设l :x =ty -2.联立x 24+y 22=1x =ty -2可得t 2+2 y 2-22ty -2=0,设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=22t t 2+2,y 1y 2=-2t 2+2.故k 1k 2=y 1x 1-2⋅y 2x 2-2=y 1y 2ty 1-2-2 ty 2-2-2=y 1y 2t 2y 1y 2-2+2 t y 1+y 2 +2+2 2=1t 2-2+2 t y 1+y 2y 1y 2 +2+2 2y 1y 2=1t 2+22+2 t 2-2+2 2×t 2+2 2=1-23+22 =2-32故定值为2-32(五)与向量有关的定值问题与向量有关的定值问题常见类型一是求数量积有关的定值问题,二是根据向量共线,写出向量系数的表达式,再通过计算得出与向量系数有关的定值结论.【例6】(2023届湖南省部分校高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为62,点A 6,4 在C 上.(1)求双曲线C 的方程.(2)设过点B 1,0 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD ⋅PE为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由.【解析】(1)因为双曲线C 的离心率为62,所以62 2=1+b 2a2,化简得a 2=2b 2.将点A 6,4 的坐标代入x 22b 2-y 2b 2=1,可得18b 2-16b2=1,解得b 2=2,所以C 的方程为x 24-y 22=1.(2)设D x 1,y 1 ,E x 2,y 2 ,直线l 的方程为y =k (x -1),联立方程组y =k x -1 ,x 24-y 22=1,消去y 得(1-2k 2)x 2+4k 2x -2k 2-4=0,由题可知1-2k 2≠0且Δ>0,即k 2<23且k 2≠12,所以x 1+x 2=-4k 21-2k 2,x 1x 2=-2k 2+41-2k 2.设存在符合条件的定点P t ,0 ,则PD =x 1-t ,y 1 ,PE=x 2-t ,y 2 ,所以PD ⋅PE=x 2-t x 1-t +y 1y 2=k 2+1 x 1x 2-t +k 2 x 1+x 2 +t 2+k 2.所以PD ⋅PE =k 2+1 -2k 2-4 +4k 2t +k 2 +t 2+k 2 1-2k 2 1-2k 2,化简得PD ⋅PE =k 2-2t 2+4t -5 +t 2-4-2k 2+1.因为PD ⋅PE 为常数,所以-2t 2+4t -5-2=t 2-41,解得t =134.此时该常数的值为t 2-4=10516,所以,在x 轴上存在点P 134,0 ,使得PD ⋅PE 为常数,该常数为10516.【例7】(2022届上海市金山区高三上学期一模)已知P 0,1 为椭圆C :x 24+y 23=1内一定点,Q 为直线l :y =3上一动点,直线PQ 与椭圆C 交于A 、B 两点(点B 位于P 、Q 两点之间),O 为坐标原点.(1)当直线PQ 的倾斜角为π4时,求直线OQ 的斜率;(2)当△AOB 的面积为32时,求点Q 的横坐标;(3)设AP =λPB ,AB=μBQ ,试问λ-μ是否为定值?若是,请求出该定值;若不是,请说明理由.【解析】(1)因为直线PQ 的倾斜角为π4,且P 0,1 ,所以直线PQ 的方程为:y =x +1,由y =x +1y =3,得Q 2,3 ,所以直线OQ 的斜率是k OQ =32;(2)易知直线PQ 的斜率存在,设直线PQ 的方程为y =kx +1,由x 24+y 23=1y =kx +1,得3+4k 2 x 2+8kx -8=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-8k 3+4k 2,x 1⋅x 2=-83+4k 2,所以x1-x 2 =x 1+x 2 2-4x 1⋅x 2=96+192k 23+4k 2,所以S △AOB =12OP ⋅x 1-x 2 =26+12k 23+4k 2=32,解得k 2=14,即k =±12,所以直线PQ 的方程为y =12x +1或y =-12x +1,由y =12x +1y =3,得Q 4,3 ;由y =-12x +1y =3,得Q -4,3 ;(3)易知直线PQ 的斜率存在,设直线PQ 的方程为x =m y -1 ,由x 24+y 23=1x =m y -1,得4+3m 2 y -1 2+8y -1 -8=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1-1+y 2-1=-84+3m 2,y 1-1 ⋅y 2-1 =-84+3m 2,所以y 1-1+y 2-1=y 1-1 ⋅y 2-1 ,因为AP =λPB ,AB=μBQ ,所以λ=1-y 1y 2-1,μ=y 2-y 13-y 2=y 2-3+3-y 13-y 2=-1+3-y 13-y 2,所以λ-μ=1-y 1y 2-1+y 1-33-y 2+1,=21-y 1 +1-y 1 +21-y 1 1-y 1 y 2-1 3-y 2 +1=1.(六)与代数式有关的定值问题与代数式有关的定值问题.一般是依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值【例8】在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的右准线为直线l ,动直线y =kx +m (k <0,m >0)交椭圆于A ,B 两点,线段AB 的中点为M ,射线OM 分别交椭圆及直线l 于点P 、Q ,如图,当A 、B 两点分别是椭圆E 的右顶点及上顶点时,点Q 的纵坐标为1e(其中e 为椭圆的离心率),且OQ =5OM .(1)求椭圆E 的标准方程;(2)如果OP 是OM 、OQ 的等比中项,那么mk是否为常数?若是,求出该常数;若不是,请说明理由.【解析】(1)椭圆E :x 2a 2+y 2b2=1的右准线为直线l ,动直线y =kx +m 交椭圆于A ,B 两点,当A ,B 零点分别是椭圆E 的有顶点和上顶点时,则A (a ,0),B (0,,b ),M a 2,b2,因为线段AB 的中点为M ,射线OM 分别角椭圆及直线l 与P ,Q 两点,所以Q a 2c ,1e,由O ,M ,Q 三点共线,可得b a =1ea2c,解得b =1,因为OQ =5OM ,所以a 2c a 2=5,可得2a =5c ,又由a 2=b 2+c 2b =12a =5c,解得a 2=5,c 2=4,所以椭圆E 的标准方程为x 25+y 2=1.(2)解:把y =kx +m 代入椭圆E :x 25+y 2=1,可得(5k 2+1)x 2+10mkx +5m 2-5=0,可得x 1+x 2=10km 5k 2+1,x 1x 2=5m 2-55k 2+1,则y 1+y =k (x 1+x 1)+2m =2m 5k 2+1,所以x M =5km 5k 2+1,y M =m5k 2+1,即M 5km 5k 2+1,m 5k 2+1 ,所以直线OM 的方程为y =-15k x ,由y =-15k x x 25+y 2=1,可得x 2P =25k 25k 2+1,因为OP 是OM ,OQ 的等比中项,所以OP 2=OM ⋅OQ ,可得x 2P =x M ⋅x Q =25mk 2(5k 2+1),又由25k 25k 2+1=25mk 2(5k 2+1),解得m =-2k ,所以m k =-2,此时满足Δ>0,所以mk为常数-2.(六)与定值有关的结论1.若点A ,B 是椭圆C :x 2a 2+y 2b2=1a >b >0 上关于原点对称的两点,点P 是椭圆C 上与A ,B 不重合的点,则k PA ⋅k PB =-b 2a2;2.若点A ,B 是双曲线C :x 2a 2-y 2b 2=1a >0,b >0 上关于原点对称的两点,点P 是双曲线C 上与A ,B 不重合的点,则k PA ⋅k PB =b2a 2.3.设点P m ,n 是椭圆C :x 2a 2+y 2b2=1a >b >0 上一定点,点A ,B 是椭圆C 上不同于P 的两点,若k PA +k PB =0,则直线AB 斜率为定值bm 2an 2n ≠0 ;4.设点P m ,n 是双曲线C :x 2a 2-y 2b2=1a >0,b >0 一定点,点A ,B 是双曲线C 上不同于P 的两点,若k PA +k PB =0,直线AB 斜率为定值-bm 2an 2n ≠0 ;5.设点P m ,n 是抛物线C :y 2=2px p >0 一定点,点A ,B 是抛物线C 上不同于P 的两点,若k PA +k PB=0,直线AB 斜率为定值-pn n ≠0 .6.设A ,B ,C 是椭圆x 2a 2+y 2b2=1a >b >0 上不同3点,B ,C 关于x 轴对称,直线AC ,BC 与x 轴分别交于点M ,N ,则OM ON =a 2.7.点A ,B 是椭圆C :x 2a 2+y 2b 2=1a >b >0 上动点,O 为坐标原点,若OA ⊥OB ,则1OA 2+1OB2=1a 2+1b 2(即点O 到直线AB 为定值)8.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|PA 1|⋅|PA 2|=b 2.9.过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 作直线交该椭圆右支于M ,N 两点,弦MN 的垂直平分线交x轴于P ,则|PF ||MN |=e2.10.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-bax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.【例9】(2022届上海市黄浦区高三一模)设常数m >0且m ≠1,椭圆Γ:x 2m2+y 2=1,点P 是Γ上的动点.(1)若点P 的坐标为2,0 ,求Γ的焦点坐标;(2)设m =3,若定点A 的坐标为2,0 ,求PA 的最大值与最小值;(3)设m =12,若Γ上的另一动点Q 满足OP ⊥OQ (O 为坐标原点),求证:O 到直线PQ 的距离是定值.【解析】(1)∵椭圆Γ:x 2m2+y 2=1,点P 的坐标为2,0 ,∴m =2,c =3,∴Γ的焦点坐标为-3,0 ,3,0 ;(2)设P x ,y ,又A 2,0 ,由题知x 29+y 2=1,即y 2=1-x 29,∴PA 2=x -2 2+y 2=x -2 2+1-x 29=8x 29-4x +5=89x -94 2+12,又-3≤x ≤3,∴当x =-3时,PA 2取得最大值为25;当x =94时,PA 2取得最小值为12;∴PA 的最大值为5,最小值为22.(3)当m =12时,椭圆Γ:4x 2+y 2=1,设P x 1,y 1 ,Q x 2,y 2 ,当直线PQ 斜率存在时设其方程为y =kx +t ,则由y =kx +t 4x 2+y 2=1,得4+k 2 x 2+2ktx +t 2-1=0,∴x 1+x 2=-2kt 4+k 2,x 1x 2=t 2-14+k2,Δ=2kt 2-44+k 2 t 2-1 >0,由OP ⊥OQ 可知OP ⋅OQ=0,即x 1x 2+y 1y 2=0,∴x 1x 2+kx 1+t kx 2+t =0,即1+k 2 x 1x 2+kt x 1+x 2 +t 2=0,∴1+k 2 ⋅t 2-14+k 2+kt ⋅-2kt 4+k2+t 2=0,可得1+k 2=5t 2,满足Δ>0,∴O 到直线PQ 的距离为d =t 1+k2=55为定值;当直线PQ 斜率不存在时,OP ⊥OQ ,可得直线方程为x =±55,O 到直线PQ 的距离为55.综上,O 到直线PQ 的距离是定值.三、跟踪检测1.(2023届江苏省南通市海安市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,短轴长为2.(1)求E 的方程;(2)过点M -4,0 且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MBMC=NBNC,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)由椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,短轴长为2,可知c a =32,2b =2 ,则1-b 2a2=34,∴a 2=4 ,故E 的方程为x 24+y 2=1;(2)证明:由题意可知直线l 的斜率一定存在,故设直线l 的方程为y =k (x +4),设B (x 1,y 1),C (x 2,y 2),N (x 3,y 3),P (x 0,y 0),联立x 24+y 2=1y =k (x +4),可得(4k 2+1)x 2+32k 2x +64k 2-4=0,Δ=16(1-12k 2)>0,∴0<k 2<112,则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-44k 2+1,所以x 0=-16k 24k 2+1,y 0=k (x 0+4)=4k 4k 2+1,∴P -16k 24k 2+1,4k4k 2+1 ,又MB MC =NB NC,所以x 1+4x 2+4=x 3-x 1x 2-x 3,解得x 3=2x 1x 2+4(x 1+x 2)x 1+x 2+8=2×64k 2-44k 2+1+4×-3k 24k 2+1-32k 24k 2+1+8=-1,y 3=3k ,从而N (-1,3k ) ,故k 1⋅k 2=y 0x 0⋅y 3x 3=-14k×(-3k )=34,即k 1k 2为定值.2.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ⋅DF=0,DG ⊥EF 于G ,证明:存在定点H ,使|GH |为定值.【解析】(1)因为双曲线C 与已知双曲线有相同的渐近线,设双曲线C 的标准方程为x 2-4y 2=λ代入点A 坐标,解得λ=4所以双曲线C 的标准方程为x 24-y 2=1(2)(i )当直线EF 斜率存在时,设EF :y =kx +m ,设E x 1,y 1 F x 2,y 2 ,联立y =kx +m 与双曲线x 24-y 2=1,化简得4k 2-1 x 2+8km x +4m 2+1 =0,Δ=(8km )2-44m 2+4 4k 2-1 >0,即4k 2-m 2-1<0,则有x 1+x 2=-8km4k 2-1x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,因为DE ⋅DF=x 1-2 x 2-2 +y 1y 2=0,所以k 2+1 ⋅x 1x 2+km -2 ⋅x 1+x 2 +m 2+4=0,所以k 2+1 ⋅4m 2+44k 2-1+km -2 ⋅-8km 4k 2-1+m 2+4=0,化简,得3m 2+16km +20k 2=0,即3m +10k m +2k =0,所以m 1=-2k ,m 2=-103k ,且均满足4k 2-m 2-1<0,当m 1=-2k 时,直线l 的方程为y =k x -2 ,直线过定点2,0 ,与已知矛盾,当m 2=-103k 时,直线l 的方程为y =k x -103 ,过定点103,0 (ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :y =x -2,与双曲线C 方程联立解得x E =x F =103,此时EF 也过点M 103,0 ,综上,直线EF 过定点M 103,0.由于DG ⊥EF ,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.3.(2023届江苏省南京市高三上学期9月学情调研)已知抛物线C :y 2=2px p >0 的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点.(1)求p 的值;(2)是否存在定点T ,使得TA ⋅TB为常数?若存在,求出点T 的坐标及该常数;若不存在,说明理由.【解析】(1)因为F p 2,0 ,P 0,2 ,且点A 恰好为线段PF 中点,所以A p4,1 ,又因为A 在抛物线上,所以12=2p ⋅p4,即p 2=2,解得P =2(2)设T m ,n ,可知直线l 斜率存在;设l :y =kx +2,A x 1,y 1 ,B x 2,y 2 联立方程得:y 2=22xy =kx +2 ,所以k 2y 2-22y +42=0,所以y 1+y 2=22k ,y 1y 2=42k,又:TA ⋅TB =x 1-m x 2-m )+(y 1-n y 2-n=24y 21-m 24y 22-m +y 1-n y 2-n=18y 21y 22-24m y 21+y 22 +m 2-n y 1+y 2 +n 2=4k 2-24m 8k2-82k +m 2+42k -22n k +n 2=4-22m k2+4m +42-22n k +m 2+n 2,令4m +42-22n =04-22m =0,解之得:m =2n =4 ,即T 2,4 ,此时TA ⋅TB =m 2+n 2=184.(2023届重庆市2023届高三上学期质量检测)已知抛物线C :x 2=2py p >0 的焦点为F ,斜率不为0的直线l 与抛物线C 相切,切点为A ,当l 的斜率为2时,AF =10.(1)求p 的值;(2)平行于l 的直线交抛物线C 于B ,D 两点,且∠BAD =90°,点F 到直线BD 与到直线l 的距离之比是否为定值?若是,求出此定值;否则,请说明理由.【解析】(1)由x 2=2py ,得y =x 22p,则y =xp ,令xp=2,则x =2p ,即点A 的横坐标为2p ,所以其纵坐标也为2p ,故AF =2p +p2=10,所以p =4;(2)由(1)得x 2=8y ,设直线BD 的方程为y =kx +m k ≠0 ,B x 1,x 218 ,D x 2,x 228 ,A x 0,x 208,由∠BAD =90°得x 218-x 208x 1-x 0·x 228-x 208x 2-x 0=-1,即x 1+x 0 x 2+x 0 =-64,即x 1x 2+x 0x 1+x 2 +x 20=-64,由(1)知y =k =x04,x 0=4k ,联立y =kx +m x 2=8y,消y 得x 2-8kx -8m =0,则x 1+x 2=8k ,x 1x 2=-8m ,所以-8m +32k 2+16k 2=-64,所以m =6k 2+8,l :y =x 04x -x 0 +x 28=kx -2k 2,设F 到直线l 和直线BD 的距离分别为d 1,d 2,则由l ∥BD 得,d 1d 2=m -2 2+2k 2=6k 2+62k 2+2=3,所以点F 到直线BD 与到直线l 的距离之比是定值,为定值3.5.(2023届江苏省百校联考高三上学期考试)设F 为椭圆C :x 22+y 2=1的右焦点,过点F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点.(1)当BF=2FA 时,求FA ;(2)在x 轴上是否存在异于F 的定点Q ,使k QAk QB为定值(其中k QA ,k QB 分别为直线QA ,QB 的斜率)?若存在,求出Q 的坐标;若不存在,请说明理由.【解析】(1)设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,联立x =my +1x 2+2y 2=2,得m 2+2 y 2+2my -1=0,又因为BF=2FA ,所以y 1+y 2=-2m m 2+2y 1y 2=-1m 2+2y 2=-2y 1,解得m 2=27,y 1 =2m m 2+2=148,所以FA =1+m 2y 1 =328,即FA =328.(2)假设在x 轴上存在异于点F 的定点Q t ,0 t ≠1 ,使得k QAk QB为定值.设直线AB 的方程为x =my +1,联立x 22+y 2=1x =my +1,得m 2+2 y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,所以y 1+y 2=2my 1y 2.所以k QA k QB =y 1x 1-t y 2x 2-t=y 1⋅x 2-t y 2⋅x 1-t =y 1my 2+1-t y 2my 1+1-t =my 1y 2+(1-t )y 1my 1y 2+(1-t )y 2=2my 1y 2+2(1-t )y 12my 1y 2+2(1-t )y 2=(3-2t )y 1+y 2y 1+(3-2t )y 2.要使k QA k QB为定值,则3-2t 1=13-2t ,解得t =2或t =1(舍去),此时k QAk QB=-1.故在x 轴上存在异于F 的定点Q 2,0 ,使得k QAk QB为定值.6.(2022届湖南省长沙市宁乡市高三下学期5月模拟)已知抛物线G :y 2=4x 的焦点与椭圆E :x 2a 2+y 2b2=1a >b >0 的右焦点F 重合,椭圆E 的长轴长为4.(1)求椭圆E 的方程;(2)过点F 且斜率为k 的直线l 交椭圆E 于A ,B 两点,交抛物线G 于M ,N 两点,请问是否存在实常数t ,使2AB +tMN 为定值?若存在,求出t 的值;若不存在,说明理由.【解析】(1)因为抛物线G :y 2=4x 的焦点为(1,0),所以c =1,又a =2,则b 2=a 2-c 2=3,故椭圆E 的方程为:x 24+y 23=1;(2)设A x 1,y 1 、B x 2,y 2 、M x 3,y 3 、N x 4,y 4 ,设直线l 的方程为y =k x -1 ,与椭圆E 的方程联立x 24+y 23=1y =k x -1,得3+4k 2 x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,∴AB =1+k 2⋅x 1+x 2 2-4x 1x 2=12(k 2+1)3+4k 2,设直线l 的方程y =k x -1 ,与抛物线G 的方程联立y 2=4xy =k x -1 ,得k 2x 2-2k 2+4 x +k 2=0,∴x 3+x 4=2k 2+4k 2,x 3x 4=1,∴MN =x 3+x 4+2=4k 2+1k 2,∴2AB +t MN=3+4k 26k 2+1 +tk 24k 2+1 =8+3t k 2+612k 2+1 ,要使2AB +1MN为常数,则8+3t =6,解得t =-23,故存在t =-23,使得2AB +1MN为定值12.7.(2023届江苏省南京市高三上学期数学大练)已知点B 是圆C :x -1 2+y 2=16上的任意一点,点F (-1,0),线段BF 的垂直平分线交BC 于点P .(1)求动点Р的轨迹E 的方程;(2)设曲线E 与x 轴的两个交点分别为A 1,A 2,Q 为直线x =4上的动点,且Q 不在x 轴上,QA 1与E 的另一个交点为M ,QA 2与E 的另一个交点为N ,证明:△FMN 的周长为定值.【解析】(1)因为点P 在BF 垂直平分线上,所以有PF =PB ,所以:PF +PC =PB +PC =BC =r =4,即PF +PC 为定值4>2,所以轨迹E 为椭圆,且a =2,c =1,所以b 2=3,所以轨迹E 的方程为:x 24+y 23=1.(2)由题知:A 1-2,0 ,A 22,0 ,设Q 4,t ,M x 1,y 1 ,N x 2,y 2则k QA 1=t 6,k QA 2=t2,所以QA 1方程为:y =t 6x +2 ,QA 2方程为:y =t2x -2 ,联立方程:y =t 6x +2x 24+y 23=1,可以得出M :54-2t 227+t 2,18t27+t 2 同理可以计算出点N 坐标:2t 2-63+t 2,-6t3+t 2 ,当k MN 存在,即t 2≠9,即t ≠±3时,k MN =-6t(t 2-9)所以直线MN 的方程为:y +6t 3+t 2=-6t t 2-9x -2t 2-63+t 2即:y =-6t t 2-9x +6t t 2-9=-6tt 2-9x -1 ,所以直线过定点1,0 ,即过椭圆的右焦点F 2,所以△FMN 的周长为4a =8.当k MN 不存在,即t 2=9,即t =±3时,可以计算出x 1=x 2=1,周长也等于8.所以△FMN 的周长为定值8.8.(2023届安徽省皖南八校高三上学期考试)已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,且左焦点坐标为-2,0 ,P 为椭圆上的一个动点,∠F 1PF 2的最大值为π2.(1)求椭圆M 的标准方程;(2)若过点-2,-4 的直线l 与椭圆M 交于A ,B 两点,点N 2,0 ,记直线NA 的斜率为k 1,直线NB 的斜率为k 2,证明:1k 1+1k 2=1.【解析】(1)因为左焦点坐标为-2,0 ,所以c =2,当点P 在上、下顶点时,∠F 1PF 2最大,又∠F 1PF 2的最大值为π2.所以b =c =2,由a 2=b 2+c 2得a 2=4,所以椭圆M 的标准方程为x 24+y 22=1;(2)当直线l 的斜率为0时,直线l 的方程为y =-4,直线y =-4与椭圆x 24+y 22=1没有交点,与条件矛盾,故可设直线l 的方程为x =my +t ,联立直线l 的方程与椭圆方程可得,x =my +tx 24+y 22=1,化简可得my +t 2+2y 2=4,所以m 2+2 y 2+2mtx +t 2-4=0,由已知方程m 2+2 y 2+2mtx +t 2-4=0的判别式Δ=4m 2t 2-4m 2+2 t 2-4 =16m 2-8t 2+32>0,又直线x =my +t 过点-2,-4 ,所以-2=-4m +t ,所以7m 2-8m <0,所以0<m <87,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,因为N 2,0所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=my 1+t -2y 1+my 2+t -2y 2=2m +t -2 y 1+y 2y 1y 2,所以1k 1+1k 2=2m +t -2 -2mt t 2-4=2m -2mt t +2=2m -2mt 4m =2m -t 2=1方法二:设直线l 的方程为m x -2 +ny =1,A x 1,y 1 ,B x 2,y 2 ,由椭圆M 的方程x 2+2y 2=4,得(x -2)2+2y 2=-4x -2 .联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4x -2 m x -2 +ny ,即1+4m (x -2)2+4n x -2 y +2y 2=0,1+4m x -2y 2+4n x -2y +2=0,所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n1+4m .因为直线l 过定点-2,-4 ,所以m +n =-14,代入1k 1+1k 2,得1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n 1+4m =1+4m1+4m =1.9.(2023届北京市房山区高三上学期考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴的两个端点分别为A -2,0 ,B 2,0 离心率为32.(1)求椭圆C 的标准方程;(2)M 为椭圆C 上除A ,B 外任意一点,直线AM 交直线x =4于点N ,点O 为坐标原点,过点O 且与直线BN 垂直的直线记为l ,直线BM 交y 轴于点P ,交直线l 于点Q ,求证:|BP ||PQ |为定值.【解析】(1)由已知a =2,又e =c a =c 2=32,c =3,所以b =a 2-c 2=1,椭圆标准方程为x 24+y 2=1;(2)设M (x 1,y 1),y 1≠0,则x 214+y 21=1,x 21+4y 21=4,直线AM 的方程为y =y 1x 1+2(x +2),令x =4得y =6y 1x 1+2,即N 4,6y 1x 1+2,k BN =6y 1x 1+24-2=3y 1x 1+2,l⊥BN,k l=-x1+23y1,直线l的方程是y=-x1+23y1x,直线BM的方程为y=y1x1-2(x-2),令x=0得y=-2y1x1-2,即P0,-2y1x1-2,由y=-x1+23y1xy=y1x1-2(x-2),因为x21+4y21=4,故解得x=-6y=2(x1+2)y1,即Q-6,2x1+2y1,所以BPPQ=x P-x Bx Q-x P=0-2-6-0=1310.(2023届湖南师范大学附属中学高三上学期月考)已知A(-22,0),B(22,0),直线PA,PB的斜率之积为-34,记动点P的轨迹为曲线C.(1)求C的方程;(2)直线l与曲线C交于M,N两点,O为坐标原点,若直线OM,ON的斜率之积为-34,证明:△MON的面积为定值.【解析】(1)设P(x,y),则直线PA的斜率k PA=yx+22(x≠-22),直线PB的斜率 k PB=yx-22(x≠22),由题意k PA⋅k PB=yx+22⋅yx-22=y2x2-8=-34,化简得 x28+y26=1(x≠±22);(2)直线l的斜率存在时,可设其方程为y=kx+m,联立y=kx+m,x28+y26=1,化简得3+4k2x2+8km x+4m2-24=0,设M x1,y1,N x2,y2,则Δ=(8km)2-43+4k24m2-24=488k2+6-m2>0,x1+x2=-8km3+4k2,x1x2=4m2-243+4k2,所以 k OM⋅k ON=y1y2x1x2=kx1+mkx2+mx1x2=k2x1x2+km x1+x2+m2x1x2=4m2k2-24k2-8k2m2+3m2+4k2m23+4k24m2-243+4k2=-24k2+3m24m2-24=-34化简得m2=4k2+3则|MN|=1+k2x1-x2=1+k2488k2+6-m23+4k2==431+k24k2+34k2+3=431+k23+4k2,又O到MN的距离d=|m|1+k2=4k2+31+k2,所以S△OMN=12|MN|⋅d=12⋅431+k23+4k2⋅3+4k21+k2=23,为定值.当直线l的斜率不存在时,可设 M x0,y0,N x0,-y0,则k CM⋅k ON=-y20x20=-34,且x208+y206=1,解得x20=4,y20=3,此时S△OMN=2×12×x0y0=23,综上,△OMN 的面积为定值23.11.(2023届贵州省遵义市新高考协作体高三上学期质量监测)已知点F 1是椭圆C :x 24+y 23=1的左焦点,Q是椭圆C 上的任意一点,A 12,1 .(1)求QF 1 +QA 的最大值;(2)过点F 1的直线l 与椭圆C 相交于两点M ,N ,与y 轴相交于点P .若PM =λMF 1 ,PN =μNF 1,试问λ+μ是否为定值?若是,求出该定值;若不是,请说明理由.【解析】(1)由椭圆方程知:a =2,b =3,∴c =a 2-b 2=1,则F 1-1,0 ,F 21,0 ,由椭圆定义知:QF 1 =2a -QF 2 =4-QF 2 ,∴QF 1 +QA =QA -QF 2 +4,∵QA -QF 2 ≤F 2A (当且仅当A ,F 2,Q 三点共线,即与图中T 点重合时取等号),又F 2A =12-1 2+1-0 2=52,∴QF 1 +QA 的最大值为4+52=8+52.(2)由题意知:直线l 斜率存在,设l :y =k x +1 ,M x 1,y 1 ,N x 2,y 2 ,则P 0,k ,由y =k x +1x 24+y 23=1得:3+4k 2 x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2;∵PM =λMF 1 ,即x 1,y 1-k =λ-1-x 1,-y 1 ,则λ=-x 11+x1;同理可得:μ=-x 21+x 2,∴λ+μ=-x 11+x 1-x 21+x 2=-x 11+x 2 +x 21+x 1 1+x 1 1+x 2=-2x 1x 2+x 1+x 2 x 1x 2+x 1+x 2 +1=-8k 2-243+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k2+1=-8k 2-24-8k 24k 2-12-8k 2+3+4k2=-83,∴λ+μ是定值-83.12.(2023届江苏省盐城市响水中学高三上学期测试)已知椭圆C :x 24+y 22=1,A 0,1 ,过点A 的动直线l与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得λAP ⋅AQ +OP ⋅OQ为定值?若存在,求出λ的值;若不存在,说明理由.【解析】(1)①当直线l 存在斜率时,设P x 1,y 1 、Q x 2,y 2 、M x 0,y 0 ,x 0≠0,则应用点差法:x 214+y 212=1x 224+y 222=1,两式联立作差得:(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)2=0,∴y 1-y 2 y 1+y 2 x 1-x 2 x 1+x 2=y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=k PQ ⋅2y 02x 0=k PQ ⋅y 0x 0=k PQ ⋅k OM =-12,又∵k PQ =k MA =y 0-1x 0,∴y 0-1x 0⋅y 0x 0=-12,化简得x 20+2y 20-2y 0=0(x 0≠0),②当直线l 不存在斜率时,M 0,0 ,综上,无论直线是否有斜率,M 的轨迹方程为x 2+2y -12 2=12;(2)①当直线l 存在斜率时,设直线l 的方程为:y =kx +1,联立y =kx +1x 24+y 22=1并化简得:(2k 2+1)x 2+4kx -2=0,∴Δ>0恒成立,∴x 1+x 2=-4k 2k 2+1,x 1⋅x 2=-22k 2+1,又AP =x 1,k ⋅x 1 ,AQ =x 2,k ⋅x 2 ,OP =x 1,k ⋅x 1+1 ,OQ =x 2,k ⋅x 2+1 ,∴λAP ⋅AQ +OP ⋅OQ=λ1+k 2 ⋅x 1⋅x 2+1+k 2 ⋅x 1⋅x 2+k x 1+x 2 +1,=-2λ+1 1+k 2 2k 2+1-4k 22k 2+1+1=-2λ+2 k 2+2λ+12k 2+1,若使λAP ⋅AQ +OP ⋅OQ为定值,只需2λ+2 2=2λ+11,即λ=1,其定值为-3,②当直线l 不存在斜率时,直线l 的方程为:x =0,则有P 0,2 、Q 0,-2 ,又AP =0,2-1 ,AQ =0,-2-1 ,OP =0,2 ,OQ =0,-2 ,∴λAP ⋅AQ +OP ⋅OQ =-λ-2,当λ=1时,λAP ⋅AQ +OP ⋅OQ 也为定值-3,综上,无论直线是否有斜率,一定存在一个常数λ=1,使λAP ⋅AQ +OP ⋅OQ为定值-3.13.(2023届云南省下关第一中学高三上学期考试)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点(0,3),离心率为22,直线y =kx (k ≠0)与椭圆E 交于A ,B 两点,过点B 作BC ⊥x ,垂足为C 点,直线AC 与椭圆E的另一个交点为D .(1)求椭圆E 的方程;(2)试问∠ABD 是否为定值?若为定值,求出定值;若不为定值,说明理由.【解析】(1)由已知得b =3c a =22,解得a =6b =3c =3,所以E :x 26+y 23=1.(2)由已知,不妨设B x 0,y 0 ,则A -x 0,-y 0 ,C x 0,0 ,所以k =y 0x 0,k AC =y 02x 0=k 2,所以l AD :y =k2x -x 0 ,代入椭圆E :x 26+y 23=1的方程得:2+k 2 x 2-2x 0k 2x +k 2x 20-12=0,设D x D ,y D ,则-x 0+x D =2x 0k 22+k 2,即x D =2x 0k 22+k 2+x 0,所以y D =k 22x 0k22+k 2+x 0-x 0 =x 0k 32+k 2,即D 2x 0k 22+k 2+x 0,x 0k 32+k 2,所以k BD =x 0k 32+k 2-kx 02x 0k 22+k 2+x 0-x 0=-1k ,即k BD k =-1,即BD ⊥AB ,也即∠ABD 为定值π2.14.如图,点M 是圆A :x 2+(y +1)2=16上任意点,点B (0,1),线段MB 的垂直平分线交半径AM 于点P ,当点M 在圆A 上运动时,(1)求点P 的轨迹E 的方程;(2)BQ ⎳x 轴,交轨迹E 于Q 点(Q 点在y 轴的右侧),直线l :x =my +n 与E 交于C ,D (l 不过Q 点)两点,且直线CQ 与直线DQ 关于直线BQ 对称,则直线l 具备以下哪个性质?证明你的结论?①直线l 恒过定点;②m 为定值;③n 为定值.【解析】(1)如图,由⊙A 方程,得A (0,-1),半径r =4,∵P 在BM 的垂直平分线上,∴PM =PB ,所以|PA |+|PB |=|PA |+|PM |=|AM |=4>|AB |=2,∴P 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,由2a =4,则a =2,c =1,b 2=3,∴点P 的轨迹E 的方程为y 24+x 23=1.(2)解:∵直线l 与轨迹E 交于C ,D 两点,设C (x 1,y 1),D (x 2,y 2),如图x =my +n ,y 24+x 23=1消x ,得y 24+(my +n )23=1,整理,得(3+4m 2)y 2+8mny +4n 2-12=0,y 1+y 2=-8mn 3+4m 2,y 1y 2=4n 2-123+4m 2,因为CQ 与DQ 关于BQ 对称,BQ ⎳x 轴,所以k CQ +k DQ =0,Q 32,1 ,x 1≠32,x 2≠32,y 1-1x1-32+y 2-1x 2-32=0,即(y 1-1)x 2-32 +(y 2-1)x 1-32 =0,∵x 1=my 1+n ,x 2=my 2+n ,∴整理:2my 1y 2+n -m -32(y 1+y 2)-2n +3=0,2m 4n 2-123+4m 2+n -m -32 -8mn 3+4m 2 -2n +3=0,即4m 2+(4n -8)m -2n +3=0,即(2m -1)(2m +2n -3)=0,若2m +2n -3=0,点Q 32,1满足l :x =my +n ,即C ,D ,Q 三点共线,不合题意,∴2m -1=0,即m =12,∴直线l 中m 为定值12.15.(2022届云南省红河州高三检测)在平面直角坐标系Oxy 中,点M 是以原点O 为圆心,半径为a 的圆上的一个动点.以原点O 为圆心,半径为b a >b >0 的圆与线段OM 交于点N ,作MD ⊥x 轴于点D ,作NQ ⊥MD 于点Q .(1)令∠MOD =α,若a =4,b =1,α=π3,求点Q 的坐标;(2)若点Q 的轨迹为曲线C ,求曲线C 的方程;(3)设(2)中的曲线C 与x 轴的正半轴交于点A ,与y 轴的正负半轴分别交于点B 1,B 2,若点E 、F 分别满足AE =-3OE ,4AF =3OB 2 ,设直线B 1E 和B 2F 的交点为K ,设直线l :x =a 2c 及点H c ,0 ,(其中c =a 2-b 2),证明:点K 到点H 的距离与点K 到直线l 的距离之比为定值ca.【解析】(1)设Q x ,y ,则由题知x =4cos π3=2y =sin π3=32,因此Q 2,32 (2)(2)设∠MOD =α及Q x ,y ,则由题知x=acos αy =b sin α ,则点Q 的轨迹C 为椭圆,方程为:x 2a 2+y 2b 2=1a >b >0 .(3)设K x ,y ,由题知,B 10,b ,E a 4,0 ,B 20,-b ,F a ,-34b ,l B 1E :xa 4+y b =1,即4bx +ay =ab ,l B 2F :y +b -34b +b=xa ,即bx -4ay =4ab ,联列上述直线方程,解得x =817ay =-1517b.KH =817a -c 2+-1517b 2=817a -c 2+-1517 2a 2-c 2=a 2+817c 2-2×817ac =a -817c令点K 到直线l 的距离为PM ,则c a ⋅PM =c a ⋅a 2c -817a =a -817c .因此有KH PM=ca .。

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值、围和最值问题会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建“几法”求某些量的最值.一、主要知识及主要法:1.式出现,特殊法往往比较奏效。

2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。

3.解析几的最值和围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.二、精选例题分析【举例1】 (05改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动点A 、B 满足AO BO ⊥.(Ⅰ)求AOB △得重心G 的轨迹程;(Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【举例2】已知椭圆22142x y +=上的两个动点,P Q 及定点M ⎛ ⎝⎭,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ;()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.【举例3】(06全国Ⅱ改编)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF FB λ=(0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为M 。

(Ⅰ)证明FM AB ⋅为定值;(Ⅱ)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.问题4.直线m :1y kx =+和双曲线221x y -=的左支交于A 、B 两点,直线l 过点()2,0P -和线段AB 的中点M ,求l 在y 轴上的截距b 的取值围.(四)课后作业:1.已知椭圆22221x y a b+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B 两点,若有2BF AF =,求椭圆离心率的取值围.2.过抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB求证:AB 交抛物线的对称轴上一定点.3.如图,在双曲线2211213y x -=的上支上有三点()11,A x y ()2,6B x ,()33,C x y ,它们与点()0,5F F AB C()1求13y y +的值;()2证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.(六)走向高考:1.(05)已知椭圆1C 的程为1422=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(Ⅰ)求双曲线2C 的程;(Ⅱ)若直线l :y kx =+1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点A 和B满足6<⋅OB OA (其中O 为原点),求k 的取值围.2.(06)P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++= 和()2251x y -+=上的点,则PM PN -的最大值为.A 6 .B 7 .C 8 .D 93.(07)如图,中心在原点O 的椭圆的右焦点为()3,0F ,右准线l 的程为:12x =.()1求椭圆的程;()2在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠证明:123111FP FP FP ++为定值,并求此定值.4.(05全国Ⅰ)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB +与(3,1)a =-共线。

圆锥曲线解答题中的定点和定值问题的解题策略(解析版)

圆锥曲线解答题中的定点和定值问题的解题策略(解析版)

圆锥曲线解答题中的定点和定值问题的解题策略在圆锥曲线中有一类曲线,当参数取不同值时,曲线本身性质不变或形态发生变化时,其某些共同的性质始终保持不变,我们把这类问题成为圆锥曲线的定值问题.圆锥曲线中的定值问题是近几年高考的热点题型,解题过程中应注重解题策略,善于在动点的“变”中寻求定值的“不变”性.题型一:定值问题解答圆锥曲线定值问题的策略:1、把相关几何量用曲线系的参变量表示,再证明结论与参数无关.求解这类问题的基本方法是“方程铺路、参数搭桥”,解题的关键是对问题进行综合分析,挖掘题目中的隐含条件,恰当引参,巧妙化归.2、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关,即特殊到一般的思想.1、两点间的距离为定值例1:(2021·广东中山市高三期末)已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x y a b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点2A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.【答案】(1)2212x y +=;(2.【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫- ⎪--⎝⎭,所以PQ =====为定值. 解题思路:设动点()00,P x y ,由题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可.2、求某一代数式为定值例2:(2021·全国高三模拟)已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,右焦点为F ,离心率2e =,焦距为4. (1)求双曲线C 的方程;(2)设M 是双曲线C 上任意一点,且M 在第一象限,直线MA 与MF 的倾斜角分别为1α,2α,求122αα+的值.【答案】(1)2213y x -=;(2)π. 【详解】(1)由242c c a=⎧⎪⎨=⎪⎩,得12a c =⎧⎨=⎩,所以2223b c a =-=,所以双曲线C 的方程为2213y x -=.(2)由(1)知双曲线C 的方程为2213y x -=,所以左顶点()1,0A -,右焦点()2,0F .设()()0000,0,0M x y x y >>,则22013y x -=.当02x =时,03y =,此时1MA k =,1π4α=,2π2α=, 所以122παα+=;当02x ≠,010tan 1MA y k x α==+,020tan 2MF yk x α==-.因为()220031y x =-,所以()()()()()00000001222220000000221211tan 22113111y x y x y x y x x y x x y x α+++-====-+-+--⎛⎫- ⎪+⎝⎭,又由点M 在第一象限,易知1π0,3α⎛⎫∈ ⎪⎝⎭,()20,πα∈,所以122παα+=. 综上,122αα+的值为π.解题思路:利用点在双曲线上,满足22013y x -=,利用整体代换思想求出1tan 2α和2tan α相反.例3:(2021·安徽安庆市高三一模(理))已知椭圆2222:1(0)x y C a b a b+=>>,过椭圆左焦点F 的直线0x -+=与椭圆C 在第一象限交于点M ,三角形MFO(1)求椭圆C 的标准方程;(2)过点M 作直线l 垂直于x 轴,直线MA 、MB 交椭圆分别于A 、B 两点,且两直线关于直线l 对称,求证∶直线AB 的斜率为定值.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)直线0x -+=过左焦点F ,所以()F ,c =又由124OMF M S y ∆==可知1=2M y从而椭圆经过点12M ⎫⎪⎭由椭圆定义知1242a =+=,即2a = 故椭圆的方程为22:14x C y +=.(2)由条件知,直线MA MB 、斜率存在,且两直线斜率互为相反数,设直线(12MA y k x -=:交椭圆于点()11,A x y ,直线(12MB y k x -=--:交椭圆于点()22,B x y ,由(221244y k x x y ⎧-=⎪⎨⎪+=⎩得()()22224141230k x k x k +-++--=1=1x =,112y =+故1)2A +,同理可得221)2B +,k ===即证直线AB. 解题思路:将直线(12MA y k x -=:与椭圆方程联立求出交点221)2A +的坐标,再将A 中的k 用k -替换,即可求出B 点坐标,,再利用斜率公式,化简,即可.例4.(2021·河南高三月考(理))已知点()2,0A -,()2,0B ,动点(),S x y 满足直线AS 与BS 的斜率之积为34-,记动点S 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么样的曲线;(2)设M ,N 是曲线C 上的两个动点,直线AM 与NB 交于点P ,90MAN ∠=︒. ①求证:点P 在定直线上;②求证:直线NB 与直线MB 的斜率之积为定值.【答案】(1)()221243x y x +=≠±,曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点;(2)①证明见解析;②证明见解析. 【详解】(1)解:由题意,得()32224y y x x x ⋅=-≠±+-, 化简,得()221243x y x +=≠±,所以曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点. (2)证明:①由题设知,直线MA ,NB 的斜率存在且均不为0. 设直线AM 的方程为()20x ty t =-≠,由AM AN ⊥,可知直线NA 的斜率为NA k t =-,方程为12x y t=--.由2212,{3412,x y t x y =--+=得()2243120t y ty ++=, 解得21243N ty t =-+,则2221126824343N t t x t t t -⎛⎫=-⋅--= ⎪++⎝⎭,即2226812,4343t t N t t ⎛⎫-- ⎪++⎝⎭. 直线NB 的斜率为222120343684243NBtt k t tt --+==--+, 则直线BN 的方程为()324y x t =-,将()324y x t=-代入2x ty =-,解得14x =-, 故点P 在直线14x =-上.②由(1),得34NA NB k k ⋅=-,34MA MB k k ⋅=-,所以3394416NA NB MA MB k k k k ⎛⎫⎛⎫⋅⋅⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭.结合1NA MA k k ⋅=-,得916MB NB k k ⋅=-为定值.即直线NB 与直线MB 的斜率之积为定值.解题思路:①设直线AM 的方程,由AM AN ⊥,可得直线AN 方程,与椭圆联立可求点N 坐标,进而可求得直线BN 方程,与AM 联立即可得证点P 在定直线上;②由(1)得34NA NB k k ⋅=-,34MA MB k k ⋅=-,又AM AN ⊥,进而可得直线NB与直线MB 的斜率之积.例5、(2021·江苏南通市高三期末)已知椭圆C :()222210x y a b a b+=>>的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)已知A ,B 是椭圆C 上的两点,且直线OA ,OB 的斜率之积为34-,点M为线段OA 的中点,连接BM 并延长交椭圆C 于点N ,求证:OMBAMNS S △△为定值.【答案】(1)22143x y +=;(2)53. 【详解】(1)因为椭圆的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭, 所以22911,214c a a b +==,又222a b c =+,解得224,3a b ==,所以椭圆C 的方程为22143x y +=; (2)设()()()112233,,,,,A x y B x y N x y ,因为点M 为线段OA 的中点,所以11,22x y M ⎛⎫⎪⎝⎭,因为B ,M ,N 三点共线,所以BN BM λ=, 所以()()3123121,122x x x y y y λλλλ=+-=+-,又因为A ,B 点在椭圆上,所以22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 又因为直线OA ,OB 的斜率之积为34-,所以1212340x x y y +=, 因为点N 在椭圆上,所以2233143x y +=,即()()()()()12122222221122341341482261x y x y x x y y λλλλ++-+-+=+,所以()22114λλ+-=,解得85λ=,所以85BN BM =,则53BM MN =,所以152132BOMB B AMNN N OM d BM Sd Sd MN AM d ⋅⋅====⋅⋅为定值.解题思路:设()()()112233,,,,,A x y B x y N x y ,根据M 为线段OA 的中点和B ,M ,N 三点共线,由BN BM λ=,表示点N 的坐标,再根据A ,B ,N 在椭圆上,结合直线OA ,OB 的斜率之积为34-,求得λ,从而得到BM 与MN 的比值,然后由1212BOMB B AMNN N OM d BM S dSd MN AM d ⋅⋅===⋅⋅求解. 例6、(2021·山东泰安市高三期末)已知椭圆)(2222:10x y C a b a b+=>>的左顶点为)(2,0A -,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上.(1)求椭圆C 的方程;(2)过橢圆C 的右焦点F 作斜率为)(0k k ≠的直线l ,交椭圆C 于M ,N 两点,直线AM ,AN 分别与直线2b x c=交于点P ,Q ,则FP FQ ⋅是否为定值?请说明理由.【答案】(1)22143x y +=;(2)是定值,94-. 【详解】(1)∵2a =,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上,∵219144b +=,∵23b =,∵椭圆C 的方程为:22143x y +=.(2)是定值94-,理由如下:设)(11,M x y ,)(22,N x y ,直线l 的方程为)()(10y k x k =-≠,由)(221143y k x x y ⎧=-⎪⎨+=⎪⎩,整理得)(22224384120k x k x k +-+-=,∵2122843k x x k +=+,212241243k x x k -=+,设)(3,P P y ,)(3,Q Q y ,则11322P y y x =++,∵)(111151522P k x y y x x -==++, 同理可得)(22512Q k x y x -=+,∵)(11512,2k x FP x ⎛⎫- =⎪⎪ +⎭⎝,)(22512,2k x FQ x ⎛⎫- =⎪⎪ +⎭⎝, ∵)()()()()()(212121221212122511144252224k x x x x x x FP FQ kx x x x x x ---++⋅=+=++++++222222222412819434342541216444343k k k k k k k k k --+++=+=--++++,∵FP FQ ⋅为定值94-.解题思路:设直线l 的方程,与椭圆方程联立,设)(3,P P y ,)(3,Q Q y ,由三点共线可得P y ,Q y ,结合韦达定理坐标表示FP FQ ⋅可得.3、求某一个量为定值例7、(2021·江苏盐城市伍佑中学高三期末)已知椭圆2222:1(0)x y C a b a b +=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为(1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ的交点为T ,求证:点T 横坐标为定值.【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【详解】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩ 故C 的标准方程为22195x y +=. (2)由(1)知()30A -,,()3,0B ,()2,0F , 设00,,()T x y ,11(,)P x y ,()22,Q x y ,由010133TA PA y yk k x x =⇒=++'①, 020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++, 又2211195x y +=,故2211195x y -=-,所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+.所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③ 由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点, 所以设直线PQ 的方程为2x my =+,(直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率)代入22195x y +=整理,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=解得092x =. 所以点T 横坐标为定值92. 解题思路:设00,,()T x y ,11(,)P x y ,()22,Q x y ,根据TA PA k k =,TB QB k k =可得0126123333x y x x x y --=⋅++,根据11(,)P x y 在椭圆C 上,代入方程化简整理可得0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---,设直线PQ 的方程为2x my =+,与椭圆C 联立,得到关于y 的一元二次方程,根据韦达定理,可得1212,y y y y +⋅的表达式,代入上式即可.例8、(2021·湖北武汉市高三月考)已知椭圆C :()222210x y a b a b +=>>的左右顶点分别为A ,B ,过椭圆内点2,03D ⎛⎫⎪⎝⎭且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,43PD BD ==. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线AP ,AQ 和直线l :x t =分别交于点M ,N ,若MD ND ⊥恒成立,求t 的值.【答案】(Ⅰ)22142x y +=;(Ⅱ)29t =-或103t =.【详解】(Ⅰ)由43BD =,得24233a =+=,故C 的方程为22214x y b+=,此时24,33P ⎛⎫ ⎪⎝⎭.代入方程2116199b +=,解得22b =,故C 的标准方程为22142x y +=. (Ⅱ)设直线PQ 方程为:23x my =+,与椭圆方程联立.得()224322039m m y y ++-=.设()11,P x y 、()22,Q x y ,则()()1221224323292m y y m y y m -⎧+=⎪+⎪⎨-⎪=⎪+⎩.①此时直线AP 方程为11(2)2y yxx ,与x t =联立.得点11(2),2t y M t x ⎛⎫+ ⎪+⎝⎭,同理,点22(2),2t y N t x ⎛⎫+ ⎪+⎝⎭.由MD ND ⊥,1MD ND k k ⋅=-.即()()1212(2)(2)1222233t y t y t x t x ++⋅=-⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭. 所以221212288(2)0333t y y t my my ⎛⎫⎛⎫⎛⎫++-++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.即()2221212122864(2)0339m t y y t m y y y y ⎛⎫⎡⎤++-+++= ⎪⎢⎥⎝⎭⎣⎦. 将①代入得:()()()222222232(2)2323264039929292t m m t m m m ⎡⎤-+-⎛⎫⎢⎥+--+= ⎪+++⎝⎭⎢⎥⎣⎦. 化简得:()22222232(2)323264203t t m m m ⎛⎫⎡⎤-++---++= ⎪⎣⎦⎝⎭. 即222(2)403t t ⎛⎫+--= ⎪⎝⎭.2223t t ⎛⎫+=±- ⎪⎝⎭.解得29t =-或103t =.解题思路:设直线PQ 方程为:23x my =+,与椭圆方程联立,结合韦达定理得1212,y y y y +,再联立AP 方程得M 同理得N 坐标,结合MD ND ⊥恒成立得1MD ND k k ⋅=-,化简计算可得参数t 值.例9、(2021·陕西榆林市高三一模(理))已知椭圆222:1(1)Γ+=>y x a a与抛物线2:2(0)C x py p =>有相同的焦点F ,抛物线C 的准线交椭圆Γ于A ,B 两点,且1AB =.(1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,若P 为椭圆Γ上任意一点,以P 为圆心,OP 为半径的圆P 与椭圆Γ的焦点F 为圆心,F 交于M ,N 两点,求证:MN 为定值.【答案】(1)椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)证明见解析. 【详解】(1)椭圆222:1(1)Γ+=>y x a a可得焦点(,抛物线2:2(0)C x py p =>的焦点为0,2p ⎛⎫ ⎪⎝⎭2p =①,由22221p y y x a ⎧=-⎪⎪⎨⎪+=⎪⎩可得22214p x a +=,解得x =,所以1AB ==②,由①②可得:24a =,p =所以椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)设(,)P m n ,则2214+=n m ,圆P 的方程为:2222()()-+-=+x m y n m n ,圆F的方程为:22(5+-=x y ,所以直线MN的方程为:(10+--=mx n y , 设点F 到直线MN 的距离为d ,则2d ====.||2MN ==. 所以MN 为定值.解题思路:设(,)P m n ,则2214+=n m ,写出圆P 和圆F 的方程,两个圆的方程相减可得直线MN 的方程,计算点F 到直线MN 的距离为d ,再利用||MN =.题型二、证明动直线过定点或动点在定直线上的问题解答圆锥曲线的定点问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.1、直线过定点问题例10、(2020·江西吉安市高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>经过点12P ⎫⎪⎭,且离心率e =(1)求椭圆C 的方程;(2)已知斜率存在的直线l 与椭圆相交于A ,B 两点,点Q ⎫⎪⎪⎝⎭总满足AQO BQO ∠=∠,证明:直线l 过定点.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)因为椭圆()2222:10x y C a b a b +=>>的离心率e =所以22221b e a =-=⎝⎭,即224a b =, 又椭圆()2222:10x y C a b a b+=>>经过点12P ⎫⎪⎭,代入椭圆方程可得223114a b +=, 联立方程组可得222231144a b a b⎧+=⎪⎨⎪=⎩,解得24a =,21b =. 所以椭圆C 的方程为2214x y +=.(2)设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222148440k x kmx m +++-=,()2216410k m ∆=-+>,即2241m k <+, 122814km x x k -+=+,21224414m x x k -=+,因为AQO BQO ∠=∠,所以0AQ BQ k k +=,AQ BQ k k +===,即()()1221kx m x kx m x ⎛⎛+++ ⎝⎭⎝⎭()121220kx x m x x ⎛⎫=+-+= ⎪ ⎪⎝⎭得()()22244814033k m km m m k ⎛⎫----+= ⎪ ⎪⎝⎭,化简得m =,直线l 的方程为(y k x =-,所以,直线l 恒过定点).解题思路: 设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,将直线方程与椭圆方程联立,写出韦达定理,又因为AQO BQO ∠=∠,所以0AQ BQ k k +=,将韦达定理代入得出答案.例11、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.【答案】(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a =所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫⎪⎝⎭.解题思路:设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点.例12、(2021·山东德州市高三期末)已知点1F 、2F 分别是椭圆C 的左、右焦点,离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=. (1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.【答案】(1)22121x y +=;(2)证明见解析,(-2,0). 【详解】(1)设椭圆的标准方程为()22221,,x y P x y a b+=由题意可得2222221(,)(,)0c a x y x c y x c y b c a ⎧=⎪⎪⎪+=⎨⎪-⋅+=⎪+=⎪⎩解得:222211a b c ⎧=⎪=⎨⎪=⎩即椭圆C 的标准方程:22121x y +=.(2)设直线l :1122,(,),(,)y kx m M x y N x y =+则1111221122,1111MF NF y kx m y kx mk k x x x x ++====++++ 有22121x y y kx m ⎧+=⎪⎨⎪=+⎩,消去 y 得:222(12)4220k x mkx m +++-=,所以2221222122168(1)(12)04122212k m m k mk x x k m x x k ⎧⎪∆=--+>⎪-⎪+=⎨+⎪⎪-=⎪+⎩因为x 轴上任意一点到直线1MF 与1NF 的距离均相等, 所以x 轴为直线1MF 与1NF 的角平分线,所以111212011MF NF kx m kx mk k x x +++=+=++,即 12122()()20kx x m k x x m ++++= 所以2222242()201212m mk km k m k k --+++=++ 整理化简得:2m k =即直线l :2(2)y kx m kx k k x =+=+=+ 故直线恒过定点(-2,0).解题思路:先用设而不求法表示出1212,x x x x +,然后分析得到110MF NF k k +=,代入,求出2m k =,即可证明直线过定点(-2,0)."设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.2、动点在定直线上的问题例13、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.【答案】(1)22143x y +=;(2)证明见解析. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅= 解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=. 显然0∆>恒成立. 设1122(,),(,)P x y Q x y ,所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x =故点M 在定直线4x =上.解题思路:设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线BO 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果.例14、(2021·福建高三模拟)椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,12P ⎛ ⎝⎭在C 上.(1)求椭圆C 的标准方程;(2),E F 设为短轴端点,过()0M ,1作直线l 交椭圆C 于AB 、两点(异于,E F ),直线AE BF 、交于点T .求证:点T 恒在一定直线上.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)因为点1,24P ⎛⎫ ⎪ ⎪⎝⎭在C 上,所以222141a b ⎝⎭+=, 又12c e a ==,222a b c =+,所以24a =,23b =, 故所求椭圆C 的方程为22143x y +=. (2)由题意知直线l 的斜率存在,设其方程为1y kx =+. 设()11,A x y ,()22,B x y ,(10x ≠,20x ≠).()222214388034120y kx k x kx x y =+⎧⇒++-=⎨+-=⎩, 122843kx x k -+=+,122843x x k -=+,且有1212x x kx x +=. 1122::AEBFy l y x x y l y x x ⎧=⎪⎪⎨+⎪+=⎪⎩(10x ≠,20x ≠) 11111y kx x x +====,故1y ⎤=⎥⎦2kx x xx x x +++-=3x x x x +-=3=故点T 恒在一定直线3y =上.解题思路:设出直线1y kx =+,联立直线与椭圆的方程结合韦达定理求出,AE BF 的直线方程,联立求出交点纵坐标为3,进而可得结果.3、圆过定点问题例14、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.【答案】(1)22143x y +=;(2)过定点,证明见解析,定点为(1,0),(1,0)-. 【详解】解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=,解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--. 在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.解题思路: 设00(,)P x y ,设过P 的椭圆的切线为y kx b =+,与椭圆方程联立由0∆=,求出切线的斜率0034x k y =-,得出切线方程000334x x y y y =-+,由条件求出12,B B 坐标,在x 轴上取点(),0M t ,由120MB MB ⋅=得出答案.【巩固训练】1、(2020·广东高三一模)已知点()2,1P --为椭圆2222:1x y C a b+=(0)a b >>上一点,且椭圆C的一个焦点与抛物线2y =的焦点重合,过点P 作直线PA ,PB ,与椭圆C 分别交于点A ,B .(1)求椭圆C 的标准方程与离心率;(2)若直线PA ,PB 的斜率之和为0,证明:直线AB 的斜率为定值.【答案】(1)22163x y +=,离心率为2;(2)证明见解析. 【详解】(1)由题设,得22411a b+== 由①②解得26a =,23b =,所以椭圆C 的标准方程为22163x y +=,椭圆C 的离心率为2c e a ===. (2)直线AB 的斜率为定值1.证明:设直线PA 的斜率为k ,则直线PB 的斜率为k -, 记11(,)A x y ,22(,)B x y .设直线PA 的方程为1(2)y k x +=+,与椭圆C 的方程联立,并消去y 得()()222212848840k x k k x k k ++-+--=,则2-,1x 是该方程的两根,则212884212k k x k ---=+,即21244212k k x k-++=+. 设直线PB 的方程为1(2)y k x +=-+,同理得22244212k k x k --+=+.因为()1112y k x +=+,()2212y k x +=-+,所以()()()212121212121228224121812ABkk x k x k x x y y k k k x x x x x x k +++++-+=====---+,因此直线AB 的斜率为定值.2、(2021·山西阳泉市高三期末(理))已知圆22:4C x y +=,点P 为圆C 上的动点,过点P 作x 轴的垂线,垂足为Q ,设D 为PQ 的中点,且D 的轨迹为曲线E (PQD 三点可重合). (1)求曲线E 的方程;(2)不过原点的直线l 与曲线E 交于M 、N 两点,已知OM ,直线l ,ON 的斜率1k 、k 、2k 成等比数列,记以OM ,ON 为直径的圆的面积分别为S 1,S 2,试探究12S S +是否为定值,若是,求出此值;若不是,说明理由.【答案】(1)2214x y +=;(2)12S S +是否为定值,为54π.证明过程见解析.【详解】(1)设(,)D x y ,则有(,2)P x y ,又P 在已知不上,∴2244x y +=,所以曲线E 的方程为2214x y +=;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,由2214y kx t x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x ktx t +++-=,2222644(14)(44)0k t k t ∆=-+->, ∴122814kt x x k +=-+,21224414t x x k-=+, 111y k x =,222y k x =,∵1k 、k 、2k 成等比数列,∴2121212y y k k k x x ==,∴2221212121212()()()kx t kx t k x x kt x x t k x x x x +++++==,212()0kt x x t ++=,又0t ≠,∴12()0k x x t ++=,228014k tt k -+=+,解得12k =±.1228414kt x x kt k +=-=-+,22122442214t x x t k-==-+, 22222222121212()2162(22)4444x x x x x x k t t t t +=+-=--=-+=,22222222121122()()2244OM ON S S OM ON x y x y ππππ⎛⎫⎛⎫+=⨯+⨯=+=+++ ⎪ ⎪⎝⎭⎝⎭, 222222222211221212124()()4()2()2x y x y kx t kx t k x x kt x x t +++=++++=+++++222244825k k t t =+-+=,∴1254S S π+=为定值. 3、(2021·湖北宜昌市高三期末)已知点A 、B坐标分别是(-,0),直线AP 、BP 相交于点P ,且它们斜率之积是12-.(1)试求点P 的轨迹Γ的方程;(2)已知直线:4l x =-,过点()2,0F -的直线(不与x 轴重合)与轨迹Γ相交于M .N 两点,过点M 作MD l ⊥于点D .求证:直线ND 过定点,并求出定点的坐标.【答案】(1)221(84x y x +=≠±;(2)证明见解析,()3,0-. 【详解】(1)设(),P x y ,由题意得:12PA PB k k ⋅=-12=-,化简得22184x y +=.又x ≠±,∴点P 的轨迹方程为221(84x y x +=≠±.(2)方法一:由椭圆的对称性知,直线ND 过的定点必在x 轴上, 由题意得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,∴()1212my y y y =-+,2112:(4)4y y ND y x y x -=+++,令0y =, ∴()()12122121424y x y my x y y y y +++=-=---()1211212121221y y y my y y y y y y -+++=-=-=--,3x =-,∴直线ND 过定点()3,0-.方法二:由题意可得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,()12422m y m -=+,()22422m y m +=+, ()2112121122(4)2:(4)42y y x my y y y y ND y x y x my -+++-=++=++2244)2222m x m m m my -+++++=+2222(4)3)2222x x m m my my +-+++==++ ∴3x =-时0y =, ∴直线ND 过定点()3,0-.4、(2021·安徽池州市高三期末(理))已知椭圆C :()222210x y a b a b+=>>的左顶点、右焦点分别为A ,F ,点31,2M ⎛⎫⎪⎝⎭在椭圆C 上,且椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过点F 且斜率为()0k k ≠的直线l 与椭圆C 交于D ,E 两点,直线AD ,AE 斜率分别为1k ,2k ,证明:12kk kk +为定值.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)由题意可得2222222312112a b c a a b c ⎧⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎪⎪=⎨⎪-=⎪⎪⎪⎪⎩,解得2a =,b =所以椭圆C 的方程为22143x y +=. (2)证明:由(1)可知()1,0F ,则直线l 的方程为()1y k x =-.联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+,所以()()1212121212112222k x k x y yk k x x x x --+=+=+++++12331122k x x ⎛⎫=-+- ⎪++⎝⎭()()()()()12121212123434222224x x x x k k x x x x x x ⎡⎤⎡⎤++++=-=-⎢⎥⎢⎥+++++⎣⎦⎣⎦2222228344324128244343k k k k k k k ⎡⎤⎛⎫+⎢⎥ ⎪+⎝⎭⎢⎥=-⎢⎥-+⨯+⎢⎥++⎣⎦()222223816122412161612k k k k k k ⎡⎤++⎢⎥=--+++⎢⎥⎣⎦ 222112k k k k ⎛⎫+=-=- ⎪⎝⎭, 所以1211kk kk k k ⎛⎫+=-=- ⎪⎝⎭(定值).5、(2021·安徽蚌埠市高三二模(理))已知圆()22:224E x y ++=,动圆N 过点()2,0F 且与圆E 相切,记动圆圆心N 的轨迹为曲线C . (1)求曲线C 的方程;(2)P ,Q 是曲线C 上的两个动点,且OP OQ ⊥,记PQ 中点为M ,OP OQ t OM ⋅=,证明:t 为定值.【答案】(1)22162x y +=;(2)证明见解析.【详解】解:(1)点()2,0F 在圆()22:224E x y ++=内,∴圆N 内切于圆E,∴NE NF EF +=>,所以N 点轨迹是以E ,F为焦点的椭圆,且a =2c =,从而b =故点N 的轨迹C 的方程为:22162x y +=.(2)设()11,P x y ,()22,Q x y ,若直线PQ 斜率存在,设直线PQ 方程为y kx m =+,联立22162y kx mx y =+⎧⎪⎨+=⎪⎩,整理得:()222136360k x kmx m +++-=,122613km x x k -+=+,21223613m x x k-=+ 因为OP OQ ⊥,所以0OP OQ ⋅=,即12220x x y y +=.化简得:()()22121210k x x km x x m ++++=,即()22222366101313m km k km m k k--+⋅+⋅+=++, 从而,222330m k --=,①因为OP OQ ⊥,且M 为PQ 中点,所以2PQ OM =, 在直角ABC 中,记原点O 到直线PQ 的距离为d ,则2OP OQ d PQ d OM ⋅==,由①知,原点O 到直线l的距离为d ===所以t.若直线PQ 斜率不存在,设直线PQ 方程为x n =,联立22162x n x y =⎧⎪⎨+=⎪⎩,解得p n ⎛ ⎝,,n ⎛ ⎝ 由OP OQ ⊥得n =t = 综上,t.6、(2021·江苏无锡市高三月考)已知椭圆()2222:10,0x y C a b a b+=>>过点(2,1)-,216y x =-的准线l 交x 轴于点A ,过点A 作直线交椭圆C 于M ,N .(1)求椭圆C 的标准方程和点A 的坐标; (2)若M 是线段AN 的中点,求直线MN 的方程;(3)设P ,Q 是直线l 上关于x 轴对称的两点,问:直线PM 于QN 的交点是否在一条定直线上?请说明你的理由.【答案】(1)22182x y +=,()4,0A ;(2)(4)6y x =±-;(3)PM 与QN 的交点恒在直线2x =上,理由见解析.【详解】(1)由题意,椭圆()2222:10,0x y C a b a b +=>>过点(2,1)-可得22411a b +=且2c e a ==,又由222c a b =-, 解得228,2a b ==,即椭圆C 的方程为22182x y +=,又由抛物线216y x =-,可得准线方程为:4l x =,所以()4,0A .(2)设()00,N x y ,则004,22x y M +⎛⎫⎪⎝⎭, 联立方程组()2200220018241328x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩,解得001,x y ==当5,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-;当5,,(1,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-; 所以直线MN的方程为4)y x =-. (3)设()()4,,4,P t Q t -,可得:4MN x ky =+, 设()()1122,,,M x y N x y联立方程组224480x ky x y =+⎧⎨+-=⎩,整理得()224880k y ky +++=,所以12122288,44k y y y y k k +=-=++,则1212y y ky y +=-, 又由直线111114:44y t tx y PM y x x x --=+--,222224:44y t y tx QN y x x x ++=---, 交点横坐标为()121212242ky y y y x y y ++==+,所以PM 与QN 的交点恒在直线2x =上.7、(2021·全国高三专题练习)已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程;(2)若直线l 的方程为1y x =-+,求1211λλ+的值; (3)若123,试证明直线l 恒过定点,并求此定点的坐标.【答案】(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,, 设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,, 可得(0,)(,0)P km Q m -,, 由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111xm x λ=-,同理222xm x λ=-,又123,∴212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=,则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③③代入①得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∴2m =,(满足②) 故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 8、(2020·湖北高三月考)已知抛物线2:2(0)C y px p =>的焦点F ,若平面上一点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7. (1)求抛物线C 的方程;(2)又已知点P 为抛物线C 上任一点,直线PA 交抛物线C 于另一点M ,过M 作斜率为43k =的直线MN 交抛物线C 于另一点N ,连接.PN 问直线PN 是否过定点,如果经过定点,则求出该定点,否则说明理由.【答案】(1)28y x =;(2)过定点,1,34⎛⎫⎪⎝⎭.【详解】(1)由已知,定点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7.272p ⎛⎫+= ⎪⎝⎭,则4p =,即抛物线的方程28y x =(2)设11(,)P x y ,22(,)M x y ,33(,)N x y ,则121211212222888PM y y y y k y y x x y y ++=-=+=-,同理:238MNk y y =+,138PN k y y =+, 由23843MN k y y ==+知:236y y +=,即236y y =- ① 直线11128:()PM y y x x y y -=-+,即1212()8y y y y y x +-=过(2,3)A 求得1211633y y y -=- ② 同理求直线PN 方程1313()8y y y y y x +-= ③ 由①②得13133()2y y y y =+- 代入③得1313()3()28y y y y y x +-++=13()(3)280y y y x +-+-=故3y =且280x -=时,直线PN 恒过点1,34⎛⎫⎪⎝⎭. 9、(2021·北京高三期末)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上. 【答案】(1)22143x y +=;(2)证明见解析.【详解】解:(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+, 直线BN 的方程是()322y x =-. 所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上. ②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120kx k x k+-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834kx x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是()1122y y x x =++. 令4x =,得1162=+y y x . 直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-. 所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦. ()12122258k x x x x =-++⎡⎤⎣⎦ ()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.10、(2021·安徽高三月考(理))已知圆22:5O x y +=,椭圆2222:1(0)x y a b a bΓ+=>>的左右焦点为12,F F ,过1F 且垂直于x 轴的直线被椭圆和圆所截得弦长分别为1和.(1)求椭圆的标准方程;(2)如图P 为圆上任意一点,过P 分别作椭圆两条切线切椭圆于A ,B 两点. (ⅰ)若直线PA 的斜率为2,求直线PB 的斜率; (ⅱ)作PQ AB ⊥于点Q ,求证:12QF QF +是定值.【答案】(1)2214x y +=;(2)(i )12-;(ii )证明见解析.【详解】解:(1)由题意得:222221a b c ba ⎧=+⎪⎪=⎨⎪=⎪⎩2,1,a b c ===得椭圆的标准方程为:2214x y +=(2)(ⅰ)设()00,P x y ,切线()00y y k x x -=-,则22005x y +=。

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。

2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。

二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。

三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。

四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。

圆锥曲线中最值、范围、定值及存在性问题

圆锥曲线中最值、范围、定值及存在性问题

法 、函数 法 、不 等式 法.几 何 法是根 据 图形几 何性 质
求解 的方法 ;函数 法是指 将所 求 变量 表示成 某个 相
关 变量 的 函数 ,再 求 函数 的最 值 ;不 等式 法 是 根 据
曲线 性 质及条 件建 立一个 关 于所 求 变量 的不 等式 ,
再解 不 等式求 其最 值 的方法 .
参 考 文 献
刘 清源.构建 高效教 学 探 求数 学本 质— — 如何 解好 三 角形 [J].数 学教 学与研 究 ,2011 (36):78—79. [2] 覃埋 基 .一 类解三 角形 问题 的 另一 解 法 [J]. 数 学通 讯 ,2003(12):9.
圆 锥 曲 线 中 最 值 、范 围 、定 值 及 存 在 性 问 题
·35 ·
显然 △=(3m) 一4×3(m 一3)=3(12一m )>0,

一 12<m< ̄//l2且 m≠O.
由韦 达定 理 ,得
m 一3
Xa+xB m,YA+YB 丁 ’
因此 lAB l=v/1+kAB I A一 B I=


பைடு நூலகம்
·
又 因为点 P(2,1)到直 线 Z的距离 为
●J寞金 龙 (绍兴市第一中学 浙江绍兴 312000)
1 考点 回顾
圆锥 曲线中最值 、范 围、定值及存在性 问题是 历年 高考 命题 的热 点之 一.此 类 问题 涉及 的知识 面
广、综合性大、隐蔽性强 、计算量大 ,常常令考生头
疼.解决 此类 问题 常 常 要 用 到 数学 思 想 方 法 ,有 时
【△=(一4m) 一4(m +3)>0,
解得

高考数学 圆锥曲线中的最值与定值问题例题分析

高考数学 圆锥曲线中的最值与定值问题例题分析

圆锥曲线中的最值与定值问题圆锥曲线中的最值问题【考点透视】圆锥曲线的最值问题,常用以下方法解决:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;函数值域求解法:当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值. 利用代数基本不等式,结合参数方程,利用三角函数的有界性。

【题型分析】1.已知P 是椭圆2214x y +=在第一象限内的点,A (2,0),B (0,1),O 为原点,求四边形OAPB 的面积的最大值分析:设P (2cos θ,sin θ),(0)2πθ <<,点P 到直线AB :x+2y=2的距离|)2|d πθ+-==≤(椭圆参数方程,三角函数,最值问题的结合)2.已知点M (-2,0),N (2,0),动点P满足条件||||PM PN -=记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 0,B (x 0),OAO B ⋅=2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0 依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--∙--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅的最小值为23.给定点A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是右焦点,当53AB BF +取得最小值时,试求B 点的坐标。

圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学

圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学
得: AB的方程为化为: 即 由得 即当时,即直线AB恒过定点( ).
七、圆锥曲线中的平行弦的问题
在前面一、推论:“若圆锥曲线为圆,直线AB交C于A、B两点,的斜率分别为,当时,为定值,”给出了平移图像法、一般法、参数方程法等多种证明方法。现在我们对一、推论
31.采用另一种思维方式探究如下:设点是圆上的一定点,过点P作x轴的
2. 当 时, 【1】化为: 。即 时,为定值,,
3.当)时,,得, ,,即 ,
,即 。 得:
; 【2】
即: 或 (因为直线AB不过点P,舍去)AB的方程为化为: 即 由得 即直线AB恒过定点( )。
3. 当时, 由 【2】化为: , , , 即:。(因为直线AB不过点P,舍去)或;,即 为定值.
1.当时,, , ,
,即: , ,
化为:, (因为直线AB不过点P,舍去)或。, ; 【6】AB的方程为化为: 即 由得 即当时,直线AB恒过定点( )。
2.当 时, 【6】化为:; 即当时,为定值,。
3.当时, 即, ,,即 ,
, ; 【7】 ,化为:, (因为直线AB不过点P,舍去)或。由,
2.当时,直线AB恒过定点(
3.当时,为定值
4.当时,即直线AB恒过定点( ). 及其证法已知点(其中 是圆锥曲线上的一个定点,过点作直线分别与圆锥曲线C相交于点A、 则必定存在以下结论:
二、椭圆、双曲线、抛物线、圆中的定点、定值问题的统一结论
1.当时,为定值,
2.当时,直线AB恒过定点( )
圆锥曲线中的定点、定值问题的
结论及多种证明方法
主讲人:某某某老师
某某学校
山东东营 徐新华 大家都知道,圆锥曲线的很多重要结论,特别是圆锥曲线的定点、定值问题并没有列入高中数学教材,但它们一直确是高考数学试题中考察的重要内容。本文件中,从多个角度、采用多种方法对圆锥曲线的定点、定值问题的结论作出了证明,并力求对证明过程给予最大化的展示。需要说明的是,个别证法有相当大的难度,其证明过程也极为复杂,因此叙述也就比较详细具体。

2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)

2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)

圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。

【智博教育原创专题】圆锥曲线中定值问题的求解策略

【智博教育原创专题】圆锥曲线中定值问题的求解策略

圆锥曲线中定值问题的求解策略在圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称该几何量具有定值特征,这类问题称为定值问题。

这类问题是中学数学的重要问题,是高考命题的一个重点,它涉及面广、综合性强,求解这类问题的基本策略是:“大处着眼,小处着手”从整体上把握问题给出的综合信息和处理问题的函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想,并且恰当的运用待定系数法、相关点法、定义法等基本方法。

本文总结了几种重要的思维策略。

【策略一】约去参数,立竿见影 约去参变数,可得常数(定值),这是证题的重要依据。

例1.过双曲线2233y x -=的上支上一点P 作双曲线的切线交两条渐近线分别于点,A B 。

求证:OA OB ⋅为定值。

【分析】设出直线AB 方程,然后与双曲线方程联立方程组,由于直线与双曲线相切利用判别式为0,求得k 与b 的关系式,再联立直线AB 与渐近线的方程表示出12x x ⋅与12y y ⋅值从而解决问题。

【解析】⑴设直线:,0AB y kx b b =+>,22222222222(3)230,30,(2)4(3)(3)0,333y kx b k x kbx b k kb k b k b y x =+⎧⇒-++-=-≠∆=---=∴+=⎨-=⎩设1211221212(,),(,),0,0,x x y kx b y kx b A x y B x y y y y y y y ⎧⎧==⎪⎪=+=+⎧⎧⎪⎪⎪⎪>>⇒⇒⎨⎨⎨⎨==⎪⎪⎩⎩⎪⎪==⎪⎪⎩⎩22222121122121212121221,3,30,0,33,23b x x y x y x y y y y x x OA OB x x y y k ⋅=-=-==>>∴⋅=⋅=∴⋅=⋅+⋅=- ,点评:利用向量数量积的坐标表示与韦达定理紧密结合起来,通过圆锥曲线与直线方程联立,表达出点的坐标,从而解决问题。

圆锥曲线中的最值和定值问题

圆锥曲线中的最值和定值问题

N
A
M
o
C
B y=m
x
二、定值 策略三:先确定再验证求解定值问题
例3、如图,已知椭圆的中心在原点,一个长轴端点为P(0,-2),
离斜率为k1
,
k2的直y线PA,
PB,交椭圆
于点A, B。
(1)求椭圆的方程; (2)若k1k2 2,探究:
直线AB是否经过定点?
B
o Ax
20
结论:1、利用平行线间的距离可以有效解决; 2、利用三角换元,视角独特
一、最值
5、如果x,y满足 4x2 9 y2 36 ,则 | 2x 3 y 12 | 的最大值为_________
结论:数形结合,灵活运用知识是关键
一、最值
6、(2011年北京卷19) 已知椭圆 x2 y2 1 ,过点(m,0)作圆 x2 y2 1的
A
(09辽宁.文22)
o
x
F
E
二、定值 策略二:分析代数式结构求解定值问题
例2、如图,在平面直角坐标系xoy中,过定点C(0,p)作直线 与抛物线x2 2 py( p 0)相交于A, B。是否存在垂直于y轴的直 线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,
求出l的方程;若不存在,请说明理由。 y
最小值为________。
2b2
| PF1 | | PF2 | 1 cos
结论:| PF1 | | PF2 |的最大值 a 2
| PF1 | | PF2 |的最小值 b2
一、最值
x2 y2
3、已知椭圆
25
9
1上一点为M,点A(2,2)是椭
圆内一点,F1 , F2 为它的左右焦点,则 | MA | | MF2 | 的

高考中圆锥曲线最值问题解题策略

高考中圆锥曲线最值问题解题策略

高考中圆锥曲线最值问题解题策略中图分类号:G623.8文献标识码:A文章编号:ISSN1001-2982 (2018)08-088-02最值问题是高考的热点,而圆锥曲线的最值问题几乎是高考的必考点,体现了高考在“知识的交汇处”命题的原则,能有效地考查学生综合运用所学知识分析与解决问题的能力。

解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用函数、方程、三角、几何、导数等多个角度思考问题,利用函数的性质或不等式等知识通过观图、设参、转化、替换等途径来解决。

圆锥曲线的最值问题频繁出现在高考试题当中,如距离、弦长、面积、截距等等,最值问题的解题方法较为灵活,同学们常感觉无从下手,为了有效突破难点,本文以近几年高考试题中的圆锥曲线最值问题为例分析其求解策略。

一、定义法数量关系更明了解决圆锥曲线最值问题中,回归圆锥曲线定义,并结合平面几何相关定理,体现数量关系明了,可以使求解过程显得自然流畅。

例 1:F1、F2分别是椭圆=1的左右焦点,A(2,2)为定点,M为椭圆上任意一点,求|MA|+|MF2|的最小值。

分析:如图,连结MF1、AF1,则|MF1|+|MF2|=10,|MA|+|AF1|≥|MF1|(当且仅当F1,A,M三点共线时取等号),|MA|+|AF1|+|MF2|≥|MF1|+|MF2|=10,|MA|+|MF2|≥10-|AF1|(当且仅当F1,A,M三点共线时取等号);由a=5,b=4c=3F1(-3,0)|AF1|=|MA|+|MF2|≥10- (当且仅当F1,A,M三点共线时取等号)。

点评:有些问题先利用圆锥曲线定义或性质给出关系式,再利用几何或代数法求最值,可使题目中数量关系更直观,解法更简捷。

二、参数法转化化归更直接解题时恰当地引入参数,转化化归更加直接,可以简化繁琐的计算过程,并提供进一步利用函数性质的可能性。

例2:求椭圆上到直线l: x-2y-12=0距离最短的点M及相应的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考圆锥曲线中常见的的最值与定值问题及求解策略 会泽县第一中学 郭兴甫 会泽金钟第二中学 唐孝敬圆锥曲线是高中数学中的重要内容,是高考命题的热点。

从近年全国各地的高考命题命题来看,题型既有选择题、填空题,也有解答题,一般在选择题、填空题上突出考查圆锥曲线的概念与性质的灵活运用,在解答题上考查直线与圆锥曲线的位置关系的综合运用,在此基础上进一步考查探究圆锥曲线中的定值,最值问题及求解策略。

为帮助同学们在高考复习中更具针对性,提高复习效率,本文对近年高考圆锥曲线中的定值及最值问题常见类型分析说明,以期对同学们的复习有所帮助!一、考查圆锥曲线弦的斜率与弦的中点以原点连线斜率乘积为定值例1(2015年全国高考卷II )已知椭圆()2222:10x y C a b a b +=>>的离心率为2,点(在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点B A ,,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.分析:(Ⅰ)由离心率公式及点在椭圆上,22421,2a a b=+=求得228,4a b ==,由此可得C 的方程.(II )把直线方程与椭圆方程联立得()222214280.k x kbx b +++-=,所以12222,,22121M M M x x kb b x y kx b k k +-===+=++于是1,2M OM M y k x k==- 12OM k k ⇒⋅=-.解:(Ⅰ)由题意有2242,1,2a a b=+= 解得228,4a b ==,所以椭圆C 的方程为2222184x y +=. (Ⅱ)设直线)0,0(≠≠+=b k b kx y l :,),(),(),,(2211M M y x M y x B y x A ,,把y kx b =+代入2222184x y +=得()222214280.k x kbx b +++-=故12222,,22121M M M x x kb b x y kx b k k +-===+=++ 于是直线OM 的斜率1,2M OM M y k x k==- 即12OM k k ⋅=-,所以直线OM 的斜率与直线l 的斜率乘积为定值.评注:本题第二问也可以利用“点差法”求解,即将),(),,(2211y x B y x A 代入椭圆方程,相减转化而得弦的斜率与弦中点以原点连线的斜率的乘积,该结论也可以推广到双曲线、抛物线中。

二、考查以圆锥曲线相关线段的乘积为定值例2(2016年北京高考题)已知椭圆C :22221+=x y a b (0a b >>)(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.分析:(Ⅰ)根据离心率为,即=c a ,OAB ∆的面积为1,即121=ab ,椭圆中222c b a +=列方程组进行求解;(Ⅱ)根据已知条件分别求出BM AN ,的值,证明乘积为定值.解:(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M ,从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y .令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.评注:解决定值、定点的方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元思想的运用可有效地简化运算. 三、考查圆锥曲线中弦的斜率的比值或最值问题例3(2016山东卷)已知椭圆)0(12222>>=+b a by a x C :的长轴长为4,焦距为22(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点)0)(,0(>m m M 的直线交x 轴与点N ,交C 于点P P A (,在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线C QM 交于点B .(ⅰ)设直线QM PM ,的斜率分别为k k ',,证明kk '为定值; (ⅱ)求直线AB 的斜率的最小值.分析:(Ⅰ)分别计算a,b 即得.(Ⅱ)(ⅰ)设)0,0)(,(0000>>y x y x P ,由),0(m M ,可得Q P ,的坐标,进而得到直线QM PM ,直线的斜率k k ',,证明kk '为定值. (ⅱ)设),(),,(2211y x B y x A .直线PA 的方程为m kx y +=,直线QB 的方程为m kx y +-=3.联立 方程组应用一元二次方程根与系数的关系得到1212,y y x x --,进而可得AB k ,应用基本不等式即得结果. 解:(Ⅰ)设椭圆的半焦距为c.由题意知222,42==c a ,所以2,222=-==c a b a .所以椭圆C 的方程为12422=+y x . (Ⅱ)(ⅰ)设)0,0)(,(0000>>y x y x P , 由),0(m M ,可得)2,(),2,(00m x Q m x P - 所以直线PM 的斜率002x mx m m k =-=, 直线QM 的斜率0032x mx m m k -=--='. 此时3-='k k .所以kk '为定值3-. (ⅱ)设),(),,(2211y x B y x A .直线PA 的方程为m kx y +=,直线QB 的方程为m kx y +-=3联立方程组⎪⎩⎪⎨⎧=++=12422y x mkx y整理得0424)12(222=-+++m mkx x k .由,12422210+-=k m x x 可得0221)12()2(2x k m x +-=, 所以m x k m k m kx y ++-=+=02211)12()2(2.同理m x k m k y x k m x ++--=+-=02220222)118()2(6,)118()2(2.所以0222202202212)12)(118()2(32)12()2(2)118()2(2x k k m k x k m x k m x x ++--=+--+-=-, 22222122220006(2)2(2)8(61)(2)(181)(21)(181)(21)k m m k k m y y m m k x k x k k x ----+--=+--=++++所以)16(4141621212kk k k x x y y k AB+=+=--= 由0,00>>x m ,可知0>k ,所以6216≥+k k ,等号当且仅当66=k 时取等号. 此时66842=-m m ,即714=m ,符合题意.所以直线AB 的斜率的最小值为26. 评注:本题对考生的计算能力要求较高,是一道难题.解答此类题目,利用,,,a b c e 的关系,确定椭圆(圆锥曲线)的方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程,应用一元二次方程根与系数的关系,得到关于参数的解析式或方程是关键,易错点是对复杂式子的变形能力不足,导致错误百出 四、求圆锥曲线中参数的取值范围问题例4(2016年全国卷2理)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为)0(>k k 的直线交E 于M A ,两点,点N 在E 上,NA MA ⊥. (Ⅰ)当,4=t AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN △的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示||AM ,同理用,t k 表示||AN ,再由2AM AN =及t 的取值范围进而求得k 的取值范围.解:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN △的面积AMN S △11212144227749=⨯⨯⨯=. (Ⅱ)由题意3t >,0k >,()A .将直线AM 的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk-⋅=+得)21233tk x tk-=+,故1AM x ==由题设,直线AN 的方程为(1y x k =-,故同理可得AN ==, 由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩2k <.因此k 的取值范围是).评注:由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解. 五、求解圆锥曲线中多边形面积的最值问题例5(2016年新课标1卷理科题)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (Ⅰ)证明EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围. 分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。

相关文档
最新文档