最新常用岩土材料参数和岩石物理力学性质一览表
(完整版)岩土力学参数大全
基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值东向南向西向北向γφ CBC DE CD EF FA AB填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负); 3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。
常用的岩土和岩石物理力学参数
常用的岩土和岩石物理力学参数(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG ()当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表和分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表土的弹性特性值(实验室值)(Das,1980) 表各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ ()对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
常用土层和岩石物理力学性质
(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodm a n,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的Kf 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙 度n ,渗透系数k 以及Kf 有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数来决νC 定改变Kf 的结果。
岩土的物理力学性质参数
岩土的物理力学性质指标
岩土的物理力学性质指标应根据工程地质划分的扇形区及各区的边坡变形破坏特点,选取与之有关的试样进行力学试验,测定岩石及软弱夹层物理力学性质指标。
岩石及软弱夹层的物理性质指标详见表1至表7。
表1 部分岩石的容重
表2 部分岩石的孔隙率与吸水率
表3 不同成因粘土的有关物理力学性质指标(一)
表4 不同成因粘土的有关物理力学性质指标(二)
表5 几种土的渗透系数表
表6 土的平均物理、力学性质指标(一)
表7 土的平均物理、力学性质指标(二)
注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71;粘土2.74。
2.粗砂与中砂的Eo值适用于不均系数Cu=3时,当Cu>5时应按表中所列值减少2/3。
Cu为中间值时, Eo 值按内插法确定。
3.对于地基稳定计算,采用内摩擦角φ的计算值低于标准值2°。
岩石及软弱夹层的力学性质指标见表8至表25。
表8 岩石力学性质指标的经验数据(一)。
常用的岩土和岩石物理力学参数
(E, ν与) (K, G) 的转换关系如下:KE3(1 2 )GE(7.2)2(1 )当 ν值接近0.5 的时候不能盲目的使用公式 3.5,因为计算的 K 值将会非常的高,偏离实际值很多。
最好是确定好K 值 (利用压缩试验或者P 波速度试验估计 ),然后再用 K 和 ν来计算 G 值。
表 7.1 和 7.2 分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值) (Goodman,1980) 表 7.1干密度 (kg/m 3)E(GPa) ν K(GPa)G(GPa)砂岩 19.3 0.38 26.8 7.0 粉质砂岩26.30.22 15.6 10.8石灰石 2090 28.5 0.29 22.6 11.1页岩 2210-25711.10.298.84.3大理石 270055.8 0.25 37.2 22.3花岗岩73.80.2243.930.2土的弹性特性值(实验室值) (Das,1980)表 7.2松散均质砂土 密质均质砂土松散含角砾淤泥质砂土 密实含角砾淤泥质砂土硬质粘土 软质粘土 黄土软质有机土冻土3弹性模量 E(MPa)泊松比 ν 干密度 (kg/m ) 1470 10-260.2-0.41840 34-690.3-0.45163019400.2-0.41730 6-14 0.2-0.5 1170-1490 2-30.15-0.251380610-820 2150各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量: E E 3 , ν12 , ν 和 G 13 ;正交各向异性弹性模型有9 个弹性模量 E1, 131,E 2,E 3,ν12 , ν , ν 和 G 23。
这些常量的定义见理论篇。
1323 ,G 12,G 13均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
常用土层和岩石物理力学性质
(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K nm k C +=νν (7.4)其中3/4G K 1m +=νf 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
(完整版)岩土力学参数大全
综合上面分析,最终确定的本文计算分析采用的各土层参数见表4-1表4-1土层主要力学指标和计算参数层号土层名称土层体积模量/Pa剪切模量/Pa粘聚力/Pa摩擦角/,膨胀角/。
抗拉强度/Pa厚度/m密度∕kg.m'3I 杂填土10 1800 7.0E6 3.2e6 5E3 5 0 IE52 粉质粘土 4.8 2000 I.86E7 9e6 1.8E4 22 0 IE53 强风化砾岩 2.5 2050 I.38E8 5.96e7 4.2E4 30 0 1E54 中风化砾岩 6.3 2100 6.3E8 3.86e8 1.5E5 35 0 1E5表4-2支护桩主要计算参数密度∕kg.m*3直径/m截面积∕m2弹性模量/Pa泊松比惯性矩XCI1Zm4惯性矩XCl√m42500 0.8 0.5024 2.8E10 0.2 0.02 0.02表4-3锚索主要计算参数编号钢胶线根数、直径弹性模量/Pa截面积∕m2屈服强度/Pa钻孔周长/m摩用力/N.m∙,水泥体剪切刚度/Paid=I 3×7φ5I.95E1I 420E-6 1.86E9 0.47] 2.5E4 3.37E9 id=2 5x7"5 1.95Eil 700E-6 1.86E9 0.471 2.5E4 3.37E9各层上的力学参数表5-2参数第一层土第一层十第二层土第四层十.泥岩厚度/m7 7 2 7 23 密度/(kgΛ113)1750 2000 1800 2000 2350 体枳模量/MPa0 38.9 8.0 83.3 136.5 切变模量/MPa0 13.0 4.8 17.9 20.0 内聚力ZkPa 3 5 0 5 14000 摩擦角/(。
)20 40 25 45 361.08 抗拉强度/MPa表4-1本次模拟中涉及到的土体的体积模量和剪切模■计算值常用岩土材料力学参数(E,V)与(K,G)的转换关系如下:E一E3(l-2v)(7.2)当V值接近0.5的时候不能盲目的使用公式3.5,因为计算的K值将会非常的高,偏离实际值很多。
常见岩石物理力学参数一览表
岩性岩石密度(g/cm3) 液限% 塑限% 塑性指数 变形模量(MPa) 孔隙比%碎石(堆积)类土2.65~2.720~400.4~0.6土粒密度黄土类土 干1.3~1.5 23~33 15~20 8~13 新黄土具有湿陷性 0.8~1.1粘性土 1.8~2.05 23~55 16~30 7~25 4~12(压缩模量) 0.7~1.0抗压强度岩性岩石密度(g/cm3)孔隙率 吸水率 软化系数 变形模量(103MPa)泥岩 0.03~0.37(粘土岩) 20.7~59(干粘页岩 2.3~2.62 0.4~10.0 0.5~3.2 0.24~0.7416~20 10~100泥板岩 2.3~2.8 0.1~0.5 0.1~0.3 0.39~0.52 123~199(干板岩)粉砂岩10~32石英砂岩 2.6~2.71 54~58 68~102.517~41 20~200砂岩 2.2~2.71 1.6~28.0 0.2~9.0 0.65~0.97砾岩 2.40~2.66 0.8~10.0 0.3~2.4 0.50~0.96 6.7~16.2(新鲜岩体) 10~150 2~15 8~50 泥灰岩 2.3~2.7 1.0~10.0 0.5~3.0 0.44~0.54 1.3~2.6(新鲜岩体) 3.5~20 /Us+>v g!40~60 0.3~1.4 + /%4E %`9SS2.8~4.2 0.32(新鲜岩体) 37(新鲜岩体) /8]ZUK 灰岩 2.3~2.77 16.0~52 0.1~4.45 0.7~0.94 35~39 50~200 5~20 10~50 35~50 Z白云岩 2.1~2.7 0.3~25.0 0.1~3.0 6.7~32 80~250 15~25 20~50 35~50 zK 1\InP 片岩 2.69~2.92 0.02~1.85 0.1~0.2 0.53~0.69(绿泥石片岩) 44~72 10~100 1~10 1~20 千枚岩 0.4~3.6 0.5~1.8 0.67~0.96 10(石英千枚岩) 10~100 1~10 1~20 26~65 qkc 板岩 2.3~2.75 0.45左右 0.1~0.3 5.0(新鲜岩体) 60~200 7~15 2~20 45~60 JUDZ_c 大理岩 2.6~2.7 0.1~6.0 0.1~1.0 49~67 70~140 2.0~4.0 4.9(裂隙较发育岩体) 52(裂石英岩 2.4~2.8 0.1~8.7 0.1~1.5 0.94~0.96 65~70 150~350 15~30 10~50 50~60 I|Hc 花岗岩 2.3~2.8 0.5~4.0 0.1~4.0 0.72~0.97 30~37 100~250 7~25 14~50 45~60 >2}*L 闪长岩 2.52~2.96 0.2~5.0 0.3~5.0 0.6~0.8 1.5~8.5(具裂隙岩体) 100~250 10~25 10~50 辉长岩 2.55~2.98 0.3~4.0 0.5~4.0 180~300 15~36 10~50 50~55 F U} - .Ki=8p[ (<F=流纹岩 2.5~3.3 180~300 15~30 10~50 45~60安山岩 2.3~2.7 1.1~4.5 0.3~4.5 0.81~0.91 8.3~12.0(具裂隙岩体) 100~250 10~20 10~40\玄武岩 2.5~3.1 0.5~7.2 0.3~2.8 0.3~0.95 83 180~300 15~36 10~50 50~55 n Zx^ej 注:未注明为岩体的数据,均为岩石试验数据。
岩土的物理力学性质参数
岩土的物理力学性质指标
岩土的物理力学性质指标应根据工程地质划分的扇形区及各区的边坡变形破坏特点.选取与之有关的试样进行力学试验.测定岩石及软弱夹层物理力学性质指标。
岩石及软弱夹层的物理性质指标详见表1至表7。
表1 部分岩石的容重
表2 部分岩石的孔隙率与吸水率
表3 不同成因粘土的有关物理力学性质指标(一)
表4 不同成因粘土的有关物理力学性质指标(二)
表5 几种土的渗透系数表
表6 土的平均物理、力学性质指标(一)
表7 土的平均物理、力学性质指标(二)
注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71;粘土2.74。
2.粗砂与中砂的Eo值适用于不均系数Cu=3时.当Cu>5时应按表中所列值减少2/3。
Cu为中间值时. Eo 值按内插法确定。
3.对于地基稳定计算.采用内摩擦角φ的计算值低于标准值2°。
岩石及软弱夹层的力学性质指标见表8至表25。
表8 岩石力学性质指标的经验数据(一)。
关于常用的岩土和岩石物理力学参数
(E , ν) 与(K , G )的转换关系如下:)1(2ν+=EG ()当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表和分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表土的弹性特性值(实验室值)(Das,1980) 表各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K n m k C +=νν ()其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
常用的岩石物理力学参数
灰 岩鲕状 2.770.0948.630.4石英砾岩 2.660.2830.2绢英千枚岩微风化 2.600.206530灰 岩含燧石结核 2.640.5639.830泥 岩 2.65 1.5433.430石英砂岩 2.28 4.6544.229.9 1.22灰 岩 2.6072.929.232.5粉砂岩泥 质 2.52 3.103329云母片麻岩弱风化49.428.2云母片麻岩 2.50 3.4245.328.1粘土岩砂 质 2.574227.9灰 岩泥 质 2.53 3.936527.8页 岩 2.61 2.753527.5砂 岩39.127.3 2.54角砾岩 2.43 3.7256.627.3闪长玢岩岩脉,弱风化 2.950.2454.926.80.78灰 岩薄层,条带5526.528.4芒硝岩 2.0126.410.2砂 岩弱风化 2.15 6.654126 4.6粉砂岩弱风化 2.59 1.9132.825.7角砾岩 2.46 3.354.625.6砂 岩弱风化 2.19 5.147.125.5细砂岩全风化 2.188.0148.125.1石英片岩含白云母,弱风化 2.1725.0 1.3灰 岩 2.6479.224.847.5砂 岩 2.28 2.6436.524.8花岗岩强风化 2.33 5.65402318.4角砾岩 2.580.834224灰页岩 2.61 2.342924油页岩 2.0915.526.1砂 岩强风化 2.22 5.658.223.9砂 岩钙质,弱风化 2.33 5.344423.5灰 岩 2.33 4.436.223.5灰 岩白云质,微风化 2.770.4143.723.3细砂岩泥 质 2.22 5.6542.723.1灰 岩泥 质 2.610.1473.823花岗岩强风化 2.33 5.65402318.4绿泥石片岩 2.740.693423粘土岩 2.58 2.913123页 岩砂 质 2.63 1.3537.222.7云母片岩弱风化 2.69 1.245.322.0白云岩灰 质 2.690.2564.621.9粉细砂岩新 鲜 2.1739.221.7 6.7安山岩凝灰质63.821.4粉砂岩灰黑色 2.81 1.3254.521.2水云母页岩 2.44 3.7629.921.317.8粉砂岩泥 质 2.52 3.1645.321灰 岩33.721砂 岩泥钙质 2.4175.220.9粘土岩砂 质 2.41 3.0620.5 1.82粘土岩砂 质 2.51 2.53819.6粘土岩砂 质 2.54 2.8431.619.6砂 岩泥 质 2.58 2.8181.319.3粘土岩砂 质 2.62 1.9834.519粘土岩砂 质 2.59 2.6443.118.6页 岩砂质微风化 2.51 3.9671.718.2粘土岩砂 质 2.56 2.1252.718白云岩泥 质 2.530.553518页 岩 2.5625.718页 岩3317.8板 岩风 化 2.55 2.7233.917.537.3页 岩砂 质 2.52 2.0863.517.3细砂岩钙 质 2.51 1.583617.3砂 岩弱风化 2.35 6.5045.517.28.2糜棱岩片 状 2.740.903117泥灰岩 2.48 2.3628.316.5 1.9粘土岩砂 质 2.5531.716.3片麻岩 2.48 2.8216.10.017粉砂岩泥 质 2.41 3.6546.115.9辉长辉绿岩强风化 2.705415.7砂 岩泥 质 2.57 1.4937.515.6页 岩 2.63 2.0321.415.5 1.1粉砂岩 2.41 3.3252.414.7粘土岩砂 质 2.54 2.725.214.6玄武岩软 弱 2.65 3.719.214.4细砂岩、泥岩互 层 2.670.7322.814.2砾 岩强风化 2.49 2.933614砂 岩变质,强风化 2.52 2.774713.919.8粘土岩 2.56 3.2545.913.9云母片岩全风化 2.65 1.8430.813.8细砂岩 2.72 1.9256.013.5细砂岩弱风化 2.26 4.1718.213.3泥 岩砂 质 2.42 4.3514.813.6粗砂岩砾 质 2.207.7838.412.9玢 岩 2.610.3815.912.5灰 岩 2.620.8123.212.3玄武岩节理发育,全风化 2.47 3.1741.112.1砾 岩砂 质 2.593412.1细砂岩 1.988.1915.311.6灰 岩薄层,风化 2.55 1.613011.2粘土岩 2.36 6.540.611.4砂页岩 2.6614.311.1绢英千枚岩薄片,微,风化 2.600.202510石英砾岩 2.58 1.0110.7泥灰岩 2.25 6.1617.310.621.5泥 岩 2.487.282810.6 6.5粉砂岩 2.6316.610.59.7绢英千枚岩薄片状,弱风化 2.900.27301010.0粘土岩 2.5331.69.9粉砂岩泥 质 2.31 4.5530.69.9页 岩 2.6026.39.8 2.66芒硝岩 2.309.2粘土岩 2.50 6.3634.98.7粘土岩 2.33 6.1616.28.6粘土岩砂 质 6.535.28.4砂 岩钙 质 2.6137.58.322.3粉砂岩 2.55 4.8142.88.3 1.21角砾岩 2.21 5.339.58.2云母片岩松软,全风化 2.53 2.58198.2砂 岩强风化 2.34 5.27178 6.45砂 岩条带状 2.3925.37.8大理岩16.97.6大理岩集块状 2.62 3.36437.6花岗闪长岩强风化 2.55 2.48397 5.39页 岩紫红色 2.257.620.6 6.7 1.85粉砂岩粘土质 2.35 3.1814.3 6.2 3.23玄武玢岩强风化 2.62 1.9213.1 5.9粘土岩 2.2714 5.7粘土岩砂 质 2.62 5.5 4.6绿泥石片岩弱风化 2.5714.6 5.3页 岩强风化 2.40 4.15 5.2砂 岩微风化 2.21 6.1414.5 5.1砂 岩变质,强风化 2.26 5.6818515.9粘土岩 2.51 1.945砂 岩集块状 2.44 5.0913.5 4.2粉砂岩 2.37 3.3214.14千枚岩强风化 2.25 4.9874石英砂岩 2.59 1.01 3.7粉砂岩泥 质 2.1410.2420.6 1.5 1.17芒硝岩 2.3524.929.6泥 岩紫红色 2.257.620.6页 岩 2.6520粘土岩 2.6920.710.3粘土岩 2.60 1.713.3芒硝岩 2.0812.6粘土岩 2.25 4.4页 岩全风化 2.41 4.3丰 满碧 口江 垭天升桥一级电站山西北引黄徐州铜山柳泉矿0.2970葫芦口岗南水库广元香水渡狮子滩龙 门紫坪铺升钟漫湾潘家口(杨叉子坝址隔河岩华东盐矿葫芦口水库万 安漫 湾0.4150小井沟水库云南、丰收河大寨电站1.093000黄 龙徐州铜山小井沟水库江西七星水库万 安陆 浑0.253900龙口矿区沱江水库升 钟偏窗子恒 山陕西王圪堵水库江 垭江西七星水库丹江口罗江口电站0.4044龙门(甘泽坡坝址)绿水河鲁布革陕西王圪堵水库0.886辽闹得海水库大藤峡鄂利川长顺电站1.0*120小什字*现场抗剪断马鞍山桃中铁矿三岔水库升钟四九滩电站东西关寨水库月江口上洞水库偏窗子六郎洞月江口普 定徐州铜山葫芦口安微冬至小什字水库陕西王圪堵水库黑龙潭丹江口龙口电站下洞水库河南长竹河水库太平湾丹江口万县威池水库0.682680*彭水*室内三轴值太平湾葫芦口水库以礼河二级天升桥一级柘 林江西大坳小什字水库绿水河石景山龙口灰坝小井沟长滩水库太平湾下马岭江 垭以礼河一级小什字陕西王圪堵水库恒 山三 岔徐州铜山0.5310碧 口丰 满河口村0.67520淮 阳鄂巩河水库0.510碧 口狮子滩太平湾乌江渡抗切380华东盐矿蒲江小河子水库黑龙潭红旗水库鄂、巩河水库石景山灰坝0.48*0六郎洞*岩石粗面摩擦绿水河上饶大坳五强溪岗南水库石景山龙口灰坝江西奉新淮 阳葛洲坝陆 浑升钟巩河水库冯家山水库0.5582陆 浑0.6718新疆咯拉咯尔电站江西高湖小井沟石景山灰坝葛洲坝江 口河南白沙水库1.03190安微淮阳抗切380华东盐矿1.23760淮 阳0.45430天生桥二级来风塘口1.0770偏窗子抗切250华东盐矿0.247升钟六郎洞。
岩土的物理力学性质参数
岩土的物理力学性质指标
岩土的物理力学性质指标应根据工程地质划分的扇形区及各区的边坡变形破坏特点,选取与之有关的试样进行力学试验,测定岩石及软弱夹层物理力学性质指标。
岩石及软弱夹层的物理性质指标详见表1至表7。
表1 部分岩石的容重
岩石名称
容重γ(g/cm3)
岩石名称
容重γ(g/cm3)
变化范围平均值变化范围平均值
花岗岩 2.25~2.80 2.65 泥质砂岩— 2.28 响岩——粘土质砂岩— 2.52 正长岩 2.50~3.00 2.79 页岩 2.3~2.6 2.50 流纹岩——砂质页岩 2.08~2.65 2.36 流纹斑岩 2.49~2.63 2.60 粘土质页岩 2.51~2.72 2.65 闪长岩 2.72~2.99 2.86 泥质页岩— 2.64 黑云母花岗闪长岩— 2.60 煤质页岩— 2.63
表2 部分岩石的孔隙率与吸水率
表3 不同成因粘土的有关物理力学性质指标(一)
表4 不同成因粘土的有关物理力学性质指标(二)
表5 几种土的渗透系数表
表6 土的平均物理、力学性质指标(一)
表7 土的平均物理、力学性质指标(二)
注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71;粘土2.74。
2.粗砂与中砂的Eo值适用于不均系数Cu=3时,当Cu>5时应按表中所列值减少2/3。
Cu为中间值时, Eo 值按内插法确定。
3.对于地基稳定计算,采用内摩擦角φ的计算值低于标准值2°。
岩石及软弱夹层的力学性质指标见表8至表25。
表8 岩石力学性质指标的经验数据(一)。
(完整版)岩土力学参数大全
常用岩土材料力学参数(E, ν与) (K, G) 的转换关系如下:E3(1 2 )G (7.2)2(1 )当ν值接近0.5 的时候不能盲目的使用公式3.5 ,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν 来计算G 值。
表7.1 和7.2 分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980)表7.15 中弹性常量:E1, E3, ν12, ν13 和G13;正交各向异性弹性模型有9 个弹性模量E1,E2,E3, ν12, ν13, ν23,G 12,G 13 和G23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7 给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室)表7.37.3 固有的强度特性在 FLAC 3D中,描述材料破坏的基本准则是摩尔 - 库仑准则,这一准则把剪切破坏面看 作直线破坏面:其中 N φ (1 sin )/(1 sin )1 ——最大主应力 ( 压缩应力为负 );3 ——最小主应力——摩擦角c ——粘聚力当f s 0时进入剪切屈服。
这里的两个强度常数 φ和 c 是由实验室的三轴实验获得的。
当主应力变为拉力时,摩尔 -库仑准则就将失去其物理意义。
简单情况下, 当表面的在拉应 力区域发展到 3 等于单轴抗拉强度的点时, t,这个次主应力不会达到拉伸强度 —例如;f t 3 t( 7.8 )当 f t 0 时进入拉伸屈服。
岩石和混凝土的抗拉强度通常有由西实验获得。
注意,抗 拉强度不能超过 σ 3, 这是和摩尔 -库仑关系的顶点的限制是一致的。
最大的值由下式给出tc max tan表 7.4 列出了一系列具有代表性的典型的岩石标本的粘聚力、摩擦角和抗拉强度值。
岩土的物理力学性质参数
岩土的物理力学性质指标
岩土的物理力学性质指标应根据工程地质划分的扇形区及各区的边坡变形破坏特点,选取与之有关的试样进行力学试验,测定岩石及软弱夹层物理力学性质指标。
岩石及软弱夹层的物理性质指标详见表1至表7。
表1 部分岩石的容重
表2 部分岩石的孔隙率与吸水率
表3 不同成因粘土的有关物理力学性质指标(一)
表4 不同成因粘土的有关物理力学性质指标(二)
表5 几种土的渗透系数表
表6 土的平均物理、力学性质指标(一)
表7 土的平均物理、力学性质指标(二)
注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71;粘土2.74。
2.粗砂与中砂的Eo值适用于不均系数Cu=3时,当Cu>5时应按表中所列值减少2/3。
Cu为中间值时, Eo 值按内插法确定。
3.对于地基稳定计算,采用内摩擦角φ的计算值低于标准值2°。
岩石及软弱夹层的力学性质指标见表8至表25。
表8 岩石力学性质指标的经验数据(一)。
最新常用岩土材料参数和岩石物理力学性质一览表
常用岩土材料参数和岩石物理力学性质一览表(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E1, E3,ν12,ν13和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3,ν12,ν13,ν23,G12,G13和G23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室)表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f,如果土粒是可压缩的,则要用到比奥模量M。
纯净水在室温情况下的K f值是2 Gpa。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f,不用折减。
这是由于对于大的K f流动时间步长很小,并且,力学收敛性也较差。
在FLAC3D中用到的流动时间步长, tf与孔隙度n,渗透系数k以及K f有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K n m k C +=νν (7.4)其中3/4G K 1m +=νf 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
常用地岩土和岩石物理力学全参数
常用地岩土和岩石物理力学全参数-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
常用的岩土和岩石物理力学参数
(E, ν) 与(K, G)的转换关系如下:)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980)土的弹性特性值(实验室值)(Das,1980)表各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3,ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3,ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室)表流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比拟低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K nm k C +=νν()其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒)f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
关于常用的岩土和岩石物理力学参数
E, ν 与K, G 的转换关系如下:)21(3ν-=EK)1(2ν+=EG 7.2当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多;最好是确定好K 值利用压缩试验或者P 波速度试验估计,然后再用K 和ν来计算G 值;表7.1和7.2分别给出了岩土体的一些典型弹性特性值;岩石的弹性实验室值Goodman,1980 表7.1土的弹性特性值实验室值Das,1980 表7.2中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23;这些常量的定义见理论篇;均质的节理或是层状的岩石一般表现出横切各向同性弹性特性;一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式;表3.7给出了各向异性岩石的一些典型的特性值;横切各向同性弹性岩石的弹性常数实验室 表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M;纯净水在室温情况下的K f 值是2 Gpa;其取值依赖于分析的目的;分析稳态流动或是求初始孔隙压力的分布状态见理论篇第三章流体-固体相互作用分析,则尽量要用比较低的K f ,不用折减;这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差;在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ 7.3 对于可变形流体多数课本中都是将流体设定为不可压缩的我们可以通过获得的固结系数νC 来决定改变K f 的结果;f'K n m k C +=νν 7.4其中3/4G K 1m +=νf 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样如米/秒 f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值Pa 9102⨯减少,利用上面得表达式看看其产生的误差;流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率见1.7节流动与力学的相互作用;如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力;如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小;例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小;在无流动情况下,饱和体积模量为:nK K K fu += 7.5 不排水的泊松比为:)G 3K (22G3K u u u +-=ν 7.6这些值应该和排水常量k 和ν作比较,来估计压缩的效果;重要的是,在FLAC 3D 中,排水特性是用在机械连接的流变计算中的;对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动;7.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ 7.7其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 压缩应力为负; 3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服;这里的两个强度常数φ和c 是由实验室的三轴实验获得的;当主应力变为拉力时,摩尔-库仑准则就将失去其物理意义;简单情况下,当表面的在拉应力区域发展到3σ等于单轴抗拉强度的点时,tσ ,这个次主应力不会达到拉伸强度—例如;t 3t f σσ-= 7.8当0f t >时进入拉伸屈服;岩石和混凝土的抗拉强度通常有由西实验获得;注意,抗拉强度不能超过σ3, 这是和摩尔-库仑关系的顶点的限制是一致的;最大的值由下式给出φσtan ct max =7.9 表7.4列出了一系列具有代表性的典型的岩石标本的粘聚力、摩擦角和抗拉强度值;土体的具有代表性的典型粘聚力和摩擦角的具有代表性的典型值见表7.5;土体强度用无侧限抗压强度u q 表示,u q 与粘聚力C 和摩擦角φ的关系由下式确定/2)2ctan(45q u φ+= 7.10岩石的强度特性值实验室测定 表7.4土体的强度特性值排水实验测定表7.5岩石物理力学性质一览表----岩石物理力学性质各项指标土类岩类1 唐大雄刘佑荣张文殊王清工程岩土学第二版地质出版社1998 北京2 重庆建筑工程学院同济大学岩体力学中国建筑工业出版社1981.10北京3 工程地质手册编写委员会工程地质手册第三版中国建筑工业出版社1992.12北京4李先炜岩体力学性质煤炭工业出版社泊松比范围为0~0.5,不会大于0.5;砂岩泊松比0.22左右,煤岩0.3左右;一般岩石弹性模量量级为10,单位Pa;煤岩弹性模量量级为9,Pa;在岩石的弹性工作范围内,μ一般为常数,但超越弹性范围以后,μ随应力的增大而增大,直到μ=0.5为止;土的泊松比。
岩土物理参数指标
中砂
0.4~0.5
15~18
2.05
0.03
0
40
460
0.5~0.6
19~22
1.95
0.02
0
38
400
0.6~0.7
23~25
1.90
0.01
0
35
330
细砂
0.4~0.5
15~18
2.05
0.06
0
38
370
0.5~0.6
19~22
1.95
0.04
0
36
280
0.6~0.7
23~25
1.90
砂岩(白垩纪)
砂岩(侏罗纪)
砂岩(三迭纪)
砂岩新鲜的
风化的
石英砂岩
石英砂岩新鲜的
风化的
页岩
砂质页岩
泥质页岩
煤质页岩
泥灰岩
石灰石
石灰岩(第三纪)
石灰岩(中生代)
石灰岩(古生代)
白垩
石膏
硬石膏
片麻岩
大理岩
白云岩
石英岩
石英片岩
角闪石片岩
云母片岩
绿泥石片岩
千枚岩
板岩
0.04~2.80
1.10~3.40
0.25~3.00
0.8~0.9
3.0~34
26.5~30.4
1.85
0.94
0.65
16
240
0.9~1.1
3.5~40
1.75
0.47
0.35
15
140
注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71;粘土2.74。
2.粗砂与中砂的Eo值适用于不均系数Cu=3时,当Cu>5时应按表中所列值减少2/3。Cu为中间值时,Eo值按内插法确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用岩土材料参数和岩石物理力学性质一览表(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E1, E3,ν12,ν13和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3,ν12,ν13,ν23,G12,G13和G23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室)表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f,如果土粒是可压缩的,则要用到比奥模量M。
纯净水在室温情况下的K f值是2 Gpa。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f,不用折减。
这是由于对于大的K f流动时间步长很小,并且,力学收敛性也较差。
在FLAC3D中用到的流动时间步长, tf与孔隙度n,渗透系数k以及K f有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K n m k C +=νν (7.4)其中3/4G K 1m +=νf 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。
如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。
如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。
例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。
在无流动情况下,饱和体积模量为:nK K K fu += (7.5) 不排水的泊松比为:)G 3K (22G3K u u u +-=ν (7.6)这些值应该和排水常量k 和ν作比较,来估计压缩的效果。
重要的是,在FLAC 3D 中,排水特性是用在机械连接的流变计算中的。
对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。
7.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负); 3σ——最小主应力φ——摩擦角 c ——粘聚力当0f s <时进入剪切屈服。
这里的两个强度常数φ和c 是由实验室的三轴实验获得的。
当主应力变为拉力时,摩尔-库仑准则就将失去其物理意义。
简单情况下,当表面的在拉应力区域发展到3σ等于单轴抗拉强度的点时,t σ ,这个次主应力不会达到拉伸强度—例如;t 3t f σσ-= (7.8)当0f t >时进入拉伸屈服。
岩石和混凝土的抗拉强度通常有由西实验获得。
注意,抗拉强度不能超过σ3, 这是和摩尔-库仑关系的顶点的限制是一致的。
最大的值由下式给出φσtan ct max =(7.9)表7.4列出了一系列具有代表性的典型的岩石标本的粘聚力、摩擦角和抗拉强度值。
土体的具有代表性的典型粘聚力和摩擦角的具有代表性的典型值见表7.5。
土体强度用无侧限抗压强度u q 表示,u q 与粘聚力C 和摩擦角φ的关系由下式确定/2)2ctan(45q u φ+= (7.10)岩石的强度特性值(实验室测定) 表7.4土体的强度特性值(排水实验测定) 表7.5岩石物理力学性质一览表岩石物理力学性质一览表性质岩性岩石密度(g/cm3) 液限%塑限%塑性指数变形模量(MPa)孔隙比% 抗拉强度内聚力C 摩擦角备注碎石(堆积)类土 2.65~2.7土粒密度 20~40 0.4~0.6 一般假定0 一般假定0 36~42黄土类土干1.3~1.5 23~33 15~20 8~13 新黄土具有湿陷性 0.8~1.1 一般假定0 0.03~0.06(老)0.01~0.033(新) 15~25(老)17.8~28.4(新) 含水率%10~25粘性土 1.8~2.05 23~55 16~30 7~25 4~12(压缩模量) 0.7~1.0 一般假定0 0.005~0.06 8~26 含水率%20~40岩石密度(g/cm3) 孔隙率吸水率软化系数变形模量(103MPa)抗压强度抗拉强度内聚力C 摩擦角泥岩 0.03~0.37(粘土岩) 20.7~59(干粘土岩) 0.010.04~0.09(粘土岩) 2315~30(粘土岩)页岩 2.3~2.62 0.4~10.0 0.5~3.2 0.24~0.74 16~20 10~100 2~10 3 ~20 15~30泥板岩 2.3~2.8 0.1~0.5 0.1~0.3 0.39~0.52 123~199(干板岩)粉砂岩 10~32 0.07~1.7 29~59石英砂岩 2.6~2.71 54~58 68~102.5 1.9~3.0 13(寒武)54(震旦) 75~82.5(似内摩擦角)摩擦系数0.54(寒武)0.49(震旦)砂岩 2.2~2.71 1.6~28.0 0.2~9.0 0.65~0.97 17~41 20~200 4~25 8 ~40 35~50砾岩 2.40~2.66 0.8~10.0 0.3~2.4 0.50~0.96 6.7~16.2(新鲜岩体) 10 ~150 2~15 8~50 35~50泥灰岩 2.3~2.7 1.0~10.0 0.5~3.0 0.44~0.54 1.3~2.6(新鲜岩体) 3.5 ~2040~60 0.3~1.42.8~4.2 0.32(新鲜岩体) 37(新鲜岩体)灰岩 2.3~2.77 16.0~52 0.1~4.45 0.7~0.94 35~39 50~200 5~20 10 ~50 35~50白云岩 2.1~2.7 0.3~25.0 0.1~3.0 6.7~32 80~250 15~25 20~50 35~50片岩 2.69~2.92 0.02~1.85 0.1~0.2 0.53~0.69(绿泥石片岩) 44~72 1 0~100 1~10 1~20 26~65千枚岩 0.4~3.6 0.5~1.8 0.67~0.96 10(石英千枚岩) 10~100 1~1 0 1~20 26~65板岩 2.3~2.75 0.45左右 0.1~0.3 5.0(新鲜岩体) 60~200 7~15 2 ~20 45~60大理岩 2.6~2.7 0.1~6.0 0.1~1.0 49~67 70~140 2.0~4.0 4.9(裂隙较发育岩体) 52(裂隙较发育岩体)石英岩 2.4~2.8 0.1~8.7 0.1~1.5 0.94~0.96 65~70 150~350 15~30 10~50 50~60花岗岩 2.3~2.8 0.5~4.0 0.1~4.0 0.72~0.97 30~37 100~250 7~25 1 4~50 45~60闪长岩 2.52~2.96 0.2~5.0 0.3~5.0 0.6~0.8 1.5~8.5(具裂隙岩体) 10 0~250 10~25 10~50 53~55辉长岩 2.55~2.98 0.3~4.0 0.5~4.0 180~300 15~36 10~50 50~5 5流纹岩 2.5~3.3 180~300 15~30 10~50 45~60安山岩 2.3~2.7 1.1~4.5 0.3~4.5 0.81~0.91 8.3~12.0(具裂隙岩体) 1 00~250 10~20 10~40 45~50玄武岩 2.5~3.1 0.5~7.2 0.3~2.8 0.3~0.95 83 180~300 15~36 10~5 0 50~55注:未注明为岩体的数据,均为岩石试验数据。
[1] 唐大雄刘佑荣张文殊王清工程岩土学(第二版)地质出版社 1998 北京[2] 重庆建筑工程学院同济大学岩体力学中国建筑工业出版社 1981.10北京[3] 工程地质手册编写委员会工程地质手册(第三版)中国建筑工业出版社 1992.1 2北京[4]李先炜岩体力学性质煤炭工业出版社。