6.2 等差数列(1)

合集下载

等差数列(讲解部分)

等差数列(讲解部分)
(1)
(2)
解析 (1)由Sn=3×2n-3,n∈N*,得 (i)当n=1时,a1=S1=3×21-3=3. (ii)当n≥2时,an=Sn-Sn-1=(3×2n-3)-(3×2n-1-3)=3×(2n-2n-1)=3×2n-1(*).又当n=1时,a1 =3也满足(*)式.
所以,对任意n∈N*,都有an=3×2n-1. (2)解法一:设等差数列{bn}的首项为b1,公差为d,由(1)得b2=a5=3×25-1=48,b11= S3=3×23-3=21.
由等差数列的通项公式得
bb121
= b1 = b1
+ d = 48, +10d = 21,
解得
bd1
= =
51, -3.
所以bn=54-3n.
∵bn+1-bn=-3<0,
∴bn随着n的增大而减小,
令bn=0,解得n=18,∴当n≤17的bn>0,当n>19时,bn<0.
所以Tn有最大值,无最小值,且T18(或T17)为Tn的最大值,
考点二 等差数列的性质
已知数列{an}是等差数列,Sn是{an}的前n项和. (1)若m+n=p+q(m,n,p,q∈N*),则有am+an=ap+aq. (2)等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数 列;当d=0时,{an}是常数列. (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差 数列.
T18=18(b12+ b18 ) =9×(51+0)=459.
解法二:由解法一可知Tn=51n+

高教版中职教材—数学(基础模块)(下册)电子教(学)案

高教版中职教材—数学(基础模块)(下册)电子教(学)案

【课题】6.1 数列的概念【教学目标】知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.【教学重点】利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】根据数列的前若干项写出它的一个通项公式.【教学设计】通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】.从小到大依次取正整数时,cos,….的近似值(四舍五入法),,n a ,.()n N.其中,下角码中的数为项数,1a 表示第由小至大依次取正整数值时,以表示数列中的各项,因此,通常把第n 项【教师教学后记】【课题】6.2 等差数列(一)【教学目标】知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力. 【教学重点】等差数列的通项公式. 【教学难点】等差数列通项公式的推导. 【教学设计】本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】6.3 等比数列(一)【教学目标】知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.【教学重点】等比数列的通项公式.【教学难点】等比数列通项公式的推导.【教学设计】本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:q a a nn =+1(常数). 例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,n , n a , 只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.从例4可以看到,若三个数成等比数列,则将这三个数设成是aq a qa,,比较好,因为这样设了以后,这三个数的积正好等于,3a 很容易将a 求出.【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】7.1 平面向量的概念及线性运算【教学目标】知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.【教学重点】向量的线性运算.【教学难点】已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.【教学设计】从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念.向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.向量的减法是在负向量的基础上,通过向量的加法来定义的.即a -b =a +(-b ),它可以通过几何作图的方法得到,即a -b 可表示为从向量b 的终点指向向量a 的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数λ乘以非零向量a ,是数乘运算,其结果记作λa ,它是一个向量,其方向与向量a 相同,其模为a 的λ倍.由此得到λ⇔=ab a b ∥.对向量共线的充要条件,要特别注意“非零向量a 、b ”与“0λ≠ ”等条件. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间 *揭示课题7.1 平面向量的概念及线性运算*创设情境 兴趣导入如图7-1所示,用100N ①的力,按照不同的方向拉一辆车,效果一样吗?图7-1介绍 播放 课件引导 分析了解 观看 课件 思考 自我 分析从实例出发使学生自然的走向知识点0 3AB.也可以使用小写英文字母,印刷用黑体表示,记作手写时应在字母上面加箭头,记作a.aAB的模依次记作AB.模为零的向量叫做,零向量的方向是不确定的.模为AB与MN,它们所在的直线平行,两个向量的方向相同;向量CD与PQ所在的直线平行,两个AB与MN,方向相同,模相等;平HG与TK,方向相反,模相等.我们所研究的向量只有大小与方向两个要素.的模相等并且方向相同时,称向量= b.也就是说,种性质的向量叫做自由向量.AB= MN,GH= -TK.DA 相等的向量;DC 的负向量;)找出与向量AB 平行的向量要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.CB =DA ;BA =DC -,CD DC =-;BA //AB ,DC //AB ,CD //AB .强化练习如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写EF 相等的向量;AD 共线的向量OC 相等的向量;OC 的负向量;A D E (练习题FABOC共线的向量.AC叫做AB与位BC的和AC=AB+BC.aa bAB=a, BC=b,AC叫做向量a+b ,即AB+BC=AC(7.求向量的和的运算叫做向量的加法.上述求向量的和的方三角形法则.可以看到:依照三角形法则进行向量的加法运算,运算的结果仍然是向量,叫做AD=BC,AB+AD=AB+BC=AC这说明,在平行四边形AC所表示的向量就是AB与AD的和.这种求和向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质:a)= 0;总结归纳AB表示船速,AC为水流速度,由向量加法的平行四边形法则,AD是船的实际航行速度,显然22AD AB AC=+=12又512tan =∠CAD ,利用计算器求得即船的实际航行速度大小是流方向)的夹角约6723'︒.过程行为行为意图间图7-12 讲解说明思考求解反复强调62*运用知识强化练习练习7.1.21.如图,已知a,b,求a+b.2.填空(向量如图所示):(1)a+b =_____________ ,(2)b+c =_____________ ,(3)a+b+c =_____________ .3.计算:(1)AB+BC+CD;(2)OB+BC+CA.启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳65(图1-15)bbaa (1)(2)第1题图=OA,b OB,则-=+-+=+=.OA OB OA OB OA BO BO OA BA()=-=BA(7.OA OB观察图7-13可以得到:起点相同的两个向量a、b,-b仍然是一个向量,叫做a与b的差向量,其起点是减的终点,终点是被减向量a的终点过 程行为行为 意图 间解 如图7-14(2)所示,以平面上任一点O 为起点,作OA =a ,OB =b ,连接BA ,则向量BA 为所求的差向量,即 BA = a -b .【想一想】当a 与 b 共线时,如何画出a -b .说明领会 思考 求解注意 观察 学生 是否 理解 知识 点70*运用知识 强化练习1.填空:(1)AB AD -=_______________,(2)BC BA -=______________, (3)OD OA -=______________.2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .启发 引导 提问 巡视 指导思考 了解 动手 求解可以 交给 学生 自我 发现 归纳72*创设情境 兴趣导入观察图7-15可以看出,向量OC 与向量a 共线,并且OC =3a .质疑思考引导启发BbOaAba(1)(2)图7-14过 程行为行为 意图 间 类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中.但是,要注意向量的运算与数的运算的意义是不同的.仔细 分析 讲解 关键 词语理解 记忆引导 启发 学生 得出 结论78*巩固知识 典型例题例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD .解 AC=a +b ,BD =b −a ,因为O 分别为AC ,BD 的中点,所以1122==AO AC (a +b )=12a +12b , OD =12BD =12(b −a )=−12a +12b . 例6中,12a +12b 和−12a +12b 都叫做向量a ,b 的线性组合,或者说,AO 、OD 可以用向量a ,b 线性表示.强调 含义说明思考 求解 领会注意 观察 学生 是否 理解 知识 点图7-16OA,使OA=12AB的模依次记作AB.a与向量的模相等并且方向相同时,称向量相等,记作计算:AB+BC+CD;(OB+BC+CA.活动探究读书部分:教材【教师教学后记】【课题】7.2 平面向量的坐标表示【教学目标】知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.【教学重点】向量线性运算的坐标表示及运算法则.【教学难点】向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键.【教学设计】向量只有“模”与“方向”两个要素,为了研究方便,我们首先将向量的起点放置在坐标原点(一般称为位置向量).设x轴的单位向量为i,轴的单位向量为j.如果点A的坐标为(x,y),则OA x yi j,=+将有序实数对(x,y)叫做向量OA的坐标.记作OA=(x,y).例1是关于“向量坐标概念”的知识巩固性例题.要强调此时起点的位置.让学生认识到,当向量的起点为坐标原点时,其终点的坐标就是向量的坐标.例2是关于“向量线性运算的坐标表示”的知识巩固性例题.要强调与公式的对应.在研究起点为坐标原点的向量的基础上,利用向量加法的三角形法则,介绍起点在任意位置的向量的坐标表示,向量的坐标等于原点到终点的向量的坐标减去原点到起点的向量的坐标,由此得到公式(7.8).数值上可以简单记为:终点的坐标减去起点的坐标.例3是关于“起点在任意位置的向量的坐标表示”的巩固性例题.要强调“终点的坐标减去起点的坐标”.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题7.2 平面向量的坐标表示*创设情境兴趣导入【观察】设平面直角坐标系中,x轴的单位向量为i, y轴的单位向量为j,OA为从原点出发的向量,点A的坐标为(2,3)(图7-17).则图7-172OM=i,3ON=j.由平行四边形法则知介绍质疑引导了解思考从实例出发使学生自然的走向知识点2OA OM ON =+=+i 可以看到,从原点出发的向量,其坐标在数值上与向量终点的i +=OM x 22,)x y (如图(x ,y )2212(()(i =-==-+AB OB OA x x x y 由此看到,对任一个平面向量, 使得(2,3)=OA )所示,起点为原点,终点为(,=OM x .)所示,起点为2(=-AB x x ,典型例题-19所示,用并写出它们的坐标.OM +MA (5,3)=a (4,3)=-b过 程行为 行为 意图 间【想一想】观察图7-19,OA 与OM 的坐标之间存在什么关系? 例2 已知点(2,1)(3,2)-P Q ,,求PQQP ,的坐标. 解 (3,2)(2,1)(1,3),=--=PQ (2,1)(3,2)(1,3)=--=--QP .引领 讲解 说明主动 求解会15*运用知识 强化练习1. 点A 的坐标为(-2,3),写出向量OA 的坐标,并用i 与j 的线性组合表示向量OA .2. 设向量34a i j =-,写出向量a 的坐标. 3. 已知A ,B 两点的坐标,求AB BA ,的坐标. (1) (5,3),(3,1);-A B (2) (1,2),(2,1);A B (3) (4,0),(0,3)-A B . 提问 巡视 指导思考 口答及时 了解 学生 知识 掌握 得情 况20*创设情境 兴趣导入图7-19过 程行为 行为 意图 间 【观察】观察图7-20,向量(5,3)OA =,(3,0)OP =,(8,3)OM OA OP =+=.可以看到,两个向量和的坐标恰好是这两个向量对应坐标的和.质疑 引导 分析思考 参与 分析引导启发学生思考27*动脑思考 探索新知 【新知识】设平面直角坐标系中,11(,)x y =a ,22(,)x y =b ,则 1122()()x y x y +=+++a b i j i j1212()()x x y y =+++i j .所以1212(,)x x y y +=++a b . (7.6)类似可以得到1212(,)x x y y -=--a b . (7.7)总结 归纳思考 归纳带领 学生 总结图7-20。

6.2 等差数列及其前n项和

6.2 等差数列及其前n项和

时 作

A.9
B.10
报 告
C.11

D.12
第6章 第2节
第24页
名师伴你行 ·高考一轮总复习 ·数学(理)
[解析] ∵在等差数列{an}中,a1=1,a2+a6=10,
报 告 一
∴aa11+=d1+,a1+5d=10,


a1=1,
作 业

解得d=43,


∴a7=a1+6d=1+8=9.

告 二
由题意得3aa22-=d-a32,a2+d=8,
第6章 第2节
第19页
名师伴你行 ·高考一轮总复习 ·数学(理)

告 一
解得da=2=--31, 或da=2=3-,1,
课 时

所以an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n- 业
易错问题
报 告
1.等差数列的公差与概念的判断.

(1)设{an}是等差数列.下列结论中正确的是( C )
课 时
A.若a1+a2>0,则a2+a3>0
作 业

B.若a1+a3<0,则a1+a2<0


C.若0<a1<a2,则a2> a1a3
D.若a1<0,则(a2-a1)(a2-a3)>0
第6章 第2节
第10页
名师伴你行 ·高考一轮总复习 ·数学(理)

解析:若{an}是递减的等差数列,则选项A,B都不一定

一 正确.若{an}为公差为0的等差数列,则选项D不正确.对于C 课

选项,由条件可知{an}为公差不为0的正项数列,由等差中项

高考数学一轮总复习 第六章 6.2 等差数列及其前n项和

高考数学一轮总复习 第六章  6.2 等差数列及其前n项和

(2)已知 Sn 是等差数列{an}的前 n 项和,若 a1=-2 018,2S20011
S2 020= 2 020. 解析 由等差数列的性质可得Snn也为等差数列. 设其公差为 d,则2S2001199 -2S2001133 =6d=6,∴d=1. 故2S2002200 =S11+2 019d=-2 018+2 019=1,
123456
5.若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 和最大. 解析 因为数列{an}是等差数列,且a7+a8+a9=3a8>0, 所以a8>0. 又a7+a10=a8+a9<0, 所以a9<0. 故当n=8时,其前n项和最大.
123456
6.一物体从1 960 m的高空降落,如果第1秒降落4.90 m,以 多降落9.80 m,那么经过 20 秒落到地面. 解析 设物体经过t秒降落到地面. 物体在降落过程中,每一秒降落的距离构成首项为4.90,公 数列. 所以 4.90t+12t(t-1)×9.80=1 960, 即4.90t2=1 960,解得t=20.
∴S2 020=1×2 020=2 020.
思维升华 等差数列的性质 (1)项的性质:在等差数列{an}中,m+n=p+q(m,n,p,q∈ =ap+aq. (2)和的性质:在等差数列{an}中,Sn为其前n项和,则 ①S2n=n(a1+a2n)=…=n(an+an+1); ②S2n-1=(2n-1)an.
知识梳理
ZHISHISHULI
1.等差数列的定义 一般地,如果一个数列 从第2项起,每一项与它的前一项的差 那么这个数列就叫做等差数列,这个常数叫做等差数列的 公 表示. 2.等差数列的通项公式 如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是 3.等差中项 由三个数a,A,b组成的等差数列可以看成最简单的等差数列 的 等差中项 .

§6.2 等差数列

§6.2 等差数列

答案 14
解析 解法一:设数列{an}的公差为d, 则a6+a7=2a3+7d=14,又∵a3=0, ∴d=2,∴a7=a3+4d=8, 又a3=a1+2d,∴a1=-4,
∴S7= 7(a1
2
a7
)
= 7 (4
2

8)
=14.
解法二:设数列{an}的公差为d,
则a6+a7=2a3+7d=14,又∵a3=0,
∴d=2,∴a4=a3+d=2.
∴S7=a1+a2+a3+a4+a5+a6+a7=7a4=14.
栏目索引
.
栏目索引
4.(2016江苏,8,5分)已知{an}是等差数列,Sn是其前n项和.若a1+ a22 =-3,S5=10,则a9的值是
.
答案 20
解析 设等差数列{an}的公差为d,则由题设可得
a1 (a1 d )2 3,
1)b]sin
θ= 12 bc
sin
θ

n+ 1 (a-b)csin
2
θ,所以Sn是关于n的一次函数,则{Sn}成等差数列,选A.
栏目索引
2.(2015安徽,13,5分)已知数列{an}中,a1=1,an=an-1+ 12 (n≥2),则数列{an}的前9项和等于
.
答案 27
解析 由题意得{an}为等差数列,且公差d= 12 ,
∵a1=1,∴S9=9×1+ 92 8
× 1 =27.
2
栏目索引
C组 教师专用题组
考点一 等差数列基本量的运算
1.(2014辽宁,9,5分)设等差数列{an}的公差为d.若数列{ 2a1an }为递减数列,则 ( )

人教版中职数学基础模块下册6.2等差数列

人教版中职数学基础模块下册6.2等差数列

【课题】 6.2 等差数列
【教学目标】
知识目标:
理解等差数列通项公式及前n 项和公式. 能力目标:
(1)应用等差数列的前n 项公式,解决数列的相关计算,培养学生的计算技能; (2)应用等差数列知识,解决生活中实际问题,培养学生处理数据技能和分析解决问题的能力.
情感目标:
(1)经历数列的前n 项和公式的探索,增强学生的创新思维.
(2)赞赏高斯等数学史上流传的故事,形成对数学的兴趣,感受数学文化.
【教学重点】
等差数列的前n 项和的公式.
【教学难点】
等差数列前n 项和公式的推导.
【教学设计】
本节的主要内容是等差数列的前n 项和公式,等差数列应用举例.重点是等差数列的前
n 项和公式;难点是前n 项和公式的推导以及知识的简单实际应用.
等差数列前n 项和公式的推导方法很重要,所用方法叫逆序相加法,应该让学生理解并学会应用.等差数列中的五个量1a 、d 、n 、n a 、n S 中,知道其中三个,可以求出其余两个,例5和例6是针对不同情况,分别介绍相应算法.
例7将末项看作是首项的思想是非常重要的,以这类习题作为载体,对培养学生的创新精神是十分重要的.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
【教师教学后记】。

6.2等差数列

6.2等差数列
(1)1,3,5,7,… (2)9,6,3,0,-3… (3)-8,-6,-4,-2,0,… (4)3,3,3,3,…
(6)15,12,10,8,6,… 解:(1),(2),(3),(4)是等差数列,(5)和(6)不是。(1) 中a1=1,d=2;(2)中a1 =9,d= - 3;(3)中a1 =-8,d=2;(4)中a1 =3,d=0. 小结:判断一个数列是不是等差数列,主要是由定义进行判断;
分析( 分析(1)由给出的等差数列前三项,先找到首项a1,求出公差d,写出通项公 由给出的等差数列前三项,先找到首项a 求出公差d,写出通项公 式,就可以求出第20项 式,就可以求出第20项a20. 解:(1)由题意得: 解:(1)由题意得: a1=8,d=5-8=-3,n=20 =8,d=5-8=∴这个数列的通项公式是: an=a1+(n-1)d=-3n+11 +(n-1)d=∴a20=11-3×20=-49 =1120=分析( 分析(2)要想判断-401是否为这个数列中的项,关键是要求出通项公式, 要想判断-401是否为这个数列中的项,关键是要求出通项公式, 是否为这个数列中的项 看是否存在正整数n,使得a 401。 n,使得 看是否存在正整数n,使得an=-401。 (2)由题意得: (2)由题意得: a1=-5,d=-9-(-5)=-4 5,d=5)=∴这个数列的通项公式是: an=-5+ (n - 1) × (-5)=-4n-1 5)=令-401=-4n-1,得 n=100 401=1,得 ∴-401是这个数列的第100项。 401是这个数列的第100项。
等差数列的定义
一般地,如果一个数列{an},从第2项起每一 从第2 项与它的前一项的差等于同一个常数,那么 项与它的前一项的差等于同一个常数,那么 这个数列就叫做等差数列,这个常数叫做等 差数列的公差。公差通常用字母 d 表示。

高三数学一轮复习优质课件2:6.2 等差数列及其前n项和

高三数学一轮复习优质课件2:6.2 等差数列及其前n项和

1 (n∈N*),
an 1
所以
bn1
bn
1 an1 1
1 an 1
(2
1 1
) 1
1 an 1
an 1 1.
an
an 1 an 1
15

b1
a1
1
, 2
所以数列{bn}是以 5 为首项,以1为公差的等差数列.
2
②由①知bn=n-
7 2
,
则an=
1
1 bn
1
2. 2n 7
设f(x)= 1 2 ,
{a2n-1+2a2n}是 (
)
A.公差为3的等差数列
B.公差为4的等差数列
C.公差为6的等差数列
D.公差为9的等差数列
(2)(2015·太原模拟)已知数列{an}中,
a1
3 5
,an
2 1 a n1
数列{bn}满足bn=
1 an 1
(n∈N*).
①求证:数列{bn}是等差数列;
(n≥2,n∈N*),
2.等差数列设项技巧 若奇数个数成等差数列且和为定值时,可设中间三项为a-d,a,a+d;若偶 数个数成等差数列且和为定值时,可设中间两项为a-d,a+d,其余各项再 依据等差数列的定义进行对称设元.
考点2 等差数列的判定与证明
【典例2】(1)(2015·防城港模拟)若{an}是公差为1的等差数列,则
②若{an},{bn}是等差数列,则{pan+qbn}(n∈N*)是等差数列. ③Sm,S2m,S3m分别为{an}的前m项,前2m项,前3m项的和,则Sm,S2m-Sm, S_3_m_-_S_2_m成等差数列.
④两个等差数列{an},{bn}的前n项和Sn,Tn之间的关系为

2022数学第六章数列6.2等差数列及其前n项和学案文含解析新人教A版

2022数学第六章数列6.2等差数列及其前n项和学案文含解析新人教A版

6.2 等差数列及其前n 项和必备知识预案自诊知识梳理1.等差数列(1)定义:一般地,如果一个数列从 起,每一项与它的前一项的 都等于 ,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,公差通常用字母d 表示.数学语言表示为a n+1—a n =d (n ∈N *),d 为常数。

(2)等差中项:数列a ,A ,b 成等差数列的充要条件是 ,其中A 叫做a ,b 的 。

(3)等差数列{a n }的通项公式:a n = ,可推广为a n =a m +(n —m )d.(4)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d.2。

等差数列的通项公式及前n 项和公式与函数的关系 (1)a n =a 1+(n —1)d 可化为a n =dn+a 1-d 的形式。

当d ≠0时,a n是关于n 的一次函数;当d>0时,数列为递增数列;当d<0时,数列为递减数列.(2)数列{a n }是等差数列,且公差不为0⇔S n =An 2+Bn (A ,B 为常数)。

1.已知{a n }为等差数列,d 为公差,S n 为该数列的前n项和.(1)在等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(2)a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m ∈N*).(3)S n,S2n-S n,S3n—S2n,…也成等差数列,公差为n2d。

(4)若{a n},{b n}是等差数列,则{pa n+qb n}也是等差数列.(5)若项数为偶数2n,则S2n=n(a1+a2n)=n(a n+a n+1);S偶-S奇=nd;S奇S偶=a na n+1。

(6)若项数为奇数2n—1,则S2n—1=(2n—1)a n;S奇—S偶=a n;S奇S偶=nn-1。

第六章 §6.2 等差数列-2024-2025学年高考数学大一轮复习(人教A版)配套PPT课件

第六章 §6.2 等差数列-2024-2025学年高考数学大一轮复习(人教A版)配套PPT课件

则 S2- S1= 4a1- a1=d,得 a1=d 2,
所以 Sn= S1+(n-1)d=nd, 所以Sn=n2d2, 所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2)是关于n的一次 函数,且a1=d2满足上式,所以数列{an}是等差数列.
思维升华
判断数列{an}是等差数列的常用方法 (1)定义法:对于数列{an},an-an-1(n≥2,n∈N*)为同一常数⇔{an}是等差 数列; (2)等差中项法:对于数列{an},2an-1=an+an-2(n≥3,n∈N*)成立⇔{an}是 等差数列; (3)通项公式法:an=pn+q(p,q为常数)对任意的正整数n都成立⇔{an}是等差 数列; (4)前n项和公式法:验证Sn=An2+Bn(A,B为常数)对任意的正整数n都成立 ⇔{an}是等差数列.
第六章
§6.2 等差数列
课标要求
1.理解等差数列的概念和通项公式的意义. 2.探索并掌握等差数列的前n项和公式,理解等差数列的通项公式 与前n项和公式的关系. 3.能在具体问题情境中,发现数列的等差关系,并解决相应的问题. 4.体会等差数列与一元函数的关系.
内容索引
第一部分 落实主干知识 第二部分 探究核心题型
设数列{an}的公差为d, 则 Sn=na1+nn-2 1d=12dn2+a1-d2n.
因为数列{ Sn}是等差数列,所以数列{ Sn}的通项公式是关于 n 的 一次函数,则 a1-d2=0,即 d=2a1,所以 a2=a1+d=3a1. ②③⇒①. 已知数列{ Sn}是等差数列,a2=3a1,
所以S1=a1,S2=a1+a2=4a1. 设数列{ Sn}的公差为 d,d>0,
(2)(多选)(2023·郑州模拟)若数列{an}为等差数列,Sn为其前n项和,S5<S6,

专题6.2 等差数列及其前n项和(讲)(解析版)

专题6.2 等差数列及其前n项和(讲)(解析版)

专题6.2 等差数列及其前n 项和1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系.知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *). (2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项).知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【必会结论】等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .若m +n =2p (m ,n ,p ∈N *),则a m +a n =2a p .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d, 则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)等差数列{a n }的前n 项和为S n, 则S n ,S 2n -S n ,S 3n -S 2n 仍成等差数列,其公差为n 2d.考点一 等差数列基本量的运算 【典例1】【2019年高考全国I 卷理数】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =- B .310n a n =-C .228n S n n=- D .2122n S n n =-【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。

第六章§6.2 等差数列

第六章§6.2 等差数列

an+1的等比中项.
(1)设cn= bn21 - bn2 ,n∈N*,求证:数列{cn}是等差数列;
(2)设a1=d,Tn=
2n

k 1
(-1)k bk2
,n∈N*,求证:
n

k 1
1 Tk
<
1 2d
2
.
证明 (1)由题意得 bn2 =anan+1,有cn= bn21 - bn2 =an+1·an+2-anan+1=2dan+1,因此cn+1-cn=2d(an+2-an+1)=2d2,
A.{Sn}是等差数列 C.{dn}是等差数列
B.{ Sn2 }是等差数列 D.{ dn2 }是等差数列
答案 A 不妨设该锐角的顶点为C,∠A1CB1=θ,|A1C|=a,依题意,知A1、A2、…、An顺次排列,设
|AnAn+1|=b,|BnBn+1|=c,则|CAn|=a+(n-1)b,作AnDn⊥CBn于Dn,则|AnDn|=[a+(n-1)b]sin
6.(2019课标Ⅲ,14,5分)记Sn为等差数列{an}的前n项和,若a1≠0,a2=3a1,则
S10 S5
=
.
答案 4
解析 本题考查等差数列的通项公式与前n项和公式;考查学生对数列基础知识的掌握程度和
运算求解能力;考查了数学运算的核心素养.
设等差数列{an}的公差为d,∵a2=3a1,
∴a2=a1+d=3a1,∴d=2a1,
.
答案 10 解析 利用等差数列的性质可得a3+a7=a4+a6=2a5,从而a3+a4+a5+a6+a7=5a5=25,故a5=5,所以a2+a8 =2a5=10.

6.2等差数列典型例题及详细解答

6.2等差数列典型例题及详细解答

1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.(2015·重庆)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B.2.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案 C解析 由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143 D .176 答案 B解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10等于( ) A .100 B .210 C .380 D .400答案 (1)C (2)B解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.(2)因为a 2=7,a 4=15,所以d =4,a 1=3, 故S 10=10×3+12×10×9×4=210.思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5等于( )A .5B .7C .9D .11(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .3 答案 (1)A (2)C解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5.故选A.(2)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn+1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 (1)C (2)A解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60. 命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n=-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0, ∴a 13=0.又a 1=-20,∴a 12<0,a 14>0, ∴当n =12或13时,S n 取得最小值, 最小值S 12=S 13=13(a 1+a 13)2=-130.思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. ②和的性质:在等差数列{a n }中,S n 为其前n 项和,则 a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. ②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .(1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( ) A .5 B .6 C .7 D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( ) A .5 B .6 C .5或6D .11(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)B (2)C (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,选B.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,选C.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得, S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( ) A .S 4 B .S 5 C .S 6 D .S 7思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项. 解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.(2)方法一 设数列{a n }的公差为d ,首项为a 1, 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.(3)因为⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5. 答案 (1)A (2)-110 (3)B温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *; (2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. [失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数. 2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练 (时间:35分钟)1.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.2.(2015·北京)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解,故选C.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( ) A .0 B .3 C .8 D .11答案 B解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.故选B.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( ) A .7 B .8 C .7或8D .8或9答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8,故选C.6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12. (1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n. 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式. 故a n =⎩⎨⎧12,n =1,-12n (n -1),n ≥2.10.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大? 解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0, 即⎩⎨⎧ a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.方法四 由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升(时间:20分钟)11.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( ) A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7答案 D解析 由条件得S n n <S n +1n +1,即n (a 1+a n )2n <(n +1)(a 1+a n +1)2(n +1),所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212, 解得k =13.13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________.答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7, 即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117, 所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4. 所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去), 经验证c =-12时,{b n }是等差数列, 故c =-12.。

6.2 等差数列及其前n项和

6.2 等差数列及其前n项和

1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A .-1B .0C .1D .6答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(教材改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34 答案 B解析 由已知可得⎩⎪⎨⎪⎧ a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧ a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( )A .100B .99C .98D .97答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( )A .14B .21C .28D .35答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)∵a 3+a 5=2a 4=0,∴a 4=0.又a 1=6,∴a 4=a 1+3d =0,∴d =-2.∴S 6=6×6+6×(6-1)2×(-2)=6. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20解析 (1)∵a 1+a 7=a 2+a 6=3+11=14,∴S 7=7(a 1+a 7)2=49. (2)设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1 =1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7. 设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n=1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n 答案 A解析 由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n. (2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.①设b n =a n +1-a n ,证明{b n }是等差数列;②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2,得a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列.②解 由①得b n =1+2(n -1)=2n -1,即a n +1-a n =2n -1.于是∑nk =1 (a k +1-a k )=∑n k =1 (2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.题型三 等差数列性质的应用命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________.(2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( ) A .-2 018B .-2 016C .-2 019D .-2 017答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3.又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114.(2)由题意知,数列{S n n}为等差数列,其公差为1, ∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1.∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( )A .58B .88C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727 B.3828C.3929D.4030答案 (1)B (2)A 解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13 =3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .90 (2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的首项为a 1,公差为d ,则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. 答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ 2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧ a 1=43,d =-16,故选D.3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10. 4.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于( ) A .24B .48C .66D .132 答案 D解析 方法一 由a 1+8d =12(a 1+11d )+6, 得a 1+5d =12,∴a 1=12-5d .又S 11=11a 1+11×102d =11a 1+55d =11(12-5d )+55d =132.方法二 由a 9=12a 12+6,得2a 9-a 12=12. 由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C.*6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121答案 D解析 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2, 所以S n +10a 2n =(n +10)2(2n -1)2=(n +102n -1)2 =⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12 =14⎝⎛⎭⎫1+212n -12≤121, 故选D.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27. 8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 9.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.10.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案 1941解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 11.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2. 由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.12.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12. (1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)解 由(1)可得1S n =2n ,∴S n =12n. 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式. 故a n =⎩⎨⎧ 12,n =1,-12n (n -1),n ≥2.*13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }是首项为3,公差为1的等差数列.(2)解 由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)×1=n +2, 即a n =n +2.。

广东专用2023版高考数学一轮总复习第六章数列6-2等差数列课件

广东专用2023版高考数学一轮总复习第六章数列6-2等差数列课件

考点一 等差数列基本量的计算
(1)(2019 全 国 Ⅰ 卷 ) 记 Sn 为 等 差 数 列 {an} 的 前 n 项 和 . 已 知 S4 = 0 , a5 = 5 , 则
()
A. an=2n-5
B. an=3n-10
C. Sn=2n2-8n
D. Sn=12n2-2n
解:设公差为 d,则4aa1+1+46d=d=50,,解得ad1==2-. 3,故 an=2n-5,Sn=(2n-52-3)·n=n2-4n.
【点拨】 在等差数列五个基本量 a1,d,n,an,Sn 中,已知其中三个量,可以根据已知条件 结合等差数列的通项公式、前 n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算 时须注意等差数列性质、整体代换及方程思想的应用.
(1)(2021 届江西南昌高三摸底)Sn 为等差数列{an}的前 n 项和,满足 3a3=5a2,S10=100,
则 a1=
()
A. 1
B. 2
C. 3
D. 4
解:设等差数列{an}的公差为 d,因为 3a3=5a2,S10=100,所以310(aa1+1+425dd) == 1005( ,a1+d),
解得a1=1,故选 d=2.
A.
(2)(2020 安徽太和中学期末)设 Sn 是等差数列{an}的前 n 项和,a4=11,且 S3,S5,a22 成等差
数列,则 S10=( )
A. 145
B. 150
C. 155
D. 160
解:设等差数列{an}的公差为 d,因为 a4=11,所以 S3=3(a12+a3)=3a2=3(11-2d),S5= 5a3=5(11-d),a22=11+18d, 因为 S3,S5,a22 成等差数列,所以 3(11-2d)+11+18d=10(11-d),所以 d=3,a1=a4-3d =11-9=2, 所以 S10=10a1+45d=20+135=155. 故选 C.

6.2.1等差数列定义导学案教学文稿

6.2.1等差数列定义导学案教学文稿

6.2.1等差数列定义导学案仅供学习与交流,如有侵权请联系网站删除 谢谢2( 6.2.1 等差数列的定义 )导学案学习目标(1)知识目标:理解等差数列的定义;(2)能力目标:会利用定义求等差数列的任意项(3)情感目标:通过等差数列的实际运算,培养学生的数学思维能力与运算能力.重点难点:等差数列定义的应用.学法指导:自主探究——合作交流任务一:1.自己动手列出下列数列(1)将正整数中5的倍数从小到大列出,组成数列:(2)将正奇数从小到大列出,组成数列:观察数列中相邻两项之间的关系,2.总结定义如果一个数列从第2项开始,每一项与它前一项的差都等于同一个常数,那么,这个数列叫做等差数列.这个常数叫做等差数列的公差,一般用字母d 表示.由定义知,若数列{}n a 为等差数列,d 为公差,则1n n a a d +-=,即 1n n a a d +=+ 任务二:1.已知{}n a 为等差数列,58a =-,公差2d =,试写出这个数列的第8项8a .(6.1)仅供学习与交流,如有侵权请联系网站删除 谢谢32.写出等差数列11,8,5,2,…的第10项.3.已知等差数列的首项为 -1,公差为 − 5,试写出这个数列的第2项到第5项任务三:作业:1.已知23,,213x 成等差数列,那么=x _____ 2. “一个内角为 60”是这个三角形三内角成等差数列的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3. 若c b a lg ,lg ,lg 成等差数列,则( )A .2c a b +=B .2lg lg b a b +=C .ac b =D .ac b ±=我的疑惑:教师寄语:没有什么事情你做不好,只是你不想做好。

仅供学习与交流,如有侵权请联系网站删除谢谢4。

6.2 等差数列(1)

6.2  等差数列(1)

【课题】 6.2 等差数列(一)
【教学目标】
知识目标:
(1)理解等差数列的定义; (2)理解等差数列通项公式. 能力目标:
通过学习等差数列的通项公式,培养学生处理数据的能力.
【教学重点】
等差数列的通项公式.
【教学难点】
等差数列通项公式的推导.
【教学设计】
本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.
教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
【教师教学后记】。

北京版高考数学 6.2 等差数列

北京版高考数学 6.2 等差数列

6.2 等差数列挖命题【考情探究】分析解读从北京高考的情况来看,本节一直是热点,主要考查等差数列的定义、性质、通项公式、前n 项和公式、等差中项等相关内容.本节内容在高考中的分值为5分左右,属于中低档题.常以选择题、填空题的形式出现.破考点【考点集训】考点一等差数列的有关概念及运算1.已知等差数列{a n}满足a1=1,a n+2-a n=6,则a11等于( )A.31B.32C.61D.62答案A2.(2013课标Ⅰ,7,5分)设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=( )A.3B.4C.5D.6答案C3.已知等差数列{a n}一共有9项,前4项和为3,最后3项和为4,则中间一项的值为( )A. B. C.1 D.答案D考点二等差数列的性质及其应用4.在等差数列{a n}中,a1+3a8+a15=120,则a2+a14的值为( )A.6B.12C.24D.48答案D5.在等差数列{a n}中,a1+a3+a5=105,a2+a4+a6=99,以S n表示{a n}的前n项和,则使S n取得最大值时n的值为( )A.21B.20C.19D.18答案B炼技法【方法集训】方法1 等差数列的基本运算技巧1.数列{a n}为递增的等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2,则数列{a n}的通项公式为( )A.a n=n-2B.a n=2n-4C.a n=3n-6D.a n=4n-8答案B2.在等差数列{a n}中,2(a1+a4+a7)+3(a9+a11)=24,则S13+2a7=( )A.17B.26C.30D.56答案C3.(2018上海,6,4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7= .答案14方法2 等差数列的判定方法4.(2014陕西,14,5分)已知f(x)=,x≥0,若f1(x)=f(x), f n+1(x)=f(f n(x)),n∈N+,则f2 014(x)的表达式为.答案f2 014(x)=5.已知数列{a n}满足a1=,且a n+1=.(1)求证:数列是等差数列;(2)若b n=a n a n+1,求数列{b n}的前n项和S n.解析(1)证明:∵a n+1=,∴=,∴-=,∴数列是以2为首项,为公差的等差数列.(2)由(1)知a n=,∴b n==4-,∴S n=4×---=4×-=.方法3 等差数列前n项和的最值问题的求解方法6.(2014江西,13,5分)在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d 的取值范围为.答案--7.设等差数列{a n}的前n项和为S n,a3+a8+a13=C,a4+a14=2C,其中C<0,则S n在n等于时取到最大值.答案7过专题【五年高考】A组自主命题·北京卷题组考点一等差数列的有关概念及运算1.(2018北京,9,5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.答案a n=6n-32.(2016北京,12,5分)已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6= .答案 63.(2012北京,10,5分)已知{a n}为等差数列,S n为其前n项和.若a1=,S2=a3,则a2= ;S n= . 答案1;n(n+1)4.(2015北京,16,13分)已知等差数列{a n}满足a1+a2=10,a4-a3=2.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7.问:b6与数列{a n}的第几项相等?解析(1)设等差数列{a n}的公差为d.因为a4-a3=2,所以d=2.又因为a1+a2=10,所以2a1+d=10,故a1=4.所以a n=4+2(n-1)=2n+2 (n=1,2,).(2)设等比数列{b n}的公比为q.因为b2=a3=8,b3=a7=16,所以q==2,所以b1=4.所以b6=4×26-1=128.由128=2n+2得n=63.所以b6与数列{a n}的第63项相等.思路分析(1)由已知可求得a1和公差d,即可求得{a n}的通项公式.(2)由已知求得b2,b3,进而求得{b n}的首项和公比q,即得b6的值,再由a n=b6列方程求得n.考点二等差数列的性质及应用1.(2015北京,6,5分)设{a n}是等差数列.下列结论中正确的是( )A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>D.若a1<0,则(a2-a1)(a2-a3)>0答案C2.(2014北京,12,5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n= 时,{a n}的前n项和最大. 答案8B组统一命题、省(区、市)卷题组考点一等差数列的有关概念及运算1.(2018课标Ⅰ,4,5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=( )A.-12B.-10C.10D.12答案B2.(2017课标Ⅰ,4,5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8答案C3.(2017课标Ⅲ,9,5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为( )A.-24B.-3C.3D.8答案A4.(2016课标Ⅰ,3,5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A.100B.99C.98D.97答案C5.(2015课标Ⅰ,7,5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=( )A. B. C.10 D.12答案B6.(2015重庆,2,5分)在等差数列{a n}中,若a2=4,a4=2,则a6=( )A.-1B.0C.1D.6答案B7.(2014福建,3,5分)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于( )A.8B.10C.12D.14答案C8.(2017课标Ⅱ,15,5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则= .答案9.(2016江苏,8,5分)已知{a n}是等差数列,S n是其前n项和.若a1+=-3,S5=10,则a9的值是.答案2010.(2015安徽,13,5分)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.答案2711.(2016天津,18,13分)已知{a n}是各项均为正数的等差数列,公差为d.对任意的n∈N*,b n是a n和a n+1的等比中项.(1)设c n=-,n∈N*,求证:数列{c n}是等差数列;(2)设a1=d,T n=(-1)k,n∈N*,求证:<.证明(1)由题意得=a n a n+1,有c n=-=a n+1·a n+2-a n a n+1=2da n+1,因此c n+1-c n=2d(a n+2-a n+1)=2d2, 所以{c n}是等差数列.+)(2)T n=(-+)+(-+)++(--=2d(a2+a4++a2n)=2d·=2d2n(n+1).所以==-=·-<.考点二等差数列的性质及应用1.(2015课标Ⅱ,5,5分)设S n是等差数列{a n}的前n项和.若a1+a3+a5=3,则S5=( )A.5B.7C.9D.11答案A2.(2014辽宁,9,5分)设等差数列{a n}的公差为d.若数列{}为递减数列,则( )A.d>0B.d<0C.a1d>0D.a1d<0答案D3.(2015广东,10,5分)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= .答案10C组教师专用题组1.(2016浙江,8,5分)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*.(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则( )A.{S n}是等差数列B.{}是等差数列C.{d n}是等差数列D.{}是等差数列答案A2.(2014天津,5,5分)设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1=( )A.2B.-2C.D.-答案D3.(2013辽宁,4,5分)下面是关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列.其中的真命题为( )A.p1,p2B.p3,p4C.p2,p3D.p1,p4答案D4.(2013安徽,7,5分)设S n为等差数列{a n}的前n项和,S8=4a3,a7=-2,则a9=( )A.-6B.-4C.-2D.2答案A5.(2015陕西,13,5分)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为. 答案 56.(2017江苏,19,16分)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1++a n-1+a n+1++a n+k-1+a n+k=2ka n 对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.证明(1)证明:因为{a n}是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5, 是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.评析本小题主要考查等差数列的定义、通项公式等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.方法总结数列新定义型创新题的一般解题思路:1.阅读审清“新定义”;2.结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识;3.利用“新定义”及常规的数列知识,求解证明相关结论.【三年模拟】一、选择题(每小题5分,共25分)1.(2018北京通州期中,4)已知S n为等差数列{a n}的前n项和,a2+a5=4,S7=21,则a7的值为( )A.6B.7C.8D.9答案D2.(2019届北京人大附中期中,6)设等差数列{a n}的公差为d,前n项和为S n,若a1=d=1,则的最小值为( )A.10B.C.D.+2答案B3.(2019届中央民大附中10月月考,3)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则S7等于( )A.14B.28C.56D.112答案C4.(2019届北京海淀期中,4)在等差数列{a n}中,a1=1,=2,则公差d的值是( )A.-B.C.-D.答案A5.(2019届北京十四中10月月考,5)我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤?”( )A.6斤B.7斤C.8斤D.9斤答案D二、填空题(每小题5分,共40分)6.(2019届北京海淀期中文,10)等差数列{a n}中,a1=5,a2+a5=0,则{a n}中为正数的项的个数为.答案 37.(2019届北京朝阳期中文,10)已知等差数列{a n}的公差d=2,且满足a7=a3+a4,则a1= .答案 28.(2017北京朝阳期末,9)已知等差数列{a n}的前n项和为S n,若a1=2,S2=a3,则a2= ,S10= . 答案4;1109.(2018北京西城一模,10)设等差数列{a n}的前n项和为S n.若a1=2,S4=20,则a3= ,S n= . 答案6;n2+n10.(2018北京顺义二模,10)已知{a n}为等差数列,S n为其前n项和,若a1=-1,S10=35,则a20= .答案1811.(2018北京一七一中学期中,10)设S n是等差数列{a n}的前n项和,若a5+a6=8,a9+a10=24,则公差d= ,S10= .答案2;4012.(2018北京通州期中,10)在等差数列{a n}中,若a5+a7=4,a6+a8=-2,则数列{a n}的公差为,其前n项和S n的最大值为.答案-3;5713.(2017北京东城一模,11)已知{a n}为等差数列,S n为其前n项和.若S3=12,a2+a4=4,则S6= .答案 6三、解答题(共25分)14.(2018北京昌平二模,16)已知数列{a n}满足a1=1,a2=,数列{b n}是公差为2的等差数列,且b n a n+1+a n+1=na n.(1)求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.解析(1)因为b n a n+1+a n+1=na n,所以b1a2+a2=a1.又因为a1=1,a2=,所以b1=1.所以数列{b n}的通项公式是b n=2n-1,n∈N*. (2)由(1)知b n=2n-1,因为b n a n+1+a n+1=na n.所以(2n-1)a n+1+a n+1=na n,则2na n+1=na n,得=(n∈N*).所以数列{a n}是以1为首项,为公比的等比数列.故数列{a n}的前n项和S n=--=2-21-n,n∈N*.15.(2019届北京人大附中期中,16)已知等差数列{a n}中,a1=-1,前12项和S12=186.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=,记数列{b n}的前n项和为T n,若不等式T n<m,对n∈N*恒成立,求实数m的取值范围.解析(1)设等差数列{a n}的公差为d,∵a1=-1,S12=186,∴S12=12a1+d,即186=-12+66d.∴d=3.∴数列{a n}的通项公式为a n=-1+(n-1)×3=3n-4.(2)∵b n=,a n=3n-4,∴b n=-,∵当n≥2时,-==,∴{b n}是等比数列,首项b1=-=2,公比q=,∴T n=--=×-,∵×-<(n∈N*),不等式T n<m对n∈N*恒成立, ∴m≥.思路分析(1)根据等差数列{a n}中,a1=1,前12项和S12=186,求得公差,可求数列{a n}的通项公式;(2)把数列{a n}的通项公式代入b n=,证明数列{b n}是等比数列,根据等比数列求和公式求得T n,进而求得T n小于某一值恒成立,从而求得m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】 6.2 等差数列(一)
【教学目标】
知识目标:
(1)理解等差数列的定义; (2)理解等差数列通项公式. 能力目标:
(1)应用等差数列的通项公式,解决数列的相关计算,培养学生的计算技能; (2)应用等差数列知识,解决生活中实际问题,培养学生处理数据技能和分析解决问题的能力.
情感目标:
(1)经历等差数列的通项公式的探索,增强学生的创新思维; (2)关注数学知识的应用,形成对数学的兴趣。

【教学重点】
等差数列的通项公式.
【教学难点】
等差数列通项公式的推导.
【教学设计】
本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.
教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
【教师教学后记】。

相关文档
最新文档