上海市徐汇区2022届数学七年级上学期期末调研试卷模拟卷二

合集下载

上海市2022-2023学年七年级上学期数学期末典型试卷2

上海市2022-2023学年七年级上学期数学期末典型试卷2

2022-2023学年上学期上海七年级初中数学期末典型试卷2一.选择题(共10小题)1.(2021秋•杨浦区校级期末)小杰将5000元钱存入银行,年利率为2.75%,存满三年,那么到期后小杰可以拿到本利和(不计利息税)为( )元. A .5000×2.75% B .5000×2.75%×3 C .5000+5000×2.75%D .5000+5000×2.75%×32.(2022春•杨浦区校级期末)下列说法中,正确的是( ) A .所有正数都是整数B .若一个数的绝对值是它本身,则这个数一定是零C .负数的绝对值是它的相反数D .任何有理数都有倒数3.(2021秋•普陀区期末)下列分数中,能化成有限小数的是( ) A .76B .1352C .57D .1094.(2021秋•普陀区期末)下列说法中正确的是( ) A .a+b 3a是整式B .多项式2x 2﹣y 2+xy ﹣4x 3y 3按字母x 升幂排列为﹣4x 3y 3+2x 2+xy ﹣y 2C .2x 是一次单项式D .a 3b +2a 2b ﹣3ab 的二次项系数是35.(2019春•嘉定区期末)如果受季节影响,某种商品的原价为100元,按降价a %出售,那么该商品的售价可表示为( ) A .1001−a%B .100(1﹣a %)C .1001+a%D .100(1+a %)6.(2018秋•松江区期末)单项式﹣2x 3y 的系数与次数依次是( ) A .﹣2,3B .﹣2,4C .2,3D .2,47.(2020秋•虹口区校级期末)将方程2x−13=1−x+24去分母,得( )A .4(2x ﹣1)=1﹣3(x +2)B .4(2x ﹣1)=12﹣(x +2)C .(2x ﹣1)=6﹣3(x +2)D .4(2x ﹣1)=12﹣3(x +2)8.(2021春•徐汇区校级期末)某运输队运煤,第一天运了总量的27,第二天运煤恰好是第一天的23,还剩下14吨,设一共运煤x 吨,则可以列出方程( )A .27x +23x +14=x B .27x +27x ×23=x −14 C .27x +23(1−27)x =x −14D .27x +27x ÷23+14=x9.(2022春•杨浦区校级期末)如图,AC >BD ,比较线段AB 与线段CD 的大小( )A .AB =CDB .AB >CDC .AB <CDD .无法比较10.(2022春•杨浦区校级期末)如图,点B 在点A 的( )方向.A .北偏东35°B .北偏东55°C .北偏西35°D .北偏西55°二.填空题(共10小题)11.(2021秋•杨浦区校级期末)求比值:0.25平方米:100平方分米 . 12.(2022春•闵行区期末)比较大小:﹣|﹣358| ﹣(﹣3.62).13.(2022春•杨浦区校级期末)如果一个数的平方是14,那么这个数是 .14.(2021秋•宝山区期末)用代数式表示:x 和y 的平方和 .15.(2021秋•浦东新区期末)如果x 3y m 与﹣4x ﹣n y 是同类项,那么n 2﹣m = .16.(2021秋•普陀区期末)用代数式表示“x 的2倍与y 的差”为 .17.(2021春•松江区期末)数轴上点A 表示的数是1,点B 表示的数是﹣3,原点为O ,若点A 和点B 分别以每秒2个单位长度的速度和每秒5个单位长度的速度同时向右运动,要使OB =2OA ,要经过 秒. 18.(2021春•浦东新区校级期末)若m ﹣4与m +2互为相反数,则m = .19.(2022春•闵行区期末)如图,在长方体ABCD ﹣EFGH 中,既与平面ADHE 垂直,又与棱AD 异面的棱是 .20.(2022春•闵行区期末)有6个棱长为1的小正方体,把它们拼成一个大的长方体,那么这个长方体的表面积为 .三.解答题(共10小题)21.(2022春•杨浦区校级期末)计算:16÷(−223)2−(−12)×16−1.75.22.(2021秋•普陀区期末)一件上衣的定价为420元,后因季节性原因商家六折销售此上衣. 问:(1)打折以后这件服装的售价是多少元?(2)如果打折后这件衣服仍可盈利72元,那么该款式上衣的盈利率是多少?23.(2021秋•普陀区期末)如图,在等腰直角三角形ABC 中,∠ABC =90°,AB =AC =2,分别以AB 、AC 为直径画半圆,以点A 为圆心、AB 为半径画弧,求这三段弧所围成的图形的周长和面积.24.(2021春•虹口区校级期末)已知:A =﹣x 2﹣1,A ﹣B =﹣x 3+2x 2﹣7,求B .25.(2020秋•普陀区期末)某单位购买了30台A 、B 、C 三种型号的空调,根据下表提供的信息,解答以下问题:空调类型 A B C 购买的台数(台)12 9 每台空调的销售价(元) 18003000(1)该单位购买的A 型号的空调占购买全部空调的百分之几?(2)如果每台A 型号空调的销售价比每台C 型号空调的售价便宜10%,那么每台C 型号空调的销售价是多少元?(3)在第(2)题的条件下,为了促销,现商家搞优惠活动:若购买B 类空调的台数超过10台,超过部分,可以享受9折优惠.那么本次购买空调该单位一共需要支付多少元钱? 26.(2020秋•嘉定区期末)在某班小组学习的过程中,同学们碰到了这样的问题:“已知a+b ab =5,b+c bc=3,c+a ca=6,求ab+bc+caabc 的值”.根据已知条件中式子的特点,同学们会想起1a+1b=a+bab ,于是问题可转化为:“已知a+b ab=1a+1b=5,b+c bc=1b+1c=3,c+a ca=1c+1a=6,求ab+bc+caabc=1a+1b+1c的值”,这样解答就方便了. (1)通过阅读,试求ab+bc+caabc的值;(2)利用上述解题思路请你解决以下问题:已知m 2+1m=6,求m 4+1m 2的值.27.(2022春•杨浦区校级期末)解方程:3(y+1)4−1−y 8=1.28.(2022春•杨浦区校级期末)甲以每小时30千米的速度由A 地行驶到B 地,如果以比原速度多20%的速度行驶,则甲花了原来时间的12多20分钟到达B 地,求甲原来需要行驶的时间与A 、B 两地间的距离.29.(2022春•闵行区期末)同一天中,从9:30到10:05,分针转了几度?时针转了几度?30.(2022春•闵行区期末)如图,射线ON 、OE 、OS 、OW 分别表示从点O 出发北、东、南、西四个方向,如果∠AOE =132°,∠AOB =90°. (1)图中与∠BOE 互余的角是 . (2)①用直尺和圆规作∠AOE 的平分线OP ; ②在①所做的图形中,那么点P 在点O 方向.。

上海徐汇中学七年级上学期数学期末试卷及答案-百度文库

上海徐汇中学七年级上学期数学期末试卷及答案-百度文库

上海徐汇中学七年级上学期数学期末试卷及答案-百度文库一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 4.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=-5.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4 a b c ﹣2 3 …A .4B .3C .0D .﹣26.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A .2B .4C .6D .87.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .18.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 12.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( )A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6013.下列各组数中,互为相反数的是( )A .2与12B .2(1)-与1C .2与-2D .-1与21-14.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 18.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.已知23,9n m n a a -==,则m a =___________.21.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.22.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.23.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.25.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.26.计算7a 2b ﹣5ba 2=_____.27.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)28.方程x +5=12(x +3)的解是________. 29.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.30.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.33.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线. (1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.34.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?35.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?36.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.37.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.38.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.4.D解析:D【解析】【分析】设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x名工人生产螺栓,则(26-x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(26-x).故选:D.【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.5.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.6.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.7.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.8.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.9.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b ,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b ,故不符合题意;C. ∠1+∠4=90°,不能判定a//b ,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b ,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.10.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.11.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 12.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.13.C解析:C【解析】【分析】根据相反数的定义进行判断即可.【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.14.D解析:D【解析】试题分析:设盈利的这件成本为x 元,则135-x=25%x ,解得:x=108元;亏本的这件成本为y 元,则y -135=25%y ,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.15.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合并得,x=31a -,因为无解,所以a ﹣1=0,即a=1. 故选A . 点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题16.﹣.【解析】【分析】把x =3代入方程得到关于m 的方程,求得m 的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.18.y=﹣.【解析】【分析】根据题意得出x=﹣(3y﹣2)的值,进而得出答案.【详解】解:∵关于x的一元一次方程①的解为x=2020,∴关于y的一元一次方程②中﹣(3y﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】 根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.19.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.20.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.21.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式22.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.23.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.24.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.25.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.26.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.27.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.28.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.29.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.30.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 32.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.33.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 34.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.35.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,。

上海市徐汇区2022届数学七上期末模拟调研试卷(二)

上海市徐汇区2022届数学七上期末模拟调研试卷(二)

上海市徐汇区2022届数学七上期末模拟调研试卷(二)一、选择题 1.过平面上三点中的任意两点作直线,可作( ) A.1条B.3条C.1条或3条D.无数条2.如图,下列条件中不能确定的是OC 是AOB ∠的平分线的是()A.AOC BOC ∠=∠B.2AOB AOC ∠=∠C.AOC BOC AOB ∠+∠=∠D.1BOC AOB 2∠=∠ 3.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C 的度数为( )A .50° B.40° C.30° D.20°4.一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为( ) A .17B .18C .19D .205.在代数式π,x 2+21x +,x+xy ,3x 2+nx+4,﹣x ,3,5xy ,yx 中,整式共有( )A.7个B.6个C.5个D.4个 6.已知322x y 与32mxy -的和是单项式,则式子4m-24的值是()A.20B.-20C.28D.-27.若A 和B 都是五次多项式,则( ) A.A+B 一定是多项式B.A ﹣B 一定是单项式C.A ﹣B 是次数不高于5的整式D.A+B 是次数不低于5的整式8.下列说法正确的是( )A.在等式ab =ac 两边同除以a ,得b =cB.在等式a =b 两边同除以c 2+1,得2211a bc c =++ C.在等式b ca a=两边都除以a ,可得b =c D.在等式2x =2a -b 两边同除以2,可得x =a -b 9.把方程2113332x x x -++=-去分母正确的是( ) A .18x+2(2x-1)=18-3(x+1) B .3x+(2x-1)=3-(x+1) C .18x+2(2x-1)=18-(x+1)D .3x+2(2x-1)=3-3(x+1)10.由四舍五入得到的近似数2.6万,精确到( )A .千位B .万位C .个位D .十分位 11.﹣2的相反数是( ) A.2B.12C.﹣12D.﹣212.某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是( ) A .522.8元 B .510.4元 C .560.4元 D .472.8元 二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____ 14.表反映了平面内直线条数与它们最多交点个数的对应关系:… 15.当x =________时,代数式2x +3与2-5x 的值互为相反数. 16.某商品进价100元,提价30%后再打九折卖出,则可获利______元.17.填在如图各正方形中的四个数之间都有相同的规律,则a+b ﹣c 的值是_____.18.最小的正整数是________,最大的负整数是_______,绝对值最小的数是________. 19.如果一个零件的实际长度为a ,测量结果是b ,则称|b ﹣a|为绝对误差,b a a-为相对误差.现有一零件实际长度为5.0cm ,测量结果是4.8cm ,则本次测量的相对误差是_____. 20.实数 x ,y ,z 在数轴上的位置如图所示,则 |y| - |x| +| z|=_____.三、解答题21.如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度.22.如图在长方形ABCD 中,AB=12cm ,BC=8cm ,点P 从A 点出发,沿A→B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,用x (秒)表示运动时间. (1)求点P 和点Q 相遇时的x 值.(2)连接PQ ,当PQ 平分矩形ABCD 的面积时,求运动时间x 值.(3)若点P 、点Q 运动到6秒时同时改变速度,点P 的速度变为每秒3cm ,点Q 的速度为每秒1cm ,求在整个运动过程中,点P 、点Q 在运动路线上相距路程为20cm 时运动时间x 值.23.如图1,已知数轴上两点A 、B 对应的数分别为﹣2、5,点P 为数轴上的一动点,其对应的数为x .(1)PA= ;PB= (用含x 的式子表示)(2)在数轴上是否存在点P ,使PA+PB=10?若存在,请直接写出x 的值;若不存在,请说明理由. (3)如图2,点P 以2个单位/s 的速度从点O 向右运动,同时点A 以4个单位/s 的速度向左运动,点B 以16个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB OPMN-的值是否发生变化?请说明理由.24.(1)如图1,线段AC=6cm ,线段BC=15cm ,点M 是AC 的中点,在CB 上取一点N ,使得CN :NB=1:2,求MN 的长.(2)如图2,∠BOE=2∠AOE ,OF 平分∠AOB ,∠EOF=20°.求∠AOB .25.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x=-1,y=23. 26.先化简,再求值:2(3a 2b ﹣ab 2+1)﹣(a 2b ﹣2ab 2),其中a =﹣2,b =﹣1 27.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75). 28.计算:(1) (8)(4)(6)(1)--++---;(2)(1531264--+)×(-24)【参考答案】*** 一、选择题13.相等; 同角的余角相等 14.15,SKIPIF 1 < 0解析:15,(1)2n n-15. SKIPIF 1 < 0解析:5 316.1717.-128 18.-1 0 19.0420.x+y+z三、解答题21.AD=7.5cm.22.(1)x=323;(2)4 或20;(3)4或14.523.(1)|x+2|,|x﹣5|;(2)x=6.5或﹣3.5;(3)不发生变化,理由见解析. 24.(1)MN的长为8cm;(2)∠AOB=120°.25.-3x+y2,31 926.5a2b+2;-18. 27.1828.(1)17-;(2)4。

【沪科版】七年级数学上期末模拟试卷含答案(2)

【沪科版】七年级数学上期末模拟试卷含答案(2)

一、选择题1.为了解某校2000名学生的视力情况,从中随机调查了400名学生的视力情况,下列说法正确的是( )A .该调查的方式是抽样调查B .该调查的方式是普查C .2000名学生是样本D .样本容量是400名学生 2.下面调查中,适合采用全面调查的是( ) A .了解中国诗词大会节目的收视率B .调查市民对“垃圾分类”的认同C .了解我市初中生的视力情况D .疫情缓解学校复课调查学生体温 3.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行八十步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”把这道题翻译成现代文,意思就是:走路快的人走了80步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?设走路快的人走x 步就能追上走路慢的人,则下面所列方程正确的是( ) A .1006080x x -= B .1008060x x -= C .1006080x x += D .1008060x x += 4.下列方程变形中,正确的( )A .方程1125x x --=,去分母得5(1)210x x --= B .方程325(1)x x -=--,去括号得3251x x -=--C .方程2332t =,系数化为1得1t = D .方程3221x x -=+,移项得3221x x -=+ 5.某物美超市同时卖出了两种相同数量不同规格包装的牛奶A 和,B A 牛奶售价为69元,B 牛奶售价为34元,按成本计算,超市人员发现A 牛奶盈利了15%,而B 牛奶却亏损了15%,则这次超市是( )A .不赚不赔B .赚了3元C .赔了3元D .赚了15元 6.下列调查中,适宜采用普查方式的是( )A .调查银川市市民垃圾分类的情况B .对市场上的冰淇淋质量的调查C .对乘坐某次航班的乘客进行安全检查D .对全国中学生心理健康现状的调查 7.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条 8.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是( )A .120°B .60°C .30°D .15°9.在射线AK 上截取线段10,4AB cm BC cm ==,点,M N 分别是,AB BC 的中点,则点M 和点N 之间的距离为( )A .3cmB .5cmC .7cmD .3cm 或7cm 10.观察下面有规律的三行数: 2-,4、8-,16,32-,64,①0,6,6-,18,30-,66,② 1,2-,4,8-,16,32-,③ 设x ,y ,z 分别为第①②③行的第2020个数,则22x y z -+的值为( ) A .20202 B .2- C .0 D .211.关于几个“本身”,下列说法错误的是( )A .倒数等于它本身的数有2个B .相反数等于它本身的数有1个C .立方(三次方)等于它本身的数有2个D .绝对值等于它本身的数有无数个 12.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友二、填空题13.某养殖户养殖鸡、鸭、鹅数量的扇形统计图如图所示,则养鸡的数量占鸡、鸭、鹅总数的百分比为____.14.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.15.如图,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.经过______秒后,OM 恰好评分BOC ∠;若三角板在转动的同时,射线OC 也绕O 点以每秒5°的速度沿顺时针方向旋转一周,如图,那么经过______秒,OC 平分MON ∠?16.已知360a x -+=是关于x 的一元一次方程,则a =_______.17.如图,已知,∠AOB=120°,在∠AOB 内画射线OC ,∠AOC=40°.(1)如图1,求∠BOC 的度数;(2)如图2,OD 平分∠AOC ,OE 平分∠BOC ,求∠DOE 的度数.18.如图,正五边形五个顶点标有数字1,2,3,4,5,一只青蛙在五个顶点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若它停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从标有数字3的顶点开始跳,第一次跳后落在标有数字5的顶点上记为15a =,第二次跳后落在标有数字2的顶点上记为22a =,…,第n 次跳后所停的顶点对应的数字记为n a ,那么122021a a a +++=_______.19.已知()2230a b -++=,则()2021a b +=__________. 20.如图是一个正方体纸盒的展开图.正方体的各面标有数字 5、﹣2,3,﹣3,A ,B .相对面上的两个数互为相反数,则A =_____,B =_____.三、解答题21.设中学生体质健康综合评定成绩为x 分,满分为100分,规定85100x 为A 级,7585x <为B 级,6075x <为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a = ;(2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度; (4)若该校共有2000名学生,请你估计该校D 级学生有多少名?22.解方程:(1)32(1)4(1)x x x +-=--;(2)2152136x x --=-. 23.计算:(1)2113623⎛⎫-+⨯-⎪⎝⎭(2)48396735''︒+︒24.已知:21A by ay =--,223101B y ay y =+--,且多项式2A B -的值与字母y 的取值无关,求()()2222222132a b ab a b ab ⎡⎤+--++⎣⎦的值.25.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?26.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)求,,a b c 的值;(2)这个几何体最少有几个小立方体搭成,最多有几个小立方体搭成;(3)当2,1,2d e f ===时画出这个几何体的左视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意确定调查方式、总体、样本容量即可解题.【详解】解:A. 该调查的方式是抽样调查,正确,B. 该调查的方式是普查,错误,普查要求每一个人都应该被调查,C. 2000名学生是样本,错误,2000名学生的视力情况是总体,D. 样本容量是400名学生,错误, 样本容量是400.故选A.【点睛】本题考查了简单的统计知识,属于简单题,辨析调查方式,熟悉总体和样本容量的概念是解题关键.2.D解析:D【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、了解中国诗词大会节目的收视率,适合抽样调查;B、调查市民对“垃圾分类”的认同,适合抽样调查;C、了解我市初中生的视力情况,适合抽样调查;D、疫情缓解学校复课调查学生体温,适合全面调查;故选:D.【点睛】此题主要考查了全面调查与抽样调查,要熟练掌握,如何选择调查方法要根据具体情况而定.3.B解析:B【分析】设走路快的人要走x步才能追上走路慢的人,根据走路快的人走80步的时候,走路慢的才走了60步可得走路快的人与走路慢的人速度比为80:60,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程,然后根据等式的性质变形即可求解.【详解】设走路快的人要走x步才能追上走路慢的人,而此时走路慢的人走了6080x步,根据题意,得x=6080x+100,整理,得:100 8060 x x-=故选:B.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.4.A解析:A【分析】根据解方程的步骤逐一对选项进行分析即可.【详解】A:方程1125x x--=,去分母得()51210x x--=,故A选项符合题意;B :方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项不符合题意;C :方程2332t =,系数化为1,得94t =,故C 选项不符合题意; D :方程3221x x -=+,移项,得3212x x -=+,故D 选项不符合题意; 故选:A .【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.5.B解析:B【分析】设A 种牛奶的进价为x 元,则可得6915%,x x -=求解x 可得A 种牛奶的盈亏情况,设B 种牛奶的进价为y 元,则3415%,y y -=- 求解y 可得B 种牛奶的盈亏情况,从而可得答案.【详解】解:设A 种牛奶的进价为x 元,则6915%,x x ∴-=1.1569,x ∴=60,x =所以A 种牛奶的进价为60元,A 种牛奶挣了9元,设B 种牛奶的进价为y 元,则3415%,y y -=-0.8534,y ∴=40,y ∴=所以B 种牛奶的进价为40元,B 种牛奶亏了6元,则这次超市挣了963-=(元).故选:.B【点睛】本题考查的是一元一次方程的应用,掌握利用“售价减去进价等于进价乘以利润率”列方程是解题的关键.6.C解析:C【分析】普查的定义:为了特定目的而对所有考察对象进行的全面调查叫普查.【详解】A . 调查银川市市民垃圾分类的情况, 人数多,耗时长,应当采用抽样调查的方式,故本选项错误;B . 对市场上的冰淇淋质量的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;C.对乘坐某次航班的乘客进行安全检查, 因为调查的对象比较重要,应当采用全面调查,故本选项正确;D.对全国中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;故选:C【点睛】本题属于基础应用题,只需学生熟练掌握普查的定义,即可完成.7.B解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可.【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B.【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键.8.C解析:C【分析】根据角平分线的定义和角的和差计算即可.【详解】解:∵一副三角板所对应的角度是60°,45°,30°,90°,∴∠ABE=∠ABC+∠CBE=30°+90°=120°,∵BM平分∠ABE,∴∠ABM=12∠ABE=12×120°=60°,∴∠CBM=∠ABM−∠ABC=60°−30°=30°,故答案为:30°.【点睛】本题考查了角平分线的定义和角的计算.解题的关键是掌握角平分线的定义,明确一副三角板所对应的角度是60°,45°,30°,90°.9.D解析:D【分析】分情况讨论,点C 在线段AB 外,点C 在线段AC 上,根据中点的性质计算线段长度.【详解】解:如图,∵M 是AB 中点, ∴152BM AB cm ==, ∵N 是BC 中点, ∴122BN BC cm ==, ∴527MN BM BN cm =+=+=;如图,∵M 是AB 中点,∴152BM AB cm ==, ∵N 是BC 中点,∴122BN BC cm ==, ∴523MN BM BN cm =-=-=. 故选:D .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.10.B解析:B【分析】分别找出第①②③行的数字规律,求出每行的第2020个数,代入求解即可.【详解】解:第①行数的规律为()12nn -⋅,∴第①行的第2020个数()202020202020122x =-⋅=;第②行数是在第一行的基础上加2,其规律为()122n n -⋅+,∴第②行的第2020个数()20202020202012222y =-⋅+=+; 第③行数的规律为()1112n n ---⋅,∴第③行的第2020个数()20201202012019122z --=-⋅=-;∴()20202020202022222222x y z -+=⨯-+-=-, 故选:B .【点睛】本题考查数字的规律探索,找出每一行数的规律是解题的关键,注意三行数的内在联系. 11.C解析:C【分析】直接利用立方、相反数、倒数、绝对值的性质分别分析得出答案.【详解】解:A 、倒数等于它本身的数有2个,正确,不合题意;B 、相反数等于它本身的数有1个,正确,不合题意;C 、立方等于它本身的数有3个,故原说法错误,符合题意;D 、绝对值等于它本身的数有无数个,正确,不合题意;故选:C .【点睛】此题主要考查了相反数、倒数、绝对值等定义,正确掌握相关定义是解题关键. 12.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.25【分析】用扇形图中鸡对应的圆心角除以周角度数即可得【详解】养鸡的数量占鸡鸭鹅总数的百分比为100=25故答案为:25【点睛】本题主要考查扇形统计图扇形统计图是用整个圆表示总数用圆内各个扇形的大小解析:25%.【分析】用扇形图中鸡对应的圆心角除以周角度数即可得.【详解】养鸡的数量占鸡、鸭、鹅总数的百分比为90360100%=25%.故答案为:25%.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.14.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数然后用总人数乘以不合格所占的百分比即可【详解】解:∵学生总人数=25÷50=50(人)∴不合格的学生人数=50×(1-50-40)=5(人)解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.15.【分析】①根据角平分线的定义计算即可;②根据题意先求出∠NOC=45°然后设∠AON=3t∠AOC=30+5t根据∠AOC∠AON=∠CON构建方程即可解决问题;【详解】解:①如图2中∵∠AOC=3解析:7.5【分析】①根据角平分线的定义计算即可;②根据题意,先求出∠NOC=45°,然后设∠AON=3t,∠AOC=30+5t,根据∠AOC-∠AON=∠CON,构建方程即可解决问题;【详解】解:①如图2中,∵∠AOC=30°,∴∠BOC=180°-∠AOC=150°,∵OM 平分∠BOC ,∴∠COM=∠BOM=12∠BOC=75°, ∠AON=180°-90°-75°=15°,∴1553︒=︒s , 故答案为:5;②根据题意,如图:OC 平分∠MON ;∵∠MON=90°,∴∠NOC=1902⨯︒=45°, ∴45NOC AOC AON ∠=∠-∠=︒,∵三角板绕点O 以每秒3°的速度,射线OC 也绕O 点以每秒5°的速度旋转,设∠AON 为3t ,∠AOC 为30°+5t ,∴305345t t ︒+-=︒,解得:7.5t =,∴那么经过7.5秒,OC 平分MON ∠.故答案为:7.5.【点睛】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.16.4【分析】含有一个未知数并且未知数的次数是1的方程是一元一次方程根据定义列得a-3=1计算即可【详解】由题意得a-3=1解得a=4故答案为:4【点睛】此题考查一元一次方程的定义熟记定义是解题的关键解析:4【分析】含有一个未知数,并且未知数的次数是1的方程是一元一次方程,根据定义列得a-3=1,计算即可.【详解】由题意得a-3=1,解得a=4,故答案为:4.【点睛】此题考查一元一次方程的定义,熟记定义是解题的关键.17.(1)80°;(2)60°【分析】(1)利用两个角的和进行计算即可;(2)根据角平分线的意义和等式的性质得出∠DOE═∠AOB即可【详解】解:(1)如图1∵∠AOB=120°∠AOC=40°;∴∠解析:(1)80°;(2)60°【分析】(1)利用两个角的和进行计算即可;(2)根据角平分线的意义和等式的性质,得出∠DOE═12∠AOB即可.【详解】解:(1)如图1,∵∠AOB =120°,∠AOC =40°;∴∠BOC=∠AOB-∠AOC=120°-40°=80°;(2)如图2,∵OD 平分∠AOC ,∴∠AOD=∠COD=12∠AOC ∵OE 平分∠BOC , ∴∠BOE=∠COE=12∠BOC ∴∠DOE=∠COD+∠COE =12(∠AOC+∠BOC ) =12∠AOB =12×120° =60°.【点睛】本题考查角平分线的意义,根据图形直观,得出角的和或差,是解决问题的关键. 18.5560【分析】根据题意分析可得青蛙的跳动规律为5-2-1-34个数依次循环;又由2021=4×505+1进而可求的值【详解】解:∵由3起跳3是奇数沿顺时针下一次能跳2个点落在5上;由5起跳5是奇数解析:5560【分析】根据题意,分析可得青蛙的跳动规律为5-2-1-3,4个数依次循环;又由2021=4×505+1,进而可求122021a a a +++的值.【详解】解:∵由3起跳,3是奇数,沿顺时针下一次能跳2个点,落在5上;由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上;由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上;由1起跳,1是奇数,沿顺时针跳两个点,落在3上;由3起跳,3是奇偶数,沿顺时针跳两个点,落在5上;…,∴所停的顶点对应的数字为5-2-1-3,4个数依次循环,又∵2021=4×505+1,∴122021a a a +++=(5+2+1+3) ×505+5=5560. 故答案为:5560.【点睛】 此题主要考查了数的变化规律,得到青蛙落在数字上的循环规律是解决本题的关键. 19.-1【分析】根据非负数的性质求出ab 的值代入即可求解【详解】解:由题意得a-2=0b+3=0所以a=2b=-3所以故答案为:-1【点睛】本题考查了绝对值的非负性乘方的性质乘方运算根据题题求出ab 的值解析:-1【分析】根据非负数的性质求出a 、b 的值,代入即可求解.【详解】解:由题意得a-2=0,b+3=0,所以a=2,b=-3,所以()()()2021202120212311a b ==+=---.故答案为:-1【点睛】本题考查了绝对值的非负性,乘方的性质,乘方运算,根据题题求出a 、b 的值是解题关键.20.-5三、解答题21.(1)50;24%;(2)补全图形见解析;(3)72;(4)160名.【分析】(1)由条形统计图得到B 级学生数,由扇形统计图得B 学生数占抽取学生总数的48%,用24除以48%得所抽取学生的总数即得前一个空的答案,由条形统计图得A 级学生数,用其除以所抽取的学生总数再化成百分数即得a 的值;(2)在(1)的基础上用抽取的总学生数减去A 、B 、D 级的学生数得到C 级的学生数,即可补全条形统计图;(3)用C 级的学生数除以所抽取的总学生数乘以360°即得;(4)先算得D 级学生数占所抽取学生总数的百分比,再乘以学校的学生总数即可.【详解】(1)2448%50÷=(名),1250100%24%a =÷⨯=;(2)C 级学生数为50-12-24-4=10(名)补全条形统计图如下图(3)103607250⨯︒=︒,故填72; (4)4100%200016050⨯⨯=(名) 所以该校D 级学生有160名.【点睛】此题综合考查了条形统计图和扇形统计图,还有用样本去估计全体的相关知识.其关键是领会两种统计图各自的特点和不足,合起来运用.条形统计图能清楚反映出各部分的具体数目,用扇形统计图能直观清楚的看出各部分占全部的百分比.22.(1)2x =;(2)109x =. 【分析】(1)依次去括号,移项,合并同类项,系数化为1即可;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可.【详解】解:(1)去括号得:32244x x x +-=-+,移项得:32442x x x --=--,合并同类项得:36x -=-,系数化为1得:2x =;(2)去分母得:2(21)6(52)x x -=--去括号得:42652x x -=-+,移项得:45622x x +=++,合并同类项得:910x =,系数化为1得:109x =. 【点睛】本题考查解一元一次方程.熟练掌握解一元一次方程的步骤,并能依据等式的性质或去括号法则运用是解题关键.23.(1)-8;(2)'11614︒【分析】(1)先算乘方和括号,再算乘法,后算加法;(2)两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度,从而得出答案.【详解】解:(1)2113623⎛⎫-+⨯-⎪⎝⎭ =1966-+⨯=-9+1=-8;(2)48396735''︒+︒='11574︒='11614︒.【点睛】本题考查了有理数的混合运算,以及度、分、秒的计算,熟练掌握1°=60',160'''=是解答本题的关键.24.-2【分析】先表示出2A B -,根据已知条件得到a ,b 的值,在进行化简求值即可;【详解】解:()()2222123101A B by ay y ay y -=---+-- 2222223101by ay y ay y ----++=()()2221051b y a y =-+--因为多项式2A B -的值与字母y 无关,所以220b -=,1050a -=,解得1,2b a ==,()()2222222132a ab a b ab ⎡⎤+--++⎣⎦2222222232a b ab a b ab =+-+--2ab =-221=-⨯2=-;【点睛】本题主要考查了整式化简求值,准确计算是解题的关键.25.(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.26.(1)a=3,b=1,c=1.(2)9个,11个.(3)详见解析【解析】【分析】(1)从此几何体的主视图中可以看出,最右边为三层,从俯视图中可以看出几何体的最右边只有一行,进而得出a 的值,由主视图得中间只有一层,从俯视图看出几何体中间有两行,进而得出b 、c 的值;(2)从(1)中得出几何体的中间和最右边的小正方体的个数是确定的,由俯视图得几何体的最底层有6个小正方体,从主视图中看出最左边有两层,所以最左边第二层最少1个,最多3个,进而解答即可;(3)根据俯视图中小正方形上的数字,即可画出几何体的左视图.【详解】根据题意作图:(1)从此几何体的主视图中可以看出,几何体的最右边有三层,从俯视图中可以看出几何体的最右边只有一行,所以a=3,同理,从主视图可以看出几何体的中间只有一层,从俯视图看出几何体中间有两行,所以b=1,c=1.(2)从俯视图可得出此几何体的最底层肯定需要6个小正方体,从主视图中看出此几何体最左边有两层,所以最左边最少需要再加1个,最多需要加3;从(1)中得出几何体中中间和最右边的正方体数是确定的.所以要搭成此几何体至少需要6+1+0+2=9个正方体,最多需要6+1+1+1+0+2=11个正方体.(3)根据题意画出几何体的左视图,如图所示.【点睛】本题考查几何体的三视图画法.主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,考查学生的空间想象能力.。

2022七年级数学上学期期末测试(二)习题课件(新版)沪科版

2022七年级数学上学期期末测试(二)习题课件(新版)沪科版
谢谢收看
谢谢收看
9、 人的价值,在招收诱惑的一瞬间被决定 。22.5.622.5.6F riday, May 06, 2022 10、低头要有勇气,抬头要有低气。08:55:3908:55:3908:555/6/2022 8:55:39 AM
11、人总是珍惜为得到。22.5.608:55:3908:55May-226-May-22 12、人乱于心,不宽余请。08:55:3908:55:3908:55Fri day, May 06, 2022 13、生气是拿别人做错的事来惩罚自 己。22.5.622.5.608:55:3908:55:39May 6, 2022 14、抱最大的希望,作最大的努力。2022年5月6日 星期五 上午8时 55分39秒08:55:3922.5.6 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午8时55分22.5.608:55May 6, 2022 16、业余生活要有意义,不要越轨。2022年5月6日 星期五8时55分 39秒08:55:396 May 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午8时55分39秒 上午8时55分08:55:39一瞬间被决定 。22.5.622.5.6F riday, May 06, 2022 10、低头要有勇气,抬头要有低气。08:55:3908:55:3908:555/6/2022 8:55:39 AM
11、人总是珍惜为得到。22.5.608:55:3908:55May-226-May-22 12、人乱于心,不宽余请。08:55:3908:55:3908:55Fri day, May 06, 2022 13、生气是拿别人做错的事来惩罚自 己。22.5.622.5.608:55:3908:55:39May 6, 2022 14、抱最大的希望,作最大的努力。2022年5月6日 星期五 上午8时 55分39秒08:55:3922.5.6 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午8时55分22.5.608:55May 6, 2022 16、业余生活要有意义,不要越轨。2022年5月6日 星期五8时55分 39秒08:55:396 May 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午8时55分39秒 上午8时55分08:55:3922.5.6

上海市2022届数学七上期末模拟教学质量检测试题(二)

上海市2022届数学七上期末模拟教学质量检测试题(二)

上海市2022届数学七上期末模拟教学质量检测试题(二)一、选择题1.如图,∠1=15︒,∠AOC=90︒,点O 、D 在同一直线上,则∠2的度数为( )A.5°B.15°C.105°D.165°2.如图,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C 岛看A ,B 两岛的视角∠ACB 等于( )A.90°B.80°C.70°D.60°3.如图,AB ∥CD ,CD ⊥EF ,若∠1=125°,则∠2=( )A .25° B.35° C.55° D.65°4.某商店进了一批商品,每件商品的进价为 a 元,若要获利20%,则每件商品的零售价应定为( ) A.20%a 元B.(1﹣20%)a 元C.(1+20%)a 元D.120a+%元5.下列计算正确的是( )A.B.C.D.6.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;……,以上操作n 次后,共得到49个小正三角形,则n 的值为()A .13n =B .14n =C .15n =D .16n =7.如果x y =,那么下列等式不一定成立的是A.2239a a a -=-B.x a y a -=-C.ax ay =D.x y a a= 8.解方程:2-=-,去分母得( )A .2-2 (2x -4)= -(x -7)B .12-2 (2x -4)= -x -7C .2-(2x -4)= -(x -7)D .12-2 (2x -4)= -(x -7) 9.下列代数式中:①3x 2-1;②xyz ;③12b ;④32x y +,单项式的是( ) A .①B .②C .③D .④10.|-2|的倒数是( ) A.2B.-12C.-2D.1211.计算()115555⎛⎫-⨯÷-⨯ ⎪⎝⎭结果正确的是( ) A.25B.-25C.-1D.112.计算(﹣9)﹣(﹣3)的结果是( ) A .﹣12 B .﹣6 C .+6 D .12 二、填空题13.如图,射线OA 的方向是北偏东20°,射线OB 的方向是北偏西40°,OD 是OB 的反向延长线.若OC 是∠AOD 的平分线,则∠BOC=_____°,射线OC 的方向是_____.14.如图,已知A 、B 、C 三点在同一直线上,24AB =cm ,38BC AB =,E 是AC 的中点,D 是AB 的中点,则DE 的长______.15.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为_____元.16.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____. 17.式子“1 2 3 4... 100+++++”表示从1开始的100个连续自然数的和,由于式子比较长,100书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,如422221123430n =+++=∑,通过对以上材料的阅读,计算()2019111n n n ==+∑__________. 18.写出绝对值小于2.5的所有整数_____________.19.规定图形表示运算a b c --,图形表示运算x z y w --+.则+=________________(直接写出答案).20.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_______个正方形.第1幅 第2幅 第3幅 第4幅 三、解答题21.如图,已知A ,B 分别为数轴上的两点,点A 表示的数是﹣30,点B 表示的数是50.(1)请写出线段AB 中点M 表示的数是 .(2)现有一只蚂蚁P 从点B 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C 相遇. ①求A 、B 两点间的距离;②求两只蚂蚁在数轴上的点C 相遇时所用的时间; ③求点C 对应的数是多少?(3)若蚂蚁P 从点B 出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一只蚂蚁恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只蚂蚁在数轴上的D 点相遇,求D 点表示的数是多少?22.以直线AB 上点O 为端点作射线OC ,使∠BOC=63°,若∠DOE==90°,将∠DOE 的顶点放在点O 处. (1)如图1,若∠DOE 的边OD 放在射线OB 上,求∠COE 的度数?(2)如图2,将∠DOE 绕点O 按逆时针方向转动,使得OE 平分∠AOC ,说明OD 是∠BOC 的平分线; (3)如图3,将∠DOE 绕点O 按逆时针方向转动,使得∠COD=14∠AOE .求∠BOD 的度数.23.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x 元(x >300). (1)请用含x 代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由. (3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?24.某商场用2500元购进A ,B 两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示:(2)若A型台灯按标价的9折出售,B型台灯按标价的8折出售,则这批台灯全部售出后,商场共获利多少元?25.若(2a+4)2+|4b﹣4|=0,求a+b的值?26.数学问题:计算等差数列5,2,﹣1,﹣4……前n项的和.问题探究:为解决上面的问题,我们从最简单的问题进行探究.探究一:首先我们来认识什么是等差数列.数学上,称按一定顺序排列的一列数为数列,其中排在第一位的数称为第1项,用a1表示:排在第二位的数称为第2项,用a2表示……排在第n位的数称为第n项,用a n表示.一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差,公差通常用字母d表示.如:数列2,4,6,8,….为等差数列,其中a1=2,公差d=2.(1)已知等差数列5,2,﹣1,﹣4,…则这个数列的公差d=,第5项是.(2)如果一个数列a1,a2,a3,a4,…是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,……a n﹣a n﹣1=d,所以a2=a1+d,a3=a2+d=a1+2d,a4=a1+3d,……:由此可得a n=(用a1和d的代数式表示)(3)对于等差数列5,2,﹣1,﹣4,…,a n=请判断﹣2020是否是此等差数列的某一项,若是,请求出是第几项:若不是,说明理由.探究二:二百多年前,数学王子高斯用他独特的方法快速计算出1+2+3+4+…+100的值.我们从这个算法中受到启发,用此方法计算数列1,2,3,…,n的前n项和:由121121(1)(1)(1)(1)n nn nn n n n++⋯+-++-+⋯+++++⋯++++可知(1) 1232n nn+⨯+++⋯+=(4)请你仿照上面的探究方式,解决下面的问题:若a1,a2,a3,…,a n为等差数列的前n项,前n项和S n=a1+a2+a3+…+a n.证明:S n=na1+(1)2n nd-.(5)计算:计算等差数列5,2,﹣1,﹣4…前n项的和S n(写出计算过程).27.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着格线运动.它从A处出发去看望B、C、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A 记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(, ),B→C(, ),C→ (+1, );(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(4)若图中另有两个格点M 、N ,且M→A(3-a ,b-4),M→N(5-a ,b-2),则N→A 应记为什么? 28.计算:(1)4+(﹣2)2×2﹣(﹣36)÷4 (2)﹣72+2×(﹣3)2+(﹣6)÷(﹣13)2【参考答案】*** 一、选择题13.120, 北偏东80°. 14.5cm 15.70元 16. 17. SKIPIF 1 < 0解析:2019202018.SKIPIF 1 < 0 、SKIPIF 1 < 0、 SKIPIF 1 < 0、 SKIPIF 1 < 0 解析:2-、1-、0、1、2 19.SKIPIF 1 < 0解析:8- 20.30 三、解答题21.(1)10;(2)①80;②16秒;③2;(3)-190.22.(1)∠COE=27°;(2)见解析;(3)∠BOD 的度数是54°或者=68.4°.23.(1) (0.8x +60)元; (0.85x +30)元(2)他应该去乙超市(3)李明购买600元的商品时,到两家超市购物所付的费用一样24.(1)A 灯30盏,B 灯20盏;(2)720元. 25.﹣126.(1)﹣3,﹣7;(2)a n =a 1+(n ﹣1)d ;(3)﹣3n+8;(4)详见解析;(5)231322n n S n =-+27.(1)3;4;2;0;D ;2-;(2)见解析;()310;()4N A →应记为()22--,.28.(1)21;(2)﹣85.。

2022届上海市徐汇区初一(上)数学期末达标检测模拟试题

2022届上海市徐汇区初一(上)数学期末达标检测模拟试题

2022届上海市徐汇区初一(上)数学期末达标检测模拟试题一、选择题1.如图,点A 位于点O 的A .南偏东35°方向上B .北偏西65°方向上C .南偏东65°方向上D .南偏西65°方向上2.如图所示,两个直角∠AOB ,∠COD 有公共顶点O ,下列结论:(1)∠AOC =∠BOD ;(2)∠AOC +∠BOD =90°;(3)若OC 平分∠AOB ,则OB 平分∠COD ;(4)∠AOD 的平分线与∠COB 的平分线是同一条射线.其中正确的个数是( )A.1B.2C.3D.43.如图,△ABC 中,∠BAC =90°,AD ⊥BC ,∠ABC 的平分线BE 交AD 于点F ,AG 平分∠DAC .给出下列结论:①∠BAD =∠C ; ②∠AEF =∠AFE ; ③∠EBC =∠C ;④AG ⊥EF .正确结论有( )A .1个B .2个C .3个D .4个4.下列方程中,解为x =3的方是( )A .y-3=0B .x+2=1C .2x-2=3D .2x=x+35.下列等式变形正确的是( )A.由a=b ,得3a -=3b - B.由﹣3x=﹣3y ,得x=﹣y C.由4x =1,得x=14 D.由x=y ,得x a =y a6.在古代生活中,有很多时候也要用到不少的数学知识,比如有这样一道题:隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.(注:古秤十六两为一斤)请同学们想想有几人,几两银?( )A.六人,四十四两银B.五人,三十九两银C.六人,四十六两银D.五人,三十七两银7.在代数式π,x 2+21x +,x+xy ,3x 2+nx+4,﹣x ,3,5xy ,y x 中,整式共有( ) A.7个B.6个C.5个D.4个 8.如果3x 2m y n+1与﹣12x 2y m+3是同类项,则m ,n 的值为( ) A.m=﹣1,n=3 B.m=1,n=3 C.m=﹣1,n=﹣3 D.m=1,n=﹣39.下列计算正确的是( )A.x 3·x 2=x 6B.(2x)2=2x 2C.()23x =x 6D.5x -x =410.已知a+b=0,a≠b,则化简(1)(1)b a a b a b +++得( ) A.2a B.2b C.+2 D.﹣211.有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m<-1B .n>3C .m<-nD .m>-n12.一个数的相反数是-3,则这个数是( )A .3B .-3C .2D .0二、填空题13.若∠α=34°28′,则∠α的余角的度数为_____14.如果和互补,且,下列表达式:①;②;③;④中,能表示的余角的式子是__________.(请把所有正确的序号填在横线上)15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.《九章算术》采用问题集的形式,全书共收集了246个问题,分为九章,其中的第八章叫“方程”章,方程一词就源于这里.《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?” 译文:“几个人一起去购买物品,如果每人出8钱,那么剩余3钱;如果每人出7钱,那么差4钱.问有多少人,物品的价格是多少”?设有x 人,可列方程为_____.16.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x 辆汽车,则根据题意可列出方程为______.17.化简:2(-a b )-(23a b +)= ____________.18.有一列式子,按一定规律排列成:2345392781a a a a ,,,,--⋯(1)当1a =时,其中三个相邻数的和是-189,则位于这三个数中间的数是_____;(2)上列式子中第n 个式子为______(n 为正整数).19.若|x|=2,则x 的值是_____.20.下面给出的算式中,你认为可以帮助探究有理数加法法则的算式组合是________①3+(﹣2);②4+3;③(﹣3)+(﹣2);④3+13;⑤3+0;⑥6+(﹣3);⑦4+(﹣5);⑧5+(﹣5).三、解答题21.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.22.如图,已知四点A ,B ,C ,D.(1)画直线AB ;(2)画射线DC ;(3)连接AC ,BD ,线段AC 与BD 相交于点E.23.如图所示的10⨯5(行⨯列)的数阵,是由一些连续奇数组成的,形如图框中的四个数,设第一行的第一个数为x .(1)用含x 的式子表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,它们的和为246?为什么?24.(12分)阅读:我们知道, 于是要解不等式,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -≥,即3x ≥时: 34x -≤解这个不等式,得:由条件,有: (2)当< 0,即 x < 3时,解这个不等式,得:由条件x < 3,有: < 3∴ 如图, 综合(1)、(2)原不等式的解为:根据以上思想,请探究完成下列2个小题:(1); (2)。

上海市徐汇区2022届数学七上期末质量跟踪监视试题

上海市徐汇区2022届数学七上期末质量跟踪监视试题

上海市徐汇区2022届数学七上期末质量跟踪监视试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A.南偏西40度方向B.南偏西50度方向C.北偏东50度方向D.北偏东40度方向2.如图,从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路.能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有一条且只有一条直线垂直于已知直线3.已知∠AOB=60°,作射线OC,使∠AOC等于40°,OD是∠BOC的平分线,那么∠BOD的度数是()A.100°B.100°或20°C.50°D.50°或10°4.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A.7.5秒B.6秒C.5秒D.4秒5.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?设还需x天,可得方程()A.11()21101515x+⨯+= B.11015x x+=C.2211015x++= D.2211015x++=6.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有()A.7个B.6个C.5个D.4个7.如图是用长度相等的火柴棒按一定规律构成的图形,依次规律第10个图形中火柴棒的根数是( )A .45B .55C .66D .788.运用等式性质的变形,正确的是( )A.如果 a=b ,那么 a+c=b ﹣cB.如果a b c c =,那么 a=bC.如果 a=b ,那么a b c c= D.如果 a=3,那么 a 2=3a 2 9.若x 1=时,3ax bx 7++式子的值为2033,则当x 1=-时,式子3ax bx 7++的值为( ) A .2018 B .2019 C .2019- D .2018-10.已知a 是有理数,则下列结论正确的是( )A .a≥0B .|a|>0C .﹣a <0 D .|a|≥011.有理数(﹣1)2,(﹣1)3,﹣12,|﹣1|,﹣(﹣1),﹣11- 中,其中等于1的个数是( ) A.3个 B.4个 C.5个 D.6个12.-6 的绝对值是( )A .6B .-6C .±6 D.不能确定二、填空题13.一个正方体的每一个面分别标上数字1、2、3、4、5、6,根据图中的正方体(1)、(2)、(3)三种状态所显示的数字,可推出“?”处的数字是 .14.如果和互补,且,下列表达式:①;②;③;④中,能表示的余角的式子是__________.(请把所有正确的序号填在横线上)15.一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a 的值为______.16.写出﹣2m 3n 的一个同类项_______.17.23m x y -与35n x y 是同类项,则m n += 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市徐汇区2022届数学七年级上学期期末调研试卷模拟卷二
一、选择题
1.下列判断中,正确的是( )
①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补. A.①②
B.①③
C.①④
D.②③
2.如图,直线AB 与CD 相交于O ,0
,,DOF 57⊥⊥∠=OE CD OF AB ,则∠BOE 是( )
A.43°
B.47°
C.57°
D.33° 3.时钟在2时40分时,时针与分针所夹的角的度数是( )
A .180°
B .170°
C .160°
D .150°
4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )
A .3×10x=2×16(34﹣x)
B .3×16x=2×10(34﹣x)
C .2×16x=3×10(34﹣x)
D .2×10x=3×16(34﹣x) 5.已知关于x 的方程()1
230m m x ---=是一元一次方程,则m 的值是( )
A.2
B.0
C.1
D.0或2
6.书架上,第一层的数量是第二层书的数量的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本,设第二层原有x 本,则可列方程( ) A.2x=
1
2
x+3 B.2x=
12(x+8)+3 C.2x ﹣8= 1
2
x+3 D.2x ﹣8=
1
2
(x+8)+3 7.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )
A .4
B .3
C .2
D .不能确定
8.已知22x n a b -与233m a b -是同类项,则代数式(3)x
m n -的值是( ). A.4-
B.4
C.14
-
D.
14
9.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是( )
A .96
B .86
C .68
D .52
10.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2009次后,点B ( )
A .不对应任何数
B .对应的数是2007
C .对应的数是2008
D .对应的数是2009 11.计算25
()77
-+-的正确结果是( ) A.
37 B.-
37
C.1
D.﹣1
12.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )
A.a+b >0
B.a+b <0
C.ab >0
D.|a|>|b|
二、填空题
13.如图,将三个同样的正方形的一个顶点重合放置,如果∠l=50°,∠3=25°时,那么∠2的度数是_______.
14.如图,在Rt ABC ∆中,90︒∠=C ,30A ︒∠=,9BC =,若点P 是边AB 上的一个动点,以每秒3个单位的速度按照从A B A →→运动,同时点Q 从B C →以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。

在运动过程中,设运动时间为t ,若BPQ ∆为直角三角形,则t 的值为________.
15.在有理数范围内定义运算“△”,其规则为a △b =ab +1,则方程(3△4)△x =2的解是x =____. 16.(11·肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照 这样的规律摆下去,则第n (n 是大干0的整数)个图形需要黑色棋子的个教是
_________.
17.如图,在3×3的“九宫格”中填数,要使每行每列及每条对角线上的三数之和都相等.则B 表示的
数是________________.
18.绝对值大于1而小于5的整数的和是______. 19.已知1
(3)21a a x x --+=是关于x 的一元一次方程,则a=_____.
20.2017的相反数是________
三、解答题
21.已知关于m 的方程1
2
(m-16)=7的解也是关于x 的方程2(x-3)-n=52的解. (1)求m ,n 的值;
(2)已知∠AOB=m°,在平面内画一条射线OP ,恰好使得∠AOP=n ∠BOP ,求∠BOP .
22.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
23.如图,点A ,O ,E 在同一条直线上,∠AOB=40°,∠COD=28°,OD 平分∠COE . (1)求∠COE 的度数. (2)求∠BOD 的度数.
24.解答下列各题:
(1)求231a ab -+减2467a ab +-所得的差;
(2)先化简,再求值,()2
2
462321x y xy xy x y ⎡⎤----+⎣⎦,其中1
,82x y =-=
25.先化简,再求值
4xy ﹣(2x 2+5xy )+2(x 2+y 2),其中x =﹣2,y =
1
2
26.求若干个相同的不为零的有理数的除法运算叫做除方.
如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把 2÷2÷2 记作 2③
,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3)④,读作“-3 的圈 4 次方”. 一般地,把
n a
a a a a
÷÷÷⋯÷个(a≠0)记作a ⊕,记作“a 的圈 n 次方”.
(1)直接写出计算结果:2③= ,(-3)⑤ = , 1()2
-⑤= (2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,
请尝试将有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于 .
(3)计算24÷23+ (-8)×2③.
27.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)
+31,﹣32,﹣16,+35,﹣38,﹣20
(1)经过这6天,仓库里的货品是(填“增多了”或“减少了”)
(2)经过这6天,仓库管理员结算发现仓库还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?
28.为了加强市民的节水意识,合理利用水资源,抚州市采用价格调控手段以达到节水的目的,我市自来水收费价目表如下:
(1)若用户缴水费14元,则用水m3;
(2)若该户居民4月份共用水15m3,则该户居民4月份应缴水费多少元.
【参考答案】***
一、选择题
13.15°
14. SKIPIF 1 < 0 或 SKIPIF 1 < 0 或 SKIPIF 1 < 0
解析:18
5

36
7

36
5
15. SKIPIF 1 < 0
解析:
1 13
16.n(n+2)
17.-4019
18.
19.±2
20.-2017
三、解答题
21.(1)m=30,n=2(2)30°或10°22.先安排整理的人员有10人
23.(1)∠COE=56°;(2)∠BOD=112°.
24.(1)278a ab --+;(2)化简结果为253x y -,当1
,82
x y =-=时,原式=7. 25.
12
. 26.(1)
12,1
9
,-8;(2)它的倒数的n-2次方;(3)-1. 27.(1)减少了;(2)500吨;(3)这6天要付860元装卸费. 28.(1)6.5;(2)68元.。

相关文档
最新文档