北邮通信原理软件实验报告

合集下载

北邮通信原理软件实验报告

北邮通信原理软件实验报告

北邮通信原理软件实验报告北邮通信原理软件实验报告通信原理软实验实验报告学院:信息与通信工程学院班级:@@@@@@@@@@姓名:execf2t.sci;fs=800;//采样速率T=200;//截短时间N=T*fs;//采样点数dt=1/fs;//时域采样间隔t=[-T/2:dt:T/2-dt];//时域采样点df=1/T;//频域采样间隔f=[-fs/2:df:fs/2-df];//频域采样点数fm1=1;//待观测正弦波频率,单位KHz,下同fm2=0.5; //待观测余弦波频率fc=20;//载波频率//以上为初始化参数设置m1=sin((2*%pi)*fm1*t);//待观测正弦波部分M1=t2f(m1,fs);//傅里叶变换MH1=-%i*sign(f).*M1;//希尔伯特变换mh1=real(f2t(MH1,fs));//希尔伯特反变换m2=2*cos((2*%pi)*fm2*t);//待观测余弦波部分M2=t2f(m2,fs);//傅里叶变换MH2=-%i*sign(f).*M2;//希尔伯特变换mh2=real(f2t(MH2,fs));//希尔伯特反变换s1=(1+(m1+m2)/abs(max(m1+m2))).*cos((2*%pi)*fc*t); //AM信号时域表达式S1=t2f(s1,fs);//AM信号频域表达式s2=(m1+m2).*cos((2*%pi)*fc*t);//DSB-SC信号时域表达式S2=t2f(s2,fs);//DSB-SC信号频域表达式s3=(m1+m2).*cos((2*%pi)*fc*t)-(mh1+mh2).*sin((2*%pi)*fc*t);//SSB信号时域表达式,以上边带为例S3=t2f(s3,fs);//SSB信号上边带频域表达式//以上是仿真计算部分//以下为绘图部分//AM信号xset(window,1)plot(f,abs(S1))title(AM信号频谱)xlabel(f)ylabel(S(f))mtlb_axis([-25,25,0,max(abs(S1))]); xset( window,2)plot(t,s1)title(AM信号波形)xlabel(t)ylabel(s(t))mtlb_axis([-3,3,-3,3]);//DSB-SC信号window,3)plot(f,abs(S2))title(DSB-SC信号频谱)xlabel(f)ylabel(S(f))mtlb_axis([-25,25,0,max(abs(S2))]); xset( window,4)plot(t,s2)title(DSB-SC信号波形)xlabel(t)s(t))mtlb_axis([-1,4,-3,3]);//SSB信号(以上边带为例)xset(window,5)plot(f,abs(S3))title(SSB信号频谱)xlabel(f)ylabel(S(f))mtlb_axis([-25,25,0,max(abs(S3))]) xset(window,6)plot(t,s3)title(SSB信号波形)xlabel(t)ylabel(s(t))mtlb_axis([0,6,-3,3]) 2、产生的波形图:1)AM信号:2)AM信号频谱:3)DSB-SC信号:4)DSB-SC信号的频谱:5)SSB信号波形:6)SSB信号频谱:3、实验心得:做这个实验时的我的理论知识已经准备得比较充分了,所以难点主要在编程方面。

北邮通信原理软件实验报告

北邮通信原理软件实验报告
(4)频带利用率η=2/(1+α) B/Hz
3、实验模块连接图
图三模块连接图
各个模块参数设置:
模块
参数
PN序列发生器
幅度1V,频率10HZ,维度2
延时器
0.77Sec
图十滤波器阶数不足时的波形图
图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。
根据以上实验结果,我们可知,由于采样频率接近于2fm,所以当滤波器的带外特性不好,衰减过慢的时候,高频的信号不能保证完全滤除。这时候恢复的信号也是失真的。(原信号的最高频率 =14hz)
图九抽样脉冲的脉宽加大后波形图
图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。
根据以上实验结果,我们可知,抽样序列的脉宽过大时,会导致采样信号的时间离散型不好,但是根据新的这样的采样信号,还是可以恢复出原信号的。(原信号的最高频率 =14hz)
(5)当抽样频率为30hz,低通滤波器的阶数降低(降低到2阶)
根据以上实验结果,我们可知,当 (本处为略大于)时,可以由抽样序列唯一的恢复原信号。(原信号的最高频率 =14hz)
(2)当抽样频率为40hz, 时
图七采样频率为40hz波形图
图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。
根据以上实验结果,我们可知,当 时,可以由抽样序列唯一的恢复原信号。(原信号的最高频率 =14hz)
五、实验讨论
从实验结果可以看出,抽样频率为30hz,原信号的频率为14hz,满足抽样定理。抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同,可以无失真的恢复原信号。

北邮通信原理软软件实验报告

北邮通信原理软软件实验报告

实验八:一、实验目的假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM,DSB-SC、SSB信号,观察已调信号的波形和频谱。

二、实验模型基带信号m(t)可以分成两个信号的叠加,分别记为m1(t),m2(t)。

借助公式s DSB-SC=m(t)cos(2*pi*fc*t),S AM=(1+m(t))cos(2*pi*fc*t),s SSB=m(t)cos(2*pi*fc*t)+H[m(t)]sin(2*pi*fc*t)分别仿真出m1(t)和m2(t)的信号波形,然后叠加便可以得到m(t)的波形和频谱三、仿真设计设计程序时先确定采样点、采样频率,然后分别表示出m1(t)和m2(t)的表达式,然后表示出后面仿真SSB信号所需要的两个信号的希尔伯特变换表达式。

其中表示希尔伯特变换时,采用的方法是先表示出频域的形式MH1和MH2,然后再傅里叶反变换得出对应的mh1和mh2。

对应代码如下:m1=sin(2*pi*fm1*t);M1=t2f(m1,fs);MH1=-j*sign(f).*M1;mh1=real(f2t(MH1,fs));m2(t)信号做相同的处理。

处理完信号后,就利用上述的三个公式,表示出AM、DSB-SC和SSB信号s1、s2和s3和其对应傅里叶变换得到其频谱S1 、S2、S3。

为了方便实验结果的观察与对比,将这三组图处理在一张图内,利用的函数是subplot。

四、实验结果五、分析讨论由实验结果可见,AM与DSB-SC相比,频谱多了一个离散的大载波直流分量,而且DSB-SC信号波形会有相位翻转的现象出现;而DSB-SC和SSB相比,SSB信号的频谱是DSB-SC的一个边带,本实验中采用的上边带滤波。

可见实验结果与理论结果是相一致的。

六、思考题1.如何仿真VSB系统?答:将残留边带滤波器用M文件实现,然后当做函数使用,在程序中调用。

北邮通信原理软件实验报告

北邮通信原理软件实验报告

通信原理软件实验报告学院:信息与通信工程学院班级:一、通信原理Matlab仿真实验实验八一、实验内容假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。

二、实验原理1、具有离散大载波的双边带幅度调制信号AM该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为:应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制:AM信号的频谱特性如下图所示:由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。

2、双边带抑制载波调幅(DSB—SC AM)信号的产生双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波c(t)相乘得到,如图所示:m(t)和正弦载波s(t)的信号波形如图所示:若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。

3、单边带条幅SSB信号双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。

从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。

单边带条幅SSB AM信号的其表达式:或其频谱图为:三、仿真设计1、流程图:Array2、实验结果&分析讨论实验仿真结果从上至下依次是AM信号、DSB信号、SSB信号。

从仿真结果看,AM调制信号包络清晰,可利用包络检波恢复原信号,接收设备较为简单。

北邮通信原理软件实验报告

北邮通信原理软件实验报告

北邮通信原理软件实验报告北邮通信原理软件实验报告一、实验目的本次实验旨在加深对通信原理知识的理解,并通过实际操作掌握常用通信原理技术。

二、实验内容及原理本次实验分为三项实验内容:1、FSK解调实验FSK是一种通信调制技术,在数字信号传输领域中比较常用。

FSK解调实验中,我们使用MATLAB软件编写程序,模拟FSK解调过程,了解解调过程中的基本原理。

FSK是通过改变载波频率来传输信息的调制技术。

在数字信号的传输中,我们一般将数字信号分为两种,0和1,然后分别将它们对应到两个频率上,再将这两个频率进行交错发送,接收方通过检测频率的变化来判断发送方的信息。

在FSK解调实验中,我们使用的解调技术是匹配滤波器法。

解调的过程是将接收到的信号经过低通滤波器,合并成一个信号。

2、QAM解调实验QAM是一种把两路模拟信号叠加的数字调制技术,它是组合了ASK和PSK的数字传输技术。

QAM解调实验中,通过MATLAB软件仿真的方法,模拟QAM解调过程,了解解调过程中的基本原理。

QAM技术是将两路数模合成的模拟信号进行数字化处理,将两路模拟信号进行分别调制成两个独立的数字信号,然后将这两个数字信号通过载波同步合成一个数字信号进行传输。

在QAM解调实验中,我们使用的解调技术是相干解调。

解调的过程是将接收到的信号经过相干解调器解调,得到原始的时域信号,然后通过低通滤波器进行滤波。

3、OFDM调试实验OFDM技术是目前广泛应用于高速数据传输的一种技术,它是通过将信号分成多个子载波进行传输,提高频率利用率,并实现抗多径衰落的效果。

OFDM调试实验中,我们通过软件界面和Matlab代码相结合,模拟OFDM调制和解调过程,了解其中的基本原理。

OFDM技术是通过将原始信号分成多个子信道,每个子信道独立传输,最终将其合并成整个信号。

因此,在OFDM模式下,每个子信道的公共频率就成为可利用的带宽,提高了传输率并减少了所需的带宽。

在OFDM调试实验中,我们使用了MATLAB软件进行调制和解调。

通信原理软件实验实验报告

通信原理软件实验实验报告
一般来说,任意信号是定义在时间区间上的连续函数,但所有计算机的CPU都只能按 指令周期离散运行,同时计算机也不能处理这样一个时间段。即计算机处理信号是离散运 行,有限域的。
对s(t)的解决方法:我们把按区间截短为,再对 sT (t) 按时间间隔均匀取样得到个样
值。仿真时我们用这个样值集合来表示信号。这样,将会出现一系列新的问题,现在从频 域分析其频谱的变化。显然反映了仿真系统对信号波形的分辨率,越小则仿真的精确度越 高。据通信原理所学,信号被取样以后的频谱是频率的周期函数,其重将(-inf, inf)截短 为[-T/2,T/2],再将[-T/2,T/2]的信号均匀采样,采样点数为N=T/dt
下面我们看看时域取样点数和频域取样点数的关系:
时域取样点数:
将T
=
1 ∆f
带入Nt
=
T ∆t
,
得Nt
=
1 ∆t∆f
频域取样点数:
将 Bs
=
1 2∆t
带入N
f
= 2Bs , ∆f
得N f
=
1 ∆t∆f
所以,时域取样点数与频域取样点数取值相同,这样就可以保证连续时间信号及连续 频率信号均不出现重叠失真。
来产生白高斯噪声。设仿真系统的取样点数是N,系统带宽为 ,矢量x=n0*Bs*randn(1,N) 的总功率为n0*Bs,最高频率分量为Bs,并且各样点的值互不相关,故它代表双边功率谱 密度为 的白噪声。 4.随机码序列的产生 语句round(rand(1,M))产生M个取值1、0等概的随机码。函数round表示四舍五入。函数 rand产生均匀分布于区间 的随机数。 语句sign(randn(1,M))产生M个取值 1等概的随机码。函数sign(x)对矢量x的元素取正负 号,而高斯数randn取正负值的概率是相等的. 5.数字基带传输系统

北京邮电大学通信原理软件实验报告

北京邮电大学通信原理软件实验报告

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告实验一:验证抽样定理一、实验目的1、掌握抽样定理2. 通过时域频域波形分析系统性能二、实验原理低通滤波器频率与m(t)相同三、实验步骤1. 要求三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。

2. 连接各模块完成系统,同时在必要输出端设置观察窗。

3. 设置各模块参数。

三个基带信号的频率从上到下分别设置为10hz、12hz、14hz。

抽样信号频率设置为28hz,即2*14hz。

(由抽样定理知,)将低通滤波器频率设置为14hz,则将恢复第三个信号(其频率为14hz)进行系统定时设置,起始时间设为0,终止时间设为1s.抽样率设为1khz。

3.观察基带信号、抽样后的信号、最终恢复的信号波形四、实验结果最上面的图为原基带信号波形,中间图为最终恢复的信号波形,最下面的图为抽样后的信号波形。

五、实验讨论从实验结果可以看出,正如前面实验原理所述,满足抽样定理的理想抽样应该使抽样后的波形图如同冲激信号,且其包络图形为原基带信号波形图。

抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同。

由此可知,如果每秒对基带模拟信号均匀抽样不少于2次,则所得样值序列含有原基带信号的全部信息,从该样值序列可以无失真地恢复成原来的基带信号。

讨论:若抽样速率少于每秒2次,会出现什么情况?答:会产生失真,这种失真被称为混叠失真。

六、实验建议、意见增加改变抽样率的步骤,观察是否产生失真。

实验二:奈奎斯特第一准则一、实验目的(1)理解无码间干扰数字基带信号的传输;(2)掌握升余弦滚降滤波器的特性;(3)通过时域、频域波形分析系统性能。

二、实验原理在现代通信系统中,码元是按照一定的间隔发送的,接收端只要能够正确地恢复出幅度序列,就能够无误地恢复传送的信号。

因此,只需要研究如何使波形在特定的时刻无失真,而不必追求整个波形不变。

奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。

北邮通信原理软件实验报告

北邮通信原理软件实验报告

北邮通信原理软件实验报告一、实验目的本次实验的目的是通过使用软件进行通信原理实验,探究数字通信系统的原理和性能。

二、实验内容1.利用软件计算并绘制理想低通滤波器的频率响应曲线。

2.通过软件模拟并比较维纳滤波器与理想低通滤波器的频率响应曲线。

3.仿真带通调制器和解调器在理想信道中的性能。

三、实验步骤1.理想低通滤波器的设计:(1)利用软件,设置滤波器参数,如截止频率和滤波器类型。

(2)计算并绘制理想低通滤波器的频率响应曲线。

2.维纳滤波器与理想低通滤波器的比较:(1)利用软件设置维纳滤波器参数,如截止频率和信噪比。

(2)仿真并比较维纳滤波器与理想低通滤波器的频率响应曲线。

3.带通调制器和解调器的性能仿真:(1)设置带通调制器和解调器的参数,如载波频率和调制系数。

(2)仿真并分析带通调制器和解调器的性能,如频率响应和误码率。

四、实验结果五、实验分析通过本次实验,我们对数字通信系统的原理和性能有了更深入的了解。

首先,理想低通滤波器的频率响应曲线能够更清晰地展现滤波器的特性,帮助我们更好地了解滤波器的设计和应用。

其次,维纳滤波器相对于理想低通滤波器而言,频率响应存在一定的失真,但对于噪声有一定的抑制作用。

在实际应用中,需要根据具体需求选择适合的滤波器类型。

最后,带通调制器和解调器的性能仿真结果能够帮助我们评估系统的性能,如误码率和频率响应。

通过调整调制系数和载波频率,可以使系统在一定范围内具有较好的性能。

六、实验结论通过本次实验的软件仿真,我们探究了数字通信系统的原理和性能。

实验结果显示,理想低通滤波器具有良好的频率响应特性;维纳滤波器能对噪声进行一定的抑制,但频率响应存在一定的失真;带通调制器和解调器在适当的调制系数和载波频率下能够获得较低的误码率和良好的频率响应。

总之,本次实验通过软件仿真,使我们更好地理解了通信原理中的数字通信系统及其性能分析方法,提高了我们的实践能力和理论知识水平。

通信原理软件实验实验报告

通信原理软件实验实验报告

通信原理软件实验实验报告一、实验目的通信原理是电子信息类专业的一门重要基础课程,通过通信原理软件实验,旨在加深对通信系统基本原理的理解,熟悉通信系统的基本组成和工作过程,掌握通信系统中信号的产生、传输、接收和处理等关键技术,提高分析和解决通信工程实际问题的能力。

二、实验环境本次实验使用了_____通信原理软件,运行在_____操作系统上。

实验所需的硬件设备包括计算机一台。

三、实验内容1、数字基带信号的产生与传输生成了单极性归零码、双极性不归零码、曼彻斯特码等常见的数字基带信号。

观察了不同码型的时域波形和频谱特性。

研究了码间串扰对数字基带信号传输的影响。

2、模拟调制与解调实现了幅度调制(AM)、频率调制(FM)和相位调制(PM)。

分析了调制指数、载波频率等参数对调制信号的影响。

完成了相应的解调过程,并对比了解调前后信号的变化。

3、数字调制与解调进行了二进制振幅键控(2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)的调制与解调。

探讨了噪声对数字调制系统性能的影响。

计算了不同调制方式下的误码率,并绘制了误码率曲线。

4、信道编码与译码对线性分组码(如汉明码)进行了编码和译码操作。

研究了编码增益与纠错能力之间的关系。

四、实验步骤1、数字基带信号的产生与传输实验打开通信原理软件,进入数字基带信号产生与传输模块。

设置码型参数,如码元宽度、脉冲幅度等,生成相应的数字基带信号。

利用示波器观察时域波形,使用频谱分析仪分析频谱特性。

加入不同程度的码间串扰,观察对传输信号的影响。

2、模拟调制与解调实验在软件中选择模拟调制模块,设置调制参数,如调制指数、载波频率等。

生成调制信号后,通过解调器进行解调。

使用示波器和频谱分析仪观察调制和解调前后信号的时域和频域变化。

3、数字调制与解调实验进入数字调制与解调模块,选择所需的调制方式(2ASK、2FSK、2PSK)。

设定相关参数,如码元速率、载波频率等,产生调制信号。

北邮通原软件实验报告

北邮通原软件实验报告

北邮通原软件实验报告北京邮电大学实验报告题目:班级:专业:姓名:成绩:实验1:抽样定理一.实验目的(1)掌握抽样定理(2)通过时域频域波形分析系统性能二.实验原理抽样定理:设时间连续信号m(t),其最高截止频率为fm ,如果用时间间隔为T抽样过程原理图(时域)重建过程原理图(频域)具体而言:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。

根据这一特性,可以完成信号的模-数转换和数-模转换过程。

三.实验步骤1.将三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。

实现验证抽样定理的仿真系统,同时在必要的输出端设置观察窗。

如下图所示2.设置各模块参数三个基带信号频率从上至下依次为10hz、20hz、40hz。

抽样信号频率fs设置为80hz,即2*40z。

(由抽样定理知,fs≥2fH)。

低通滤波器频率设置为40hz 。

设置系统时钟,起始时间为0,终止时间设为1s.抽样率为1khz。

3.改变抽样速率观察信号波形的变化。

四.实验结果五.实验建议、意见将抽样率fs设置为小于两倍fh的值,观察是否会产生混叠失真。

实验2:验证奈奎斯特第一准则一.实验目的(1)理解无码间干扰数字基带信号的传输;(2)掌握升余弦滚降滤波器的特性;(3)通过时域、频域波形分析系统性能。

二.实验原理基带传输系统模型奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。

无码间干扰基带传输时,系统冲击响应必须满足x(nTs)=1(n=0); x(nTs)=0(n=!0)。

北邮通原软件实验

北邮通原软件实验

实验一实验目的:假设基带信号为m(t)=sin(2000πt)+2cos(1000πt),载波频率为20kHz,请仿真出AM,DSB-SC,SSB信号,观察已调信号的波形和频谱。

1.AM信号:(1)信号的表达式(3)流程图AM信号s= (1+0.3*m).*cos(2*pi*fc*t);傅氏变换S= t2f(s,fs)绘制时域波形及频谱(2)源代码%AM信号的产生fs= 800; %采样频率KHzT= 200; %截短时间msN= T*fs; %采样点数dt= 1/fs;t= [-T/2:dt:T/2-dt];df= 1/T;f=[-fs/2:df:fs/2-df];fm= 1; % kHzfc= 20; % kHzm= sin(2*pi*fm*t)+2*cos(1*fm*pi*t);s= (1+0.3*m).*cos(2*pi*fc*t); %AM 信号S= t2f(s,fs);figure(1)plot(f,abs(S1))title('AM信号频谱')xlabel('f')ylabel('S(f)')axis([-25,25,0,max(abs(S1))]);%xset('window',2)figure(2)plot(t,s1)title('AM信号波形')xlabel('t')ylabel('s(t)')axis([-3,3,-3,3]);(4)实验结果-3-2-10123-3-2-1123AM 信号波形t(ms)s (t )-25-20-15-10-505101520250102030405060708090100AM 信号频谱f(kHz)S (f )2.DSB-SC信号(1)信号的产生和表达式(2)流程图DSC-SB信号s= m.*cos(2*pi*fc*t);傅氏变换S= t2f(s,fs)绘制时域波形及频谱(3)源代码fs= 800; %KHzT= 200; %msN= T*fs;dt= 1/fs;t= [-T/2:dt:T/2-dt];df= 1/T;f=[-fs/2:df:fs/2-df];fm= 1; % kHzfc= 20; % kHzm= sin(2*pi*fm*t)+2*cos(1*fm*pi*t);s= m.*cos(2*pi*fc*t); %DSB-SC 信号S= t2f(s,fs);figure(1)plot(f,abs(S2))title('DSB-SC信号频谱')xlabel('f')ylabel('S(f)')axis([-25,25,0,max(abs(S2))]);figure(2)plot(t,s2)title('DSB-SC信号波形')xlabel('t')ylabel('s(t)')axis([-1,4,-3,3]);(4)实验结果()()()()()cosc c cs t m t c t m t A tωϕ==+-1-0.500.511.522.533.54-3-2-1123DSB-SC 信号波形t(ms)s (t )-25-20-15-10-50510152025DSB-SC 信号频谱f(kHz)S (f )2 DSC-SB 频谱3.SSB 信号(1)信号的产生和表达式(2)流程图(3)源代码: %SSB 信号的产生fs= 800; %KHz T= 200; %ms N= T*fs; dt= 1/fs;t= [-T/2:dt:T/2-dt]; df= 1/T;f=[-fs/2:df:fs/2-df];fm= 1; % kHz fc= 20; % kHz m= sin(2*pi*fm*t)+2*cos(1*fm*pi*t); M= t2f(m,fs);MH=-j*sign(f).*M; %在频域进行希尔伯特变换 mh= real(f2t(MH,fs)); %希尔伯特变换后的信号 s= m.*cos(2*pi*fc*t)-mh.*sin(2*pi*fc*t); %SSB signal S= t2f(s,fs); figure(1)plot(f,abs(S3))title('SSB 信号频谱')xlabel('f') ylabel('S(f)')axis([-25,25,0,max(abs(S3))]) figure(2) plot(t,s3)title('SSB 信号波形') xlabel('t') ylabel('s(t)') axis([0,6,-3,3])()()()()()()()()cos 2sin 2cos 2sin 2DSB SC AM c c c c SSB c c c c s t s t s t A m t f t A m t f ts t A m t f t A m t f tππππ--=-=-=下上(4)实验结果0123456-3-2-1123SSB 信号波形t(ms)s (t )-25-20-15-10-50510152025020406080100120140160180200SSB 信号频谱f(kHz)S (f )实验二实验目的:假设基带信号为m(t)=sin(2000πt)+2cos(1000πt)+4sin(500πt+π/3),载波频率为40kHz,仿真产生FM信号,观察波形与频谱,并与卡松公式作对照。

北邮通原软件实验报告

北邮通原软件实验报告

《通信原理软件》实验报告学院:信息与通信工程学院专业:通信工程姓名:学号:班级:班级序号:实验二时域仿真精度分析一、实验目的1. 了解时域取样对仿真精度的影响2. 学会提高仿真精度的方法二、实验原理一般来说,任意信号s(t)是定义在时间区间(-∞,+∞)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理(-∞,+∞)这样一个时间段。

为此将把s(t)按区间[-T/2,+T/2]截短为St(t).按时间间隔△t均匀取样,得到的取样点数为N=T/△t仿真时用这个样值集合来表示信号s(t)。

△t 反映了仿真系统对信号波形的分辨率,△t越小则仿真的精确度越高。

据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,其重复周期是1/△t。

如果信号的最高频率为f H,那么必须有f H<=1/2△t才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。

设Bs=1/2△t则称Bs为仿真系统的系统带宽。

如果在仿真程序中设定的采样间隔是△t,那么不能用此仿真程序来研究带宽大于Bs的信号或系统。

换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于 2*Bs,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。

也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信号。

三、实验内容将模块按下图连接:参数设置:四、实验结果修改参数后结果为:五、思考题1. 观察分析两图的区别,解释其原因可以看出信号2的波形严重失真,这是因为第二次的时钟设置是0.3,第一次的时钟设置是0.01;在第一次的时候,信号的采样频率是f=1/t=1/0.01=100,每秒采样点数为100;第二次的采样频率为f=1/0.3=33.3,每秒采样点数严重减少为33.3个;而由奈奎斯特抽样定理知道,这个采样频率必须满足以下条件:fH<=1/2△t此时,根据计算可知,真实fH = 20hz,fH1=50hz,fH 2=0.5*33.3,约为16.6. 故信号失真了。

北邮通信原理软件实验报告

北邮通信原理软件实验报告

北邮通信原理软件实验报告以下是为大家整理的北邮通信原理软件实验报告的相关范文,本文关键词为北邮,通信,原理,软件,实验,报告,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。

通信原理软件实验报告学院:信息与通信工程学院班级:学号:班内序号:姓名:1/63一、通信原理matlab仿真实验实验八一、实验内容假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20khz,请仿真出Am、Dsb-sc、ssb信号,观察已调信号的波形和频谱。

二、实验原理1、具有离散大载波的双边带幅度调制信号Am该幅度调制是由Dsb-scAm信号加上离散的大载波分量得到,其表达式及时间波形图为:应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制:Am信号的频谱特性如下图所示:由图可以发现,Am信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。

2/632、双边带抑制载波调幅(Dsb—scAm)信号的产生双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波c(t)相乘得到,如图所示:m(t)和正弦载波s(t)的信号波形如图所示:若调制信号m(t)是确定的,其相应的傅立叶频谱为m(f),载波信号c(t)的傅立叶频谱是c(f),调制信号s(t)的傅立叶频谱s(f)由m(f)和c(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc 处,若模拟基带信号带宽为w,则调制信号带宽为2w,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。

3、单边带条幅ssb信号双边带抑制载波调幅信号要求信道带宽b=2w,其中w是模拟基带信号带宽。

从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。

北邮通信原理软件实验报告实验-16QAM

北邮通信原理软件实验报告实验-16QAM

实验二、16QAM调制【实验目的】1、学会使用SystemView观察信号的星座图与眼图,分析性能2、学习正交幅度调制解调的基本原理。

【实验原理】1、正交幅度调制QAM是由两个正交载波的多电平振幅键控信号叠加而成的,因此正交幅度调制是一种频谱利用率很高的调制方式。

同时利用已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息在一个信道中传输。

2、调制原理3、解调原理4、眼图眼图的“眼睛”的大小代表码间串扰的情况。

“眼睛”张开的越大,表示码间串扰越小;反之表示码间串扰越大。

5、星座图我们通常把信号矢量端点的分布图称为星座图。

它对于调制方式的误码率有很直观的判断。

【实验内容】1、在system view软件中做出仿真连线图。

2、设置参数,观察调制信号波形3、眼图设置:在SystemView中,在分析窗口单击图标,选择style,单击slice,并且设置合适的起点和终点的时间切片,然后选择信号后,得到眼图。

4、星座图设置:在SystemView中,在分析窗口中单击图标,选择style,单击scatter plot,在右侧的窗口中选择所需要观察的信号波形,确定,得到星座图。

5、设置无噪声和有噪声情况参数,对眼图和星座图进行对比分析。

【实验结果】1、无噪声情况下,即序列均值为0,方差为0。

原基带信号:调制信号(同向)(正交)无噪眼图:无噪星座图:2、有噪声:均值为0,方差为1 眼图(有噪):星座图(有噪):【结果分析】从上述实验结果图中可以看出:1、原基带信号经过调制后,同向正交都满足。

2、在无噪情况下,眼图较清晰,眼睛睁开较大,表明码间干扰较小;星座图能量较规整,误码率相对较低。

3、在有噪情况下,眼图较,眼睛睁开较小,表明码间干扰较大;星座图能量杂乱,误码率较高。

4、可见,噪声对系统性能有一定影响。

【心得体会】通过这次实验,我在通原理论的基础上又比较系统地了解了16QAM的调制与解调,在做实验仿真时总会遇到各种问题,在这种情况下就会努力找到最饥饿路径解决问题,无形间提高了我们的动手和动脑能力,并且同学之间还能相互探讨,相互促进吧。

北邮通信基础学习知识原理软件实验报告

北邮通信基础学习知识原理软件实验报告

北邮通信原理软件实验报告题目:基于SYSTEMVIEW通信原理实验报告目录实验一:抽样定理 (2)一、实验目的 (2)二、实验原理 (2)三、实验步骤 (4)四、实验结果 (6)五、实验讨论 (9)实验二:验证奈奎斯特第一准则 (10)一、实验目的 (10)二、实验原理 (10)三、实验步骤 (13)四、实验结果 (14)五、实验讨论 (18)实验三:16QAM调制与解调 (21)一、实验目的 (21)二、实验原理 (22)三、实验步骤 (25)四、实验结果 (27)五、实验讨论 (33)实验意见与建议 (34)实验一:抽样定理一、实验目的1、验证抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

2、降低或提高抽样频率,观察对系统的影响二、实验原理抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

抽样定理示意图:图一抽样定理示意图从图中可以看出,当f c≥2f m时,不会发生频域混叠现象,使用一个匹配的低通滤波器即可无失真的恢复出原信号,当f c<2f m时,会发生频域混叠现象,这时,已经无法将原信号恢复出来。

实验所需模块连接图如下所示:图二模块连接图仿真时长设置为1Sec,仿真速率为1000Hz。

首先利用三个正弦波信号源产生三个正弦波,其频率分别为10hz,12hz,14hz,再利用脉冲发生器产生抽样脉冲,将脉宽设置为1e-3sec,脉冲频率分别设置为20hz,30hz,40hz。

对三个信号做加法,所得信号的最高频率为14hz,然后令该信号与抽样脉冲相乘,得到的结果即为时间离散的抽样序列。

最后将抽样序列通过五阶巴特沃斯低通滤波器,截止频率14hz,将恢复信号与原信号作比较,比较不同抽样频率带来的影响。

北邮通信原理软件实验(包含一部分思考题)(中)讲解

北邮通信原理软件实验(包含一部分思考题)(中)讲解
ylabel ( "s( t ) (V)" )
mtlb_axis( [0,4, -8,+8] )
xset ( "window" ,8)
plot ( f ,abs(S3) )
title( "ssb调制信号的频谱图")
xlabel ("f (kHz)" )
ylabel ("|S(f)|(V/Hz)")
实验结果:
xlabel ("t (ms)")
ylabel ( "s1( t ) (V)" )
mtlb_axis( [0,4, -5,+5] )
xset ( "window" ,4)
plot ( f ,abs(S1) )
title( "dsb-sd调制信号的频谱图")
xlabel ("f (kHz)" )
ylabel ("|S(f)|(V/Hz)")
plot(t,s)
title("FM信号波形")
xlabel("t(ms)")
ylabel("V")
mtlb_axis([0,4,-2,2])
xset("window",4) //FM信号频谱
plot(f,abs(S))
title("FM信号频谱")
xlabel("f(kHz)")
ylabel("V")
2.学习SCICOM模块的使用。
【实验原理】
用二进制数字基带信号去控制正弦波载波的载频称为二进制移频键控。其对应的表达

北京邮电大学通信原理软件实验报告

北京邮电大学通信原理软件实验报告

《通信原理软件》实验报告专业通信工程班级 2011211118姓名朱博文学号 2011210511报告日期 2013.12.20基础实验:第一次实验实验二时域仿真精度分析一、实验目的1. 了解时域取样对仿真精度的影响2. 学会提高仿真精度的方法二、实验原理一般来说,任意信号s(t)是定义在时间区间上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。

为此将把s(t)截短,按时间间隔均匀取样,仿真时用这个样值集合来表示信号 s(t)。

△t反映了仿真系统对信号波形的分辨率,△t越小则仿真的精确度越高。

据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。

设为仿真系统的系统带宽。

如果在仿真程序中设定的采样间隔是,那么不能用此仿真程序来研究带宽大于的信号或系统。

换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*f,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。

也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信号。

三、实验容1、方案思路:通过改变取点频率观察示波器显示信号的变化2、程序及其注释说明:3、仿真波形及频谱图:Period=0.01Period=0.34、实验结果分析:以上两图区别在于示波器取点频率不同,第二幅图取点频率低于第一幅图,导致示波器在画图时第二幅图不如第一幅图平滑。

四、思考题1.两幅图中第一幅图比第二幅图更加平滑,因为第一幅图中取样点数更多2.改为0.5后显示为一条直线,因为取点处函数值均为0实验三频域仿真精度分析一、实验目的理解 DFT 的数学定义及物理含义;学会应用 FFT 模块进行频谱分析;进一步加深对计算机频域仿真基本原理以及方法的学习掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北邮通信原理软件实验报告北邮通信原理软件实验报告题目:基于SYSTEMVIEW通信原理实验报告目录实验一:抽样定理 (3)一、实验目的3二、实验原理3三、实验步骤6四、实验结果8五、实验讨论12实验二:验证奈奎斯特第一准则 (13)一、实验目的13二、实验原理14三、实验步骤17四、实验结果18五、实验讨论23实验三:16QAM调制与解调 (27)一、实验目的27二、实验原理28三、实验步骤32四、实验结果35五、实验讨论42实验意见与建议 (43)实验一:抽样定理一、实验目的1、验证抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

2、降低或提高抽样频率,观察对系统的影响二、实验原理抽样定理:设时间连续信号f(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

抽样定理示意图:图一抽样定理示意图从图中可以看出,当时,不会发生频域混叠现象,使用一个匹配的低通滤波器即可无失真的恢复出原信号,当时,会发生频域混叠现象,这时,已经无法将原信号恢复出来。

实验所需模块连接图如下所示:图二模块连接图仿真时长设置为1Sec,仿真速率为1000Hz。

首先利用三个正弦波信号源产生三个正弦波,其频率分别为10hz,12hz,14hz,再利用脉冲发生器产生抽样脉冲,将脉宽设置为1e-3sec,脉冲频率分别设置为20hz,30hz,40hz。

对三个信号做加法,所得信号的最高频率为14hz,然后令该信号与抽样脉冲相乘,得到的结果即为时间离散的抽样序列。

最后将抽样序列通过五阶巴特沃斯低通滤波器,截止频率14hz,将恢复信号与原信号作比较,比较不同抽样频率带来的影响。

三、实验步骤(1)按照实验所需模块连接图,连接各个模块(2)设置各个模块的参数:①信号源部分:我们使用三个正弦波信号源产生三个正弦波,其频率分别为10hz,12hz,14hz图三信号源设置示意图②抽样脉冲发生器:利用脉冲发生器产生抽样脉冲,将脉宽设置为1e-3sec,脉冲频率设置为30hz图四抽样脉冲发生器设置示意图③低通滤波器:五阶巴特沃斯低通滤波器,截止频率14hz图五低通滤波器设置示意图(3)观察输出波形,更改抽样脉冲发生器的频率,比较试验结果。

四、实验结果(1)当抽样频率为30hz,时图六采样频率为30hz波形图图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。

根据以上实验结果,我们可知,当(本处为略大于)时,可以由抽样序列唯一的恢复原信号。

(原信号的最高频率=14hz)(2)当抽样频率为40hz,时图七采样频率为40hz波形图图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。

根据以上实验结果,我们可知,当时,可以由抽样序列唯一的恢复原信号。

(原信号的最高频率=14hz)(3)当抽样频率为20hz,时图八采样频率为20hz波形图图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。

根据以上实验结果,我们可知,当时,输出信号发生较大的失真,已经无法恢复原信号。

(原信号的最高频率=14hz)(4)当抽样频率为30hz,将抽样脉冲的脉宽加大(15e-3sec)图九抽样脉冲的脉宽加大后波形图图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。

根据以上实验结果,我们可知,抽样序列的脉宽过大时,会导致采样信号的时间离散型不好,但是根据新的这样的采样信号,还是可以恢复出原信号的。

(原信号的最高频率=14hz)(5)当抽样频率为30hz,低通滤波器的阶数降低(降低到2阶)图十滤波器阶数不足时的波形图图中,最上方波形为加法器的输出波形,中间波形为低通滤波器的输出波形,下方波形为乘法器的输出波形。

根据以上实验结果,我们可知,由于采样频率接近于2fm,所以当滤波器的带外特性不好,衰减过慢的时候,高频的信号不能保证完全滤除。

这时候恢复的信号也是失真的。

(原信号的最高频率=14hz)五、实验讨论从实验结果可以看出,抽样频率为30hz,原信号的频率为14hz,满足抽样定理。

抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同,可以无失真的恢复原信号。

当抽样频率为40hz时,依然满足抽样定理,此时也可以无失真的恢复原信号。

当抽样频率为20hz时,不满足抽样定理,此时由于频域混叠现象,输出信号发生了较大的失真,不可以无失真的恢复原信号。

由此可知,如果每秒对基带模拟信号均匀抽样不少于次,则所得样值序列含有原基带信号的全部信息,从该样值序列可以无失真地恢复成原来的基带信号。

验证了抽样定理。

另外,要选择过渡带宽较小的滤波器,减小信号带外因素的影响。

通过本次实验,我加深了对于抽样定理的理解,也初步掌握了SystemView的使用,对于通信原理的课程学习带来很大的帮助。

实验二:验证奈奎斯特第一准则一、实验目的1、验证奈奎斯特第一准则,观察当系统不符合奈奎斯特准则时,出现的码间干扰现象。

2、 逐渐加入噪声,观察噪声和码间干扰对解调的影响。

加深对课本知识的理解。

二、 实验原理1、 奈奎斯特第一准则图一 奈奎斯特定理示意图满足无码间串扰传输的基带传输特性应为:()()⎪⎪⎩⎪⎪⎨⎧>≤=+=∑∞-∞=s s i s eq T T C T i H H πωπωπωω,0,)2(常数其物理意义是,把传递函数在f 轴上以为间隔切开,然后分段沿轴平移到区间内,将它们叠加起来,结果应当为一水平直线段(某一常数) 。

2、 升余弦滚降信号图二 升余弦滤波器频谱特性升余弦滚降信号:其频域过渡特性是以为中心,具有奇对称升余弦状。

(简称升余弦信号)升余弦滚降信号数学表达式:()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+≥+<≤-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-<=s s s s ss s T T T T T T T H παωπαωπαωπαπαωω1,011,2sin 121,T )(s升余弦滚降系统特点:(1) 满足抽样值上无串扰的传输条件;(2) 尾部衰减较快(与成反比),有利于减小码间串扰和位定时误差的影响;(3)带宽B=(1+α)/2Ts Hz ;(4)频带利用率η=2/(1+α) B/Hz3、实验模块连接图图三模块连接图各个模块参数设置:仿真时长设置为30Sec(观察眼图),仿真速率1000Hz。

三、实验步骤(1)按照实验所需模块连接图,连接各个模块(2)设置各个模块的参数:①信号源部分:PN序列发生器产生双极性NRZ序列,频率10HZ图四信号源设置示意图②升余弦滤波器:滚降系数0.5,符号速率10HZ的升余弦。

图五升余弦滤波器设置示意图③限带信道:低通FIR滤波器,Fc=10HZ。

图六 FIR滤波器设置示意图(3)观察输出波形,更改PN脉冲发生器的频率,比较试验结果。

(4)逐渐加入噪声,观察信号波形图和眼图。

四、实验结果(1)当信号频率为10hz,图七信号频率10hz波形图图中,上方波形为信源的输出波形,下方波形为判决之后的输出恢复波形。

根据以上实验结果,当符合奈奎斯特第一准则时,基带信号通过限带信道不会受到码间干扰,可以无误码的恢复原信号。

图八信号频率10hz眼图通过观察上图,我们可以发现,眼睛张开有一定角度,系统误码不严重。

(2)当信号频率为15HZ,不满足奈奎斯特第一准则时图九信号频率15hz波形图图中,上方波形为信源的输出波形,下方波形为判决之后的输出恢复波形。

我们可以看到,在图中画圈的地方,有码间干扰造成的误码。

根据以上实验结果,当不符合奈奎斯特第一准则时,基带信号通过限带信道会受到码间干扰,无法无误码的恢复原信号。

图十信号频率15hz眼图由这幅图可以看出,当基带信号速率为15hz时,眼睛完全闭合,系统误码严重。

(3)当基带信号频率为10HZ时,加入噪声图十一噪声标准差为0.2V波形图图十二噪声标准差为0.2V眼图图十三噪声标准差为0.6V波形图图十四噪声标准差为0.6V眼图以上两图中,左上为基带信号,左中为解调信号,左下为经过升余弦滤波器的调制信号,右上为噪声信号,右中为叠加了噪声的调制信号图,右下为经过低通滤波器的接收信号图。

由以上两图,我们可以看出,当噪声功率不是很大时,眼睛还有一定的张开,系统误码不严重,当噪声功率太大时,眼睛接近完全闭合,整个系统的误码率上升。

五、 实验讨论奈奎斯特第一定理:满足无码间串扰传输的基带传输特性应为:()()⎪⎪⎩⎪⎪⎨⎧>≤=+=∑∞-∞=ss i s eq T T C T i H H πωπωπωω,0,)2(常数其中H(w)为整个系统的传递函数。

从本次实验结果可以看出,当整个系统的传递函数符合奈奎斯特第一定理时,系统不存在码间干扰,收端可以无误码的解调出原信号。

当发端的速率提高(不符合奈奎斯特定理)时,信号的眼图会逐渐闭合,当发端速率继续提高时,眼图将会完全闭合,这给整个系统带来了很大的误码率。

另外,在实验中我发现PN序列发生器产生的是双极性NRZ序列,如下图所示:图十五 PN序列发生器波形图这种序列的频谱带外特性是无限宽的,如图所示:图十六 PN序列发生器频谱图这种信号是不符合奈奎斯特第一定理的,奈奎斯特第一定理要求的输入序列应为随机的冲激序列,成型滤波器使用升余弦滤波器。

但是PN序列的成型滤波器为不归零的矩形脉冲。

正确的系统框图如下图所示:图十七数字基带信号限带传输框图其中,输入序列应为冲激序列,不应为双极性NRZ信号。

符合要求的随机冲激序列如下图所示:图十八随机双极性冲激序列波形图下面提供一种可供参考的随机冲激序列产生方法:图十九随机冲激序列产生方法图使用PN序列发生器产生双极性NRZ序列(10Hz)。

使用脉冲序列发生器产生序列(10Hz),将脉宽设置到很低,这样可以模拟出双极性冲激序列的效果。

使用这种序列通过升余弦滤波器,再通过限带信道,才能够满足奈奎斯特第一定理,更好的验证这个实验。

整个电路连接图:图二十改正后电路模块连接图实验三:16QAM调制与解调一、实验目的1、熟悉16QAM信号的调制与解调,掌握SYSTEMVIEW软件中,观察眼图与星座图的方法。

2、强化SYSTEMVIEW软件的使用,增强对通信系统的理解。

二、实验原理1、16QAM16QAM是指包含16种符号的QAM调制方式。

16QAM 调制原理方框图:图一 16QAM调制框图16QAM解调原理方框图:调框图16QAM 是用两路独立的正交 4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。

相关文档
最新文档