2016年河南省安阳市滑县八年级上学期期中数学试卷与解析答案
2016人教版八年级上期中数学试卷及答案
2016人教版八年级上期中数学模拟试卷及答案一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是()2.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形3.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm 4.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()5.点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)6.十二边形的外角和是()A.180°B.360°C.1800°D.2160°7.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或188.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC9.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.2 B.3 C.4 D.510.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠BDC的度数是()A.110°B.70° C.80° D.75°二、填空题(每题4分,共24分)11.三角形的两边长分别是3和7,则其第三边x的范围为.12.如果一个正多边形的内角和是720°,则这个正多边形是正边形.13.已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B= ,∠C= .14.如图,Rt△ABC中,∠A=30°,AB=12cm,则BC= cm.15.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为.16.如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则DC= .(写等于哪条线段)三、解答题(一)(每题6分,共18分)17.利用关于坐标轴对称的点的坐标的特点,在下面坐标系中作出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标.18.已知AB=CD,BE=CF,AE=DF.求证:AB∥CD.19.如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?四、解答题(二)(每题7分,共21分)20.如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.21.某地有两个村庄M、N和两条相交叉的公路OA,OB,现计划修建一个物资仓库,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你用尺规作图的方法确定该点P.(注意保留作图痕迹,不用写作法)22.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.五、解答题(三)(每题9分,共27分)23.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.24.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.25.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.参考答案一、选择题(每题3分,共30分)1.A.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.2.C.解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.3.D.解:A、∵2+3=5,∴不能构成三角形,故本选项错误;B、∵3+3=6,∴不能构成三角形,故本选项错误C、∵5+2=7<8,∴不能构成三角形,故本选项错误;D、∵6﹣4<5<6+4,∴能构成三角形,故本选项正确.4.B.解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.5.A.解:点P(﹣1,2)关于y轴对称点的坐标为(1,2).6.B.解:十二边形的外角和是360°.7.解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.8.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选B.9.解:∵AC=BD,AB=CD,BC=BC,∴△ABC≌△DCB,∴∠BAC=∠CDB.同理得△ABD≌△DCA.又因为AB=CD,∠AOB=∠COD,∴△ABO≌△DCO.故选B.10.解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠BDC=180°﹣70°=110°.故选A.二、填空题(每题4分,共24分)11.解:根据三角形的三边关系定理可得:7﹣3<x<7+3,故4<x<10,故答案为:4<x<10.12.解:设此多边形边数为n,由题意得:180(n﹣2)=720,解得:n=6,故答案为:六.13.解:∵∠A=40°,∴∠B+∠C=180°﹣∠A=140°①,∵∠B﹣∠C=40°②,①+②得:2∠B=180°,∴∠B=90°,①﹣②得:2∠C=100°,∴∠C=50°,故答案为:90°;50°.14解:∵Rt△ABC中,∠A=30°,AB=12cm,∴BC=AB=6cm,故答案为:6.15.解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=20,∴△PMN的周长=20.故答案为:20.16.解:DC=BE,∵△ABD和△ACE都是等边三角形,∴AD=AB,AE=AC,∠BAD=∠EAC=60°,∴∠BAD+∠BAC=∠EAC+∠BAC∴∠DAC=∠BAE,∵在△DAC和△BAE中,,∴△DAC≌△BAE,(SAS)∴BE=CD.故答案为:BE.三、解答题(一)(每题6分,共18分)17.解:如图所示:A′(3,2),B′(4,﹣3),C′(1,﹣1).18.证明:由AB=CD,BE=CF,AE=DF得△ABE≌△DCF;即∠B=∠C,∴AB∥CD.19.解:∵∠BAD=20°,AB=AD=DC,∴∠ABD=∠ADB=80°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=100°,又∵AD=DC,∴∠C=∠ADB=40°,∴∠C=40°.四、解答题(二)(每题7分,共21分)20.解:∵DE是AC的垂直平分线,AE=3cm,∴AD=CD,AC=2AE=2×3=6cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.21.解:点P为线段MN的垂直平分线与∠AOB的平分线的交点,则点P到点M、N的距离相等,到AO、BO的距离也相等,作图如下:22.解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.五、解答题(三)(每题9分,共27分)23.(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BE D=90°∴∠BDE=30°,∴BE=12 BD,∵BE=1,∴BD=2,∴BC=2BD=4,∴△ABC的周长为12.24.证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,∵,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.25.解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°﹣2x,∠2=180°﹣2y;(3)∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A.规律为:∠1+∠2=2∠A.。
八年级(上)期中数学试卷(含答案解析)
八年级(上)期中数学试卷一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.3.五边形的内角和是()A.180°B.360°C.540°D.600°4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠27.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.2812.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.16.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.17.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.参考答案与试题解析一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.五边形的内角和是()A.180°B.360°C.540°D.600°【考点】多边形内角与外角.【专题】常规题型.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°【考点】平行线的性质.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故选C.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.7.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点评】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.故选D.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=6.【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是65°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.16.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.【解答】解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.17.如图,AC=AD,BC=BD,则△ABC≌△ABD;应用的判定方法是(简写)SSS.【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS.【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形全等的判定,熟练掌握各判定定理是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.【点评】本题考查了全等三角形的判定及性质;证明两边相等时,如果这两边不在同一个三角形中,通常是证明它们所在的三角形全等来证明它们相等,是一种很重要的方法.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.【考点】全等三角形的判定.【专题】证明题.【分析】根据已知得出Rt△CEB和Rt△AED,利用HL定理得出即可.【解答】证明:∵BE⊥CD,∴∠CEB=∠AED=90°,∴在Rt△CEB和Rt△AED中,∴Rt△CEB≌Rt△AED(HL).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.【考点】作图-轴对称变换.【分析】根据关于坐标轴对称的点的坐标特点画出图形即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据OC=OD得,△ODC是等腰三角形;根据AB∥DC,得出对应角相等,求得△AOB是等腰三角形,证明最后结果.【解答】证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.【点评】本题主要考查了等腰三角形的判定和平行线的性质:两直线平行,内错角相等.。
2016-2017学年人教版初二上册数学期中考试试卷含答案
初二数学2016-2017学年度第一学期期中质量检测班级 姓名 学号1. 下列各式中,从左到右的变形是因式分解的是( )A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2 D. ax+ay+a=a (x+y ) 2.计算24-的结果是( )A .8-B .18-C .116-D .1163. 月球的平均亮度只有太阳的0.00000215倍。
0.00000215用科学记数法可表示为( ) A .52.1510-⨯ B . 62.1510-⨯ C .72.1510-⨯ D .621.510-⨯4.下列各式中,正确的是( ).A . 1a b b ab b ++=B .22x y x y -++=- C.23193x x x -=-- D .222()x y x y x y x y --=++ 5. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠6.下列多项式能分解因式的有( )个2249y x +-; 2244b a ab +--; 296x x --; 1196422-+-y xy x A.0 B.1 C.2 D.37.若分式22xx -+的值是零,则x 的值是( )A .0x =B .2±=xC .2-=xD .2=x 8. 到三角形三条边距离相等的点是( )ABCDA.三条高线的交点B.三条中线的交点C.三个内角平分线的交点D.三边垂直平分线的交点 9.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( )A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定 10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A B CD二、填空题(本题共20分,每小题2分) 11.当x __________时,分式11x-有意义. 12. 如果7,0-==+xy y x ,则22xy y x += . 13. 若92++mx x 是一个完全平方式,则m = .14. 计算:a aa -+-111的结果是 . 15. 若b a b a -=+111,则 的值是 .16. 如图,△ABC ≌△ADE ,∠CAD=10°,∠B=25°,∠EAB=120°,则∠DFB=____________. 17. 如图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .18. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.C D A B ABDC3,111--+=-ba ab b a b a 则右下折沿虚线剪开剩余部分上折右折A(16) (17) (18)19. 已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是 . 20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 . 三、计算题(共27分,20-21每小题3分,22-23每小题4分)21.分解因式:(1) y xy y x 442+- (2) ()()2233y x y x ---22.计算: (1) 11(1)1a a a a -++⋅- (2) x y x yyx x ⎛⎫+-÷ ⎪⎝⎭(3)()32227812393x x yy x y --⎡⎤⋅÷⎢⎥⎣⎦23.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中(m+3)(m+2)=0. 24.解方程: (1)512552x x x+=-- (2)四、作图题. (本题3分)25.某地区要在区域..S .内. (即∠COD 内部..) 建一个超市M ,如图,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)五、解答题(共20分,每小题4分)26. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.27.列方程解应用题八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。
安阳市第六十三中学2015-2016年八年级上期中数学试题
D
O
a
B
C
八年级 数学试题卷 第 4 页(共 4 页)
第5题
第6题
第7题
7.如图,直角三角形 ABC中,∠C=90°,D 为 AC上一点,DA=DB=5,△ABD 的面积为 10,
则 AC长是( )
A. 3
B.4
C.5
D.6
8.如图所示,∠1=∠2, AC DF ,欲证△ ABC ≌△ DEF ,则还须补充的一个条件
是 A. BC CE B.ACE DFB C. AB DE D. A D
C D
A
E
B
23.(10分)如图,在等边△ABC 中,点 D,E 分别在边 BC,AB上, 且 BD=AE,AD与 CE交于点 F.(1)求证:AD=CE;(2)求∠DFC 的 度数.
八年级 数学试题卷 第 3 页(共 4 页)
24.(8 分)如图,E 在△ABC 的 AC边的延长线上,D 点在 AB边 上,DE交 BC于点 F,DF=EF,BD=CE.求证:△ABC 是等腰三角 形.
C.4 cm, 5 cm, 10 cm
D.3 cm, 4 △ABC 的高的图是
( ).
A
B
C
D
4.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,
④∠A=∠B-∠C 中,能确定△ABC 是直角三角形的条件有
( ).
25.(8 分)如图,已知 BE⊥AC于 E,CF⊥AB于 F,BE、 CF相交于点 D,若 AB=AC. 求证:AD平分∠BAC.
26.(12分)如图,点 O 是等边△ABC内一点,∠AOB=110°,∠BOC=a ,将△BOC绕点 C 按顺时针方向旋转使∠DOC=60°得到△ADC,连接 OD. (1)求证:△ COD是等边三角形. (2)当 a=150°,AO⊥OC时,试判断 AO、AD的数量关系,并说明理由. (3)当 a 为多少度时,△AOD是等腰三角形?(不说明理由)
河南省安阳市八年级上学期期中数学试卷
河南省安阳市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·宝安期中) 下列汽车标志中既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)下列命题中的假命题是()A . 对顶角相等B . 内错角相等,两直线互相平行C . 同位角相等D . 平行于同一条直线的两直线互相平行3. (2分)下列条件中不能作出唯一三角形的是()A . 已知两边和夹角B . 已知两角和夹边C . 已知三边D . 已知两边和其中一边的对角4. (2分)(2011·金华) 如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A . 600mB . 500mD . 300m5. (2分)如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A . BC=B’C’B . ∠A=∠A’C . AC=A’C’D . ∠C=∠C’6. (2分)命题:①对顶角相等;②经过直线外一点,有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题的个数是()A . 1B . 2C . 3D . 47. (2分) (2017九下·杭州开学考) 如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A . 2.5B . 2.8C . 3D . 3.28. (2分)已知等腰三角形的两条边长分别是7和3,则第三条边长的是()A . 3B . 7C . 49. (2分) (2018八上·郑州期中) 如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A . 10cmB .C .D . 9cm10. (2分)下列说法中,正确的是()A . 面积相等的两个图形是全等图形B . 形状相等的两个图形是全等图形C . 周长相等的两个图形是全等图形D . 全等图形的面积相等二、填空题 (共6题;共6分)11. (1分)一个三角形的两边分别是3和5,若第三边的长是偶数,则此三角形的周长为________。
安阳市滑县2015-2016学年八年级上期中数学试卷含答案解析
20.如图,在△ABC 与△DCB 中,AC 与 BD 交于点 E,且∠A=∠D,AB=DC.
(1)求证:△ABE≌△DCE;
则△BEC 的周长( )
A.14 B.6 C.9 D.12
10.如图,在△ABC 中,AB=AC,点 D 在 AC 上,且 BD=BC=AD,则∠A 等于( )
24.(14 分)如图(1)在△ABC 中,∠ACB=90°,AC=BC,直线 MN 经过点 C,且
AD⊥MN 于点 D,BE⊥MN 于点 E.
2015-2016 学年河南省安阳市滑县八年级(上)期中数学试卷
一、选择题(毎空 3 分,共 30 分)
1.下面各组中的三条线段能组成三角形的是( )
A.2cm、3cm,5cm B.1cm、6cm、6cm C.2cm、6cm、9cm D.5cm、3cm、10cm
A.30° B.40° C.45° D.36°
二、填空题(毎空 3 分,共 24 分)
11.在△ABC 中,AC=5cm,AD 是△ABC 中线,把△ABC 周长分为两部分,若其差为
3cm,则 BA=__________.
5.已知△ABC≌△ABD,AB=6,AC=7,BC=8,则 AD=( )
A.5 B.6 C.7 D.8
6.如图,点 P 是 AB 上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能
推出△APC≌△APD 的是( )
(2)当∠AEB=70°时,求∠EBC 的度数.
Hale Waihona Puke 21.如图,在△ABC 中,AB=AC,点 D 是 BC 的中点,点 E 在 AD 上.求证:
八年级(上)期中数学试卷+参考答案与试题解析(新人教版)
八年级(上)期中数学试卷一、选择题(共8个小题,每小题4分,共32分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A.12 B.15 C.12或15 D.93.下列命题中,正确的是()A.形状相同的两个三角形是全等形B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.周长相等的两个等边三角形全等4.如图,△ABO关于x轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(﹣2,1)5.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.60°C.50°D.55°6.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA7.如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A.AC=DF B.AB=DE C.∠A=∠D D.BC=EF8.如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为()A.9 B.8 C.7 D.6二、精心填一填(本大题有6个小题,每小题3分,共18分)9.若正n边形的每个内角都等于150°,则n= ,其内角和为.10.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.11.将一副三角板按如图摆放,图中∠α的度数是.12.已知P点是等边△ABC两边垂直平分线的交点,等边△ABC的面积为15,则△ABP的面积为.13.如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC于点M、N.则△BCM 的周长为.14.如图,在△ABC中,∠C=90°,AD平分∠BAC,且CD=5,则点D到AB的距离为.三、解答题(共9个小题,共70分)15.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.16.如图,在△ABC 中,∠C=∠ABC=2∠A ,BD ⊥AC 于D ,求∠DBC 的度数.17.△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于y 轴对称的△AB l C l ;(2)点P 在x 轴上,且点P 到点B 与点C 的距离之和最小,直接写出点P 的坐标为 .18.如图所示,AD ,AE 是三角形ABC 的高和角平分线,∠B=36°,∠C=76°,求∠DAE 的度数.19.如图,在Rt △ABC 中,∠ABC=90°,点F 在CB 的延长线上且AB=BF ,过F 作EF ⊥AC 交AB 于D ,求证:DB=BC .20.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.21.如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.(1)证明:AB=AD+BC;(2)判断△CDE的形状?并说明理由.22.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.23.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?八年级(上)期中数学试卷参考答案与试题解析一、选择题(共8个小题,每小题4分,共32分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.【点评】本题考查的是轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形是解题的关键.2.若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A.12 B.15 C.12或15 D.9【考点】等腰三角形的性质.【专题】应用题;分类讨论.【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.【解答】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.下列命题中,正确的是()A.形状相同的两个三角形是全等形B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.周长相等的两个等边三角形全等【考点】命题与定理.【分析】分析是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】A.形状和大小完全相同的两个三角形才是全等三角形,故原命题错误,B.面积相等的两个三角形不一定全等,故原命题错误,C.周长相等的两个三角形不一定全等,故原命题错误,D.周长相等的两个等边三角形全等,正确;故选D.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.如图,△ABO关于x轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【专题】数形结合;几何变换.【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【解答】解:由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(1,﹣2),∴点B的坐标为(1,2).故选C.【点评】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.5.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.60°C.50°D.55°【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据三角形内角和定理计算即可.【解答】解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=CE,∴AB=AC,∴∠B=∠ACB=2∠E,∵∠A=105°,∴∠B+∠E=75°,∴∠B=50°,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA【考点】全等三角形的判定与性质.【专题】作图题.【分析】由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故选B.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.7.如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A.AC=DF B.AB=DE C.∠A=∠D D.BC=EF【考点】全等三角形的判定.【分析】根据平行线的性质得出∠A=∠D,求出AC=DF,根据全等三角形的判定定理逐个判断即可.【解答】解:AB=DE,理由是:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AF+FC=DC+FC,∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF,即选项A、C、D都错误,故选B.【点评】本题考查了平行线的性质,全等三角形的判定定理的应用,能熟练地运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为()A.9 B.8 C.7 D.6【考点】平行线的性质;角平分线的定义;等腰三角形的性质.【专题】计算题.【分析】本题主要利用两直线平行,内错角相等,角平分线的定义以及三角形中等角对等边的性质进行做题.【解答】解:∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故选A.【点评】本题主要考查等腰三角形的性质,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.二、精心填一填(本大题有6个小题,每小题3分,共18分)9.若正n边形的每个内角都等于150°,则n= 12 ,其内角和为1800°.【考点】多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.【点评】本题考查的是多边形内角与外角的知识,掌握多边形内角和定理:n边形的内角和为:(n﹣2)×180°是解题的关键.10.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 5 .【考点】角平分线的性质.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.注意分析思路,培养自己的分析能力.11.将一副三角板按如图摆放,图中∠α的度数是 105° .【考点】三角形的外角性质.【专题】计算题.【分析】由于一副三角板按如图摆放,则∠1=60°,∠2=45°,∠2+∠3=90°,根据互余得到∠3=45°,然后根据三角形外角性质得∠α=∠1+∠3=105°. 【解答】解:根据题意得∠1=60°,∠2=45°,∠2+∠3=90°,∴∠3=90°﹣45°=45°,∴∠α=∠1+∠3=60°+45°=105°.故答案为105°.【点评】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任何一个内角.12.已知P 点是等边△ABC 两边垂直平分线的交点,等边△ABC 的面积为15,则△ABP 的面积为 5 .【考点】线段垂直平分线的性质;等边三角形的性质.【分析】过P 作PF ⊥BC 于F ,连接PC ,根据等边三角形性质得出AB=BC=AC ,根据线段垂直平分线性质得出PD=PE=PF ,根据三角形面积公式求出S △ABP =S △BCP =S △ACP =S △ABC ,即可得出答案.【解答】解:如图:过P 作PF ⊥BC 于F ,连接PC , ∵P 点是等边△ABC 两边垂直平分线的交点, ∴AB=BC=AC ,PD=PE=PF ,∴AB ×PD=BC ×PF=AC ×PE ,∴S △ABP =S △BCP =S △ACP =S △ABC , ∵等边△ABC 的面积为15,∴△ABP 的面积为5, 故答案为:5.【点评】本题考查了三角形面积公式,等边三角形的性质,线段垂直平分线性质的应用,能求出AB=BC=AC ,PD=PE=PF 是解此题的关键.13.如下图,在△ABC 中,AB=8,BC=6,AC 的垂直平分线MN 交AB 、AC 于点M 、N .则△BCM 的周长为 14 .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质,得AM=CM ,则△BCM 的周长即为AB+BC 的值.【解答】解:∵AC 的垂直平分线MN 交AB 、AC 于点M 、N ,∴AM=CM .∴△BCM 的周长=BC+BM+CM=BC+AB=14.【点评】此题主要是线段垂直平分线的性质的运用.14.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,且CD=5,则点D 到AB 的距离为 5 .【考点】角平分线的性质.【分析】直接根据角平分线的性质定理即可得出结论.【解答】解:过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=5,∴DE=5.故答案为:5.【点评】本题主要考查了角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.三、解答题(共9个小题,共70分)15.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABC ≌△DEF 是解题的关键.16.如图,在△ABC 中,∠C=∠ABC=2∠A ,BD ⊥AC 于D ,求∠DBC 的度数.【考点】三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A ,即可求得△ABC 三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC 的度数.【解答】解:∵∠C=∠ABC=2∠A , ∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°. ∵BD ⊥AC ,∴∠DBC=90°﹣∠C=18°.【点评】本题考查的是等腰三角形的性质,解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.17.△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于y 轴对称的△AB l C l ;(2)点P 在x 轴上,且点P 到点B 与点C 的距离之和最小,直接写出点P 的坐标为 (﹣,0) .【考点】作图-轴对称变换;轴对称-最短路线问题.【专题】作图题.【分析】(1)根据网格结构找出点B 、C 关于y 轴的对称点B l 、C l 的位置,然后顺次连接即可;(2)找出点C 关于x 轴的对称点C′,连接BC′与x 轴的交点即为所求的点P ,根据对称性写出点C′的坐标,再根据点B 、C′的坐标求出点P 到CC′的距离,然后求出OP 的长度,即可得解.【解答】解:(1)△ABC 关于y 轴对称的△AB l C l 如图所示;(2)如图,点P 即为所求作的到点B 与点C 的距离之和最小, 点C′的坐标为(﹣1,﹣1),∵点B (﹣2,2),∴点P 到CC′的距离为=,∴OP=1+=,点P (﹣,0).故答案为:(﹣,0).【点评】本题考查了利用轴对称变换作图,利用轴对称确定最短路线问题,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.如图所示,AD ,AE 是三角形ABC 的高和角平分线,∠B=36°,∠C=76°,求∠DAE 的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠DAE=∠EAC﹣∠DAC.【解答】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°.【点评】本题主要考查了三角形内角和定理、角的平分线的性质、直角三角形的性质,比较综合,难度适中.19.如图,在Rt△ABC中,∠ABC=90°,点F在CB的延长线上且AB=BF,过F作EF⊥AC交AB于D,求证:DB=BC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据余角的定义得出∠A=∠F,再根据ASA证明△FDB和△BAC全等,最后根据全等三角形的性质证明即可.【解答】证明:∵∠ABC=90°,∴∠DBF=90°,∴∠DBF=∠ABC,∵EF⊥AC,∴∠AED=∠DBF=90°,∵∠ADE=∠BDF∴∠A=∠F,在△FDB和△ACB中,,∴△ABC≌△FBD(ASA),∴DB=BC.【点评】此题考查全等三角形的判定和性质,关键是利用互余得出∠D=∠B,再根据ASA证明三角形全等.20.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.(1)证明:AB=AD+BC;(2)判断△CDE的形状?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)易证DE=CE,即可证明RT△ADE≌RT△BEC,可得AD=BE,即可解题;(2)由RT△ADE≌RT△BEC可得∠AED=∠BCE,即可求得∠DEC=90°,即可解题.【解答】证明:(1)∵∠1=∠2,∴DE=CE,∵在RT△ADE和RT△BEC中,,∴RT△ADE≌RT△BEC,(HL)∴AD=BE,∵AB=AE+BE,∴AB=AD+BC;(2)∵RT△ADE≌RT△BEC,∴∠AED=∠BCE,∵∠BCE+∠CEB=90°,∴∠CEB+∠AED=90°,∴∠DEC=90°,∴△CDE为等腰直角三角形.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证RT△ADE≌RT△BEC是解题的关键.22.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.【考点】等腰三角形的判定与性质;平行线的性质;等腰三角形的判定.【专题】证明题;压轴题.【分析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,同位角相等可得∠1=∠B,两直线平行,内错角相等可得∠2=∠C,从而得到∠B=∠C,然后根据等角对等边即可得证.【解答】证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.【点评】本题考查了等腰三角形的判定,平行线的性质,是基础题,熟记性质是解题的关键.23.(2011秋•海陵区期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A 点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定.【专题】证明题;动点型.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
2015-2016年河南省安阳市滑县八年级(下)期中数学试卷(解析版)
14. (3 分)观察下列各式:① 请写出第⑦个式子: 律: .
,②
,③
,…
,用含 n ( n ≥ 1 )的式子写出你猜想的规
第 2 页(共 19 页)
15. (3 分)如图,Rt△ABC 中,∠B=90°,AC=10cm,BC=8cm,现有两个动点 P、Q 分别从点 A 和点 B 同时出发,其中点 P 以 1cm/s 的速度,沿 AB 向终点 B 移动;点 Q 以 2cm/s 的速度沿 BC 向终点 C 移动,其中一点到终点,另一 点也随之停止.连结 PQ,若经 x 秒后 P,Q 两点之间的距离为 4 的值为 . ,那么 x
时,四边形 AMDN 是菱形.
21. (9 分)如图,矩形 ABCD 的两边 AB=3,BC=4,P 是 AD 上任一点,PE⊥ AC 于点 E,PF⊥BD 于点 F.求 PE+PF 的值.
22. (10 分)有这样一类题目:将 使记 m2+n2=a,并且 mn= 方,从而使得 例如:化简 因为 3+2 所以 =1+2+2 = . =12+( =1+ )2+2 ,则将 a±2
+2)2010=
.
11. (3 分)如果一个四边形的两条对角线互相平分,互相垂直,那么这个四边 形是 . = ;若 2<x<3,则
12. (3 分)已知 m<3,则 = .
13. (3 分) 如图,l 是四边形 ABCD 的对称轴,如果 AD∥BC,有下列结论: (1)AB∥CD; (2)AB=CD; (3)AB⊥BC; (4)AO=OC 其中正确的结论是 (把你认为正确的结论的序号都填上) .
三、解答题 16. (12 分)计算: (1)2 (2) (3) (3 (4) (3 +2 ﹣ ) (2 )2 . )
2016年人教版八年级上册期中数学试卷及答案
2016年人教版八年级上册期中数学试卷及答案2016年秋季学期八年级数学期中考试试卷本试卷共24小题,满分120分,考试时间为120分钟。
考试分为试题卷和答题卡两部分,请将答案写在答题卡上的对应答题区域内,写在试题卷上无效。
考试结束后,请将试题卷和答题卡一并上交。
一、选择题(每小题3分,共计45分)1.下列图形中,是轴对称图形的是()。
A。
锐角三角形B。
钝角三角形C。
直角三角形D。
锐角三角形或钝角三角形2.点P(1,-2)关于x轴对称的点的坐标是()。
A。
(1,2)B。
(1,-2)C。
(-1,2)D。
(-1,-2)3.已知△ABC有一个内角为100°,则△ABC一定是()。
4.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()。
A。
5B。
6C。
11D。
165.若三角形三个内角度数的比为1∶2∶3,则这个三角形的最小角是()。
A。
30°B。
45°C。
60°D。
90°6.一个多边形的每个内角都等于108°,则这个多边形的边数为()。
A。
5B。
6C。
7D。
87.已知直角三角形中有一个角是30°,它对的直角边长是2厘米,则斜边的长是()。
A。
2厘米B。
4厘米C。
6厘米D。
8厘米8.若等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()。
A。
7cmB。
3cmC。
7cm或3cmD。
8cm9.若等腰三角形的一个外角是80°,则底角是()。
A。
80°或50°B。
80°或40°C。
100°或50°D。
100°或40°10.如图,△ABC中,点D在BC上,△ACD和△ABD 面积相等,线段AD是三角形的()。
11.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()。
安阳市第六十三中学-2016年八年级上期中数学试题精品资料
安阳市第六十三中学2015-2016学年第一学期期中考试卷八年级数学一、选择题(每小题3分,共30分)1.如下图是用纸折叠成的图案,其中是轴对称图形的有()A.1个 B.2个C.3个 D.4个2.以下列各组线段为边,能组成三角形的是 ( ).A.1cm, 2cm, 3cm B.2cm, 5 cm, 8cmC.4 cm, 5 cm, 10 cm D.3 cm, 4 cm, 5 cm 3.下面四个图形中,线段BE是△ABC的高的图是().A B C D4.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有 ().A.1个B.2个 C.3个D.4个5.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分AB C.AB与CD互相垂直平分 D.CD平分∠ACB 6.如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠4第5题第6题第7题7.如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则AC长是()A. 3 B.4 C.5 D.68.如图所示,∠1=∠2,DFAC=,欲证△ABC≌△DEF,则还须补充的一个条件是A. CEBC= B.DFBACE∠=∠ C. DEAB= D. DA∠=∠①③②ABDC第8题 第9题 第10题9.如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是A .带②去B .带①去C .带①和②去D .带③去10如图,在下列条件中,不能证明ABD ACD △≌△的是A .BD DC AB AC ==, B.ADB ADC BD DC ∠=∠=,C.B C BAD CAD ∠=∠∠=∠, D.B C BD DC ∠=∠=,二、填空题(每题3分,共27分)11.等腰三角形的一个内角是100°,那么另外两个内角的度数分别为 .12.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m+n= .13.一个多边形的内角和是外角和的3倍,则这个多边形是 边形?14.如图,已知△ABC ,BC=10,BC 边的垂直平分线交AB ,BC 于点E 、D .若△ACE 的周长为12,则△ABC 的周长为 .第14题 第15题 第16题15.已知△ABC 中,AC+BC=24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长=__________.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离是 .18.在△ABC 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD:∠BAC=1:3, 则∠C= .19 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:第17题第18题 第19题A B D CA B C E D O P Q A E B D C AB C N O① AD=BE;② PQ ∥AE ;③ AP=BQ;④ DE=DP;⑤ ∠AOB=60°.一定成立的结论有____________(把你认为正确的序号都填上).三、解答题(本题共9个小题,满分63分)20. (5分)如图,(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1(2)直接写出△ABC 关于x 轴对称的三角形△A 2B 2C 2的各点坐标。
人教版2015~2016年八年级上期中数学试卷含答
2015~2016 学年度八年级上学期期中数学试卷一、选择题(每小题3 分,共24 分)下列各小题均有四个答案,期中只有一个是正确的,将正确答案的代号字母填入括号内1.一个数的平方根与它的立方根相同,那么这个数是()A.0 B.±1 C.1 D.0 和12.下列运算正确的是()A.3a2•a3=3a6 B.5x4﹣x2=4x2C.3•(﹣ab)=﹣8a7b D.2x2÷2x2=03.下列计算正确的是()A.(x+y)2=x2+y2 B.(x+2y)(x﹣2y)=x2﹣2y2C.(x﹣y)2=x2﹣2xy﹣y2 D.(﹣x+y)2=x2﹣2xy+y24.因式分解(x﹣1)2﹣9 的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)5.在等式6a2•(﹣b3)2÷()2= 中的括号内应填入()A. B. C.± D.±3ab36.如图将4 个长、宽分别均为a,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2 B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2 D.(a+b)(a﹣b)=a2﹣b27.如图,在△ABC 中,D、E 分别是边AC、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为()A.15°B.20°C.25°D.30°8.如图,在△ADB 和△ADC 中,有以下条件:①BD=AC,AB=DC;②∠B=∠C,∠BAD=∠CDA;③∠B=∠C,BD=AC;④∠ADB=∠CAD,BD=AC.其中能得出△ADB≌△ADC 的是()A.①②③④B.①②③C.①②④D.②③④二、填空题(每小题3 分,共21 分)9.写出一个你熟悉的小于零的无理数.10.一个数的平方是4,这个数的立方根为.11.命题“相等的角是对顶角”是命题,题设是,结论是.12.计算:﹣a11÷(﹣a)6•(﹣a)5= .13.已知(a n b m+1)3=a9b15,则m n= .14.如图,AB∥CD,AD∥BC,E 为AB 延长线上一点,连结DE 交BC 于点F,在不添加任何辅助线的情况下,请补充一个条件,使△BEF≌△CDF,你补充的条件是(写一个即可).15.如图,AB∥CD,AB=CD,AE=DF.写出图中全等的三角形.三、解答题(8+8+9+9+9+10+10+12=75)16.计算(1)(﹣)•3•()2÷(﹣bc)3(m+2n)•(m2﹣2mn+4n2)17.分解因式(1)2x3﹣8xy2xy3+4x3y﹣4x2y2.18.先化简再求值:[(x﹣2y)2+(x﹣2y)﹣2x ÷2x;其中x=﹣1,y=1.19.如图,AC 和BD 相交于点O,OA=OC,OB=OD.求证:DC∥AB.20.一个长方形的长比宽多5 米,若将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,求原长方形的长和宽.21.如图,在△ABC 中,AB=AC,AD⊥BC 于D.求证:BD=CD,∠1=∠2.22.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式运用公式继续分解的方法是分组分解法:(1)例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)试完成下面填空:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)==(3)试用上述方法分解因式a2﹣2ab﹣ac+bc+b2.23.【问题背景】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,某教学小组继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】小组成员先将问题用符号语言表示为:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类探究:可按“∠B 是直角、钝角、锐角”三种情况进行.【深入探究】第一种情况:当∠B 是直角时:如图①,在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC 与△DEF 一定,依据的判定方法是.第二种情况:当∠B 是钝角时:在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是钝角,试判断△ABC 与△DEF 是否全等.小组成员作了如下推理,请你接着完成证明:证明:如图②,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H.∵∠B=∠E,且∠B、∠E 都是钝角.∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH.在△CBG 和△FEH 中,∴△CBG≌△FEH(AAS).∴CG=FH第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D,假设E 与B 重合,F与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等:综上探究,该小明的结论是:.【拓展延伸】:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,若∠B 满足条件时,就可以使△ABC≌△DEF(请直接写出结论)河南省南阳市南召县2015~2016 学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(每小题3 分,共24 分)下列各小题均有四个答案,期中只有一个是正确的,将正确答案的代号字母填入括号内1.一个数的平方根与它的立方根相同,那么这个数是()A.0 B.±1 C.1 D.0 和1【考点】立方根;平方根.【分析】根据任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0 的平方根是0,负数没有平方根,进行进行解答.【解答】解:根据平方根与立方根的性质,一个数的平方根与它的立方根完全相同,则这个数是0.故选:A.【点评】本题主要考查了平方根与立方根的区别与联系,熟记一些特殊数据的平方根与立方根是解题的关键.2.下列运算正确的是()A.3a2•a3=3a6 B.5x4﹣x2=4x2C.3•(﹣ab)=﹣8a7b D.2x2÷2x2=0【考点】单项式乘单项式;合并同类项;整式的除法.【分析】根据整式的各种运算法则逐项分析即可.【解答】解:A、3a2•a3=3a5≠3a6,故A 错误;B、5x4﹣x2 不是同类项,所以不能合并,故B 错误;C、3•(﹣ab)=﹣8a7b,计算正确,故C 正确;D、2x2÷2x2=1≠0,计算错误,故D 错误;故选:C.【点评】本题考查了和整式有关的各种运算,解题的关键是熟记整式的各种运算法则.3.下列计算正确的是()A.(x+y)2=x2+y2 B.(x+2y)(x﹣2y)=x2﹣2y2C.(x﹣y)2=x2﹣2xy﹣y2 D.(﹣x+y)2=x2﹣2xy+y2【考点】完全平方公式;平方差公式.【专题】计算题;整式.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=x2+y2+2xy,错误;B、原式=x2﹣4y2,错误;C、原式=x2﹣2xy+y2,错误;D、原式=x2﹣2xy+y2,正确,故选D【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.因式分解(x﹣1)2﹣9 的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)【考点】因式分解-运用公式法.【分析】把(x﹣1)看成一个整体,利用平方差公式分解即可.【解答】解:(x﹣1)2﹣9,=(x﹣1+3)(x﹣1﹣3),=(x+2)(x﹣4).故选B.【点评】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式没有公因式时,考虑用公式法,将其分解因式.此题直接应用平方差公式.5.在等式6a2•(﹣b3)2÷()2= 中的括号内应填入()A. B. C.± D.±3ab3【考点】整式的除法;单项式乘单项式.【分析】利用被除式除以商式列出式子计算得出答案即可.【解答】解:6a2•(﹣b3)2÷=6a2b6÷=9a2b6=(±3ab3)2.所以括号内应填入±3ab3.故选:D.【点评】此题考查整式的除法,积的乘方,掌握运算顺序与计算方法是解决问题的关键.6.如图将4 个长、宽分别均为a,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2 B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2 D.(a+b)(a﹣b)=a2﹣b2【考点】完全平方公式的几何背景.【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4 个矩形的面积.【解答】解:∵大正方形的面积﹣小正方形的面积=4 个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.【点评】考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.7.如图,在△ABC 中,D、E 分别是边AC、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC 中,∠C+2∠C+90°=180°∴∠C=30°故选D.【点评】本题主要考查全等三角形对应角相等的性质,做题时求出∠A=∠BED=∠CED=90°是正确解本题的突破口.8.如图,在△ADB 和△ADC 中,有以下条件:①BD=AC,AB=DC;②∠B=∠C,∠BAD=∠CDA;③∠B=∠C,BD=AC;④∠ADB=∠CAD,BD=AC.其中能得出△ADB≌△ADC 的是()A.①②③④B.①②③C.①②④D.②③④【考点】全等三角形的判定.【分析】要使△ADB≌△ADC 的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:①BD=AC,AB=DC,满足SSS,能证明△ADB≌△ADC;②∠B=∠C,∠BAD=∠CDA满足AAS,能证明△ADB≌△ADC;③∠B=∠C,BD=AC 只是SSA,不能证明△ADB≌△ADC;④∠ADB=∠CAD,BD=AC 满足SAS,能证明△ADB≌△ADC,故选C【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.二、填空题(每小题3 分,共21 分)9.写出一个你熟悉的小于零的无理数﹣.【考点】估算无理数的大小.【专题】开放型.【分析】利用无理数的定义直接得出答案.【解答】解:小于零的无理数可以为:﹣等.故答案为:﹣.【点评】此题主要考查了估算无理数的大小,正确把握无理数的定义是解题关键.10.一个数的平方是4,这个数的立方根为±.【考点】立方根.【分析】首先利用平方根的定义求得这个数,然后根据立方根的定义即可求解.【解答】解:4 的平方根是±2,±2 的立方根是:±.故答案为:± .【点评】本题考查了平方根与立方根的定义,正确理解定义是关键.11.命题“相等的角是对顶角”是假命题,题设是两个角相等,,结论是这两个角是对顶角.【考点】命题与定理.【专题】应用题.【分析】任何一个命题都可以写成如果…,那么…的形式,如果后面是题设,那么后面是结论,再判断真假即可.【解答】解:命题“相等的角是对顶角”可写成:若两个角相等,那么这两个角是对顶角,故命题“对顶角相等”的题设是两个角相等,结论是这两个角是对顶角,故答案为假,两个角相等,这两个角是对顶角.【点评】本题考查的是命题的题设与结论,解答此题目只要把命题写成如果…,那么…的形式,便可解答.12.计算:﹣a11÷(﹣a)6•(﹣a)5= a10 .【考点】同底数幂的除法;同底数幂的乘法.【分析】根据同底数幂的除法进行计算即可.【解答】解:﹣a11÷(﹣a)6•(﹣a)5=﹣a11÷a6•(﹣a)5=a11﹣6+5=a10,故答案为:a10【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法进行解答.13.已知(a n b m+1)3=a9b15,则m n= 64 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵(a n b m+1)3=a3n b3m+3=a9b15,∴3n=9,3m+3=15,∴m=4,n=3,则m n=64.故答案为:64.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.14.如图,AB∥CD,AD∥BC,E 为AB 延长线上一点,连结DE 交BC 于点F,在不添加任何辅助线的情况下,请补充一个条件,使△BEF≌△CDF,你补充的条件是 DC=BE (写一个即可).【考点】全等三角形的判定.【分析】添加DC=BE,根据平行线的性质可得∠CDF=∠E,再加对顶角∠DFC=∠BFE,可利用AAS 判定△BEF≌△CDF.【解答】解:添加DC=BE,∵AB∥CD,∴∠CDF=∠E,在△DCF 和△EBF 中,∴△DCF≌△EBF(AAS),故答案为:DC=BE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,AB∥CD,AB=CD,AE=DF.写出图中全等的三角形△ABE≌△DCF,△ABF≌△DCE,△BEF≌△CFE .【考点】全等三角形的判定.【分析】利用已知结合全等三角形的判定方法分别判断得出答案.【解答】解:∵AB∥CD,∴∠A=∠D,∵AE=DF,∴AF=DE,在△ABF 和△DCE 中,,∴△ABF≌△DCE(SAS),在△ABE 和△DCF 中,第 10 页(共 16 页),∴△ABE ≌△DCF (SAS ), ∵△ABF ≌△DCE ,∴∠BFE=∠FEC ,BF=EC , 在△BEF 和△CFE 中,,∴△BEF ≌△CFE (SAS ). 故答案为:△ABE ≌△DCF ,△ABF ≌△DCE ,△BEF ≌△CFE .【点评】此题主要考查了全等三角形的判定与性质,正确利用 SAS 得出全等三角形是解题关键. 三、解答题(8+8+9+9+9+10+10+12=75) 16.计算 (1)(﹣)•3•()2÷(﹣bc )3(m+2n )•(m 2﹣2mn+4n 2) 【考点】整式的混合运算. 【专题】计算题;整式.【分析】(1)原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即 可得到结果;原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=﹣ a 3b •8a 3b 3c 6• a 2÷(﹣b 3c 3)=a 8bc 3; 原式=m 3﹣2m 2n+4mn 2+2m 2n ﹣4mn 2+8n 3=m 3+8n 3.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.分解因式 (1)2x 3﹣8xy 2xy 3+4x 3y ﹣4x 2y 2.【考点】提公因式法与公式法的综合运用. 【分析】(1)直接提取公因式 2x ,进而利用平方差公式分解因式得出答案; 直接提取公因式 xy ,进而利用完全平方公式分解因式得出答案. 【解答】解:(1)原式=2x (x 2﹣4y 2) =2x (x+2y )(x ﹣2y );原式=xy (y 2+4x 2﹣4xy )=xy(y﹣2x)2.【点评】此题主要考查了提取公因式法以及公式法因式分解,正确应用乘法公式是解题关键.18.先化简再求值:[(x﹣2y)2+(x﹣2y)﹣2x ÷2x;其中x=﹣1,y=1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式=(x2﹣4xy+4y2+x2+4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=1时,原式=1﹣1 =﹣.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,AC 和BD 相交于点O,OA=OC,OB=OD.求证:DC∥AB.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】根据边角边定理求证△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可证明DC∥AB.【解答】证明:∵在△ODC 和△OBA 中,∵,∴△ODC≌△OBA(SAS),∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).【点评】此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC≌△OBA.20.一个长方形的长比宽多5 米,若将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,求原长方形的长和宽.【考点】多项式乘多项式.【专题】应用题;几何图形问题.【分析】设原长方形的宽为x 米,则长为(x+5)米,根据将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,列出方程,求出方程的解即可得到结果.【解答】解:设原长方形的宽为x 米,则长为(x+5)米,根据题意得:(x+4)(x+5﹣3)=x(x+5)+10,整理得:x2+6x+8=x2+5x+10,解得:x=2,经检验符合题意,且x+5=2+5=7(米),则原长方形的长为7 米,宽为2 米.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.21.如图,在△ABC 中,AB=AC,AD⊥BC 于D.求证:BD=CD,∠1=∠2.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出∠ADB=∠ADC=90°,根据HL 推出Rt△ABD≌Rt△ACD,根据全等三角形的性质求出即可.【解答】证明:∵AD⊥BC 于D,∴∠ADB=∠ADC=90°,在Rt△ABD 与Rt△ACD 中,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠1=∠2.【点评】本题考查了全等三角形的性质和判定的应用,能求出Rt△ABD≌Rt△ACD 是解此题的关键,注意:全等三角形的对应角相等,对应边相等.22.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式运用公式继续分解的方法是分组分解法:(1)例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)试完成下面填空:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)= x2﹣(y+1)2= (x+y+1)(x﹣y﹣1)(3)试用上述方法分解因式a2﹣2ab﹣ac+bc+b2.【考点】因式分解-分组分解法.【专题】阅读型.【分析】首先利用完全平方公式将y2+2y+1 分解因式,进而结合平方差公式分解得出答案;(3)首先重新分组,使a2﹣2ab+b2 组合,进而利用完全平方公式以及提取公因式法分解因式得出答案.【解答】解:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1),=x2﹣(y+1)2,=(x+y+1)(x﹣y﹣1);故答案为:x2﹣(y+1)2;(x+y+1)(x﹣y﹣1);(3)a2﹣2ab﹣ac+bc+b2=(a2﹣2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).【点评】此题主要考查了分组分解法分解因式,正确应用乘法公式是解题关键.23.【问题背景】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,某教学小组继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】小组成员先将问题用符号语言表示为:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类探究:可按“∠B 是直角、钝角、锐角”三种情况进行.【深入探究】第一种情况:当∠B 是直角时:如图①,在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC 与△DEF 一定全等,依据的判定方法是HL .第二种情况:当∠B 是钝角时:在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是钝角,试判断△ABC 与△DEF 是否全等.小组成员作了如下推理,请你接着完成证明:证明:如图②,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H.∵∠B=∠E,且∠B、∠E 都是钝角.∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH.在△CBG 和△FEH 中,∴△CBG≌△FEH(AAS).∴CG=FH第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D,假设E 与B 重合,F与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等:综上探究,该小明的结论是:有两边和其中一边的对角对应相等的两个三角形不一定全等.【拓展延伸】:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,若∠B 满足∠B≥∠A 条件时,就可以使△ABC≌△DEF(请直接写出结论)【考点】全等三角形的判定与性质.【分析】(1)根据直角三角形全等的方法“HL”证明;过点C 作CG⊥AB 交AB 的延长线于G,过点F 作FH⊥DE 交DE 的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG 和△FEH 全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG 和Rt△DFH 全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC 和△DEF 全等;(3)以点C 为圆心,以AC 长为半径画弧,与AB 相交于点D,E与B 重合,F 与C 重合,得到△DEF 与△ABC 不全等;(4)根据三种情况可得结论,∠B 不小于∠A 即可.【解答】解:(1)△ABC 与△DEF 一定全等,依据的判定方法是HL;证明:如图,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H,∵∠B=∠E,且∠B、∠E 都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS);(3)小明的结论是:有两边和其中一边的对角对应相等的两个三角形不一定全等;(4)若∠B≥∠A,则△ABC≌△DEF.如图,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H,∵∠B=∠E,且∠B、∠E 都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS).【点评】本题考查了全等三角形的性质和判定的应用,能求出Rt△ABD≌Rt△ACD 是解此题的关键,注意:全等三角形的对应角相等,对应边相等。
【人教版】2015-2016学年八年级上期中数学试卷(含答案)
2015~2016学年度第一学期期中质量检测试卷八年级数学温馨提示:时间120分钟,满分150分。
请仔细审题,细心答题,相信你一定会有出色的表现! 一、选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A、B、C、D填到本题后括号内)1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.如果一个三角形的两边长分别为2和5,则第三边长可能是()A.2 B.3 C.5 D.83.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°5.如图,∠A+ ∠B +∠C +∠D +∠E +∠F的度数为()A.180°B.360°C.270°D.540°6.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:027.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是( )A. SASB. ASAC. AASD. SSS8.如图,在△ABC 中,AD 是BC 边上的中线,点E 、F 是AD 的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积为( )A .2cm 2B .4cm 2C .6cm 2D .8cm 29.如图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?( )A .△ACFB .△ADEC .△ABCD .△BCF10.如图,在四边形ABCD 中,AB=CD ,BA 和CD 的延长线交于点E ,若点P 使得S △PAB =S △PCD ,则满足此条件的点P ( )A .有且只有1个B .有且只有2个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)二、填空题(本题共4小题,每小题5分,共20分)11. 将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.12. 如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,第7题第12题第11题第8题第9题第10题第13题则∠C的度数为;13. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3cm,AE=4cm,则CH的长是;14.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,若∠AED=60°,∠EDC=100°,则, ∠ADE= .三、解答题(本大题共90分,注意写出解答过程或计算步骤)15. (8分)小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)16.(8分)如图,在△ABD和△ACE中,有下列四个等式:①AB=AC、②AD=AE、③∠1=∠2、④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程).题设:,结论:(写序号)17.(8分)如图,已知点E,F在AC上,AD∥BC,DF=BE,添加的一个条件....(不要在图中增加任何字母和线),使△ADF≌△CBE.你添加的条件是:. 证明:18.(8分)如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于E ,AD ⊥CE 于点D ,AD =3.1cm ,DE =1.8cm ,求BE 的长。
【精品】2016年河南省八年级上学期期中数学试卷带解析答案
2015-2016学年河南省八年级(上)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)9的算术平方根是()A.B.C.3 D.±32.(3分)实数3.14159,0.050050005…(相邻两个5之间依次多一个0),π,0,﹣,中无理数的个数是()A.2 B.3 C.4 D.53.(3分)下列各式计算正确的是()A.(a+b)2=a2+b2B.a•a2=a3C.a8÷a2=a4D.3a2+2a2=5a44.(3分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x•2)+aC.(a﹣b)(b﹣a)=(b﹣a)(a﹣b)D.(x﹣1)(x﹣3)+1=(x﹣2)2 5.(3分)下列命题中,真命题是()A.相等的角是直角 B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有且只有一条直线6.(3分)等腰三角形一腰上的高与另一腰的夹角为15°,则顶角的度数为()A.75°B.15°C.15°或165°D.75°或105°7.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角8.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.3a+5 B.6a+9 C.2a2+5a D.6a+159.(3分)如图,已知D是BC上一点,且满足AB=AC=BD,那么∠1与∠2的关系是()A.3∠2﹣∠1=180° B.∠1+2∠2=180°C.2∠1+∠2=180°D.∠1=2∠2 10.(3分)()2014•(﹣1.5)2015=()A.()2014B.﹣ C.﹣ D.(﹣)2014二、填空题(每小题3分,共24分)11.(3分)比较大小:,1﹣1﹣(填“>”“<”或“=”).12.(3分)(8a4﹣4a3﹣2a2)÷(﹣2a)2=.13.(3分)如图所示,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当三角形APQ是以PQ为底的等腰三角形时,运动的时间是.14.(3分)如图,已知△ABC≌△ADC,∠BAC=60°,∠ACD=25°,那么∠D=.15.(3分)如果x2+2(m﹣3)x+81是一个完全平方式,那么m=.16.(3分)某正数的平方根为和,则这个数是.17.(3分)﹣2的相反数是,绝对值是.18.(3分)设x﹣=1,则x2+=.三、解答题(本大题共8个小题,满分66分)19.(8分)计算(1)﹣(2).20.(8分)计算:(1)(﹣m+n2)(﹣n2﹣m)(2)(﹣6a2b5c)÷(﹣2ab2)2.21.(8分)分解因式(1)3(x﹣2y)2﹣3x+6y(2)4x2﹣3y(4x﹣3y)22.(10分)化简求值(1)[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2;(2)4(x+1)2﹣7(x﹣1)(x+1)+3(1﹣x)2,其中x=﹣.23.(6分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.24.(8分)如图AB=a,P是线段AB上的一点,分别以AP、BP为边作正方形,(1)设AP=x,求两个正方形的面积之和S(用含x的代数式表示,并注意化简)(2)设当x=a时,两个正方形面积的和为S1;当x=a时,两个正方形的面积的和为S2,试比较S1与S2的大小.25.(8分)某同学剪出若干张长方形和正方形的卡片,利用这些卡片他拼成了如图2中的大正方形,由此验证了我们学过的公式(a+b)2=a2+2ab+b2.(1)如图1,请运用拼图的方法,选取一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据你拼成的图形和面积,把此多项式分解因式;(2)小明想用类似的方法拼成一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.26.(10分)如图1所示,在△ABC中,AB=AC,∠BAC=90°,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.2015-2016学年河南省八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)9的算术平方根是()A.B.C.3 D.±3【解答】解:∵32=9,∴9的算术平方根是3.故选:C.2.(3分)实数3.14159,0.050050005…(相邻两个5之间依次多一个0),π,0,﹣,中无理数的个数是()A.2 B.3 C.4 D.5【解答】解:0.050050005…(相邻两个5之间依次多一个0),π,﹣是无理数,故选:B.3.(3分)下列各式计算正确的是()A.(a+b)2=a2+b2B.a•a2=a3C.a8÷a2=a4D.3a2+2a2=5a4【解答】解:A、(a+b)2=a2+b2+2ab,错误;B、a•a2=a3,正确;C、a8÷a2=a6,错误;D、3a2+2a2=5a2,错误.故选:B.4.(3分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x•2)+aC.(a﹣b)(b﹣a)=(b﹣a)(a﹣b)D.(x﹣1)(x﹣3)+1=(x﹣2)2【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.5.(3分)下列命题中,真命题是()A.相等的角是直角 B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有且只有一条直线【解答】解:A,不正确,因为相等的角也可能是锐角或钝角;B,不正确,因为前提是在同一平面内;C,不正确,因为两直线平行同位角相等;D,正确,因为两点确定一条直线;故选:D.6.(3分)等腰三角形一腰上的高与另一腰的夹角为15°,则顶角的度数为()A.75°B.15°C.15°或165°D.75°或105°【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+15°=105°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣15°=75°.故选:D.7.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选:B.8.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.3a+5 B.6a+9 C.2a2+5a D.6a+15【解答】解:矩形的面积是(a+4)2﹣(a+1)2=a+8a+16﹣a﹣2a﹣1=6a+15.故选:D.9.(3分)如图,已知D是BC上一点,且满足AB=AC=BD,那么∠1与∠2的关系是()A.3∠2﹣∠1=180° B.∠1+2∠2=180°C.2∠1+∠2=180°D.∠1=2∠2【解答】解:∵AB=BD,∴∠BAD=∠2,∵AB=AC,∴∠B=∠C,∵∠B+∠C+∠BAC=180°,∴2∠C+∠2+∠1=180°,∵∠C=∠2﹣∠1,∴3∠2﹣∠1=180°故选:A.10.(3分)()2014•(﹣1.5)2015=()A.()2014B.﹣ C.﹣ D.(﹣)2014【解答】解:()2014•(﹣1.5)2015=()2014•(﹣1.5)2014×(﹣1.5)=[()•(﹣1.5)]2014×(﹣1.5)=﹣1.5=﹣.故选:C.二、填空题(每小题3分,共24分)11.(3分)比较大小:>,1﹣<1﹣(填“>”“<”或“=”).【解答】解:>,1﹣<1﹣.故答案为:>,<.12.(3分)(8a4﹣4a3﹣2a2)÷(﹣2a)2=2a2﹣a﹣.【解答】解:原式=(8a4﹣4a3﹣2a2)÷4a2=8a4÷4a2﹣4a3÷4a2﹣2a2÷4a2=2a2﹣a﹣.故答案是:2a2﹣a﹣.13.(3分)如图所示,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当三角形APQ是以PQ 为底的等腰三角形时,运动的时间是 3.6s.【解答】解:设运动的时间为x,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm 的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=18﹣3x,AQ=2x,即18﹣3x=2x,解得x=3.6.故答案为:3.6s.14.(3分)如图,已知△ABC≌△ADC,∠BAC=60°,∠ACD=25°,那么∠D=95°.【解答】解:∵△ABC≌△ADC,∴∠DAC=∠BAC=60°,∵∠DAC+∠ACD+∠D=180°,∴∠D=180°﹣25°﹣60°=95°.故答案为95°.15.(3分)如果x2+2(m﹣3)x+81是一个完全平方式,那么m=12或﹣6.【解答】解:∵x2+2(m﹣3)x+81是一个完全平方式,∴2(m﹣3)=±18,解得:m=12或﹣6.故答案为:12或﹣6.16.(3分)某正数的平方根为和,则这个数是1.【解答】解:依题意得:+=0即a+2a﹣9=0∴a=3∴=﹣=1∴这个数为1.故填1.17.(3分)﹣2的相反数是2﹣,绝对值是2﹣.【解答】解:﹣2的相反数是﹣(﹣2)=2﹣;绝对值是|﹣2|=2﹣.故本题的答案是2﹣,2﹣.18.(3分)设x﹣=1,则x2+=3.【解答】解:∵x﹣=1,∴x2+==12+2=1+2=3,故答案为:3.三、解答题(本大题共8个小题,满分66分)19.(8分)计算(1)﹣(2).【解答】解:(1)原式=+=;(2)原式===17.20.(8分)计算:(1)(﹣m+n2)(﹣n2﹣m)(2)(﹣6a2b5c)÷(﹣2ab2)2.【解答】解:(1)原式=(﹣m)2﹣(n2)2=m2﹣n4;(2)原式=(﹣6a2b5c)÷(4a2b4)=﹣bc.21.(8分)分解因式(1)3(x﹣2y)2﹣3x+6y(2)4x2﹣3y(4x﹣3y)【解答】解:(1)原式=3(x﹣2y)2﹣3(x﹣2y)=(x﹣2y)(3x﹣6y﹣3)=3(x﹣2y)(x﹣2y﹣1);(2)原式=4x2﹣12xy+9y2=(2x﹣3y)2.22.(10分)化简求值(1)[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2;(2)4(x+1)2﹣7(x﹣1)(x+1)+3(1﹣x)2,其中x=﹣.【解答】解:(1)原式=(x2﹣4xy+4y2﹣4y2+2xy)÷2x=x﹣y.当x=2,y=1时,原式=0(2)原式=2x+14 当x=﹣时,原式=13.23.(6分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AB=CD;(2)∵△ABE≌△CDF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴AB=BE,∴△ABE是等腰三角形,∴∠D=.24.(8分)如图AB=a,P是线段AB上的一点,分别以AP、BP为边作正方形,(1)设AP=x,求两个正方形的面积之和S(用含x的代数式表示,并注意化简)(2)设当x=a时,两个正方形面积的和为S1;当x=a时,两个正方形的面积的和为S2,试比较S1与S2的大小.【解答】解:(1)∵AB=a,AP=x,∴BP=a﹣x,∴两个正方形的面积之和S=x2+(a﹣x)2=2x2﹣2ax+a2;(2)∵当x=a时,两个正方形面积的和为S1=2×﹣2×a×+a2=,当x=a时,两个正方形的面积的和为S2=2×﹣2a×+a2=,∴S1>S2.25.(8分)某同学剪出若干张长方形和正方形的卡片,利用这些卡片他拼成了如图2中的大正方形,由此验证了我们学过的公式(a+b)2=a2+2ab+b2.(1)如图1,请运用拼图的方法,选取一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据你拼成的图形和面积,把此多项式分解因式;(2)小明想用类似的方法拼成一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片7张,3号卡片3张.【解答】解:(1)用一张大正方形卡片,4张矩形卡片和3张小正方形卡片,即可拼成题目所要求的矩形.如下图所示:由图形的面积可知:a2+4ab+3b2=(a+b)(a+3b).(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片7张,3号卡片3张.26.(10分)如图1所示,在△ABC中,AB=AC,∠BAC=90°,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD 中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
八年级第一学期期中数学试卷参考答案
八年级第一学期期中数学参考答案及评分标准(满分100分,考试时间90分钟)一、选择题【本大题共4个小题,每小题3分,满分12分】1.B . 2.A . 3.C . 4.B.二、填空题【本大题共14个小题,每小题2分,满分28分】5.2 6.5x ≠. 7. 8.121122x x ==.9.12x >-- 10.1 . 11.904a a <≠且. 12. 20% 13. 1. 14. 7. 15.2y x =-. 16.4.17.<. 18.3 . 三、简答题【本大题共8个小题,其中19~24每小题6分,25、26每题7分,满分50分】19.解:(5(2=++原式 ………………3分52=-+…………………………2分3=-……………………………………1分20. 解:=原式……………2分=3分=1分21.解:2287x x +=2742x x += ……………………………………1分 22274222x x ++=+………………………1分 21522x +=()……………………………………1分22x +=±……………………………………1分得 22x =-+ 或 22x =-- …………1分所以原方程的解为12x =-+,22x =-.…………1分22. 解: (5)(54)0x x x --+= ……………………………2分(5)(55)0x x --= ………………………………1分得 5x = 或 1x = …………………………………2分所以原方程的解为 11x = ,25x =……………………1分(其他方法对应给分)23.解:令22240x xy y -+=,则2221688y y y ∆=-=, ………………1分所以1,24242y x y ±±==,……………2分所以2224x xy y -+22222x y x y ⎛⎫⎛⎫+=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭……3分24. 解:1x = ;1y =……………………2分将x,y 的值代入得222231)1)1)x xy y -+=-+.…1分333=-++2分3=………………………………………………1分25. 解:由题意,设21110);y k x k =≠(2220);1k y k x =≠+(……………1分∵12y y y =+ ∴22112(0,0)1k y k x k k x =+≠≠+…………1分根据题意得21120264k k k k ⎧=+⎪⎨⎪-=-⎩………………………………2分解得1212.k k =-⎧⎨=⎩,……………………………………………………2分 所以221y x x =-++.……………………………………………………1分 26. 解:(1)设AB 的长为x m ,则宽(1202)BC x m =-,根据题意,得(1202)1152x x -= …………………………2分解得 124812x x ==,;…………………………1分所以 481202120248=24x BC x ==-=-⨯当时,;121202120212=9690x BC x ==-=-⨯>当时,(不合题意,舍去)…1分 答:长方形两条邻边的长分别为48m ,24m 。
【初中数学】河南省安阳市滑县2016年中考数学一模试卷(解析版) 人教版
河南省安阳市滑县2016年中考数学一模试卷一、选择题1.下列四个数中,最小的数是()A.﹣B.0 C.﹣2 D.22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C. D.3.2015年11月11日天猫“双11”购物狂欢节的总成交金额达到912.17亿元,“912.17亿”用科学记数法可表示为()A.912.17×107B.912.17×108C.9.1217×1010D.9.1217×1094.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+15.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据的中位数是()A.9.7 B.9.5 C.9 D.8.86.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°7.星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2千米B.小强在公共汽车站等小明用了10分钟C.公交车的平均速度是34千米/小时D.小强乘公交车用了30分钟8.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4二、填空题9.计算:(3.14﹣)0+(﹣3)2=.10.若关于x的一元二次方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是.11.如图,l1∥l2,则∠1=度.12.在一个不透明的盒子中装有7个红球,n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率为,则n=.13.已知点A(x1,y1),B(x2,y2),C(3,y3)都在反比例函数y=﹣的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是.14.如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则=.15.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM 恰好是矩形,你所写的一对抛物线解析式是和.三、解答题(共8个小题,满分75分)16.先化简÷(﹣),再从方程组的解集中取一个你喜欢的x的值代入求值.17.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts.(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF.(2)填空:①当t=s时,四边形ACFE是菱形;②当t=s时,S△ACE=2S△FCE.18.随着生活水平的不断提高,“初中生带手机”的现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名初中生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)这次调查的学生家长总人数为.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数;(4)若该校所在市区有初中生家长约14.7万人,则估计该市初中生家长中持“很赞同”态度的约为多少万人?19.已知关于x的一元二次方程x2﹣ax+a=1.(1)求证:对于任意实数a,方程总有实数根;(2)若方程的一个根是3,求a的值及方程的另一个根.20.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.21.某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株.已知B区域面积是A区域面积的2倍.设A区域面积为x(m2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式.(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)若三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元.请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.22.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系.23.已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.2016年河南省安阳市滑县中考数学一模试卷参考答案与试题解析一、选择题1.下列四个数中,最小的数是()A.﹣B.0 C.﹣2 D.2【考点】有理数大小比较.【分析】用数轴法,将各选项数字标于数轴之上即可解本题.【解答】解:画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,可得:∵C点位于数轴最左侧,∴C选项数字最小.故选:C.【点评】本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.【点评】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.2015年11月11日天猫“双11”购物狂欢节的总成交金额达到912.17亿元,“912.17亿”用科学记数法可表示为()A.912.17×107B.912.17×108C.9.1217×1010D.9.1217×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将912.17亿用科学记数法表示为9.1217×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【专题】计算题.【分析】根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.【解答】解:A、(x3)2=x6,原式计算错误,故A选项错误;B、(2x)2=4x2,原式计算错误,故B选项错误;C、x3•x2=x5,原式计算正确,故C选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故D选项错误;故选:C.【点评】本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握各部分的运算法则是关键.5.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据的中位数是()A.9.7 B.9.5 C.9 D.8.8【考点】中位数.【分析】根据中位数的定义解答.注意中位数需先排序,再确定.【解答】解:把这组数据按从小到大排序为:8.6,8.8,9,9.5,9.7,中位数为9.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°【考点】切线的性质;圆周角定理.【分析】由AC是⊙O的切线,可求得∠C=90°,然后由∠BAC=55°,求得∠B的度数,再利用圆周角定理,即可求得答案.【解答】解:∵AC是⊙O的切线,∴BC⊥AC,∴∠C=90°,∵∠BAC=55°,∴∠B=90°﹣∠BAC=35°,∴∠COD=2∠B=70°.故选A.【点评】此题考查了切线的性质以及圆周角定理.注意掌握切线的性质:圆的切线垂直于经过切点的半径.7.星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2千米B.小强在公共汽车站等小明用了10分钟C.公交车的平均速度是34千米/小时D.小强乘公交车用了30分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项错误.D、小强和小明一起乘公共汽车,时间为30分钟,故选项正确;故选C【点评】本题考查利用函数的图象解决实际问题,关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.8.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【考点】两条直线相交或平行问题.【专题】计算题.【分析】先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x ﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.二、填空题9.计算:(3.14﹣)0+(﹣3)2=10.【考点】实数的运算;零指数幂.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=1+9=10.故答案为:10【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.若关于x的一元二次方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是a>2.【考点】根的判别式.【分析】关于x的一元二次方程x2+x﹣a+=0有两个不相等的实数根,方程必须满足△=b2﹣4ac>0,即可求得.【解答】解:∵关于x的一元二次方程x2+x﹣a+=0有两个不相等的实数根,∴△=b2﹣4ac=1+4a﹣9>0,解得a>2.故答案为:a>2.【点评】本题考查了一元二次方程根的判别式一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.如图,l1∥l2,则∠1=20度.【考点】平行线的性质.【分析】先求出∠2,再根据直角三角形两锐角互余即可求出.【解答】解:∵l1∥l2,∴∠2=70°,∴∠1=90°﹣∠2=90°﹣70°=20°.【点评】本题利用两直线平行同位角相等和直角三角形两锐角互余求解.12.在一个不透明的盒子中装有7个红球,n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率为,则n=14.【考点】概率公式.【分析】由概率公式可得方程:=,解此方程即可求得答案.【解答】解:根据题意得:=,解得:n=14,经检验:n=14是原分式方程的解.故答案为:14.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.已知点A(x1,y1),B(x2,y2),C(3,y3)都在反比例函数y=﹣的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是y2>y1>y3.【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<x2<0,∴A、B两点在第二象限,C点在第三象限,∴y2>y1>y3.故答案为y2>y1>y3.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则=.【考点】菱形的性质.【分析】利用菱形的性质对角线平分对角,结合勾股定理以及锐角三角函数关系表示出AB,AE的长,进而求出即可.【解答】解:连接AC,过点E作EN⊥AB于点N,∵四边形ABCD与四边形AECF都是菱形,点E、F在BD上,∠BAD=120°,∠EAF=30°,∴∠ABD=30°,∠EAC=15°,则∠BAE=45°,∴设AN=x,则NE=x,AE=x,BN==x,∴==.故答案为:.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,表示出AB,AE的长是解题关键.15.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是y=﹣x2+2x和y=x2+2x(答案不唯一).【考点】二次函数图象与几何变换.【专题】新定义.【分析】连接AB,根据姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得△AOM是等边三角形,设OM=2,则点A的坐标是(1,),求出抛物线C1的解析式,从而求出抛物线C2的解析式.【解答】解:连接AB,根据姐妹抛物线的定义,可得姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得:OA=OM,∵OA=MA,∴△AOM是等边三角形,设OM=2,则点A的坐标是(1,),则,解得:则抛物线C1的解析式为y=﹣x2+2x,抛物线C2的解析式为y=x2+2x,故答案为:y=﹣x2+2x,y=x2+2x(答案不唯一).【点评】此题考查了二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.三、解答题(共8个小题,满分75分)16.先化简÷(﹣),再从方程组的解集中取一个你喜欢的x的值代入求值.【考点】分式的化简求值;解一元一次不等式组.【分析】先根据分式混合运算的法则把原式进行化简,再求出不等式组的解集,找出合适的x的值代入进行计算即可.【解答】解:原式=÷=•=,解不等式组得﹣2<x<3.由于x不能取﹣1,0,1,故取x=2,把x=2代入原式,得原式=4.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts.(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF.(2)填空:①当t=6s时,四边形ACFE是菱形;②当t=或4s时,S△ACE=2S△FCE.【考点】全等三角形的判定与性质;等边三角形的性质;菱形的判定.【专题】动点型.【分析】(1)由D为AC的中点得出AC=CD,由AG∥BC可得出∠EAD=∠FCD,∠AED=∠CFD,满足全等三角形的判定定理(AAS),从而得证;(2)①设x秒时,AE=CF,结合图形列出关于x的一元一次方程,解方程求出x的值,算出此时四边形ACFE各边的长度,得知四边形ACFE为菱形;②由AG∥BC得知△ACE与△FCE为等高的三角形,结合三角形的面积公式设满足AE=2CF 的时间为y,由路程=速度×时间列出关于y的一元一次方程,解方程即可得出结论.【解答】(1)证明:∵D为AC的中点,∴AC=CD,∵AG∥BC,∴∠EAD=∠FCD,∠AED=∠CFD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).(2)解:①设x秒时,AE=CF,则有2x﹣6=x,解得x=6.此时AE=CF=AC=6,即四边形ACFE是菱形,②∵AG∥BC,∴△ACE与△FCE为等高的三角形,当AE=2CF时,S△ACE=2S△FCE.设满足AE=2CF的时间为y,则有x=2|6﹣2x|,解得:x=,或x=4.故答案为:①6;②或4.【点评】本题考查了全等三角形的判定、等边三角形的性质以及菱形的判断,解题的关键:(1)找出符合AAS的各条件;(2)列出方程.本题属于基础题,难度不大,(1)没有难度;(2)①也好解决;②有的同学会落下一种情况,故在此处找出的是含绝对值的方程.18.随着生活水平的不断提高,“初中生带手机”的现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名初中生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)这次调查的学生家长总人数为200.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数;(4)若该校所在市区有初中生家长约14.7万人,则估计该市初中生家长中持“很赞同”态度的约为多少万人?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】数形结合.【分析】(1)观察统计图,利用反对的人数除以它所占的百分比即可得到调查的总人数;(2)用总人数分别减去赞同、无所谓、反对的家长人数即可得到“很赞同”态度的学生家长数,再计算出它所占的百分比,然后补全条形统计图;(3)用360°乘以持“无所谓”态度的百分比即可;(4)用样本中持“很赞同”态度的百分比乘以14.7万可估计该市初中生家长中持“很赞同”态度的人数.【解答】解:(1)60÷30%=200(人),所以这次调查的学生家长总人数为200;故答案为200;(2)持“很赞同”态度的学生家长数为200﹣80﹣20﹣60=40(人),所以持“很赞同”态度的学生家长占被调查总人数的百分比=×100%=20%,条形统计图为:(3)扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数=×360°=36°;(4)20%×14.7=2.94(万人).所以估计该市初中生家长中持“很赞同”态度的约为2.94万人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和样本估计总体.19.已知关于x的一元二次方程x2﹣ax+a=1.(1)求证:对于任意实数a,方程总有实数根;(2)若方程的一个根是3,求a的值及方程的另一个根.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)要想证明对于任意实数k,方程有两个不相等的实数根,只要证明△>0即可;(2)把方程的一根代入原方程求出a的值,然后把a的值代入原方程求出方程的另一个根.【解答】解:(1)∵2﹣ax+a=1,∴2﹣ax+a﹣1=0,∴△=a2﹣4×1×(a﹣1)=a2﹣4a+4=(a﹣2)2,∵(a﹣2)2≥0,∴对于任意实数a,方程总有实数根(2)把x=3代入原方程,得a=4.把a=4代入原方程,得x2﹣4x+3=0.∴x1=3,x2=1.∴方程的另一个根是1.【点评】本题考查了一元二次方程根的判别式以及解一元二次方程的方法,一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.20.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.【考点】圆周角定理;勾股定理;解直角三角形.【专题】计算题.【分析】(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°=,然后在Rt△OPQ中利用勾股定理可计算出PQ=;(2)连结OQ,如图2,在Rt△OPQ中,根据勾股定理得到PQ=,则当OP的长最小时,PQ的长最大,根据垂线段最短得到OP⊥BC,则OP=OB=,所以PQ长的最大值=.【解答】解:(1)连结OQ,如图1,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan∠B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==;(2)连结OQ,如图2,在Rt △OPQ 中,PQ==,当OP 的长最小时,PQ 的长最大,此时OP ⊥BC ,则OP=OB=,∴PQ 长的最大值为=.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了勾股定理和解直角三角形.21.某农业观光园计划将一块面积为900m 2的园圃分成A ,B ,C 三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株.已知B 区域面积是A 区域面积的2倍.设A 区域面积为x (m 2).(1)求该园圃栽种的花卉总株数y 关于x 的函数表达式.(2)若三种花卉共栽种6600株,则A ,B ,C 三个区域的面积分别是多少?(3)若三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元.请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价. 【考点】一次函数的应用.【分析】(1)设A 区域面积为x ,则B 区域面积是2x ,C 区域面积是900﹣3x ,根据每平方米栽种甲3株或乙6株或丙12株,即可解答;(2)当y=6600时,即﹣21x+10800=6600,解得:x=200,则2x=400,900﹣3x=300,即可解答;(3)设三种花卉的单价分别为a 元、b 元、c ,根据根据题意得:,整理得:3b+5c=95,根据三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,所以b=15,c=10,a=20,即可解答. 【解答】解:(1)y=3x+12x+12(900﹣3x )=﹣21x+10800.(2)当y=6600时,即﹣21x+10800=6600,解得:x=200,∴2x=400,900﹣3x=300,答:A,B,C三个区域的面积分别是200m2,400m2,300m2.(3)设三种花卉的单价分别为a元、b元、c元,在(2)的前提下,分别种植甲、乙、丙三种花卉的株数为600株,2400株,3600株,根据题意得:,整理得:3b+5c=95,∵三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,∴b=15,c=10,∴a=20,∴种植面积最大的花卉总价为:2400×15=36000(元),答:种植面积最大的花卉总价为36000元.【点评】本题考查了一次函数的应用,解决本题的关键是关键题意,列出函数关系式和方程组.22.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系.【考点】四边形综合题.【专题】压轴题.【分析】(1)根据正方形的性质和角平分线的性质解答即可;(2)①根据正方形的性质和旋转的性质证明△FOA≌△EOD,得到答案;②作OG⊥AB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可;③过点P作HP⊥BD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系,根据解答结果总结规律得到当BD=m•BP时,PE与PF的数量关系.【解答】解:(1)PE=PF,理由:∵四边形ABCD为正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,,∴△FOA≌△EOD,∴OE=OF,即PE=PF;②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,则∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;③PE=2PF,证明:如图3,过点P作HP⊥BD交AB于点H,则△HPB为等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴==,即PE=2PF,由此规律可知,当BD=m•BP时,PE=(m﹣1)•PF.【点评】本题考查的是正方形的性质和旋转变换,掌握旋转变换的性质、找准对应关系正确运用三角形全等和相似的判定和性质定理是解题的关键,正确作出辅助线是解答本题的重点.23.已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.。
2015-2016年河南省安阳六十三中八年级上学期期中数学试卷和答案
2015-2016学年河南省安阳六十三中八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)如下图是用纸折叠成的图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3分)以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cm B.2cm,5cm,8cm C.4cm,5cm,10cm D.3cm,4cm,5cm3.(3分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.4.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B﹣∠C中,能确定△ABC是直角三角形的条件有()A.1个 B.2个 C.3个 D.4个5.(3分)如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB6.(3分)如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠47.(3分)如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是()A.3 B.4 C.5 D.68.(3分)如图所示,∠1=∠2,AC=DF,欲证△ABC≌△DEF,则还须补充的一个条件是()A.BC=CE B.∠ACE=∠DFB C.AB=DE D.∠A=∠D9.(3分)某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去10.(3分)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC二、填空题(每题3分,共27分)11.(3分)等腰三角形的一个内角是100°,那么另外两个内角的度数分别为.12.(3分)已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n=.13.(3分)已知一个多边形的内角和是外角和的3倍,则这个多边形为边形.14.(3分)如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为.15.(3分)如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN ∥BA,分别交AC于N、BC于M,则△CMN的周长为.16.(3分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F=.17.(3分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离为cm.18.(3分)如图,在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C的度数是度.19.(3分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、解答题(本题共9个小题,满分63分)20.(5分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.21.(10分)如图:点B,E,C,F在一条直线上,FB=CE,AB∥ED,AC∥DF.求证:AB=DE,AC=DF.22.(10分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.(1)求∠BDC的度数;(2)求BD的长.23.(10分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.24.(8分)如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC是等腰三角形.25.(8分)如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.26.(12分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC 绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?2015-2016学年河南省安阳六十三中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如下图是用纸折叠成的图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:信封是轴对称图形;飞机是轴对称图形;裤子是轴对称图形;褂子不是轴对称图形;综上可得轴对称图形共3个.故选:C.2.(3分)以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cm B.2cm,5cm,8cm C.4cm,5cm,10cm D.3cm,4cm,5cm【解答】解:A、1+2=3,不能组成三角形,故此选项错误;B、2+5<8,不能组成三角形,故此选项错误;C、4+5<10,不能组成三角形,故此选项错误;D、3+4>5,能组成三角形,故此选项正确.故选:D.3.(3分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【解答】解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.4.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B﹣∠C中,能确定△ABC是直角三角形的条件有()A.1个 B.2个 C.3个 D.4个【解答】解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B﹣∠C,所以∠C+∠A=∠B,又∠A+∠B+∠C=180°,2∠B=180°,解得∠B=90°,△ABC是直角三角形;能确定△ABC是直角三角形的有①②③④共4个.故选:D.5.(3分)如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB垂直平分CD.故选:A.6.(3分)如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠4【解答】解:还需条件∠1=∠2,∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即:∠BAC=∠DAE,在△ABC和△ADE中:,∴△ABC≌△ADE(SAS).故选:C.7.(3分)如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是()A.3 B.4 C.5 D.6【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD==3.故选:A.8.(3分)如图所示,∠1=∠2,AC=DF,欲证△ABC≌△DEF,则还须补充的一个条件是()A.BC=CE B.∠ACE=∠DFB C.AB=DE D.∠A=∠D【解答】解:A、BC=CE,不是对应边,所以A不可以;B、∠ACE=∠DBF和∠1=∠2是等价的条件,所以B也不可以;C、AB=DE,AC=DF,∠1=∠2,满足SSA,所以C也不能判定全等;D、当∠A=∠D时,在△ABC和△DEF中∴△ABC≌△DEF(ASA).故选:D.9.(3分)某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.10.(3分)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【解答】解:A、∵在△ABD和△ACD中∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选:D.二、填空题(每题3分,共27分)11.(3分)等腰三角形的一个内角是100°,那么另外两个内角的度数分别为40°,【解答】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且他们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.12.(3分)已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n=﹣1.【解答】解:∵点A(m﹣1,3)与点B(2,n+1)关于x轴对称,∴m﹣1=2,n+1=﹣3,解得:m=3,n=﹣4,则m+n=﹣1.故答案为:﹣1.13.(3分)已知一个多边形的内角和是外角和的3倍,则这个多边形为八边形.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.14.(3分)如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为22.【解答】解:∵BC边的垂直平分线交AB,∵△ACE的周长为12,∴AC+AE+CE=AC+AE+BE=AC+AB=12,∵BC=10,∴△ABC的周长为:AB+AC+BC=22.故答案为:22.15.(3分)如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN ∥BA,分别交AC于N、BC于M,则△CMN的周长为24.【解答】解:AO、BO分别是角平分线,∴∠OAN=∠BAO,∠ABO=∠OBM,∵MN∥BA,∴∠AON=∠BAO,∠MOB=∠ABO,∴AN=ON,BM=OM,即△AON和△BOM为等腰三角形,∵MN=MO+ON,AC+BC=24,∴△CMN的周长=MN+MC+NC=AC+BC=24.故答案为:24.16.(3分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.17.(3分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离为3cm.【解答】解:∵BC=10,BD=7,∴CD=3.由角平分线的性质,得点D到AB的距离等于CD=3.故答案为:3.18.(3分)如图,在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C的度数是44度.【解答】解:设∠BAD为x,则∠BAC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x﹣x=2x,根据题意得:180°﹣(x+70°)=2x+2x,解得x=22°,∴∠C=∠DAC=22°×2=44°.故填44°.19.(3分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有①②③⑤.(把你认为正确的序号都填上)【解答】解:①∵正△ABC和正△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.三、解答题(本题共9个小题,满分63分)20.(5分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.【解答】解:(1)如图(2)根据勾股定理得AC==,BC=,AB=,再根据勾股定理可知此三角形为直角三角形,则s=;△ABC(3)根据轴对称图形的性质得:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).21.(10分)如图:点B,E,C,F在一条直线上,FB=CE,AB∥ED,AC∥DF.求证:AB=DE,AC=DF.【解答】证明:∵FB=EC,∴BC=EF,又∵AB∥ED,AC∥DF,∴∠B=∠E,∠ACB=∠DFE,在△ABC与△DEF中,∵∴△ABC≌△DEF(ASA),∴AB=DE,AC=DF.22.(10分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.(1)求∠BDC的度数;(2)求BD的长.【解答】解:(1)∵DE垂直平分AB,∴DA=DB,∴∠DBE=∠A=30°,∴∠BDC=60°;(2)在Rt△BDC中,∵∠BDC=60°,∴∠DBC=30°,∴BD=2CD=4.23.(10分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.24.(8分)如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC是等腰三角形.【解答】证明:过点D作DG∥AE于点G,∵DG∥AC∴∠GDF=∠CEF(两直线平行,内错角相等),在△GDF和△CEF中,∴△GDF≌△CEF(ASA),∴DG=CE又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB,∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.25.(8分)如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.【解答】解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.26.(12分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?【解答】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD ,需∠OAD=∠AOD . ∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α, ∠OAD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD 是等腰三角形.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2016-2017学年第一学期八年级期中联考数学试题参考答案
2016-2017学年八年级第一学期期中联考数学试卷参考答案一、选择题(每题3分,共30分)1C;2C;3D;4A;5A;6C;7B;8B;9A;10B二.填空题(每题4分,共24分)11 148°.12 -8a3b613 -4 14 20 15 8 16 60°17.解:(x+1)(x﹣1)﹣x(1﹣x)-2x2,=x2-1-x+x2-2x2……………4 分=-1-x ………5分当x=2时,原式=-1-2=-3.………6 分18.如图,AC=BD且∠A=∠B,求证:AO=BO.证明:∵在△AOC和△BOD中∴△AOC≌△BOD(AAS),…………4 分∴AO=BO.………6 分19.评分说明:1.全对6分;2.只画对一种得2分3.P点坐标2分、四、解答题(本大题共21分.解答应写出文字说明、证明过程或演算步骤.)20解:∵∠BAC=100°,∠B=40°,∴∠ACB=180°﹣∠B﹣∠BAC=40°,………1分∴∠ACB=∠B,………2…分∴AC=AB=3,………3分…∵∠D=30°,∴∠DAC=∠ACB﹣∠D=30°………4分∴∠DAC=∠D,………5分∴CD=AC=3.…………7分21如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,EF⊥AB于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=8,求AC的长.(1)证明:∵∠DEB+∠ABC=90°,∠A+∠ABC=90°,∴∠DEB=∠A,………2分在△ACB和△EBD中,,∴△ACB≌△EBD,(AAS);………4分(2)解:∵△ACB≌△EBD,∴BC=DB,AC=EB,………5分∵E是BC的中点,∴EB=,………6分∵DB=8,BC=DB,∴BC=8,∴AC=EB==4.………7分22解:连接AF………1分∵AB=AC, ∠BAC=120°∴∠B=∠C=30°………2分∵AC的垂直平分线EF∴AF=CF=3………4分∴∠C=∠EAF=30°∴∠BAF=120°-30°=90°………5分又∵∠B=30°∴BF=2AF=6cm………7分五、解答题(本大题共27分.解答应写出文字说明、证明过程或演算步骤.)23.证明:(1)如图1,在等边△ABC中,AB=BC=AC,∴∠ABC=∠ACB=∠A=60°,………1分∵AE=EB,AE=BD∴BD=BE∴∠EDB=∠DEB=∠A BC=30°………2分∵BC=AC,AE=EB∴∠ECB=∠ACB=30°………3分∴∠EDB=∠ECB,∴EC=ED;………4分(2)如图2,∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠C=60°,………5分∴△AEF为等边三角形;………6分D(3)答EC=ED;理由:∵∠AEF=∠ABC=60°,∴∠EFC=∠DBE=120°,∵AB=AC,AE=AF,∴AB﹣AE=AC﹣AF,即BE=FC,………7分在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),………8分∴ED=EC.………9分24:评分说明:(1)过程省略 2分(2)共5分画对辅助线延长AD,BE交于P ……1分证到△ABE≌△APE,得BE=EP …3分证到△DEP≌△CEB,得DE=CE……5分(3)面积 48 ……2分AECB25在△ABC中,∠ACB=90°,AC=BC,AB=8,CD⊥AB,垂足为D,M为边AB上任意一点,点N在射线CB上(点N与点C不重合),且MC=MN,NE⊥AB,垂足为E.评分说明解:(1)CD=4.………1分(2)ME=4.………1分(3)共7分答:ME的长度不会改变理由:①如图2所示,若点N在BC上(与B不重合),∵AC=BC,∴∠ACB=90°,∴∠A=∠B=45°.∵AC=BC,CD⊥AB,AB=8,∴CD=BD=4,即∠BCD=45°.∵MN=MN,∴∠MCN=∠MNC.∵∠MCN=∠MCD+∠BCD,∠MNC=∠B+∠BMN,∴∠MCD=∠NME.在△MCD与△NME中,,∴△MCD≌△NME(AAS),∴ME=CD=4.……3分②当点N与点B重合时,点M与点D重合,此时,ME=MN=4.……4分③如图3所示,若点N在边CB上,可知点M在线段BD上,且点E在边AB的延长线上.∵∠ABC=∠MNC+∠BMN=45°,∠BCD=∠MCD+∠MNC=45°,MC=MN,∴∠MCN=∠MNC,∴∠MCD=∠BMN.在△MCD与△NME中,,∴△MCD≌△NME(AAS),∴ME=CD=4.……6分综上所述:由①②③可知,当点M在边AB上移动时,线段ME的长不变,ME=4.…7分.。
河南省安阳市 八年级(上)期中数学试卷
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.以下列各组线段为边,能组成三角形的是()A. 1cm,2cm,4cmB. 4cm,6cm,8cmC. 5cm,6cm,12cmD. 2cm,3cm,5cm2.下列图形中,轴对称图形的个数是()A. 1B. 2C. 3D. 43.等腰三角形两边长分别为3,7,则它的周长为()A. 13B. 17C. 13或17D. 不能确定4.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A、C两点之间B. E、G两点之间C. B、F两点之间D. G、H两点之间5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带①去B. 带②去C. 带③去D. 带①和②去6.在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有()A. 1个B. 2个C. 3个D. 4个7.下列说法错误的是()A. 已知两边及一角只能作出唯一的三角形B. 到△ABC的三个顶点距离相等的点是△ABC的三条边垂直平分线的交点C. 腰长相等的两个等腰直角三角形全等D. 点A(3,2)关于x轴的对称点A坐标为(3,−2)8.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3m,则BD等于()A. 6cmB. 8cmC. 10cmD. 4cm9.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A. 80∘B. 70∘C. 60∘D. 50∘10.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共5小题,共15.0分)11.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是______.12.一个多边形的每一个外角都等于36°,则该多边形的内角和等于______度.13.已知点A(1-a,5)与点B(3,b)关于y轴对称,则a-b的值是______.14.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点D,过点D作EF∥BC交AB,AC于点E,F,若BE+CF=20,则EF=______.15.如图,在四边形ABCD中,∠A=90°,AD=5,连接BD,BD⊥CD,∠ADB=∠C,若P是边BC上一动点,则DP长的最小值为______.三、解答题(本大题共8小题,共75.0分)16.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.17.如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.18.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的23,求这个多边形的边数及内角和.19.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.20.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1、B1、C1的坐标A1(______);B1(______);C1(______);(3)△A1B1C1的面积S△A1B1C1=______.21.如图,把长方形ABCD沿对角线BD折叠,重合部分为△EBD.(1)求证:△EBD为等腰三角形.(2)图中有哪些全等三角形?(3)若AB=3,BC=5,求△DC′E的周长.22.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.答案和解析1.【答案】B【解析】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3=5,不能组成三角形.故选:B.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2.【答案】B【解析】解:中间两个图形是轴对称图形,轴对称图形的个数是2,故选B.关于某条直线对称的图形叫轴对称图形.本题考查轴对称图形概念的理解,判断一个图形是不是轴对称图形的关键是能不能找到一条直线,沿这条直线对折,直线两旁的部分能够完全重合.3.【答案】B【解析】解:当相等的两边是3时,3+3<7,不能组成三角形,应舍去;当相等的两边是7时,能够组成三角形,此时周长是7+7+3=17.故选:B.分情况考虑:当相等的两边是3时或当相等的两边是7时.然后根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断能否构成三角形,最后再进一步计算其周长.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.【答案】B【解析】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.5.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.6.【答案】D【解析】解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故选:D.如果OA为等腰三角形的腰,有两种可能,以O为圆心OA为半径的圆弧与y 轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点;符合条件的点一共4个.本题考查了等腰三角形的判定及坐标与图形的性质;针对线段OA在等腰三角形中的地位,分类讨论用画圆弧的方式,找与y轴的交点,比较形象易懂.7.【答案】A【解析】解:A、SSA不能确定两个三角形全等,题干的说法错误;B、到△ABC的三个顶点距离相等的点是△ABC的三条边垂直平分线的交点的说法正确;C、根据SAS可知,腰长相等的两个等腰直角三角形全等的说法正确;D、点A(3,2)关于x轴的对称点A坐标为(3,-2)的说法正确.故选:A.利用等腰直角三角形的性质,线段垂直平分线的性质,关于x轴对称的点的坐标特征,全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.本题考查了等腰直角三角形,线段垂直平分线的性质,关于x轴、y轴对称的点的坐标,直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.8.【答案】B【解析】解:∵AB⊥BD,∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠DCE=90°∴∠DCE=∠BAC且∠B=∠D=90°,且AC=CE∴△ABC≌△CDE(AAS)∴CD=AB=5cm,DE=BC=3cm∴BD=BC+CD=8cm故选:B.由题意可证△ABC≌△CDE,即可得CD=AB=5cm,DE=BC=3cm,可求BD的长.本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.9.【答案】C【解析】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故选:C.先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.10.【答案】B【解析】解:如图,货物中转站在三角形内部有一个位置,在外部有三个位置,共有4个位置可选.故选B.根据角平分线上的点到角的两边距离相等分货物中转站在三条公路围成的三角形内部和外部两种情况作出图形即可得解.本题考查了角平分线的性质,熟记角平分线上的点到角的两边距离相等是解题的关键.11.【答案】直角三角形【解析】解:∵三角形的三条高线的交点在三角形的一个顶点上,∴此三角形是直角三角形.故答案为:直角三角形.根据直角三角形的高的交点是直角顶点解答.本题考查了三角形的高,锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.12.【答案】1440【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)•180°=1440°.故答案为:1440.任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n-2)•180°即可求得内角和.本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.13.【答案】-1【解析】解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=-3,b=5∴a=4,b=5∴a-b=4-5=-1故答案为-1.根据两点关于y轴对称的点的坐标的特点列出有关a、b的方程求解即可求得a-b的值.本题考查了关于坐标轴对称的点的坐标的知识,牢记点的坐标的变化规律是解决此类题目的关键.14.【答案】20【解析】解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵BD、CD分别平分∠ABC与∠ACB,∴∠ABD=∠DBC,∠ACD=∠DCB,∴∠ABD=∠EDB,∠ACD=∠FDC,即BE=DE,DF=FC,EF=DE+DF=BE+FC=20.故答案为:20由平行线的性质可得内错角∠EDB=∠DBC,∠FDC=∠DCB,再由角平分线的性质可得∠ABD=∠EDB,∠ACD=∠FDC,即BE=DE,DF=FC,进而可求EF的长.本题主要考查了平行线的性质以及角平分线的性质和等腰三角形的判定及性质问题,能够熟练掌握.15.【答案】5【解析】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∵∠A=90°,又∵∠ADB=∠C,∴∠ABD=∠CBD,又∵DA⊥BA,BD⊥DC,∴AD=DP,又AD=5,∴DP=5.故答案为:5.根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分线的性质,解题的关键在于确定好DP垂直于BC.16.【答案】证明:∵∠ABD=90°,AC⊥CB,DE⊥BE,∴∠ABC+∠DBE=∠ABC+∠A,∴∠A=∠DBE;在△ABC与△DBE中,∠C=∠E=90°∠A=∠DBEAB=BD,∴△ABC≌△DBE(AAS),∴AC=BE,BC=DE,∴AC+DE=CE.【解析】可证明△ABC≌△DBE,得到AC=BE DE=BC,即可证明AC+DE=CE.该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.17.【答案】证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°,∴∠BAE=∠BAD=30°,在△ABE和△ABD中,AE=AD∠BAE=∠BADAB=AB,∴△ABE≌△ABD(SAS),∴BE=BD.【解析】根据等边三角形三线合一的性质可得AD为∠BAC的角平分线,根据等边三角形各内角为60°即可求得∠BAE=∠BAD=30°,进而证明△ABE≌△ABD,得本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.18.【答案】解:设多边形的一个内角为x,则一个外角为23x,依题意得x+23x=180°,53x=180°,x=108°.360°÷(23×108°)=5.(5-2)×180°=540°.答:这个多边形的边数为5,内角和是540°.【解析】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.本题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.19.【答案】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,AD=DE∠ADC=∠EDBDC=BD,∴△ADC≌△EDB(SAS),∴AC=BE=2,在△ABE中,AB-BE<AE<AB+BE,∴4-2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2,【解析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=2,在△ABE中,根据三角形三边关系定理得出AB-BE<AE<AB+BE,代入求出即可.本题考查了全等三角形的性质和判定,三角形的三边关系定理的应用,主要考查学生的推理能力.20.【答案】0,-4 -2,-2 3,0 7解:(1)△A1B1C1如图所示;(2)A1(0,-4);B1(-2,-2);C1(3,0);(3)S=5×4-×2×2-×3×4-×5×2,=20-2-6-5,=20-13,=7.故答案为:(0,-4);(-2,-2);(3,0);7.(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)利用三角形所在矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.本题考查了利用轴对称变换作图,熟练掌握网格结构,准确找出对应顶点位置是解题的关键.21.【答案】(1)证明:∵四边形ABCD为矩形,∴∠BAE=∠DCE,AB=CD,在△AEB和△CED中,∠BAE=∠DCE∠AEB=∠CEDAB=CD,∴△AEB≌△CED(AAS),∴BE=DE,∴△EBD为等腰三角形.(2)解:全等三角形有:△EAB≌△EC'D;△ABD≌△CDB;△CDB≌△C'DB;△ABD≌△C'DB;理由:由翻折可知:△BDC≌△BDC′,∵四边形ABCD是矩形,∴AB=CD,AD=CB,∵BD=DB,∴△BDC≌△DBA(SSS),∴△DBA≌△BDC′,由(1)可知:△EAB≌△EC'D;(3)解:∵四边形ABCD是矩形,∴AD=BC=5,∵△EAB≌△EC'D,∴△DC′E的周长=C'D+C'E+ED=AB+AE+ED=AB+AD=3+5=8.【解析】(1)根据矩形的性质得到∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△AEB≌△CED,根据等腰三角形的性质即可得到结论;(2)根据全等三角形的判定解答即可;(3)根据全等三角形的性质以及三角形周长即可得到结论.本题考查四边形综合题、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.【答案】(1)证明:∵△ABC为等边三角形,∴∠BAE=∠C=60°,AB=CA,在△ABE和△CAD中,AB=CA∠BAE=∠CAE=CD,∴△ABE≌△CAD(SAS).(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.【解析】(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA,结合AE=CD,可证明△ABE≌△CAD(SAS);(2)根据∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.本题考查三角形全等的性质和判定方法以及等边三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.23.【答案】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∴t=12-2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵AC=AB∠C=∠B∠AMC=∠ANB,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y-12,NB=36-2y,CM=NB,y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.【解析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N 的运动路程比M的运动路程多12cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.此题主要考查了等边三角形的性质及判定,关键是根据题意设出未知数,理清线段之间的数量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河南省安阳市滑县八年级(上)期中数学试卷一、选择题(毎空3分,共30分)1.(3分)下面各组中的三条线段能组成三角形的是()A.2cm、3cm,5cm B.1cm、6cm、6cm C.2cm、6cm、9cm D.5cm、3cm、10cm2.(3分)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°3.(3分)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或74.(3分)若用同一种正多边形瓷砖铺地面,能铺满地面的正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形5.(3分)已知△ABC≌△ABD,AB=6,AC=7,BC=8,则AD=()A.5 B.6 C.7 D.86.(3分)如图,点P是AB上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能推出△APC≌△APD的是()A.BC=BD B.∠ACB=∠ADB C.AC=AD D.∠CAB=∠DAB7.(3分)判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等8.(3分)下列“数字”图形中,有且仅有一条对称轴的是()A.B. C. D.9.(3分)如图,在△ABC中,AB=AC,D是AB的中点,且DE⊥AB于点D,AB=10,BC=4,则△BEC的周长()A.14 B.6 C.9 D.1210.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A 等于()A.30°B.40°C.45°D.36°二、填空题(毎空3分,共24分)11.(3分)在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA=.12.(3分)如图,P是△ABC的∠ABC和∠ACB的外角的平分线的交点,若∠A=90°,则∠P=.13.(3分)已知△ABC≌△DEF,∠A=40°,∠B=50°,则∠F=°.14.(3分)△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC=.15.(3分)如图,在△ABC中,∠C=90°,∠A的平分线交BC于D,DC=4cm,则点D到斜边AB的距离为cm.16.(3分)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为度.17.(3分)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为.18.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.三、简答题(共66分)19.(10分)如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.20.(10分)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.21.(10分)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.22.(10分)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.23.(12分)如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB的垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.24.(14分)如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.2015-2016学年河南省安阳市滑县八年级(上)期中数学试卷参考答案与试题解析一、选择题(毎空3分,共30分)1.(3分)下面各组中的三条线段能组成三角形的是()A.2cm、3cm,5cm B.1cm、6cm、6cm C.2cm、6cm、9cm D.5cm、3cm、10cm【解答】解:A、∵2+3=5,∴以2cm、3cm,5cm长的线段首尾相接不能组成一个三角形;B、∵1+6>6,∴以1cm、6cm、6cm长的线段首尾相接能组成一个三角形;C、∵2+6<9,∴以2cm、6cm、9cm长的线段首尾相接不能组成一个三角形;D、∵3+5<10,∴以3cm、5cm,10cm长的线段首尾相接不能组成一个三角形.故选:B.2.(3分)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°【解答】解:∠ACO=45°﹣30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.故选:C.3.(3分)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或7【解答】解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选:D.4.(3分)若用同一种正多边形瓷砖铺地面,能铺满地面的正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴用同一种正多边形瓷砖铺地面,能铺满地面的正多边形是正六边形.故选:B.5.(3分)已知△ABC≌△ABD,AB=6,AC=7,BC=8,则AD=()A.5 B.6 C.7 D.8【解答】解:∵△ABC≌△ABD,AB=6,AC=7,BC=8,∴AD=AC=7.故选:C.6.(3分)如图,点P是AB上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能推出△APC≌△APD的是()A.BC=BD B.∠ACB=∠ADB C.AC=AD D.∠CAB=∠DAB【解答】解:A、补充BC=BD,先证出△ABC≌△ABD,后能推出△APC≌△APD,故此选项错误;B、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故此选项错误.C、补充AC=AD,不能推出△APC≌△APD,故此选项正确;D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故此选项错误;故选:C.7.(3分)判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等【解答】解:∵两条直角边对应相等,则斜边相等,故两三角形全等,∴A正确;∵斜边和一锐角对应相等,则另一锐角对应相等,根据角边角即可求证两三角形全等,∴B正确;∵斜边和一条直角边对应相等,则另一直角边对应相等,根据边边边即可求证两三角形全等,∴C正确;∵两锐角相等可证明两三角形相似,但无法证明两三角形全等,∴D错误.故选:D.8.(3分)下列“数字”图形中,有且仅有一条对称轴的是()A.B. C. D.【解答】解:A、有一条对称轴,故本选项正确;B、没有对称轴,故本选项错误;C、有两条对称轴,故本选项错误;D、有两条对称轴,故本选项错误;故选:A.9.(3分)如图,在△ABC中,AB=AC,D是AB的中点,且DE⊥AB于点D,AB=10,BC=4,则△BEC的周长()A.14 B.6 C.9 D.12【解答】解:∵D是AB的中点,DE⊥AB,∴AE=BE,∵AB=AC=10,BC=4,∴△BEC的周长是BC+BE+CE=BC+AE+CE=BC+AC=4+10=14,故选:A.10.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A 等于()A.30°B.40°C.45°D.36°【解答】解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.二、填空题(毎空3分,共24分)11.(3分)在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA=8cm或2cm.【解答】解:∵AD是△ABC中线,∴BD=CD.AD把△ABC周长分为的两部分分别是:AB+BD,AC+CD,|(AB+BD)﹣(AC+CD)|=|AB﹣AC|=3,如果AB>AC,那么AB﹣5=3,AB=8cm;如果AB<AC,那么5﹣AB=3,AB=2cm.故答案为:8cm或2cm.12.(3分)如图,P是△ABC的∠ABC和∠ACB的外角的平分线的交点,若∠A=90°,则∠P=45°.【解答】解:根据三角形的外角性质,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵BP平分∠ABC,CP是△ABC的外角的平分线,∴∠PBC=∠ABC,∠PCE=∠ACE,∴∠P+∠ABC=(∠A+∠ABC),∴∠A=2∠P,∵∠A=90°,∴∠P=45°故答案为:45°13.(3分)已知△ABC≌△DEF,∠A=40°,∠B=50°,则∠F=90°.【解答】解:∵∠A=40°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=180°﹣40°﹣50°=90°,∵△ABC≌△DEF,∴∠F=∠C=90°.故答案为:90.14.(3分)△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC=4.【解答】解:∵△ABC≌△DEF,EF=5,∴BC=EF=5,∵△ABC的周长为12,AB=3,∴AC=12﹣5﹣3=4.故答案为:4.15.(3分)如图,在△ABC中,∠C=90°,∠A的平分线交BC于D,DC=4cm,则点D到斜边AB的距离为4cm.【解答】解:设D到AB的距离为h,∵AD平分∠CAB,且DC⊥AC,∴h=CD=4cm,故答案为:4.16.(3分)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为125度.【解答】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°;由折叠的性质知:∠BEF=∠DEF;而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°;易知∠EBC′=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.17.(3分)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为20.【解答】解:①当4为底时,其它两边都为8,4、8、8可以构成三角形,周长为20;②当4为腰时,其它两边为4和8,∵4+4=8,∴不能构成三角形,故舍去.∴这个等腰三角形的周长为20.故答案为:20.18.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为32.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A 5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.三、简答题(共66分)19.(10分)如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.20.(10分)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.【解答】(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)∵△ABE≌△DCE,∴BE=CE,又∵∠AEB=70°,∴∠BEC=180°﹣∠AEB=180°﹣70°=110°,∴∠EBC=(180°﹣∠BEC)=(180°﹣110°)=35°.21.(10分)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.【解答】证明:(1)∵D是BC的中点,∴BD=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);(2)由(1)知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE (SAS),∴BE=CE(全等三角形的对应边相等).22.(10分)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.【解答】证明:(1)∵BF=AC,AB=AE(已知)∴FA=EC(等量加等量和相等).∵△DEF是等边三角形(已知),∴EF=DE(等边三角形的性质).又∵AE=CD(已知),∴△AEF≌△CDE(SSS).(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),∴∠DEF=60°(等边三角形的性质),∴∠BCA=60°(等量代换),由△AEF≌△CDE,得∠EFA=∠DEC,∵∠DEC+∠FEC=60°,∴∠EFA+∠FEC=60°,又∠BAC是△AEF的外角,∴∠BAC=∠EFA+∠FEC=60°,∴△ABC中,AB=BC(等角对等边).∴△ABC是等边三角形(等边三角形的判定).23.(12分)如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB的垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.【解答】解:(1)∠1=∠B(1分)理由:由∠ACB=90°,知∠1+∠F=90°(2分)又DF⊥AB,所以∠B+∠F=90°(3分)则∠1=∠B(4分)(2)AB=FB(5分)理由:在△ABC和△FBD中,∵∠ACB=∠FDB=90°,BC=BD,∠B=∠B,∴△ABC≌△FBD,∴AB=FB.24.(14分)如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【解答】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS).②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE.(2)证明:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°, ∴∠EBC +∠ECB=90°, ∵∠ACB=90°, ∴∠ECB +∠ACE=90°, ∴∠ACD=∠EBC , 在△ADC 和△CEB 中,,∴△ADC ≌△CEB (AAS ), ∴AD=CE ,CD=BE , ∴DE=EC ﹣CD=AD ﹣BE .赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。