弹塑性力学基础
弹塑性力学 第01-0章绪论
静力学: 物体的平衡条件--平衡微分方程和应力边界条件。 几何学: 位移与应变的关系--变形协调关系(几何方程和 位移边界条件)。 物理学: 应力与应变(或应变增量)的关系--本构关系。 如在材料力学中推导扭转切应力、弯曲正应力 时都应用了上述关系。
8、求解弹塑性力学问题的数学方法
由几何方程、物理方程、平衡方程及力和位移的边 界条件求出位移、应变、应力等函数。 精确解法:能满足弹塑性力学中全部方程的解。例 如运用分离变量法将偏微分方程组解耦并化为常微分方 程组进行求解,另外还有级数解法、复变函数解法、积 分变换等。 近似解法:根据问题的性质采用合理的简化假设而 获得近似结果;如有限元法、边界元法、有限差分法 等。
ε ≤ ε s 时,σ = Eε ε > ε s 时,σ = σ s sign ε
⎧1, 当 σ > 0 ⎪ ⎪ sign σ = ⎨0, 当 σ = 0 ⎪ ⎪ ⎩-1, 当 σ < 0
εs = σs E
4、线性强化(硬化)弹塑性模型
假设拉伸和压缩时屈服应力 的绝对值和强化模量E’都相同, 当不卸载时,应力—应变关系可 以写成
如:梁的弯曲问题
弹性力学
材料力学
当 l >> h 时,两者误差很小。
材料力学计算简单而结果往往是近似的,但不少情 况下精度可以满足工程要求的 变截面杆的分析
o
σ (x )
σ
(x )
? P
P x
τ (x )
二、弹塑性力学的基本假设
¾ 连续性假设,应力、应变和位移都可以用坐标的 连续函数表示,便于应用连续和极限的概念。 ¾ 均匀性假设,物体各部分的物理性质都相同,并 不会随坐标位置的改变而发生变化。 ¾ 各向同性假设,物体在各个方向具有相同的物理 性质,弹性常数不随坐标方向的改变而改变。
弹塑性力学弹性与塑性应力应变关系详解课件
有限差分法
有限差分法(Finite Difference Method,简称FDM)是一种基于差分原 理的数值模拟方法。
它通过将连续的时间和空间离散化为有限个差分节点,并利用差分近似代 替微分方程中的导数项,从而将微分方程转化为差分方程进行求解。
有限差分法适用于求解偏微分方程,尤其在求解波动问题和热传导问题方 面具
幂函数型弹塑性本构模型
该模型将应力应变关系表示为幂函数形式,适用于描述岩石等材料 的弹塑性行为。
双曲线型弹塑性本构模型
该模型将应力应变关系表示为双曲线形式,适用于描述某些复合材 料的弹塑性行为。
弹塑性本构模型的选用原则
根据材料的性质选择合适的弹塑性本 构模型,以确保能够准确描述材料的 力学行为。
在选择本构模型时,需要考虑模型的 复杂性和计算效率,以便在实际工程 中得到广泛应用。
弹塑性力学弹性与塑性应 力应变关系详解课件
目录
• 弹塑性力学基础 • 弹性应力应变关系 • 塑性应力应变关系 • 弹塑性本构模型 • 弹塑性力学的数值模拟方法
01
弹塑性力学基础
弹塑性力学定义
01
02
03
弹塑性力学
是一门研究材料在弹性与 塑性范围内应力应变关系 的学科。
弹性
材料在受到外力作用后能 够恢复到原始状态的性质 。
当外力卸载后,物体发生弹性恢复,但需要一定的时间才能完成。这种 现象称为弹性后效。弹性后效的大小与材料的性质、温度和加载速率等 因素有关。
03
塑性应力应变关系
塑性应力应变关系定义
塑性应力应变关系
01
描述材料在塑性变形阶段应力与应变之间的关系。
特点
02
当材料受到超过屈服点的外力时,会发生塑性变形,此时应力
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
弹塑性力学第一章弹塑性力学绪论资料
1、弹塑性本构关系
本构关系是指材料内任意一点的应力-应变之间的关 系,是材料本身的物理特性所决定的。弹性本构关系 是广义胡克定律,而塑性本构关系远比弹性本构关系 复杂。在不同的加载条件下要服从不同的塑性本构关 系。塑性本构关系有增量理论和全量理论。
6
2.研究荷载作用下物体内任意一点的应力和变形 在荷载作用下,物体内会产生内力,因此通常
广泛地探讨了许多复杂的问题,出现了许多边缘分支:
各向异性和非均匀体的理论,非线性板壳理论和非线性
弹性力学,考虑温度影响的热弹性力学,研究固体同气
体和液体相互作用的气动弹性力学和水弹性理论以及粘
弹性理论等。磁弹性和微结构弹性理论也开始建立起来。
此外,还建立了弹性力学广义变分原理。这些新领域的
发展,丰富了弹性力学的内容,促进了有关工程技术的
弹塑性力学
1
第一章 绪 论
§1-1 弹塑性力学基本概念和主要任务 §1-2 弹塑性力学的发展史
§1-3 基本假设及试验资料 §1-4 简化模型
2
1.1 弹塑性力学基本概念和主要任务
一、弹性(塑性)变形,弹性(塑性)阶段
可变形固体在外力作用下将发生变形。根据变形 的特点,固体在受力过程中的力学行为可分为两个明 显不同的阶段:当外力小于某一极限值(通常称为弹 性极限荷载)时,在引起变形的外力卸除后,固体能 完全恢复原来的形状,这种能恢复的变形称为弹性变 形,固体只产生弹性变形的阶段称为弹性阶段;外力 超过弹性极限荷载,这时再卸除荷载,固体将不能恢 复原状,其中有一部分不能消失的变形被保留下来, 这种保留下来的永久变形就称为塑性变形,这一阶段 称为塑性阶段。
10
在这个时期,弹性力学的一般理论也有很大的发展。
弹塑性力学-弹塑性本构关系
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
的真实功与ij0起点无关;
Ñ d ipj ij ij 0
(2)附加应力功不符合功的 定义,并非真实功
i0j ij i0jdij0
-
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
d
p ij
d
ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
结合
-
D
ij
ij
dipj Ddipj
d
p ij
d
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性
位势理论。他假设经过应力空间的任何一点M,必有
一塑性位势等势面存在,其数学表达式称为塑性位势
残余应力增量与塑性 应变增量存在关系:
dipj Ddipj
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
Ñ WI ijdij 0 i0j
只有在弹性应变时,上述WI=0。
根据Druker塑性公设
当 i0 jij时 (iji0 j)dijp 0
弹塑性力学基础理论与应用
弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。
本文将简要介绍弹塑性力学的基础理论和一些应用领域。
一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。
根据胡克定律,应力与应变成正比。
弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。
弹性模量是弹性力学的重要参数,表征了材料的刚度。
2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。
当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。
塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。
3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。
它考虑了材料在弹性和塑性行为之间的转换。
在某些情况下,材料可以同时表现出弹性和塑性特性。
弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。
二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。
通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。
在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。
2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。
结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。
通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。
3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。
弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。
在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。
4. 金属加工金属的塑性变形是金属加工过程中的核心问题。
弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。
总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。
弹塑性力学基础
2、弹塑性的工程解答一般认为是精确的;
3、可对初等力学理论解答的精确度和可靠
进行度量。
第10页/共206页
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
第31页/共206页
3.应力张量
数学上,在坐标变换时,服从一定坐标变换式 的九个数所定义的量,叫做二阶张量。根据这一定 义,物体内一点处的应力状态可用二阶张量的形式 来表示,并称为应力张量,而各应力分量即为应力 张量的元素,且由剪应力等定理知,应力张量应是 一个对称的二阶张量,简称为应力张量。
(I-4) (I-5)
★ 关于求和标号,即哑标有:
◆ 求和标号可任意变换字母表示。
◆ 求和约定只适用于字母标号,不适用于数字标号。 ◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii 2 a121 a222 a323 (aii )2 (a11 a22 a33 )2
第21页/共206页
◆ 二阶以上的张量已不可能在三维空间有明显直
观的几何意义,但它做为物理恒量,其分量间 可由坐标变换关系式来解决定义。
第18页/共206页
2.下标记号法
◆ 在张量的讨论中,都采用下标字母符号,来表
示和区别该张量的所有分量。
◆ 不重复出现的下标符号称为自由标号。自由标
号在其方程内只罗列不求和。以自由标号的数 量确定张量的阶次。
《弹塑性力学》第十一章塑性力学基础
描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。
《弹塑性力学》课件
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
弹塑性力学总结
弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。
它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。
它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。
本文将对弹塑性力学进行总结。
一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。
它们各自关注的是物体在受力后不同的反应。
(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。
简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。
弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。
(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。
简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。
塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。
二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。
应力有三种类型:拉应力、压应力和剪应力。
(2)应变应变是材料的形变量,通常表示为ε。
应变有三种类型:拉伸应变、压缩应变和剪切应变。
(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。
(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。
弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。
材料的弹性模量越大,其刚度就越高。
(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。
材料开始发生塑性变形的应力点称为屈服点。
三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。
弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。
弹塑性力学(浙大通用课件)通用课件
塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。
弹性与塑性力学基础 第六章 塑性力学解题方法及应用举例
§6-3 滑移线场概念及其在平冲头镦粗半无限体中的应用
6.3.1 滑移线的定义与滑移线法
➢ 滑移线的基本概念
作用于最大剪应力面上的正应力13恰等于平均应力m或中间主应
力2 ,即
1 3 m 2 1 2 (13 ) 1 2 (xy)
任一点应力状态可用静水压(平均
应力)与最大剪切力K相叠加来表
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
§6-3 滑移线场概念及其在平冲头镦粗半无限体中的应用
6.3.1 滑移线的定义与滑移线法 ➢ 滑移线的基本概念 塑性变形体(或变形区)内任一点的应力状态如图所示
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
压力容器、管道、挤压凹模等) 2020/10/16轴对称平面问题
应力分析:
rz、θr为零 θ 、 r为主应力,仅随 r 变化; 平衡微分方程:
dr r 0 (6-1)
dr r
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
§6-1 平衡微分方程和屈服准则联立求解及其应用
6.1.2 受内压塑性圆筒及受内拉的塑性圆环应力计算
弹性与塑性力学基础
第六章
塑性力学解题方法及应用举例
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
1、塑性力学问题求解现状
(1) 在塑性状态物体内应力的大小与分布求解比较弹性状态困难; (2) 非线性塑性应力应变关系方程; (3) 联解平衡方程和屈服准则,补充必要的物理方程和几何方程,在
代入式(6-12)得
z =s
工程弹塑性力学教学课件
实验设备与实验原理介绍
实验设备
弹塑性力学实验中常用的设备包括压力机、拉伸机、压缩机 、弯曲机等。
实验原理
介绍弹塑性力学的基本原理,包括弹性变形和塑性变形的基 本概念、应力应变关系、屈服准则等。
实验操作与数据处理方法介绍
实验操作
详细介绍实验操作步骤,包括试样制备、加载方式选择、数据采集等。
数据处理方法
工程弹塑性力学教学 课件
目录
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学分析方法 • 弹塑性力学在工程中的应用案例 • 弹塑性力学实验与实践教学 • 总结与展望
01 弹塑性力学概述
弹塑性力学定义与分类
弹塑性力学定义
弹塑性力学是研究物体在受力状态下 ,弹性变形和塑性变形相互作用的学 科。
塑性力学的基本方程
包括屈服条件方程、流动法则方程、 强化法则方程等。
弹塑性力学基本原理
弹塑性本构关系
描述材料在弹塑性状态下的应力 应变关系。
弹塑性稳定性理论
研究结构在弹塑性状态下的稳定性 问题。
弹塑性极限分析
确定结构在弹塑性状态下的极限承 载能力。
03 弹塑性力学分析方法
弹性力学分析方法
弹性力学基本原理
弹塑性力学基础知识
02
弹性力学基础知识
弹性力学的基本假设
包括连续性假设、均匀性假设、各向同性假设 等。
弹性力学的基本概念
包括应力、应变、弹性模量等。
弹性力学的基本方程
包括平衡方程、几何方程和物理方程等。
塑性力学基础知识
塑性力学的基本概念
塑性力学的基本应用
包括屈服条件、流动法则、强化法则 等。
包括压力加工、材料强度、结构稳定 性等。
弹塑性力学基础讲解
建立起普
遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解
法的严密性和普遍适用性为特点;
2、弹塑性的工程解答一般认为是精确的;
3、可对初等力学理论解答的精确度和可靠
进行度量。
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
◆ 重复出现,且只能重复出现一次的下标符号称
为哑标号或假标号。哑标号在其方程内先罗列, 再不求和。
◆ 本教程张量下标符号的变程,仅限于三维空间,
即变程为3。
3.求和约定
关于哑标号应理解为取其变程N内所有数值, 然后再求和,这就叫做求和约定。 例如:
3
aibi aibi a1b1 a2b2 a3b3 i 1
1、学科分类
按运动与否分:
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。 如何提供加速度?
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
1、应力的概念
◆ 应力:受力物体
内某点某截面上内 力的分布集度。
lim Fn A0 A
dFn dA
n
lim Fn A0 A
dFn dA
弹塑性力学基础知识复习
空间力系的平衡方程包含了各种特殊力系的平衡方程,所 以由公式可以导出各种特殊力系的平衡方程。
(1)空间汇交力系的平衡方程 设空间汇交力系汇交于O点,则各力对O点的矩恒为零,
于是独立的平衡方程为
i1
把上式向直角坐标轴投影并利用力对点的矩和力对轴的矩关 系即公式有
n
n
n
i1
n
i1
Fix 0,
i1
Mx(Fi)0,
Fini1yM 0y(F,i)i10F,izin10Mz(Fi)0
(4-1)
式(4-1)就是空间力系的平衡方程的一般式,其平衡方程 还有四矩式、五矩式和六矩式,读者可以参考其它资料了解。
弯曲中心概念 典型图形弯曲中心的位置
挠曲线必须是光滑和连续的,任意截面都有唯一的挠度和转角
二 挠曲线近似微分方程 d 2y M dx 2 EI
{ 两个近似
忽略了剪力Q的影响
忽略 ( dy ) 2 , 1(dy)2 1
边界条件
dx
dx dytan
光滑连续条件
A
P
dx
C yA0,yBLB C
B
பைடு நூலகம் P
A
n
n
n
F ix0, F iy0, F iz0
i1
i1
i1
(2)空间力偶系的平衡方程 空间力偶系的主矢恒等于零,所以独立的平衡方程为
n
n
n
M x(F i) 0 , M y(F i) 0 , M z(F i) 0
i 1
i 1
i 1
(3)空间平行力系的平衡方程
弹塑性力学基础
温加工
冷加工 在不产生回复和 再结晶温度以下
改善产品组织性能
降低金属变形抗力 改善金属塑性 提高强度
冷加工-退火 表面光洁,尺寸精确, 组织性能良好
加热温度 变形终了温度 变形程度 冷却速度
冷变形及热变形
冷变形
变形温度低于回复温度时,金属在 变形过程中只有加工硬化而无回复与再 结晶现象,变形后的金属只具有加工硬 化组织,这种变形称为冷变形。
继续提高变形速度,塑性又开始 下降:随变形速度↑,变形抗力
升高,达到相应于更小变形程度 下的断裂抗力之值。 第二次上升:热效应起作用,温度↑ ,变形抗力下降。
第二次下降:热效应极大,把金属加热到出现液相或大大降
低其晶间物质的强度。
4.变形程度 变形程度对塑性的影响,是同加工硬化及加工过程中伴 随着塑性变形的发展而产生的裂纹倾向联系在一起的。 在热变形过程中,变形程度与变形温度-速度条件是相 互联系着的,当加工硬化与裂纹胚芽的修复速度大于发生速
4、具有纤维组织的金属,各个方向上的机械性能 不相同。顺纤维方向的机械性能比横纤维方向的好。金 属的变形程度越大,纤维组织就越明显,机械性能的方 向性也就越显著。
使纤维分布与零件的轮廓相符合而不被切断; 使零件所受的最大拉应力与纤维方向一致,最大 切应力与纤维方向垂直。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与杆部 的纤维被切断,不能连贯起来,受力时产生的切应力顺着纤维 方向,故螺钉的承载能力较弱(如图a示 )。 当采用同样棒料经局部镦粗方法制造螺钉时(如图b示),纤 维不被切断且连贯性好,纤维方向也较为有利,故螺钉质量较 好。
3)金属表面形成吸附润滑层,塑性↑
提高金属塑性的主要途径
提高塑性的主要途径有以下几个方面: (1)控制化学成分、改善组织结构,提高材料的成分和组 织的均匀性; (2)采用合适的变形温度—速度制度;
弹塑性力学部分习题及答案
解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
弹塑性力学
—— 作用于物体表面单位面积上的外力
z
Q
X Y Z —— 面力矢量在坐标轴上投影
单位: 1N/m2 =1Pa (帕)
Z
k i
x O j
X
S Y
y
1MN/m2 = 106Pa = 1MPa (兆帕)
(1) F 是坐标的连续分布函数;
说明: (2) F 的加载方式是任意的;
l,m,n的线性齐次方程。若有非零解,则此方程组的 系数行列式应当等于零,即
x v xy xz yx y v yz 0 zx zy z v
展开行列式得到 其中
v I1 v I 2 v I 3 0
3 2
2 2 2 I 2 x y y z z x ( xy yz zx ) 2 2 2 I 3 x y z 2 xy yz zx ( x yz y zx z xy ) I1 x y z
( x v )l xy m xz n 0 yx l ( y v )m yz n 0 zx l zy m ( z v )n 0
几何关系
l m n 1
2 2 2
l,m,n不能同时为零 ,因此前式为包括三个未知量
y
x
Z
t/2
y
薄板如图:厚度为t,以薄板的中面为xy面,以垂直 于中面的任一直线为z轴,建立坐标系如图所示。 因板面上(z = t/2)不受力,所以有:
(
z z t 2
)
0, (
zx z t 2
)
0, (
弹塑性力学 第六章 塑性力学基本概念
理想刚塑形模型???
2、线性硬化模型:硬化阶段曲线为线性
将硬化阶段的曲线简化为一条直线,即连续的应力-应 变关系曲线OAA’C简化为两条直线组成的折线OAC。 第一条直线OA代表线 弹性变形性质,其斜 率为E ;第二条直线 AC代表强化性质 ,其 斜率为Et。
b B
s
C
s,
s,
• 影响材料性质的其它几个因素: 1. 温度。当温度上升,材料屈服应力降低、塑性变形 能力提高。高温下,会有蠕变、应力松弛现象。 2. 应变速率。如果在实验时加载速度提高几个数量级, 则屈服应力会相应地提高,塑性变形能力会降低。一 般加载速度不考虑这个因素。高速撞击载荷或爆炸载 荷需要考虑。
§6.3 单轴应力-应变关系的简化模型
屈服条件(加载条件)
s
p
A
*
将累积塑性变形量作为内变量
H O E
k ( dε ) 0
p
*
k函数称为硬化函数,初值:
k (0) s
B‘
• (2)随动硬化模型: • 对一些材料有包辛 格效应的材料,应 变硬化提高了材料 的拉伸屈服应力, 在反向加载(压缩) 时,压缩屈服应力 降低。 • 这种硬化特征称为 随动硬化。
6.2 材料实验结果
一、单轴拉伸实验 • 材料塑形变形性质通过试验研究获得。
• 最简单实验是室温单轴拉压实验: •材料:金属多晶体材料 •试件如图
•名义应力和名义应变定义为
P / A0
A0
l l0 / l0
l0
--材料的单轴拉伸实验曲线有如图所示两种形态。
conditional yield limit 条件屈服极限
弹塑性力学基本知识
面在 π 平面上的投影为圆形。根据式(18)可知,Mises 屈服条件的物理意义为:当材料的 八面体剪应力达到一定值时,材料屈服;根据式(26)可知,Mises 屈服条件的物理意义也 为:当材料的剪切应变能达到一定值时,材料屈服。注意,Mises 屈服条件考虑了中间主应 力的影响,但也忽略了静水压力的影响。
0
则材料稳定, (2) 加载面 f σ ij , ξ β = 0 外凸。这也可以由式(42)推出。 (3) 正交流动法则( dλ 的物理意义:反映塑性应变增量的大小,称作比例因子。 ) :
P dε ij = dλ
(
)
∂f ∂σ ij ∂f s ∂σ ij
(43)
或: dε ij = dλs
P
(44)
p
得:
h=−
∂
( ∫ dε )
p
∂f
2 ∂f
∂f
3 ∂σ ij ∂σ ij
(60)
对于 Mises 材料,设材料等向硬化,且内变量为累积塑性应变,结合式(51) ,有:
2 ∂f
∂f
3 ∂σ ij ∂σ ij
=1
(61)
结合式(61) , (59) , (60) ,可得:
dλ = d ε p ; h =
( 2σ 2 − σ 1 − σ 3 )
当采用极坐标表示时,则有:
⎧ rσ = x 2 + y 2 = 2 J 2 ⎪ ⎨ y 1 ⎛ 2σ 2 − σ 1 − σ 3 ⎞ 1 μσ ⎪ tan θσ = = ⎜ ⎟= x 3 ⎝ σ1 − σ 3 3 ⎩ ⎠
z Tresca 屈服条件 当 τ max =
(59)
结合式(43)和式(14) , (注意:当屈服与静水压力无关,体积应力不产生塑性应变) , 可得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国地质大学力学教学部
精品课件
弹塑性力学基础
李同林
中国地质大学 力学教研室
精品课件
第一章 绪 论
一、 学科分类 · 弹塑性力学 二、 弹塑性力学的研究对象 三、 弹塑性力学的基本思路与研究方法 四、 弹塑性力学的基本任务
五、 弹塑性力学基本假设 六、 弹塑性力学发展概况 七、张量概念及其基本运算
精品课件
◆ 法国科学家库伦(C.A.Corlomb1773年)、 屈雷斯卡(H.Tresca1864年)、 圣文南和莱 ( M.Levy ) 波兰力学家胡勃(M.T.Houber 1904年)、 米塞斯(R.von Mises1913年)、 普朗特(L.Prandtl 1924) 罗伊斯(A.Reuss 1930)、享奇 (H.Hencky)、 纳戴(A.L.Nadai) 、伊留申(A.A.Ииьющин)
移及其分布规律的一门科学,是研究固体在
受载过程中产生的弹性变形和塑性变形阶段
这两个紧密相连的变形阶段力学响应的一门
科学。
精品课件
二、 弹塑性力学的研究对象
在研究对象上,材料力学的研究对象是固 体,且基本上是各种杆件,即所谓一维构件。
弹塑性力学研究对象也是固体,是不受 几何尺寸与形态限制的能适应各种工程技术 问题需求的物体。
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
◆ 固体力学:研究对象是可变形固体。研究材料
变形、流动和断裂时的力学响应。其分支学科有: 材料力学、结构力学、弹性力学、 塑性力学、 弹塑性力学、断裂力学、流变学、疲劳等。
◆ 流体力学:研究对象是气体或液体。涉及到:
从而使得平衡条件与几何变形条件线性化。
精品课件
六、弹塑性力学发展概况
◆ 1678年英国科学家虎克(R.Hooke)提出 了固体材 料的弹性变形与所受外力成正比——虎克定律。
◆ 19世纪20年代,法国科学家纳维叶 ( C.L.M.H.Navier )、柯西 ( A.L.Cauchy )和
圣文南 ( A.J.C.B.Saint Venant ) 等建立了 弹性力学的理论基础。
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定: (A)在弹塑性体产生变形后建立平衡方程时,可以
不考虑因变形而引起的力作用线方向的改变; (B)在研究问题的过程中可以略去相关的二次及二
次以上的高阶微量;
物体受力作用处于平衡状态,应当满足的条件 是什么?(静力平衡条件)
(2) 变形的几何相容条件 (几何分析)
材料是均匀连续的,在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠 ”, 此时材料变形应满足的条件是什么?(几何相 容条件)
(3) 力与变形间的本构关系 (物理分析)
固体材料受力作用必然产生相应的变形。 不同的材料,不同的变形,就有相应不同的 物理关系。
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
精品课件
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ 在一定单位制下,除指明其大小还应指出其方向
的物理量,称为矢量。例如速度、加速度等。
水力学、空气动力学等学科。
精品课件
按研究手段分:(理论分析、实验和数值计算)
有实验力学、计算力学二个方面的分支。
按应用领域分:
有飞行力学、船舶结构力学、岩土力学、量 子力学等。
精品课件
2、弹塑性力学
弹塑性力学是固体力学的一个重要分支
学科,是研究可变形固体受到外荷载或温度
变化等因素的影响而发生的应力、应变和位
精品课件
一、学科分类 · 弹塑性力学
1、学科分类
按运动与否分:
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。
精品课件
◆ 弹塑性力学研究问题的基本方法
以受力物 体内某一 点(单元 体)为研 究对象
单元体的受力——
应力理论; 单元体的变形——
变形几何理论;
单元体受力与变形 间的关系——本构理
论;
建立起普 遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解
法的严密性和普遍适用性为特点;
2、弹塑性的工程解答一般认为是精确的;
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
精品课件
七、张量概念及其基本运算(附录一)
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 质力学的重要数学工具 。
◆ 张量分析具有高度概括、形式简洁的特点。
◆ 任一物理现象都是按照一定的客观规律进行的, 它们是不以人们的意志为转移的。
3、可对初等力学理论解答的精确度和可靠
进行度量。 精品课件
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
造成两者间这种差异的根本原因是什么呢?
精品课件
三、弹塑性力学的基本思路与研究方法
1、弹塑性力学分析问题的基本思路
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:
精品课件
(1) 受力分析及静力平衡条件 (力的分析)
精品课件
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所 占有的全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内 部各点处,以及每一点处各个方向上的 物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ; (B)弹塑性假设。
精品课件
⑷ 几何假设——小变形条件