2020-2021比例和反比例 单元测试卷及答案

合集下载

苏教版六年级下册数学正比例和反比例 试卷 (含答案)

苏教版六年级下册数学正比例和反比例 试卷 (含答案)

苏教版六年级下册数学正比例和反比例试卷 (含答案)第6章正比例和反比例单元测试卷一.选择题(共16小题)1.已知,当y一定时,x与z()。

A。

成正比例关系 B。

成反比例关系 C。

不成比例关系2.下面x和y成正比例关系的是()。

A。

y/x = 常数 B。

3x = 4y C。

y = x - 33.如图表示的数量之间的关系是()。

A。

正比例 B。

反比例 C。

不成比例4.正方形的周长和它的边长()。

A。

成正比例 B。

成反比例 C。

不成比例5.汽车从甲地开往乙地,汽车行驶的速度与行驶的时间()。

A。

成正比例 B。

成反比例 C。

不成比例6.下列各种关系中,反比例关系的是()。

A。

平行四边形的面积一定,它的底与高B。

三角形的高不变,它的底和面积C。

圆的面积固定,它的半径与圆周率7.XXX从家到学校,她每小时所走的路程与所用时间()。

A。

成正比例 B。

成反比例 C。

不成比例 D。

无法确定8.圆的周长和它的直径()。

A。

成正比例 B。

成反比例 C。

不成比例 D。

无法判断9.下面各选项中的两种量,成正比例关系的是()。

A。

当xy = 8时,x和y B。

购买物品的总价和数量C。

正方形的周长和它的边长 D。

圆锥的高一定,体积和底面半径10.XXX从家里去学校,所需时间与所行速度()。

11.下面几句话中,正确的有()。

①路程一定,速度和时间成反比例;②正方形的面积和边长成正比例;③三角形面积一定,底和高成反比例;④x+y=25,x与y成反比例。

A。

①和② B。

①和③ C。

①和④ D。

③和④12.下面各题中,()成反比例关系。

A。

一本书看过的页数和剩余的页数B。

圆的周长和直径C。

长方形的面积一定,它的长和宽D。

行驶时间一定,速度和路程13.一本书,已经看的页数与剩余的页数如下表,它们()。

已看的页数剩余的页数10 9020 8030 7014.比例尺一定,图上距离与实际距离()。

A。

成正比例 B。

成反比例 C。

可成正比例也可成反比例D。

反比例函数-单元测试题

反比例函数-单元测试题

第二十六章反比例函数单元测试题(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1 C.y=-8x D.y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y都随x的增大而增大,则k的值可以是()A.2 B.0 C.﹣2 D.14.函数y=﹣x+1与函数y= -2x在同一坐标系中的大致图象是()CBAy yyy5.若正比例函数y=﹣2x与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1) B.(1,﹣2) C.(﹣2,﹣1) D.(﹣2,1)6.如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()x3 C.4 D.57.若反比例函数y=kx(k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(1,﹣1)B.(﹣12,4) C.(﹣2,﹣1)D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2x B.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12x B.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22m x-的图象在第二、四象限,m 的值为 .12.若函数y=(3+m )28m x -是反比例函数,则m= .13.已知反比例函数y=k x (k >0)的图象与经过原点的直线L 相交于点A 、B 两点,若点A 的坐标为(1,2),14.反比例函数y=k x的图象过点P (2,6),那么k 的值是 .15.已知:反比例函数y=k x的图象经过点A (2,﹣3),那么k= .16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x(k ≠0)上,AB ∥x 轴,分别过点A 、B 向x 轴作垂线,垂足ABCD 的面积是8,则k 的值为 .x三、解答题(共8题,共72分)17.(本题8分)当m 取何值时,函数y=2m 113x 是反比例函数?18.(本题8分)如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y=k x (k >0)的图象与BC 边交于点E .当F 为AB 的中点时,求该函数的解析式;y 1、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于S △AOB =1,求双曲线y 2的解析式.=4xC在反比例函数y=kx的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODCx的解析式;(2)若CD=1,求直线OC的解析式.21.(本题8分)(1)点(3,6)关于y轴对称的点的坐标是.(2)反比例函数y=3x关于y轴对称的函数的解析式为.(3)求反比例函数y=kx(k≠0)关于x轴对称的函数的解析式.22.(本题10分)如图,Rt△ABC的斜边AC的两个顶点在反比例函数y=1kx 的图象上,点B在反比例函数y=2kx的图象上,AB与x轴平行,BC=2,点A的坐标为(1,3).(1)求C点的坐标;(2)求点B所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.24.(本题12分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,函数y=kx(1)求反比例函数y=k的解析式;x(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误;C 、符合反比例函数的定义;故本选项正确;D 、y=28x 的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a、b,面积为S.则ab.S=12∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选:B.3.【答案】∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1﹣k<0,∴k>1.故k可以是2(答案不唯一),故选A.分布在第二、四象限.4.【答案】函数y=﹣x+1经过第一、二、四象限,函数y=﹣2x故选A.5.【答案】∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称,∵一个交点的坐标是(﹣1,2),∴另一个交点的坐标是(1,﹣2).故选B.图象上一点,且AB⊥x轴于点B,6.【答案】∵点A是反比例函数y=kx∴S△AOB=1|k|=2,2解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.(k≠0)的图象经过点(﹣1,2),7.【答案】∵反比例函数y=kx∴k=﹣1×2=﹣2,A、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;×4=﹣2,故此点,在反比例函数图象上;B、﹣12C、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;×4=2≠﹣2,故此点不在反比例函数图象上.D、12故选B.8.【答案】设反比例函数解析式y=k,x把(2,1)代入得k=2×1=2,.所以反比例函数解析式y=2x故选B.9.【答案】依照题意画出图形,如下图所示.xmx2+6x﹣n=0,∴△=62+4mn≥0,∴mn≥﹣9.故选A.10.【答案】由题意得y=2×12÷x=24.故选C.x二、填空题11.【答案】由题意得:2﹣m2=﹣1,且m+1≠0,解得:m=∵图象在第二、四象限,∴m+1<0,解得:m<﹣1,∴m=故答案为:12.【答案】根据题意得:8-m2= -1,3+m≠0,解得:m=3.故答案是:3.13.【答案】∵点A(1,2)与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故答案是:(﹣1,﹣2).的图象过点P(2,6),∴k=2×6=12,故答案为:12.14.【答案】:∵反比例函数y=kx15.【答案】根据题意,得﹣3=k 2,解得,k=﹣6. 16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x 上,∴矩形EODA 的面积为:4,∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12,则k 的值为:xy=k=12.故答案为:12.x17.【解答】∵函数y=2m 113x 是反比例函数,∴2m+1=1,解得:m=0.18.【解答】∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=kx (k>0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x>0);19.【解答】设双曲线y2的解析式为y2=kx,由题意得:S△BOC﹣S△AOC=S△AOB,k 2﹣42=1,解得;k=6;则双曲线y2的解析式为y2=6x.20.【解答】(1)设C点坐标为(x,y),∵△ODC的面积是3,∴12 OD•DC=12x•(﹣y)=3,∴x•y=﹣6,而xy=k,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC的解析式为y=mx,把C (1,﹣6)代入y=mx得﹣6=m,∴直线OC的解析式为:y=﹣6x.21.【解答】(1)由于两点关于y轴对称,纵坐标不变,横坐标互为相反数;则点(3,6)关于y轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y轴对称,比例系数k互为相反数;则k=﹣3,即反比例函数y=3x 关于y轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x轴对称,比例系数k互为相反数;则反比例函数y=kx (k≠0)关于x轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A(1,3)代入反比例函数y=1kx得k1=1×3=3,所以过A点与C点的反比例函数解析式为y=3x,∵BC=2,AB与x轴平行,BC平行y轴,∴B点的坐标为(3,3),C点的横坐标为3,把x=3代入y=3x得y=1,∴C点坐标为(3,1);(2)把B(3,3)代入反比例函数y=2kx得k2=3×3=9,所以点B所在函数图象的解析式为y=9x.23.【解答】(1)∵点A(﹣1,4)在反比例函数y=kx(k为常数,k≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x.把点A(﹣1,4)、B(a,1)分别代入y=x+b中,解得:a= -4,b=5.(2)连接AO,设线段AO与直线l相交于点M,如图所示.M 为线段OA 的中点,,∴点M 的坐标为(﹣12,2).∴直线l 与线段AO 的交点坐标为(﹣12,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x .(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4.在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴,cos∠OAB=ABOA ==.(3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1).设经过点C 、D 的一次函数的解析式为y=ax+b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x+3. 第二十六章 反比例函数全章测试一、填空题1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xk y =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内;③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xk y =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______.二、选择题7.下列函数中,是反比例函数的是( ). (A)32x y = (B 32x y = (C)x y 32= (D)xy -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线x y 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变 (C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xk y =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m (D)410.若反比例函数xk y =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ).(A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和xk y 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xk y 32-=的y 都随x 的增大而增大,则k 满足( ).(A)k >1 (B)1<k <2 (C)k >2(D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524 (B)不小于3m 3524(C)不大于3m 3724(D)不小于3m 372414.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0(D)k <0,b <0,a >015.如图,双曲线xk y =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

沪科版九年级上册数学第 21.5 反比例函数 同步测试卷(含答案)

沪科版九年级上册数学第 21.5 反比例函数 同步测试卷(含答案)

沪科版2020-2021九年级上数学同步测试卷(含答案)第21章 二次函数与反比例函数(第五节)一、选择题(每小题3分,满分30分)1、双曲线k y x=经过点(-3,4),则下列点在双曲线上的是( )A .(-2,3)B .((4,3)C .(-2,-6)D .(6.,-2) 2、下列关系中,两个变量之间为反比例函数关系的是( )A .长40米的绳子剪去x 米,还剩y 米B .买单价3元的笔记本x 本,花了y 元C .正方形的面积为S ,边长为aD .菱形的面积为20,对角线的长分别为x ,y 3、若双曲线3k y x-=在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( )A .k <3B .k ≥3C .k >3D .k ≠3 4、下列函数中,当x <0时,y 随x 的增大而减小的是( )A y=xB y=2x-1C 3y x =D 1y x =-5、如图反比例函数a y x =(a ≠0)与正比例函数y=kx (k ≠0)相交于两点A 、B ,若点A (1,2)、点B 坐标是( )A .(-1,-2)B .(-2,-1)C .(-1,-3)D .(-2,-2)第5题 第7题 第10题 6、若点A (a ,b )在双曲线5y x=上,则代数式2ab-4的值为( )A .-1B .1C .6D .9 7、如图,P 是双曲线上一点,且图中△POA 的面积为5,则此反比例函数的解析式为( )A 10y x =B 10y x =-C 5y x =D 5y x =-8、对于反比例函数3y x=-,下列说法不正确的是( )A .图象分布在第二、四象限B .当x >0时,y 随x 的增大而增大C .图象经过点(1,-3)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 2 9、在同一直角坐标系中,若直线y=k 1x 与双曲线2k y x=没有公共点,则( )A .k 1k 2<0B .k 1k 2>0C .k 1+k 2<0D .k 1+k 2>010、如图。

2020—2021学年度第二学期六年级数学单元检测试卷(含期中、期末试卷+试卷答案)

2020—2021学年度第二学期六年级数学单元检测试卷(含期中、期末试卷+试卷答案)

2020—2021学年度第二学期六年级数学第一单元《负数》检测试卷姓名:__________ 班级:__________分数:__________一、填空题(共6题;共22分)1.六年级女生一分钟仰卧起坐19个为及格,以19个为基础,四名女生的成绩记录如下,5、-1、0、3,这四名同学共做了()个仰卧起坐。

2.在-5,0,-1,4,2.5中,最大数是(),最小数是(),正数和负数的分界是()。

3.2020年3月3日的天气预报显示沈阳的气温为-6℃~3℃。

这一天,沈阳的最低气温是()℃,温差是()℃。

4.在-3、+ 9、0、-12、-0.6、+ 2.3中,正数有()个,负数有()个。

5.六年级一男生坚持每天进行一分钟跳绳锻炼。

下面是他对自己一周的跳绳个数进行的统计。

他将150个记为0,超出150个的部分用正数表示,不足150个的部分用负数表示。

具体情况记录如下:《国家学生体质健康标准》规定:六年级男生一分钟跳绳个数在147个以上(含147个)记为优秀。

该同学这一周有()次一分钟跳绳成绩为优秀。

6.如果把50层记作0层,那么第46层应记作()层,最高层118层应记作()层。

二、判断题(共5题;共10分)7.所有正数都比负数大。

()8.0和-6之间有5个负数。

()9.甲、乙两个冷库,甲冷库的温度是-12℃,乙冷库的温度是-11℃,甲冷库的温度高一些。

()10.温度0摄氏度就是没有温度。

()11.小明妈妈的存折上,“支出或存入”一栏中,显示“2800”表示存入2800元,显示“-2500”表示支出2500元。

()三、选择题(共8题;共40分)12.一种食品包装袋上标着:净重(275±5克),表示这种食品每袋最多不超过()克。

A.270B.280C.290D.30013.质检员抽查4个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数。

从轻重的角度看,最接近标准的产品是()。

第一章《反比例函数》(基础卷)(解析版)

第一章《反比例函数》(基础卷)(解析版)

2022-2023学年湘教版九年级上册期末真题单元冲关测卷(基础卷)第一章反比例函数一、选择题(每小题4分,共40分)1.(2021-2022·湖南·期末试卷)下列函数中,是反比例函数的是()A.y=5B.y=x2C.y=2x+1D.2y=xx【答案】A【解析】根据反比例函数的定义,可得答案.解:形如y=k(k≠0)的函数是反比例函数,故只有选项A符合题意.x2.(2021-2022·广东·单元测试)若函数y=(m2−1)x m2−m−3是反比例函数,则m的值是()A.±1B.2C.−1或2D.−1【答案】B【解析】因为函数y=(m2−1)x m2−m−3是反比例函数,所以m2−m−3=−1,m2−1≠0,所以m=2.3.(2021-2022·河南·月考试卷)下列关于反比例函数y=−3的结论中正确的是()xA.图象过点(1,3)B.图象在一、三象限内C.当x<0时,y随x的增大而增大D.当x>−1时,y>3【答案】C4.(2021-2022·河南·月考试卷)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=U,当电压为定值时,关于R的函数图象是()RA. B. C. D.【答案】A5.(2021-2022·广东·单元测试)已知反比例函数y=kx的图象经过点P(3,−4),则这个反比例函数的解析式为()A.y=12x B.y=−12xC.y=3xD.y=4x【答案】B【解析】将P(3,−4)代入y=kx,得k=3×(−4)=−12.故反比例函数解析式为y=−12x.6.(2021-2022·安徽·期末试卷)若点A(−3,2)关于x轴的对称点A′恰好在反比例函数y=kx(k≠0)的图象上,则k的值为()A.−5B.−1C.6D.−6【答案】C7.(2021-2022·广东·同步练习)如图,点P在反比例函数y=kx(k≠0)的图象上,PA⊥x轴于点A ,△PAO的面积为2,则k的值为()A.1B.2C.4D.6【答案】C【解析】根据反比例函数系数k的几何意义可知,△PAO的面积=12|k|,再根据图象所在象限求出k的值既可.解:依据比例系数k的几何意义可得,△PAO的面积=1|k|,2即1|k|=2,解得,k=±4,由于函数图象位于第一、三象限,故k=4.28.(2021-2022·广东·月考试卷)若点A(−3,y1),B(−1,y2),C(3,y3)都在反比例函数y=k(k>0)的x图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y2【答案】B9.(2021-2022·安徽·月考试卷)已知正比例函数y=k1x和反比例函数y=k2,在同一直角坐标x系下的图象如图所示,其中符合k1⋅k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解析】根据正比例函数和反比例函数的图象逐一判断即可.10.(2021-2022·广东·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=k(k>0)的图象上与正方形的一个交点,若x图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.−16【答案】C【解析】根据正方形的对称性及反比例函数的的对称性,由割补法可以得出阴影部分的面积就是一个小正方形的面积,又阴影部分的面积是16,故一个小正方形边长为4,根据点的坐标与图形的性质即可得出|4a=4,求解得出a的值,再根据反比例函数图象上的点的坐标特点即可求出k的值.解:如图:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16.∵P点坐标为(4a, a),∴OA=OC=4a,∴4a×4a=16,∴a=1(a=−1舍去),∴P点坐标为(4, 1).把P(4, 1)代入y=kx,得k=4×1=4.二、填空题(本题共计6小题,每题4分,共计24分)11.(2021-2022·广东·期末试卷)若函数y=mx m2+3m−1是反比例函数,则m=________.【答案】−3【解析】直接利用反比例函数的定义分析得出即可.【解答】解:∵函数y=mx m2+3m−1是反比例函数,∴m2+3m−1=−1且m≠0,解得:m=−3.12.(2020-2021·湖南·期中试卷)已知反比例函数y=(m−2)x m2−10的图象,在每一象限内y随x 的增大而减小,则反比例函数的解析式为________.【答案】y=1x【解析】根据反比例函数的定义得到得m−2≠0m2−10=−1,可解得m=3或−3,再根据反比例函数的性质得到m−2>0,则m=3,然后把m=3代入y=(m−2)x m2−10即可.解:根据题意得m−2≠0,m2−10=−1,解得m=3或−3,∵反比例函数在每一象限内y随x的增大而减小,∴m−2>0,∴m>2, ∴m=3,∴y=(3−2)x−1=1x,13.(2021-2022·全国·中考复习)计划修建铁路1200km,那么铺轨天数y(d)是每日铺轨量x的________比例函数解,其表达式为________.【答案】反,y=1200x【解析】本题考查反比例函数的定义.解:故答案为:反,y=1200x.14.(2021-2022·河南·中考复习)已知函数y=−1x,当自变量的取值为−1<x<0或x≥2时,函数值y的取值为________.【答案】y>1或−12≤y<0解:画出函数y=−1x的图象,如图所示:当x=−1时,y=1,当x=2时,y=−12.由图象可得:当−1<x<0时,y>1,当x≥2时,−12≤y<0.15.(2021-2022·河南·月考试卷)已知(−3, y1),(−2, y2),(1, y3)是抛物线y=3x2+12x+m上的点,则y1,y2,y3的大小关系为________.A.y2<y3<y1B.y1<y2=y3C.y2<y1<y3D.y3<y2<y1【答案】C【解析】利用二次函数解析式求出其对称轴,再利用二次函数的对称性可得到点(−3,y1)关于对称轴对称的点的坐标(−1y1);利用二次函数的增减性比较−2,−1,1的大小关系,就可得到y1,y2,y3的大小关系.解:A(−3,y1),B(−2,y2),C(1,y3)在二次函数y=3x2+12x+m的图象上,=−2,开口向上,y=3x2+12x++m的对称轴x=−b2a∴当x=−3与x=−1关于x=−2对称,:A在对称轴左侧,y随x的增大而减小,则y1>y2C在对称轴右侧,y随x的增大而增大,1>−1, ∵y3>y1, ∵y3>y1>y216.(2021-2022·河南·中考复习)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半的图象经过菱形OB-CD对角线的交点A,若点D的坐标为(6,8),则k 轴上,反比例函数y=kx的值为________.【答案】32解:∵点D的坐标为(6, 8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10, 0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8, 4),的图象上,∵点A在反比例函数y=kx∴k=xy=8×4=32.三、解答题(本题共计8小题,每题10分,共计86分)17.(2021-2022·广东·单元测试)已知函数y=(m2+2m)x m2−m−1.(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.解:(1)由y=(m2+2m)x m2−m−1是正比例函数,得m2−m−1=1且m2+2m≠0,解得m=2或m=−1;(2)由y=(m2+2m)x m2−m−1是反比例函数,得m2−m−1=−1且m2+2m≠0,解得m=1,.故y与x的函数关系式y=3x18.(2020·广东·单元测试)已知函数y=(k−2)x k2−5为反比例函数.(1)求k的值;(2)它的图象在第________象限内,在各象限内,y随x增大而________;(填变化情况)时,y的取值范围.(3)求出−2≤x≤−12解:由题意得:k2−5=−1,解得:k=±2,∵k−2≠0,∴k=−2;∵k=−2<0,∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大;故答案为:二、四,增大;∵反比例函数表达式为y=−4,x时,y=8,∴当x=−2时,y=2,当x=−12时,2≤y≤8.∴当−2≤x≤−1219.(2021-2022·吉林·月考试卷)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象与在第一象限内的图象交于点C,连接CO x轴交于点A(−4,0),与y轴交于点B,与反比例函数y=kx.(1)求b的值;(2)若S△OBC=2,则k的值是________.解:(1)∵一次函数y=x+b经过点A(−4,0)∴0=−4+b∴b=4.∴B(0,4).(2)∵S△OBC=2 ∴1×4×x C=2 ∴x C=12∴点C横坐标为1.把x=1代入y=x+4得,y=5 ∴C(1,5).∵反比例函数y=k过点C,∴k=1×5=5,x20.(2021-2022·甘肃·月考试卷)如图,一次函数y=kx+b与反比例函数y=m的图象相交于xA(−1, 4),B(2, n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC ⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S · .解:(1)把A(−1, 4)代入反比例函数y =mx 得,m =−1×4=−4所以反比例函数的解析式为y =4x ;把B(2, n)代入y =−4x 得,2n =−4.解得n =−2,所以B 点坐标为(2, −2),把A(−1, 4)和B(2, −2)代入一次函数y =kx +b 得{−k +b =42k +b =−2,解得{k =−2b =2,所以一次函数的解析式为y =−2x +2;(2)∵ BC ⊥y 轴,垂足为C ,B(2, −2),∴ C 点坐标为(0, −2).设直线AC 的解析式为y =px +q ,∵ A(−1, 4),C(0, −2),∴ {−p +q =4q =−2,解得{p =−6q =−2∴ 直线AC 的解析式为y =−6x−2,当y =0时,−6x−2=0,解得x =−13,∴ E 点坐标为(−13, 0),∵ 直线AB 的解析式为y =−2x +2,∴ 直线AB 与x 轴交点D 的坐标为(1, 0)·∴ DE =1−(−13)=43,∴ △AED 的面积s =12×43×4=83.21.(2021-2022·山东·月考试卷)Rt△OAB在直角坐标系内的位置如图所示,BA⊥OA,反比例函数y=k(k≠0)在第一象限内的图像与AB交于点C(8,1)与OB交于点D(4,m).x(1)求该反比例函数的解析式及图像为直线OB的正比例函数解析式;(2)求BC的长., 解得:k=8,解:(1)将点C(8,1)代入反比例函数解析式中,得1=k8∴反比例函数解析式为y=8,x,解得:m=2,将点D(4,m)代入反比例函数解析式中,得m=84∴点D(4,2),设直线OB的正比例函数解析式为y=ax,将点D(4,2)代入,得2=4a,解得:a=1,2∴直线OB的解析式为y=1x;2(2)∵BA⊥OA即BC⊥x轴,∴点B的横坐标等于点C的横坐标8,将x=8代入y=1x中,解得y=4,∴点B的坐标为(8, 4),2∴AB=4,∵点C(8,1),∴AC=1,∴BC=AB−AC=3.22.(2021-2022·河南·月考试卷)如图,平行四边形OABC的边OA在x轴上,点D是对角线OB 的中点,反比例函数y=k(x>0)的图象经过点D.点B的坐标为(10,4),点C的坐标为(3,4)x(1)求反比例函数的解析式;(2)求平行四边形OABC 的周长.解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,∵ 点D 是OB 的中点∴ 点E 是OF 的中点,且DE =12BF ,∴ OE =5, DE =2 ∴ 点D 的坐标为(5,2).∵ 反比例函数y =k x (x >0)的图象经过点D ,∴ 2=k 5,解得k =10,∴ 反比例函数的解析式为y =10x .(2)∵ 点B 的坐标为 (10,4),点C 的坐标为 (3,4) ,∴ BC =10−3=7.由勾股定理易得OC ==5,所以平行四边形OABC 的周长为 (5+7)×2=24.23.(2021-2022·山东·月考试卷)如图,在平面直角坐标系中,直线y =x +2与双曲线y =k x 交于A ,B 两点,已知点A 的横坐标为1.(1)求k 的值; (2)求△OAB 的面积;(3)直接写出关于x 的不等式x +2>k x 的解集.解:(1)∵ 点A 的横坐标为1,∴ 将x =1二代入y =x +2中,得y =3,∴ 点A 的坐标为(1,3),∵ 直线y =x +2与双曲线y =k x 交于A ,B 两点∴ 将A (1,3)代入y =k x 中,得k =3.(2)∵直线y=x+2与双曲线y=3x交于A,B两点∴解y=x+2y=3x,得x=1x=−3∴点A的坐标为(1,3)点B的坐标为(−3,−1)∵如图,直线y=x+2与y轴交于点C∴点C的坐标为(0,2),∴OC=2,∴S△OAB=CO⋅(x A−x B)2=2×[1−(−3)]2=4,即△OAB的面积为4.(3)x>1或−3<x<0.24.(2021-2022·安徽·月考试卷)校园里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∘C,加热到100∘C停止加热,水温开始下降,此时水温y(∘C)与开机后用时x(min)成反比例关系,直至水温降至40∘C,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为40∘C时接通电源,水温y(∘C)与时间x(min)的关系如图所示:(1)分别写出图中水温上升和下降阶段y与x之间的函数关系式;(2)小明同学想喝高于50∘C的水,请问他最多需要等待多长时间?解:(1)观察图象,可知:当x=6(min)时,水温y=100(∘C),当0≤x≤6时,设y关于x的函数关系式为:y=kx+b,b=40,6k+b=100,得k=10,b=40,即当0≤x≤6时,y关于x的函数关系式为y=10x+40;当x>6时,设y=ax,100=a6,得a=600,即当x>6时,y关于x的函数关系式为y=600x,∴ y与x的函数关系式为:y=10x+40,600x.(2)将y=50代入y=10x+40,得x=1,∴P(1,50),将y=50代入y=600x,得x=12,∴M(12,50),当y=40时,x1=0,x2=15,∴Q(15,40),因为饮水机关机即刻自动开机,重复上述自动程序,如图,∴N(16,50),∴MN=4,∴他最多要等4分钟.。

(必考题)初中数学九年级数学上册第六单元《反比例函数》检测卷(有答案解析)(4)

(必考题)初中数学九年级数学上册第六单元《反比例函数》检测卷(有答案解析)(4)

一、选择题1.关于反比例函数y =4x,下列说法不正确的是( ) A .图象关于原点成中心对称 B .当x >0时,y 随x 的增大而减小C .图象与坐标轴无交点D .图象位于第二、四象限 【答案】D【分析】根据反比例函数图象的性质判断即可.【详解】解:根据反比例函数的性质可知,图象关于原点成中心对称,图象与坐标轴无交点,所以A 、C 不符合题意;因为比例系数是4,大于0,所以当x >0时,y 随x 的增大而减小,故B 不符合题意; 因为比例系数是4,大于0,所以图象位于第一、三象限,故D 错误,符合题意; 故选:D .【点睛】本题考查了反比例函数图象的性质,解题关键是掌握反比例函数图象的性质并熟练运用.2.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .1【答案】A【分析】 先根据反比例函数系数k 的几何意义得S 1+S 阴影及S 2+S 阴影的值,进而可得出S 1+S 2的值.【详解】解:∵点A 、B 是双曲线3y x=上的点, ∴S 1+S 阴影=S 2+S 阴影=3,∵S 阴影=1∴S 1=S 2=3-S 阴影=3-1=2,∴12224S S +=+=.故选A .【点睛】本题考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.3.若点()12,y -()21,y -、()31,y 都在反比例函数()0k y k x =<的图象上,则有( ) A .123y y y >>B .312y y y >>C .213y y y >>D .132y y y >> 【答案】C【分析】 先根据反比例函数y =k x中k <0判断出函数图象所在的象限,再得出在每一象限内函数的增减性,再根据三点横坐标的值即可判断出y 1,y 2,y 3的大小.【详解】 解:∵反比例函数y =k x中k <0, ∴函数图象的两个分支位于二四象限,且在每一象限内y 随x 的增大而增大,∵﹣2<﹣1<0,∴y 2>y 1>0,∵1>0,∴y 3<0,∴y 2>y 1>y 3.故选:C .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)k y k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =( )A .4B .92C .32D .5【答案】B【分析】 设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】 解:在k y x=中,设(,)(0)k B x k x >, 则3k x x +=,(,)k C x x∵AB 经过坐标原点, ∴(,)k A x x-- ∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒ ∴1,22BC AB AB BC == 又∵2AB OB =∴BC OB = ∴22222()3k k x x x x k x x +=-⎪+=⎪⎩解得,92=k【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.5.某班“数学兴趣小组”探究出了有关函数1223y x =-+(图象如图)的三个结论:①方程12203x -=+有1个实数根,该方程的根是3x =;②如果方程1223a x -=+只有一个实数根,则a 的取值范围是2a =或0a =;③如果方程1223a x -=+有2个实数根,则a 的取值范围是02a <<或2a >.你认为正确的结论个数有( )A .3B .2C .1D .0 【答案】A【分析】 利用函数图像结合图像性质分析求解.【详解】解:结合函数图像可以看出当y=12203x -=+时,函数图像与x 轴有1个交点,(3,0),∴方程12203x -=+有1个实数根,该方程的根是3x =,故①正确; 如果方程1223a x -=+只有一个实数根,由①可得a=0, 若a=2,则12223x -=+,此时只有12=43x +,解得x=0(经检验,是原方程的解) ∴方程1223a x -=+只有一个实数根,则a 的取值范围是2a =或0a =,故②正确; 由②可得当2a =或0a =时,y=1223a x -=+有一个实数根∴方程1223a x -=+有2个实数根,则a 的取值范围是02a <<或2a >,故③正确 正确的共3个,故选:A .【点睛】本题考查了函数的性质,函数与方程等知识,学会利用图象,数形结合思想解题是关键.6.如图,在x 轴正半轴上依次截取1122320202021OA A A A A A A ====,过点1A .2A ,3A 、、2020A 、2021A 分别作x 轴的垂线,与反比例函数2y x =的图象依次相交于1P ,2P 、3P 、 、2021P ,得到11OP A ∆、122O P A ∆、、202020212021A P A ∆,并设其面积分别为1S 、2S 、、2021S ,则2021S 的值为( )A .12021B .12020C .22021D .11010【答案】A【分析】 设OA 1=A 1A 2=A 2A 3=…=A 2020A 2021=t ,利用反比例函数图象上点的坐标特征得到P 1(t ,2t ),P 2(2t ,22t ),P 3(3t ,23t),…,P 2021(2021t ,22021t ),然后根据三角形面积公式可计算出S 2021.【详解】解:设OA 1=A 1A 2=A 2A 3=…=A 2010A 2021=t ,则P 1(t ,2t ),P 2(2t ,22t),P 3(3t ,23t),…,P 2021(2021t ,22021t ), 所以S 2021=121=220212021t t ⨯⨯.【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.7.如图,点P 在反比例函数y =k x的图象上,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,且△APB 的面积为2,则k 等于( )A .-4B .-2C .2D .4【答案】A【分析】 根据反比函数定义去思考求解即可.【详解】设点P 的坐标为(x ,y),∵PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,∴PA=y ,PB=-x ,∵△APB 的面积为2,∴122PA PB ⋅=, ∴-xy=4,即xy=-4, ∵点P 在反比例函数y =k x的图象上, ∴k=xy=-4,故选A.【点睛】本题考查了根据反比例函数图像一点,向坐标轴引垂线构成三角形面积求k ,熟练运用点与函数的关系,坐标与线段之间的关系,三角形面积的定义是解题的关键.8.对于反比例函数2y x=-,下列说法正确的是( ) A .图象经过点()2,1--B .已知点()12,P y -和点()26,Q y ,则12y y <C .其图象既是轴对称图形也是中心对称图形D .当0x >时,y 随x 的增大而减小【答案】C【分析】根据反比例函数的性质进行判断即可.【详解】 解: A 、把点 ()2,1-- 代入反比例函数y=2x-,得-1≠2--2,故不正确; B 、把点 ()12,P y - 代入反比例函数y 1=221--=,把点 ()26,Q y 代入反比例函数y 2=2361-=-,12y y >,故不正确; C 、其图象既是轴对称图形也是中心对称图形,符合题意;D 、k=-2<0,∴在每一象限内y 随x 的增大而增大,故不正确;故选C .【点睛】 本题考查了反比例函数y= k x(k≠0)的性质: ①当k>0 时,图象分别位于第一、 三象限;当k<0时, 图象分别位于第二、 四象限;②当k>0时,在同一个象限内, y 随x 的增大而减小;当k<0时, 在同一个象限, y 随x 的增大而增大.9.已知点A 、点B 在反比例函数(0)k y k x=≠图象的同一支曲线上,则点A 、点B 的坐标有可能是( )A .A (2,3)、B (-2,-3)B .A (1,4)、B (4,1)C .A (4,3)、B (4,-3)D .A (3,3)、B (2,2) 【答案】B【分析】在反比例函数图象的同一支上,一定满足同一函数解析式且在同一象限.【详解】解:A. A (2,3)、B (-2,-3)两点均在同一反比例函数图象上,但不在同一支上,故选项A 不符合题意;B. A (1,4)、B (4,1)两点均在同一反比例函数图象上,且在同一支上,故选项B 符合题意;C. A (4,3)、B (4,-3)两点不在同一反比例函数图象上,故选项C 不符合题意;D. A (3,3)、B (2,2)两点不在同一反比例函数图象上,故选项D 不符合题意. 故选:B .【点睛】本题主要考查了反比例函数图象的特点,掌握两点在反比例函数图象的同一支曲线上的条件是解答本题的关键.10.如图所示,反比例函数k y x =(0k ≠,0x ≥)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为等于8,则k 的值等于( )A .1B .2C .3D .4 【答案】B【分析】过D 作DE ⊥OA 于E ,设,k D a a ⎛⎫ ⎪⎝⎭,于是得到OA=2a ,2k OC a=,根据矩形的面积列方程即可得到结论.【详解】解:过D 作DE OA ⊥于点E ,如图,设,k D a a ⎛⎫ ⎪⎝⎭, ∴OE a =,k DE a=, ∵点D 是矩形OABC 的对角线AC 的中点,∴2OA a =,2k OC a=, ∵矩形OABC 的面积为8, ∴228k OA OC a a⋅=⨯=,解得2k =, 故选:B .【点睛】本题考查了反比例函数系数k 的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.11.下列各点中,在反比例函数12y x =-图象上的是( ) A .()2,6--B .()2,6-C .()3,4D .()4,3-- 【答案】B【分析】利用反比例函数图象上点的坐标特征进行判断.【详解】解:∵-2×(-6)=12,-2×6=-12,3×4=12,-4×(-3)=12,∴点(-2,6)在反比例函数12y x=-图象上. 故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=-(k 为常数,k≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .12.函数1y x =与函数1y x=-的图像可以通过图形变换得到,给出下列变换:①平移,②旋转,③轴对称,④相似(相似比不为1),则可行的是( ) A .①②B .②③C .①④D .③④ 【答案】B【分析】 由于反比例函数的图象是一个中心对称图形,也是轴对称图形,即函数1y x =的图象可以经过旋转得到1y x=-的图象,而不能经过平移,由于两函数表达式相同,故两函数的图象相似,且相似比为1.【详解】解:已知函数1y x =与函数1y x=-, 且反比例函数图象是中心对称图形,也是轴对称图形,故函数图象不可以通过平移来完成,故①错误;②正确;③正确;又因为两函数图象完全相同,即两函数图象相似,且相似比为1,故④错误; 综上所述,可行的是②③.故选:B .【点睛】本题通过反比例函数图象的性质和图象的旋转问题,要求学生具有一定的猜想和探究能力.二、填空题13.如图,在平面直角坐标系中,Rt △ABC 的顶点A ,B 分别在y 轴、x 轴上,OA =2,OB =1,斜边AC ∥x 轴.若反比例函数y =k x(k >0,x >0)的图象经过AC 的中点D ,则k 的值为 ___________.14.若点(4,3)A ,(2,)B m 在同一个反比例函数的图象上,则m 的值为_______. 15.已知点,C D 分别在反比例函数(32550,2)p p p y y p x x -=≠=≠⎛⎫ ⎪⎝⎭的图象上,若点C 与点D 关于x 轴对称,则p 的值为______.16.若点()5,A a -,()3,B b ,()6,C c 都在反比例函数4y x=的图象上,则a ,b ,c 中最大的是___.17.如图,在以O 为原点的平面直角坐标系中,矩形OABC 的两边OC .OA 分别在x 轴、y轴的正半轴上,反比例函数(0)k y x x =>的图象与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE 的面积是6,则k 的值为________.18.如图所示,点A 、B 在反比例函数y =k x(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为______.19.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”).20.分别以矩形OABC 的边OA ,OC 所在的直线为x 轴,y 轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC 折叠使点B 落在G(3,0)上,折痕为EF ,若反比例函数k y x=的图象恰好经过点E ,则k 的值为_______.三、解答题21.已知一次函数223y x =+的图象分别与坐标轴相交于A 、B 两点(如图所示),与反比例函数()0k y x x=>的图象相交于C 点.(1)直接写出A 、B 两点的坐标;(2)作CD x ⊥轴,垂足为D ,如果OB 是ACD △的中位线,求反比例函数()0k y k x =>的关系式. (3)请根据图象直接写出在第一象限内,反比例函数值大于一次函数值时自变量x 的取值范围.22.如图,直线11y k x b =+与反比例函数22k y x=的图象交于A 、B 两点,已知点(),4A m ,(),2B n ,AD x ⊥轴于点D ,BC x ⊥轴于点C ,3DC =.(1)求m ,n 的值及反比例函数的解析式;(2)结合图象,当21k k x b x+≤时,直接写出自变量x 的取值范围; (3)若P 是x 轴上的一个动点,当ABP △的周长最小时,求点P 的坐标.23.已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点(),M m n (在A 点左侧)是双曲线k y x=点上的动点,过点B 作//BD y 轴交x 轴于点D .过()0,N n -作//NC x 轴交双曲线k y x =于点E ,交BD 于点C . (1)若点D 坐标是()8,0-,求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.24.如图,一次函数1y x =+与反比例函数k y x =的图像相交于点()2,3A 和点B . (1)求反比例函数的解析式; (2)过点B 作BC x ⊥轴于C ,求ABC S ;(3)是否在y 轴上存在一点D ,使得BD CD +的值最小,并求出D 坐标.25.直线y kx b =+与反比例函数4(0)y x x=>的图象分别交于点(,4)A m 和点(4,)B n ,与坐标轴分别交于点C 和点D .(1)求直线AB 的解析式;(2)观察图象,当0x >时,直接写出4kx b x+>的解集; (3)若点P 是y 轴上一动点,当COD △与ACP △相似时,直接写出点P 的坐标.26.如图,直线y=12x与双曲线y=kx(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=kx(k>0)上一点C的纵坐标为8,求△AOC的面积.(3)若12kxx>>,直接写出x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.5【分析】作CE ⊥x 轴于E 根据平行于x 轴的直线上任意两点纵坐标相同即可求得CE=OA=2T 通过证得△AOB ∽△BEC 求得BE=4进而得到D 点坐标代入y=利用待定系数法求出k 【详解】解:作CE ⊥x 轴于解析:5【分析】作CE ⊥x 轴于E ,根据平行于x 轴的直线上任意两点纵坐标相同,即可求得CE =OA =2,T 通过证得△AOB ∽△BEC ,求得BE =4,进而得到D 点坐标,代入y =k x,利用待定系数法求出k .【详解】解:作CE ⊥x 轴于E ,∵AC ∥x 轴,OA =2,OB =1,∴OA =CE =2,∵∠ABO +∠CBE =90°=∠OAB +∠ABO ,∴∠OAB =∠CBE , ∵∠AOB =∠BEC , ∴△AOB ∽△BEC ,∴BE CE OA OB =,即221BE =, ∴BE =4,∴OE =5,∵点D 是AB 的中点, ∴D (52,2). ∵反比例函数y =k x(k >0,x >0)的图象经过点D ,∴k =52×2=5. 故答案为:5.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形相似的判定和性质等知识,求出D 点坐标是解题的关键.14.;【分析】设反比例函数解析式为y=根据反比例函数图象上点的坐标特征得到k=4×3=2m 然后解关于m 的方程即可【详解】解:设反比例函数解析式为y=根据题意得k=4×3=2m 解得m=6故答案为6【点睛】解析:6;【分析】设反比例函数解析式为y=k x ,根据反比例函数图象上点的坐标特征得到k=4×3=2m ,然后解关于m 的方程即可.【详解】解:设反比例函数解析式为y=k x, 根据题意得k=4×3=2m ,解得m=6.故答案为6.【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 15.1【分析】根据题意设出点C 和点D 的坐标再根据点C 与点D 关于x 轴对称即可求得p 的值【详解】解:∵点分别在反比例函数的图象上∴设点C 的坐标为点D 的坐标为∵点与点关于轴对称∴∴p=1故答案为:1【点睛】本 解析:1【分析】根据题意,设出点C 和点D 的坐标,再根据点C 与点D 关于x 轴对称,即可求得p 的值【详解】解:∵点,C D 分别在反比例函数(32550,2)p p p y y p x x -=≠=≠⎛⎫ ⎪⎝⎭的图象上, ∴设点C 的坐标为3m m ,⎛⎫ ⎪⎝⎭p ,点D 的坐标为2p 5(,)-n n , ∵点C 与点D 关于x 轴对称,∴3p 2p 5-m n mn =⎧⎪-⎨=⎪⎩ ∴p=1故答案为:1【点睛】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特点,解答本题的关键是明确题意,利用函数的思想解答.16.b 【分析】先根据反比例函数中k >0判断出函数图象所在的象限及增减性再根据各点横坐标的特点即可得出结论【详解】解:∵k=4>0∴图象在第一三象限在每个象限内y 随x 的增大而减小∵-5<0∴A (-5a )位解析:b【分析】先根据反比例函数中k >0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵k=4>0,∴图象在第一、三象限,在每个象限内,y 随x 的增大而减小,∵-5<0,∴A (-5,a )位于第三象限,∴a <0,∵0<3<6,∴点B (3,b ),C (6,c )位于第一象限,∴b >c >0.∴a ,b ,c 中最大的是b .故答案为:b .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积然后即可求出B 的横纵坐标的积即是反比例函数的比例系数【详解】解:∵四边形OCBA 是矩形∴AB=OCOA=BC 设B 点的坐标为(ab )∵ 解析:165【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B 的横纵坐标的积即是反比例函数的比例系数.【详解】解:∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (14a ,b ) ∵D 、E 在反比例函数的图象上, ∴4ab =k , 设E 的坐标为(a ,y ),∴ay=k∴E (a ,k a), ∵1113()62224ODE AOD OCE BDE OCBA a k S S S S S ab k k b a ∆∆∆∆=--=---⋅-=-⋅矩形, ∴334688ab k k k --+=, 解得:165k =. 故答案为:165【点睛】 本题考查反比例函数系数k 的几何意义,矩形在平面直角坐标系中的坐标,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式.18.4【分析】设OM 的长度为a 利用反比例函数解析式表示出AM 的长度再求出OC 的长度然后利用三角形的面积公式列式计算恰好只剩下k 然后计算即可得解【详解】设∵点A 在反比例函数的图象上∴∵∴∴∴故答案为:4【 解析:4【分析】设OM 的长度为a ,利用反比例函数解析式表示出AM 的长度,再求出OC 的长度,然后利用三角形的面积公式列式计算恰好只剩下k ,然后计算即可得解.【详解】设OM a =,∵点A 在反比例函数k y x =的图象上, ∴k AM a=, ∵OM MN NC ==,∴3OC a =, ∴11336222AOC k S OC AM a k a =⋅=⋅⋅==, ∴4k =.故答案为:4.【点睛】本题综合考查了反比例函数与三角形的面积,根据反比例函数的特点,用OM 的长度表示出AM 、OC 的长度,相乘恰好只剩下k 是解题的关键,本题设计巧妙,是不错的好题. 19.<【分析】根据一次函数的性质当k <0时y 随x 的增大而减小进行判断即可【详解】解:∵一次函数y=-2x+1中k=-2<0∴y 随x 的增大而减小∵x1>x2∴y1<y2故答案为<【点睛】此题主要考查了一次解析:<【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可.【详解】解:∵一次函数y =-2x +1中k =-2<0,∴y 随x 的增大而减小,∵x 1>x 2,∴y 1<y 2.故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.20.3【分析】设CE 的长为a 利用折叠的性质得到EG=BE=4-aED=3-a 在Rt △EGD 中利用勾股定理可求得a 的值得到点E 的坐标即可求解【详解】过G 作GD ⊥BC 于D 则点D(32)设CE 的长为a 根据折叠解析:3【分析】设CE 的长为a ,利用折叠的性质得到EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,利用勾股定理可求得a 的值,得到点E 的坐标,即可求解.【详解】过G 作GD ⊥BC 于D ,则点D(3,2),设CE 的长为a ,根据折叠的性质知:EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,222EG ED DG =+,∴()()2224a 3a 2-=-+, 解得:32a =, ∴点E 的坐标为(32,2), ∵反比例函数k y x =的图象恰好经过点E , ∴3232k xy ==⨯=, 故答案为:3.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理的应用,反比例函数图象上点的特征,作出辅助线构造直角三角形是解题的关键.三、解答题21.(1)()30A -,,()0,2B ;(2)()120y x x =>;(3)03x << 【分析】(1)分别令一次函数解析式中y=0、x=0求出x 、y 的值,从而得出点A 、B 的坐标; (2)由A 、B 点的坐标结合中位线的性质,找出线段OD 、DC 的长度,从而找出点C 的坐标,再由点C 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的系数k ,从而得出结论;(3)观察函数图象,根据两函数图象的上下关系结合交点的坐标,即可得出结论.【详解】解:(1)令一次函数223y x =+中y=0,则23x+2=0, 解得:x=-3,∴点A 的坐标为(-3,0); 令一次函数223y x =+中x=0,则y=2, ∴点B 的坐标为(0,2); (2)∵OB 是ACD △的中位线,∴2224CD BO ==⨯=,3==OD OA ,∴C 点坐标()3,4,∴3412k =⨯=,∴反比例函数的关系式()120y x x =>.(3)由图象可知,当03x <<时,反比例函数值大于一次函数值. 【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数与一次函数的交点问题以及三角形中位线的性质,本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,根据反比例函数图象上点的坐标特征求出反比例系数k 是关键. 22.(1)3m =,6n =,212y x=;(2)03x <≤或6x ≥;(3)点P 的坐标为()5,0.【分析】(1)把点A 、B 的坐标代入反比例函数中,得到2n m =,由CD=3可知 ,3n m -=即可求出m 、n 的值;(2)根据图象可直接写出x 的取值范围;(3)作点B 关于x 轴的对称点()62F -,,连接AF 交x 轴于点P ,此时ABP △的周长最小,求出坐标即可; 【详解】(1)∵点()4A m ,,()2B n ,在反比例函数22k y x=的图象上, ∴242k m n ==, 即2n m =; ∵3DC =, ∴3n m -=, ∴3m =,6n =,∴点()34A ,,点()62B ,, ∴23412k =⨯=, ∴反比例函数的解析式为212y x=; (2)∵点()34A ,,点()62B ,, ∴当21k k x b x+≤时:03x <≤或6x ≥; (3)如图,作点B 关于x 轴的对称点()62F -,,连接AF 交x 轴于点P ,此时ABP △的周长最小;设直线AF 的解析式为y kx a =+,3462k a k a +=⎧⎨+=-⎩解得210k a =-⎧⎨=⎩∴直线AF 的解析式为210y x =-+, 当0y =时,5x =,∴点P 的坐标为()50,.【点睛】本题考查了反比例函数与一次函数的解析式以及求x 的取值范围,还有在反比例函数中出现的动点问题,属于中等难度.23.(1)()8,2A ;B ()8,2--;k=16;(2)2233y x =+ 【分析】(1)根据D 点的横坐标为-8,求出点B 的横坐标代入14y x =中,得2y =-,得出B 点的坐标,即可得出A 点的坐标,再根据求出即可;(2)根据111122,,2222∆∆======DCNO DBO OEN S mn k S mn k S mn k ,即可得出k 的值,进而得出B ,C 点的坐标,再求出解析式即可. 【详解】解:(1)∵(),80D -, ∴B 点的横坐标为8-,代14y x =入中,得2y =-. ∴B 点坐标为()8,2--. ∵A 、B 两点关于原点A 对称, ∴()8,2A . ∴8216k xy ==⨯=;(2)∵()0,N n -,B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,2,2n B m ⎛⎫-- ⎪⎝⎭,()2,C m n --,(),E m n --.22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△,∴4DBOOENDCNO OBCE S S S Sk =--==矩形四边形.∴4k =.∵2,2n B m ⎛⎫-- ⎪⎝⎭在双曲线4y x =与直线14y x =上, ∴()()2421242n m n m ⎧⎛⎫-⨯-= ⎪⎪⎪⎝⎭⎨⎪⨯-=-⎪⎩, 解得1122m n =⎧⎨=⎩或2222m n =-⎧⎨=-⎩(舍去) ∴()4,2C --,()2,2M .设直线CM 的解析式是y ax b =+,把()4,2C --和()2,2M 代入得:4222a b a b -+=-⎧⎨+=⎩,解得23a b ==. ∴直线CM 的解析式是2233y x =+. 【点睛】本题考查反比例函数解析式,一次函数解析式,掌握反比例函数解析式,一次函数解析式待定系数求法,关键是点B 横纵坐标关系,以及4DBOOENDCNO OBCE S S S Sk =--==矩形四边形构造方程组解决问题. 24.(1)6y x=;(2)5;(3)存在,()0,1D - 【分析】(1)将A 的坐标代入反比例函数解析式中,求出k 的值,即可确定出反比例函数解析式;(2)将反比例函数解析式与一次函数解析式联立组成方程组,求出方程组的解,根据B 所在的象限即可得到B 的坐标;三角形ABC 的面积可以由BC 为底边,A 横坐标绝对值与B 横坐标绝对值之和为高,利用三角形的面积公式求出即可.(3)作C 关于y 轴的对称点C′,连接BC′交y 轴上一点D ,连接CD ,求出BC′的直线解析式,即可求出D 的坐标. 【详解】(1)∵一次函数1y x =+与反比例函数ky x=相交于()2,3A 6k x y =⋅=6y x∴=(2)如图:16y x y x =+⎧⎪∴⎨=⎪⎩,∴123,2x x =-=. ∴()3,2B -- 过B 作BC x ⊥轴12552ABCS∴=⨯⨯= (3)存在.作C 关于y 轴的对称点C ',连接BC '交y 轴上一点D , 连接CD ,()3,0C '设BC '的直线方程(0)y mx n m =+≠3032m n m n +=⎧⎨-+=-⎩∴131m n ⎧=⎪⎨⎪=-⎩ 113y x ∴=-令0,1x y ==-∴()0,1D - 【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:因式分解法解一元二次方程,待定系数法确定函数解析式,坐标与图形性质,以及三角形面积公式,待定系数法是数学中重要的思想方法,学生做题时注意灵活运用.25.(1)5y x =-+;(2)14x <<;(3)点P 的坐标为(0,4)或(0,3). 【分析】(1)将点A ,B 坐标代入双曲线中即可求出m ,n ,最后将点A ,B 坐标代入直线解析式中即可得出结论;(2)根据点A ,B 坐标和图象即可得出结论;(3)根据直线AB 的解析式先求出点C ,D 坐标,进而求出CO ,DO ,设出点P 坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论. 【详解】解:(1)∵点(,4)A m 和点(4,)B n 在4y x=图象上, ∴441,144m n ====, 即(1,4),(4,1)A B把(1,4),(4,1)A B 两点分别代入y kx b =+中得441k b k b +=⎧⎨+=⎩解得:15k b =-⎧⎨=⎩,所以直线AB 的解析式为:5y x =-+; (2)由图象可得,当0x >时,4kx b x+>的解集为14x <<;(3)设点P 的坐标为P(0,a), ①如图:当COD △与CPA 相似时,∵直线AB 的解析式为:5y x =-+ ∴C(0,5),D (5,0) ∴CO=DO=5 则CP CO AP DO = 即5-515a = ,解得:a=4∴P(0,4);②如图:由①得2222112CP AP+=+=当COD△与CAP相似时,222=2,∴OP=CO-CP=5-2=3∴P(0,3);∴点P的坐标为(0,4)或(0,3)时,COD△与ACP△相似.【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.26.(1)8;(2)15;(3)0<x<4【分析】(1)把点A的横坐标代入y=12x,求出A点坐标,再用待定系数法求k值;(2)把纵坐标代入,求出C点坐标,过点C作CM⊥x轴于M,过点A作AN⊥x轴于N,根据△AOC的面积等于梯形CMNA的面积可求;(3)观察图象可直接得出答案.【详解】解:(1)∵点A的横坐标为4,点A在直线y=12x上,∴点A的纵坐标为y=12×4=2,即A(4,2).又∵点A(4,2)在双曲线y=kx上,∴k=2×4=8;(2)∵点C在双曲线y=8x上,且点C纵坐标为8,∴C(1,8).如已知图,过点C作CM⊥x轴于M,过点A作AN⊥x轴于N.∵S △COM =12CM OM ⨯⨯=4, S △AON =12AN ON ⨯⨯=4, S △AOC =S 四边形OCAN - S △AON ,S 梯形CMNA =S 四边形OCAN - S △COM , ∴S △AOC =S 梯形CMNA =1()2AN CM MN +⨯, =1(28)32⨯+⨯, =15.(3)根据图象,直线y =12x 与双曲线y =k x的函数值大于0时,图象在第一象限,即x>0, 在交点A 的左侧,直线y =12x 比双曲线y =k x的函数值小,即x<4, 故当0<x <4时,102k x x >>. 【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数比例系数k 的几何意义,平面直角坐标系中三角形面积的求法,利用图象比较函数大小,解题关键是树立数形结合思想,把面积进行转化,利用两个函数的交点比较函数大小.。

2020-2021初中数学反比例函数知识点总复习附答案解析(1)

2020-2021初中数学反比例函数知识点总复习附答案解析(1)

2020-2021初中数学反比例函数知识点总复习附答案解析(1) 一、选择题1.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y 轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S△AOD=12×OD×AD=12xy=1;S△COD=12×OC×OD=12xy=2;S△AOC= S△AOD+ S△COD=3,∴S△ABC= S△AOC+S△COB=6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.2.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3.已知反比例函数2yx-=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2【答案】D【解析】【分析】【详解】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-2<0,图象在第二、四象限,故本选项正确;C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;D选项:当x>0时,y<0,故本选项错误.故选D.4.下列函数中,当x>0时,函数值y随自变量x的增大而减小的是()A.y=x2B.y=x C.y=x+1 D.1 yx =【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x>0时,y随x的增大而减小的函数.【详解】解:A、y=x2是二次函数,开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,错误;B、y=x是一次函数k=1>0,y随x的增大而增大,错误;C、y=x+1是一次函数k=1>0,y随x的增大而减小,错误;D、1yx=是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确;故选D.【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.5.如图,点A 是反比例函数y =k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4【答案】B【解析】【分析】 作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形,∴AD ∥x 轴,∴四边形ADOE 为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|k|,∴|k|=8,而k <0∴k=-8.故选:B . 【点睛】本题考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.6.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b -≤≤-时图形W 增大过程中,图形内没有整点, 故选:D.【点睛】 此题考查函数图象,根据函数解析式正确画出图象是解题的关键.7.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A.B.C.D.【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.8.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA=,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.9.如图,是反比例函数3yx=和7yx=-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点,A B,点P在x轴上.则点P从左到右的运动过程中,APB△的面积是()A .10B .4C .5D .从小变大再变小【答案】C【解析】【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5.故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.10.下列函数:①y=-x;②y=2x;③1yx=-;④y=x2.当x<0时,y随x的增大而减小的函数有()A.1 个B.2 个C.3 个D.4 个【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y=-x中k<0,∴y随x的增大而减小,故本选项正确;∵正比例函数y=2x中,k=2,∴当x<0时,y随x的增大而增大,故本选项错误;∵反比例函数1yx-=中,k=-1<0,∴当x<0时函数的图像在第二象限,此时y随x的增大而增大,故本选项错误;∵二次函数y=x2,中a=1>0,∴此抛物线开口向上,当x<0时,y随x的增大而减小,故本选项正确.故选B.【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.11.函数y=1-kx与y=2x的图象没有交点,则k的取值范围是()A.k<0 B.k<1 C.k>0 D.k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k的取值范围.【详解】令1-kx=2x,化简得:x2=1-2k;由于两函数无交点,因此1-2k<0,即k>1.故选D.【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.函数21ayx--=(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y1【答案】B【解析】【分析】【详解】解:当x=-4时,y1=214a---;当x=-1时,y2=211a---,当x=2时,y3=212a--,∵-a2-1<0,∴y3<y2<y1.故选B.【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数的性质数形结合思想解题是关键.13.若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=kx(k>0)的图象上,则y1、y2、y3的大小关系是()A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3【答案】B【解析】【分析】反比例函数y=kx(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】∵反比例函数y=kx(k>0)的图象在一、三象限,∴在每个象限内y随x的增大而减小,∵A(-3,y1)、B(-1,y2)在第三象限双曲线上,∴y2<y1<0,∵C(1,y3)在第一象限双曲线上,∴y3>0,∴y3>y1>y2,故选:B.【点睛】此题考查反比例函数的图象和性质,解题关键在于当k>0,时,在每个象限内y随x的增大而减小;当k<0时,y随x的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.14.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°=33,∴13BCOAODSS=VV,∵12×AD ×DO =12xy =3, ∴S △BCO =12×BC ×CO =13S △AOD =1, ∵经过点B 的反比例函数图象在第二象限,故反比例函数解析式为:y =﹣2x. 故选C .【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S △AOD =2是解题关键.15.直线y =ax (a >0)与双曲线y =3x 交于A (x 1,y 1)、B (x 2,y 2)两点,则代数式4x 1y 2-3x 2y 1的值是( )A .-3aB .-3C .3aD .3【答案】B【解析】【分析】先把1(A x ,1)y 、2(B x ,2)y 代入反比例函数3y x =得出11x y g 、22x y g 的值,再根据直线与双曲线均关于原点对称可知12x x =-,12y y =-,再把此关系式代入所求代数式进行计算即可.【详解】解:1(A x Q ,1)y 、2(B x ,2)y 在反比例函数3y x=的图象上, 11223x y x y ∴==g g ,Q 直线(0)y ax a =>与双曲线3y x=的图象均关于原点对称, 12x x ∴=-,12y y =-,∴原式111111433x y x y x y =+=-=--.故选:B .【点睛】本题考查的是反比例函数图象的对称性及反比例函数的性质,根据题意得出11223x y x y ==g g ,12x x =-,12y y =-是解答此题的关键.16.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a 的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C【解析】【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解.【详解】 210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<,故选C .【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.17.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.18.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】【分析】过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V ∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.19.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】本题主要考查了反比例函数y =k x 中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.20.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.。

六年级下册数学试题- 正比例和反比例 苏教版(含答案)

六年级下册数学试题- 正比例和反比例  苏教版(含答案)

《第6章正比例和反比例》单元测试卷一.填空题(共18小题)1.如果a与b成正比例关系,则x=,如果a与b成反比例关系,则x=.a3 1.2b5x2.根据3A=4B,那么A:B=,成比例.3.有x、y、z三个相关联的量,并有xy=z.当z一定时,x与y成比例,当x一定时,z与y成比例.4.一列火车匀速行驶时,路程与时间成比例关系.5.=c(a,b,c不为0),当a一定时,b和c成比例;当c一定时,a和b成比例.6.如果a=4c(a、c均为非0自然数),a和c的最大公因数是,a和c成比例.7.圆的周长和直径成比例;小芳上学的平均速度与所花时间成比例.8.已知=b(a、b为非零自然数),a和b成比例;a和b的最大公因数;a一定是(填“奇数”或“偶数”).9.x4?y1224表中,如果x和y成正比例,那么“?”处填;如果x和y成反比例,那么“?”处填.10.如果8x=y,那么x和y成比例,若8:x=y,则x与y成比例.11.认真观察下表:每天生产的吨数和需要生产的天数成关系.每天生产的吨数100200300400500…需要生产的天数6030201512…12.=C(B≠0)中,C一定,A和B成比例.A一定,B和C成比例.13.因为=(x≠0,y≠0),所以x和y成比例.14.三角形的面积一定,它的底和高成比例.圆的周长和半径成比例.15.若=(a×b≠0),则a,b成比例关系,且a和b的最大公因数是.16.a是b的时,a和b成关系.17.如果ab=6,则a和b成比例;如果=(m、n均不为0),则m和n成比例.18.如果=,那么:x和y成比例;如果=,那么x和y成比例.二.解答题(共7小题)19.观察下表中所给相关联的量完成后面问题.x230y5500.2(1)根据表中所给出的x和y是两个相关联的量,把表格填写完整.(2)表中x和y是成正比例还是反比例关系?为什么?20.一辆汽车所行的时间与路程的关系,可以用如图来表示,请你根据图上信息填一填、算一算下列问题.(1)从图上可以看出这辆车所行的路程与时间,这两个量成比例.(2)如果这辆汽车以这样的速度从甲地行到乙地用了5小时,问甲、乙两地之间的路程是多少千米?21.下表中x和y成反比例的两个量,请把表格填完整x10403060y5252022.某运输队在为灾区抢运120吨救灾物资.如果要一次把所有救灾物资全部运出,车辆的载重量与所需车辆的数量如下表,请把表格填写完整.载重量/吨 2.54510数量/辆4830(1)车辆的载重量和所需车辆的数量成什么比例?为什么?(2)如果用载重量6吨的卡车来运,一共需要多少辆?23.判断下面每题中两种量成何比例或不成比例,并说明理由.(1)订阅《人民日报》的份数和钱数.(2)李叔叔从家到工厂,骑自行车的速度和所需的时间.(3)正方体的棱长总和与棱长.(4)铺地的面积一定,砖块的面积和用砖的转数.(5)小明做10道数学题,做完的题和没做的题.(6)车轮的直径一定,所行驶的路程和车轮转数.(7)把一根木头平均锯成五段,所锯的段数和每段的长度.(8)圆锥的底面半径一定,它的体积和高.(9)全校人数一定,出勤人数和缺勤人数.(10)全校人数一定,出勤人数和出勤率.24.根据下面各题的条件,先列关系式,在根据关系式判断成什么比例①圆的直径和它的周长.②比的前项一定,比的后项和它的比值.③圆柱的高一定,它的底面积和体积.25.填表(1)已知下表中的y和x成正比例关系,请把表格补充完整.y8.433.642 x 1.22 3.6(2)下表中的m和n成反比例,请把表格补充完整.m0.3 2.4 1.2n50.68《第6章正比例和反比例》2019年单元测试卷参考答案与试题解析一.填空题(共18小题)1.【解答】解:(1)如果x和y成正比例,那么3:5=1.2:x3x=5×1.23x÷3=6÷3x=2;(2)如果x和y成反比例,那么:1.2x=3×51.2x÷1.2=15÷1.2x=12.5;故答案为:2,12.5.【点评】解决此题关键是根据比值一定或乘积一定,先列出比例,进而根据比例的性质先把比例式转化为乘积式来解比例得解;注意等号要对齐.2.【解答】解:因为3A=4B,则B:A=3:4;如果3A=4B,A:B=4:3,即A:B=,是A和B的比值一定,所以A和B成正比例.故答案为:3:4;正.【点评】此题考查比例性质的逆运用,以及辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.【解答】解:有x、y、z三个相关联的量,并有xy=z.当z一定时,是乘积一定,所以x 与y成反比例,当x一定时,即z:y=x,是比值一定,所以z与y成正比例.故答案为:反,正.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.4.【解答】解:因为:路程÷时间=速度(一定),是商一定,则路程与时间成正比例关系;故答案为:正.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.【解答】解:由=c,得b×c=a(一定),是乘积一定,所以成反比例;=c(一定),是比值一定,所以a和b成正比例;故答案为:反,正.【点评】本题考查成正、反比例的知识,判断时,就看两种量是对应的比值一定,还是对应的乘积一定,再做出解答.6.【解答】解:(1)因为a=4c,可知a和c是倍数关系,其中c是较小数,所以a和c最大公因数是c;(2)由a=4c,可知a:c=4,即a和c的比值一定,根据正比例的意义,a和c成正比例;故答案为:c,正.【点评】本题关键根据倍数关系,倍数关系的最大公因数是较小数;再得出a、c的比值一定还是乘积一定,从而判断成何比例.7.【解答】解:因为“圆的周长÷圆的直径=圆周率(一定),是对应的比值一定,所以圆的周长和直径成正比例;因为“时间×速度=路程(一定),是对应的乘积一定,所以路程(家到学校的距离)一定,小芳上学的平均速度与所花时间成反比例;故答案为:正,反.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.8.【解答】解:已知=b(a、b为非零自然数),即a:b=4,是比值一定,则a和b成正比例;已知=b,即a=4b,说明a和b成倍数关系,则b是a和b的最大公因数,a一定是偶数;故答案为:正,b,偶数.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.9.【解答】解:(1)4:12=x:2412x=4×2412x=96x=8(2)24x=4×1224x=48x=2故答案为:8、2.【点评】此题属于根据正、反比例的意义解题,如果两种相关联的量成正比例,则对应的比值一定;如果两种相关联的量成反比例,则对应的乘积一定;再根据比值或乘积一定列出比例,求得未知数的数值即可.10.【解答】解:(1)因为8x=y,则y:x=8(一定),是比值一定,所以x和y成正比例;(2)如果8:x=y,则xy=8(一定),是积一定,所以x和y成反比例;故答案为:正,反.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.11.【解答】解:因为:100×60=200×30=300×20=400×15=500×12,即每天生产的吨数×需要的天数=这批货物的总吨数(一定),是乘积一定,所以每天生产的吨数和需要生产的天数成反比例关系.故答案为:反比例.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12.【解答】解:=C(B≠0)中,C一定,是A和B的比值一定,所以A和B成正比例;因为=C(B≠0),所以BC=A(一定),是B和C的乘积一定,所以B和C成反比例;故答案为:正,反.【点评】此题是辨识两种量是否成正、反比例,要看这两种量是对应的比值一定,还是对应的乘积一定.13.【解答】解:因为=(x≠0,y≠0),则y:x=6:7=(一定);所以x和y成正比例.故答案为:正.【点评】此题属于辨识成正反比例的量,就看这两种量是否是对应的乘积一定,还是比值一定,再做出判断.14.【解答】解:因为三角形的底×高=面积×2(一定),符合反比例的意义,所以三角形的面积一定,底和高成反比例;因为圆的周长÷半径=2π(一定),符合正比例的意义,所以圆的周长和半径成正比例;故答案为:反,正.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.15.【解答】解:=(a×b≠0),则=(一定),所以a和b成正比例;因为自然数b是自然数a的2倍,所以a、b的最大公因数是a;故答案为:正,a.【点评】本题主要是灵活利用比例的基本性质解决问题,求两个数的最大公约数的方法进行解答.16.【解答】解:因为a是b的即a÷b=(一定)是比值一定,所以a和b成正比例.故答案为:正比例.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.17.【解答】解:(1)因为ab=6(一定),所以a和b成反比例;(2)因为=(m、n均不为0),所以m:n=(一定)所以m和n成正比例.故答案为:反,正.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.18.【解答】解:如果=,则xy=5×6=30(一定),那么x和y成反比例;如果=,则:y:x=5:6=(一定),那么x和y成正比例.故答案为:反,正.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.二.解答题(共7小题)19.【解答】解:(1)因为:2×5=10,=10,所以:10÷0.2=50,10÷30=,10=12,观察下表中所给相关联的量完成后面问题.x250 3012y5500.2(2)因为2×5=×50,即x×y=k(一定),所以,表中x和y是成反比例关系,答:表中x和y是成反比例关系,因为x×y=k(一定).故答案为:50、、12.【点评】此题考查的目的是理解掌握反比例的意义及应用.20.【解答】解:(1)表示时间和路程关系的图象是一条直线,是正比例图象,所以这两个量成正比例;(2)180÷2×5=450(千米);答:甲、乙两地之间的路程是450千米.故答案为:正.【点评】解答此题的关键是:(1)看两种相关联量是比值一定还是乘积一定,如乘积一定,则两种量成反比例;如比值一定,则两种量成正比例;(2)根据路程、时间和速度三者之间的关系,进行解答.21.【解答】解:10×5=50则:50÷40=1.2550÷25=250÷30=50÷20=2.550÷60=x1040230 2.560y5 1.252520【点评】此题考查反比例意义的应用,利用意义解决问题.22.【解答】解:4×30÷5=120÷5=24(辆)4×30÷10=120÷10=12(辆)载重量/吨 2.54510数量/辆48302412(1)因为2.5×48=120(吨)4×30=120(吨)因为车辆的载重量与所需车辆的数量的乘积一定,所以车辆的载重量与所需车辆的数量成反比例.(2)4×30÷6=120÷6=20(辆)答:用载重量6吨的卡车来运,一共需要20辆.【点评】本题考查了学生正反比例的判断情况,能运用统计表提供的信息解决问题.同时考查了学生理解分析问题的能力.23.【解答】解:(1)订阅《人民日报》的份数和钱数,成正比例,因为订阅《人民日报》的钱数÷份数=单价(一定).(2)李叔叔从家到工厂,骑自行车的速度和所需的时间,成反比例,因为,骑自行车的速度×所需的时间=李叔叔从家到工厂的距离(一定).(3)正方体的棱长总和与棱长,成正比例,因为正方体的棱长总和÷棱长=12(一定).(4)铺地的面积一定,砖块的面积和用砖的转数,成反比例,因为砖块的面积×用砖的转数=铺地的面积(一定).(5)小明做10道数学题,做完的题和没做的题,不成比例,因为小明做10道数学题=做完的题+没做的题,是和一定.(6)车轮的直径一定,所行驶的路程和车轮转数,成正比例,因为车轮的直径一定,则车轮的周长就一定,所行驶的路程÷车轮转数=车轮的周长(一定).(7)把一根木头平均锯成五段,所锯的段数和每段的长度,成反比例,因为所锯的段数×每段的长度=一根木头的长度(一定).(8)圆锥的底面半径一定,它的体积和高,成正比例,因为底面半径一定则底面积就一定,圆锥的体积÷高=底面积(一定).(9)全校人数一定,出勤人数和缺勤人数,不成比例,因为出勤人数+缺勤人数=全校人数(一定),是和一定.(10)全校人数一定,出勤人数和出勤率,成正比例,因为出勤人数÷出勤率=全校人数(一定).故答案为:正比例,反比例,正比例,反比例,不成比例,正比例,反比例,正比例,不成比例,正比例.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.【解答】解:A、圆的周长÷直径=π(一定),是比值一定,圆的直径和周长成正比例;B、比的后项×比值=比的前项(一定),是乘积一定,所以比的后项与比值成反比例;C、圆柱的体积÷底面积=圆柱的高(一定),所以它的底面积和体积成正比例;故答案为:圆的周长÷直径=π(一定),成正比例;比的后项×比值=比的前项(一定),成反比例;圆柱的体积÷底面积=圆柱的高(一定),成正比例.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.25.【解答】解:(1)y8.41425.233.642x 1.22 3.6 4.86(2)m0.3 2.420 1.2 1.5n4050.6108故答案为:14,25.2,4.8,6;40,20,10,1.5.【点评】此题考查了正、反比例的运用,就看这两个量是对应的比值一定,还是对应的乘积一定.。

2020-2021学年人教版小学六年级数学下册《第4章比例》单元测试题

2020-2021学年人教版小学六年级数学下册《第4章比例》单元测试题

2020-2021学年人教版小学六年级数学下册《第4章比例》单元测试题一.选择题(共8小题)1.根据4a=b,可以推得a与b的比是()A.5:8B.10:1C.1:102.下面各组比中,()组的两个比可以组成比例.A.3:5和5:3B.8:7和2:1.75C.1:5和0.2:103.x:y=,若y=20,则x=()A.10B.12C.154.下列图象表示正比例关系的是()A.B.C.D.5.在比例尺是1:5000000的地图上,量得甲、乙两地相距2cm,实际上甲、乙两地相距()km.A.10B.50C.100D.10006.下面的第二、三个图形都是把第一个图形按一定比例缩小的,那么x的值是()A.20B.18C.16D.157.把如图的长方形变成一个宽和长的比为5:8(更接近黄金比)的新长方形.下面方法中()正确.①在它的右侧去掉一个长30cm、宽2cm的长方形.②在它的下边添一个长50cm、宽5cm的长方形.③在它的右侧添一个长30cm、宽6cm的长方形,再在上边添一个长56cm、宽5cm的长方形.A.只有①②B.只有①③C.只有②③D.①②③8.小明从家里去学校,所需时间与所行速度()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题(共10小题)9.优优拿一些钱去买饮料,饮料的单价与购买的瓶数如表.单价/元12456瓶数6030151210因为一定,瓶数随着的变化而变化.单价提高,瓶数;单价降低,瓶数,而且单价和瓶数的一定,所以单价和瓶数成比例关系.10.=Y,XY成比例;=Y,XY成比例.11.把改写成数值比例尺是.12.:=x:,x=.13.在一个比例中,两个外项的积是1,一个内项是6,另一个内项是。

14.一个长和宽分别是5cm和3cm的长方形,按4:1放大后,长变成cm,宽变成cm.15.求比例中的未知项,叫做.16.下面哪组中的两个比可以组成比例?把能组成比例的在横线里打“√”.(1)2:6和3:1.(2)1:2和0.5:1.(3)0.8:0.2和16:4.(4)7:3和3:7.17.如图,在平衡架的左侧已挂上了3个砝码,每个30克。

新人教版六年级下册《第3章_比例》小学数学-有答案-单元测试卷(25)

新人教版六年级下册《第3章_比例》小学数学-有答案-单元测试卷(25)

新人教版六年级下册《第3章比例》小学数学-有答案-单元测试卷(25)一、填空1. 把56×3.6=0.15×20这个等式,写成一个比例是________用比例的意义检验是________.2. 有一个比例,两个内项的积是6,其中一个外项是23,这个比例可以是________.3. 8:7=24:21,如果内项7增加7,外项8应增加________还是比例。

4. 23:25=15:9如果外项9缩小3倍,内项25应变成________.5. 比例尺150000,它表示地面实际距离是图上距离的________倍。

6. 填表7. 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做________.8. 红光造纸厂男工人数是女工的145倍,女工人数与男工人数的比是________.男工人数与全厂职工人数的比是________,女工人数与全厂职工人数的比是________.9. 把28:245化成最简单的整数比是________.10. 在________一定的情况下,工总量和工作效率成正比例;在工作效率一定的情况下,工作总量与工作时间成________比例;在工作总量一定的情况下,工作效率与工作时间成________比例。

11. 表示________叫做比例。

12. 用23、335、12、15四个数组成的比例是________.13. 在一个比例里两个内项分别是412和59,它的两个外项的积是________.14. 用15的四个约数组成一个比例是________.15. 5m =8n ,那么m n =________.16. 在110的图纸上量得一个零件的长是2厘米,这个零件的实际长________米。

二、判断(对的打“√”,错的打“×”)比例尺是一种数量。

________(判断对错)正方形的面积和边长成正比例。

人教版六年级数学下册单元检测(解析) 第四单元《比例》(3)

人教版六年级数学下册单元检测(解析) 第四单元《比例》(3)

第四单元比例考试时间:90分钟试卷满分:100分(共5题;每题2分,共10分)1.(2021·蒙城)在比例尺是1:10的图纸上,甲、乙两个圆的半径的比3:4,甲、乙两个圆实际半径的比是()。

A.3:4 B.1:10 C.6:8 D.9:16【答案】A【完整解答】设图纸上甲、乙两圆半径分别为3r、4r,比例尺为1∶10,则实际半径分别为30r、40r,所以实际半径比为30r∶40r即3∶4。

故答案为:A。

【思路引导】实际距离=图上距离÷比例尺,通过比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变,化简得半径比,据此解答。

2.(2021·福田)下面两种量成反比例关系的是()。

A.总路程一定,已行驶的路程和剩下的路程B.圆锥的底面积一定,圆锥的体积与高C.全班人数一定,出勤人数与出勤率D.完成总时间一定,每个零件所需要时间与所做零件个数【答案】D【完整解答】解:A:已行的路程+剩下的路程=总路程,二者不成比例;B:圆锥的体积÷高=底面积×13(一定),二者成正比例;C:出勤人数÷出勤率=全班人数(一定),二者成正比里;D:每个零件所需要时间×所做零件个数=完成总时间(一定),二者成反比例。

故答案为:D。

【思路引导】根据数量关系判断出两个相关联的量的乘积一定还是商一定,如果乘积一定就成反比例,如果商一定就成正比例,否则不成比例。

3.(2021六下·新丰期中)乐乐家客厅长5m,宽3.8m,画在练习本上,选()作为比例尺比较合适。

A.1100B.11000C.110000D.任意定就行【答案】A【完整解答】解:5米=500厘米3.8米=380厘米500×1100=5(厘米)380×1100=3.8(厘米),选择1100作为比例尺比较合适。

故答案为:A。

【思路引导】先单位换算,图上距离=实际距离×比例尺,可知选择1100作为比例尺比较合适。

新人教版六年级下册《第3章_比例》小学数学-有答案-单元测试卷(21)

新人教版六年级下册《第3章_比例》小学数学-有答案-单元测试卷(21)

新人教版六年级下册《第3章 比例》小学数学-有答案-单元测试卷(21)一、填空.1. 如果15a =5b 那么a:b =________:________.2. 从8:5、,12:45、1:1.6这三个比中,选出两个组成的比例是________.3. 甲绳的35与乙绳的23相等,甲绳与乙绳的长度比是________:________.4. 根据23×6=5×45,组成的比例是________.5. 一颗宝石宽5mm ,拍摄在照片上宽15cm ,这张照片的比例尺是________.6. 在一个比例中,两个比的比值是23,两个内项分别是3和8,这个比例是________.7.这个比例尺表示,图上1厘米相当于实际距离________千米,将这个比例尺改写成数值比例尺是________.8. x 5=y 4,x 与y 成________比例。

二、判断是否成比例,成什么比例?圆柱体的侧面积一定,底面半径和高成________比例。

圆的半径和面积成________比例。

长方形的周长一定,它长与宽________比例。

房间的地面面积一定,铺地用的砖的块数和每块砖的面积成________比例。

全班学生人数一定,平均每组的人数和组数成________比例。

出糖率一定,榨出的糖和所需用的甘蔗成________比例。

三、选择.在画一幅平面图时,用图上12cm 表示实际距离的240m ,这幅平面图的比例尺是( )A.1:20B.1:200C.1:2000D.1:2000000一个精密零件长5mm,画在一幅图纸上长30cm,这幅图纸的比例尺是()A.1:6B.6:1C.1:60D.60:1用6、0.9、3.6、24这四个数组成的比例是()A.0.9:6=3.6:24B.6:3.6=0.9:24C.6:0.9=3.6:24D.24:0.9=3.6:6四、解决问题.在一幅比例尺是1:25000的设计图上量得一段路长22cm,现在把修这段路的任务按5:6分配给甲乙两个修路队,两队各要修多少米?一堆煤,原计划每天烧6吨,可以烧240天,改进炉灶后,实际每天烧4.5吨,这堆煤实际可以烧多少天?(用比例解)修一条公路,7天修完1120米,照这样的速度,共修了17天正好修完,这条公路全长多少米?(用比例解)工程队修一条水渠,原计划每天修400米,25天修完。

新人教版六年级下册《第3章_比例》小学数学-有答案-单元测试卷(2)

新人教版六年级下册《第3章_比例》小学数学-有答案-单元测试卷(2)

新人教版六年级下册《第3章 比例》小学数学-有答案-单元测试卷(2)一、填空题(共28分)1. 在一个比例中,两个外项的积是6,如果其中一个内项是1.5,那么另一个内项是________.2. A 的34相当于B 的12,那么A:B =(________:________).3. 如图是________比例尺,它表示地图上________的距离相当于地面上实际距离________,用数比例尺表示是________.4. 一个长方形的长为5cm ,宽为3cm ,按5:1放大,得到的图形的面积是________.5. x 4=y ,则x 与y 成________比例。

6. 在比例A:40=3:B 中,如果A =10,那么B =________.7. 5只白鸽飞回4个笼子,至少有________只白鸽飞进同一个笼子。

8. 把7本书放进2个抽屉中,总有一个抽屉至少放进________本书。

9. 袋子里由同样大小的红色和白色的乒乓球各10个,要想摸出的球一定有2个同色的,至少要摸出________个球。

10. 六一班有62名学生,至少有________人是同一个月出生的。

11. 箱子里放着红笔5支,蓝笔7支,黄笔6支,至少要摸出________支笔才能保证至少有1支是红笔。

二、判断题.(共10分)表示两个比的式子叫做比例。

________.(判断对错)人的年龄与身高成正比例。

________. (判断对错)圆柱的体积一定,圆柱的底面积和高成反比例。

________.(判断对错)订阅《少周报》的份数和钱数成正比例。

________.(判断对错)任何图纸上的图上距离都小于实际距离。

________.三、选择题.(共10分)圆的半径与圆周长()A.成正比例B.成反比例C.不成比例D.没有关系下列选项中能与0.36:0.6组成比例的是()A.45:1225B.110:16C.54:0.75在一个三角形中,三个内角和的度数比是1:2:3,这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形X=5Y(X、Y都不等于0),那么X与Y()A.成正比例B.成反比例C.不成比例500:1属于()比例尺。

【精】2020年苏教版六年级下册数学试题-比例和比例尺 (含答案)

【精】2020年苏教版六年级下册数学试题-比例和比例尺  (含答案)

《比例和比例尺的认识》单元测试卷一、填空(20分,每题2分)1.把3.6×1.5=1.8×3改写成比例是.2.根据,那么A和B成比例.3.一个比例中,两个内项分别是10和,其中一个外项是4.5,另一个外项是.4.线段比例尺表示图上1厘米的线段相当于实际距离千米,改写成数值比例尺是.5.一个比例的两个外项互为倒数,那么两个内项之积是.6.大小齿轮齿数的比是5:3,小齿轮有15个齿,大齿轮有个齿.7.如果2a=3b(a,b均不为0),那么a:b=:.8.一个三角形的底是20厘米,它的高与面积成比例.9.3、4、9、12可以组成比例.如果确定3是比例的第一项,那么这个比例是.10.一个零件长10毫米,画在图纸上长5厘米,这张图纸的比例尺是.二、判断题.(10分,每题2分)11.表示两个比相等的式子叫比例.12.比例尺是一种尺子..13.比的后项不能是0..14.圆的半径和面积成正比例..15.求比例中的未知项叫做解比例..三、选择题.(12分,每题2分)16.下列式子中,()是比例.A.56:7=2×4 B.3.6:2.4>40:30 C.17.6:x=y:8,x和y()A.成正比例B.成反比例C.不成比例18.如果a×0.2=b×0.75(a、b均不为0),那么下列比例中正确的是()A.a:b=0.2:0.75 B.a:0.2=b:0.75 C.a:b=0.75:0.219.能与:组成比例的是()A.:B.3:4 C.4:320.夏庄小学操场长108米,宽64米,画在练习本上,选()的比例尺比较合适.A.B.C.21.在比例尺是6:1的地图上,量得A到B的距离是1.2厘米,A到B的实际距离是()A.7.2厘米B.2厘米C.0.2厘米四、解答题(共1小题,满分10分)22.根据要求画出相应的图形相信你是最棒的.(1)将三角形按1:3缩小;(2)将长方形按2:1放大.五、解答题(共1小题,满分20分)14.4:x=18:549:(5+x)=14:2六、解决问题24.在一幅比例尺是1:5000000的地图上,量得甲、乙两城的距离是12厘米,甲、乙两城的实际距离是多少千米?25.我家里的台钟敲5下用去12秒,如果敲10下用去多少秒?(提示:台钟敲5下,中间的间隔时间只有4段)26.一间办公室,用面积是1.5平方米的方砖铺地需要40块,若改用面积是0.6平方米的方砖来铺,需要多少块?27.某工厂生产一批零件,计划每天生产200件,25天可以完成任务,实际每天超产25%,实际生产了多少天?28.在一幅地图上,甲、乙两地相距640千米,在图上只有32厘米,乙、丙两地在图上是12厘米,乙、丙两地实际相距多少千米?29.一块长方形地长300米,宽200米,把它画在比例尺是1:5000的图纸上,面积应该是多少?六年级下《比例和比例尺的认识》单元测试卷参考答案与试题解析一、填空(20分,每题2分)1.(2分)把3.6×1.5=1.8×3改写成比例是 3.6:1.8=3:1.5.【分析】逆用比例的基本性质(在比例里,两个外项的积等于两个内项的积)作答.【解答】解:因为3.6×1.5=1.8×3,所以3.6:1.8=3:1.5,故答案为:3.6:1.8=3:1.5.【点评】本题主要是灵活利用了比例的基本性质解决问题.2.(2分)根据,那么A和B成正比例.【分析】根据判断两种量成正比例还是成反比例的方法:关键是看这两种相关联的量中相对应的两个数的商一定还是积一定,如果商一定,就成正比例关系;如果积一定,就成反比例关系;进行解答即可.【解答】解:根据,则;A÷B=4(一定),那么A和B成正比例;故答案为:正.【点评】此题考查了判断两种量成正比例还是成反比例的方法.3.(2分)一个比例中,两个内项分别是10和,其中一个外项是4.5,另一个外项是1.【分析】依据比例的基本性质,先求出两内项之积,再用两内项之积除以已知的外项,即可求出另一个外项【解答】解:10×÷4.5,=8÷4.5,=1;答:另一个外项一定是1.故答案为:1.【点评】此题主要考查比例的基本性质,即两内项之积等于两外项之积.4.(2分)线段比例尺表示图上1厘米的线段相当于实际距离40千米,改写成数值比例尺是1:4000000.【分析】因为比例尺=图上距离:实际距离,根据题意代入数据可直接得出其数值比例尺.【解答】解:如图的比例尺表示图上1厘米的线段相当于实际距离40千米,因为40千米=4000000厘米,则1厘米:4000000厘米=1:4000000.故答案为:40,1:4000000.【点评】本题考查了比例尺的意义,注意单位要统一.5.(2分)一个比例的两个外项互为倒数,那么两个内项之积是1.【分析】由“一个比例的两个外项互为倒数”,根据比例的性质“两内项的积等于两外项的积”,可知两个内项的也互为倒数,互为倒数的两个数的乘积是1;据此解答.【解答】解:一个比例的两个外项互为倒数,根据比例的性质,可知两个内项也互为倒数,乘积是1;故答案为:1.【点评】此题考查比例性质的运用:在比例里,两内项的积等于两外项的积;也考查了倒数的意义及运用.6.(2分)大小齿轮齿数的比是5:3,小齿轮有15个齿,大齿轮有25个齿.【分析】根据“大小齿轮齿数的比是5:3,”把大齿轮的齿数看作5份,小齿轮的齿数看作3份,由此求出一份,进而求出大齿轮的齿数.【解答】解:15÷3×5,=5×5,=25(个),答:答齿轮有25个齿.故答案为:25.【点评】关键是把比转化为份数,用按比例分配的方法,求出一份,进而求出答案.7.(2分)如果2a=3b(a,b均不为0),那么a:b=3:2.【分析】根据比例的基本性质“两个外项的积等于两个内项的积”,可把等式为2a=3b,运用比例性质的逆运用,即可得出答案.【解答】解:因为2a=3b,a和2为外项,b和3为内项,所以a:b=3:2.故答案为:3,2.【点评】此题主要考查了比例的基本性质的逆运用,在改写时,要注意:相乘的两个数要做内项就都做内项,要做外项就都做外项.8.(2分)一个三角形的底是20厘米,它的高与面积成正比例.【分析】判断两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.【解答】解:因为三角形的面积÷高=×底(一定),是比值一定,所以这个三角形的面积与高成正比例.故答案为:正.【点评】此题属于辨识成正、反比例的量,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.9.(2分)3、4、9、12可以组成比例.如果确定3是比例的第一项,那么这个比例是3:4=9:12..【分析】因为3×12=4×9,所以可逆用比例的基本性质(在比例里,两个外项的积等于两个内项的积)作答.【解答】解:因为3×12=4×9,所以3:4=9:12,故答案为:3:4=9:12.【点评】关键是灵活利用比例的基本性质解决问题.10.(2分)一个零件长10毫米,画在图纸上长5厘米,这张图纸的比例尺是5:1.【分析】图上距离和实际距离已知,依据“比例尺=”即可求得这张图纸的比例尺.【解答】解:因为10毫米=1厘米,则5厘米:1厘米=5:1;答:这张图纸的比例尺是5:1.故答案为:5:1.【点评】此题主要考查比例尺的计算方法,解答时要注意单位的换算.二、判断题.(10分,每题2分)11.(2分)表示两个比相等的式子叫比例.√(判断对错)【分析】比例是表示两个比相等的式子.根据比例的概念直接判断.【解答】解:比例是表示两个比相等的式子,所以原题说法正确.故答案为:√.【点评】此题考查比例的意义:是表示两个比相等的式子.12.(2分)比例尺是一种尺子.×.【分析】依据比例尺的意义,即图上距离与实际距离的比即为比例尺,即可进行判断.【解答】解:因为比例尺是图上距离与实际距离的比,它是一个比,不是一种工具;故答案为:×.【点评】解答此题的主要依据是:比例尺的意义.13.(2分)比的后项不能是0.√.(判断对错)【分析】两个数相除又叫做两个数的比.比是一种数量关系,相同于除法、分数,但除法是一种运算,分数是一个数,这就是它们的区别.所以比的后项相当于除法中的除数,零不能作除数,所以比的后项也不能为0.【解答】解:根据比的意义,比的后项不能为0.故答案为:√.【点评】本题主要考查了比的意义.14.(2分)圆的半径和面积成正比例.×.(判断对错)【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:圆的面积÷半径=圆周率×半径(不一定),是比值不一定,圆的半径和面积不成正比例.故答案为:×.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.15.(2分)求比例中的未知项叫做解比例.正确.(判断对错)【分析】根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项;求比例中的未知项,叫做解比例,据此即可进行解答【解答】解:求比例中的未知项叫做解比例;故答案为:正确.【点评】此题主要考查解比例的意义.三、选择题.(12分,每题2分)16.(2分)下列式子中,()是比例.A.56:7=2×4 B.3.6:2.4>40:30C.【分析】表示两个比相等的式子叫做比例;根据比例的意义,直接进行判断得解.【解答】解::4=3:8是表示两个比相等的式子,所以是比例;故选:C.【点评】此题考查比例的辨识,只有两个比相等的式子才叫做比例.17.(2分)6:x=y:8,x和y()A.成正比例B.成反比例C.不成比例【分析】判断两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.【解答】解:因为6:x=y:8,所以xy=48(一定),x、y的乘积一定,所以x、y成反比例,故选:B.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.18.(2分)如果a×0.2=b×0.75(a、b均不为0),那么下列比例中正确的是()A.a:b=0.2:0.75 B.a:0.2=b:0.75C.a:b=0.75:0.2【分析】根据比例的基本性质:如果a是外项,那么0.2是外项;则b为内项,0.75为内项;进而得出答案;【解答】解:由a×0.2=b×0.75(a、b均不为0),可得:a:b=0.75:0.2;故选:C.【点评】解答此题应根据比例基本性质的逆运算进行解答.19.(2分)能与:组成比例的是()A.:B.3:4 C.4:3【分析】表示两个比相等的式子叫做比例,据此可先求出:的比值,再逐项求出每个比的比值,进而根据两个比的比值相等,就能组成比例,比值不相等,就不能组成比例.【解答】解::=÷=×4=A、:=÷=×3=,因为≠,所以不能组成比例;B、3:4=3÷4=,因为≠,所以不能组成比例;C、4:3=4÷3=,因为=,所以能组成比例;故选:C.【点评】解决此题也可以根据比例的性质“两外项的积等于两内项的积”,分别计算求出两内项的积和两外项的积等于能组成比例,不等于就不能组成比例.20.(2分)夏庄小学操场长108米,宽64米,画在练习本上,选()的比例尺比较合适.A.B.C.【分析】经过比较,选用A比例尺,画出的图上距离较大,练习本上画不开;选用C比例尺,画出的图上距离又过小,不易观察,先用B比例尺画出的图大小适宜.【解答】解:108米=10800厘米,64米=6400厘米,选用A比例尺:10800×=54(厘米),6400×=32(厘米);选用B比例尺:10800×=5.4(厘米),6400×=3.2(厘米);选用C比例尺:10800×=1.08(厘米),6400×=0.64(厘米);因此选用选用B比例尺比较合适;故选:B.【点评】本题是考查比例尺的应用.比例尺大,图上距离大,反之图上距离小,画图要选择合适的比例尺.21.(2分)在比例尺是6:1的地图上,量得A到B的距离是1.2厘米,A到B的实际距离是()A.7.2厘米B.2厘米C.0.2厘米【分析】要求A到B的实际距离是多少厘米,根据“图上距离÷比例尺=实际距离”,代入数值,计算即可.【解答】解:1.2÷=0.2(厘米);答:A到B的实际距离是0.2厘米.故选:C.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.注:本题的比例尺是一个放大的比例尺.四、解答题(共1小题,满分10分)22.(10分)根据要求画出相应的图形相信你是最棒的.(1)将三角形按1:3缩小;(2)将长方形按2:1放大.【分析】(1)将三角形将三角形按1:3缩小,则其底边和高缩小3倍,所以缩小后的三角形的底是2,高是1,于由此即可画出缩小后的三角形;(2)将长方形按2:1扩大,则其长和宽都扩大2倍,所以扩大后的长方形的长和宽是6和2,由此即可画出扩大后的长方形.【解答】解:如图所示,即为所要求的作图:【点评】解决此题的关键是求出三角形和长方形扩大或缩小的底和高各是多少,再进行作图即可.五、解答题(共1小题,满分20分)23.(20分)14.4:x=18:549:(5+x)=14:2.【分析】先根据比例的性质,把原式转化为乘积的形式,再根据等式的性质,解方程即可求解.【解答】解:(1)14.4:x=18:5,18x=14.4×5,18x=72,(2),0.4x=0.5×0.6,0.4x=0.3,x=0.75;(3),9x=9.6×0.6,9x=5.76,x=0.64;(4),0.7x=35×21,0.7x=735,x=1050;(5),0.6x=0.8×0.75,0.6x=0.6,x=1;(6)49:(5+x)=14:2,14(5+x)=49×2,14(5+x)=98,5+x=7,x=2;(7).0.8x=1.6×12,0.8x=19.2,(8),x=×,x=,x=.【点评】本题考查了学生利用比例的基本性质和等式的性质解方程的能力,注意等号要对齐.六、解决问题24.(4分)在一幅比例尺是1:5000000的地图上,量得甲、乙两城的距离是12厘米,甲、乙两城的实际距离是多少千米?【分析】图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”,代入数据即可求解.【解答】解:12÷=60000000(厘米)60000000厘米=600千米答:甲、乙两城的实际距离是600千米.【点评】此题主要考查图上距离实际距离和比例尺的关系,解答时要注意单位的换算.25.(4分)我家里的台钟敲5下用去12秒,如果敲10下用去多少秒?(提示:台钟敲5下,中间的间隔时间只有4段)【分析】因为台钟敲5下用去12秒,也就是说4个间隔敲了12秒,由此求出一个间隔所用的时间;而台钟敲10下,中间的间隔数是10﹣1个,用间隔数(10﹣1)乘一个间隔所用的时间就是敲10下用去的时间.【解答】解:12÷(5﹣1)×(10﹣1),=12÷4×9,=3×9,=27(秒);答:敲10下用去27秒.【点评】本题用到的知识点是:间隔数=台钟敲的下数﹣1,间隔数×一个间隔所用的时间=用去的时间.26.(5分)一间办公室,用面积是1.5平方米的方砖铺地需要40块,若改用面积是0.6平方米的方砖来铺,需要多少块?【分析】由“一间办公室,用面积是1.5平方米的方砖铺地需要40块”即可求出这间教室的面积,用教室的面积除以每块瓷砖的面积,就是需要的瓷砖的块数.【解答】解:1.5×40÷0.6,=60÷0.6,=100(块);答:若改用面积是0.6平方米的方砖来铺,需要100块.【点评】解答此题的关键是先求出教室的面积,问题即可得解.27.(5分)某工厂生产一批零件,计划每天生产200件,25天可以完成任务,实际每天超产25%,实际生产了多少天?【分析】要求实际生产了多少天,必须先求出实际每天的工作效率和工程量(这批零件的个数),已知计划每天生产200件,25天可以完成任务,实际每天超产25%,200×25=5000件,再把计划每天生产的件数看作单位“1”,实际每天生产的占计划每天生产的(1+25%),再根据工作量÷工作效率=工作时间列式解答.【解答】解:200×25÷[200×(1+25%)],=5000÷[200×1.25],=5000÷250,=20(天).答:实际生产了20天.【点评】此题解答关键是把计划每天生产的件数看作单位“1”,根据求比一个数多百分之几的数是多少,用乘法求出实际每天的工作效率,再根据工作量、工作效率、工作时间三者之间的关系解决问题.28.(5分)在一幅地图上,甲、乙两地相距640千米,在图上只有32厘米,乙、丙两地在图上是12厘米,乙、丙两地实际相距多少千米?【分析】因为图上32厘米代表实际距离640千米,所以图上1厘米代表实际距离:640÷32=20千米,求乙、丙两地实际相距多少千米,就是求12个20千米是多少,根据整数乘法的意义,解答即可.【解答】解:640÷32×12,=20×12,=240(千米);答:乙、丙两地实际相距240千米.【点评】解答此题还可以先求出这幅图的比例尺,继而根据“图上距离÷比例尺=实际距离”解答即可.29.(5分)一块长方形地长300米,宽200米,把它画在比例尺是1:5000的图纸上,面积应该是多少?【分析】实际距离和比例尺已知,依据“图上距离=实际距离×比例尺”即可求出长和宽的图上距离,进而利用长方形的面积S=ab,即可求出图上面积.【解答】解:300米=30000厘米,200米=20000厘米,30000×=6(厘米),20000×=4(厘米),6×4=24(平方厘米);答:图上的面积是24平方厘米.【点评】此题主要考查长方形的面积的计算方法以及图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.。

2020-2021学年苏科版八年级下数学反比例函数的图像与性质练习含解析

2020-2021学年苏科版八年级下数学反比例函数的图像与性质练习含解析

反比例函数的图像与性质同步练习一.选择题1.若双曲线y=图象的一个分支位于第四象限,则k的取值范围是()A.k<﹣1B.k<1C.k<0D.k≤02.如图,矩形ABCD的中心位于直角坐标系的坐标原点O,其面积为8,反比例函数y=的图象经过点D,则m的值为()A.2B.4C.6D.83.点(x1,y1)、(x2,y2)、(x3,y3)在反比例y=﹣上,且x1<0<x2<x3,则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y14.反比例函数y=的图象经过点(2,1),则下列说法错误的是()A.k=2B.函数图象分布在第一、三象限C.y随x的增大而减小D.当x>0时,y随x的增大而减小5.函数y=和y=﹣kx+k(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.6.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=(k≠0)的图象上,且x1<x2<x3()A.若y3<y1<y2,则x1•x2•x3<0B.若y1<y3<y2,则x1•x2•x3<0C.若y2<y3<y1,则x1•x2•x3>0D.若y2<y1<y3,则x1•x2•x3<07.如图,AB⊥OA于点A,AB交反比例函数y=(x<0)的图象于点C,且AC:BC=1:3,若S△AOB=4,则k=()A.4B.﹣4C.2D.﹣28.如图,在△AOB中,S△AOB=2,AB∥x轴,点A在反比例函数y=的图象上,若点B 在反比例函数y=的图象上,则k的值为()A.﹣B.C.3D.﹣39.如图,直线y=﹣x与双曲线y=(k<0,x<0)交于点A,将直线y=﹣x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=2BC,则k的值为()A.B.﹣7C.D.10.如图,在等腰△AOB中,AO=AB,顶点A为反比例函数(其中x>0)图象上的一点,点B在x轴正半轴上,过点B作BC⊥OB,交反比例函数的图象于点C,连接OC交AB于点D,若,则△BCD的面积为()A.B.6C.D.5二.填空题11.如果反比例函数y=(k为正整数),在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐减小,那么正整数k的值为.12.如图,正方形ABCD的顶点C,D在反比例函数y=(x>0)的图象上,顶点A,B 分别在x轴,y轴的正半轴上,则点C的坐标为.13.如图,点A,B在反比例函数y=(k>0)的图象上,线段AB分别交x轴、y轴于点C,D,AE⊥x轴于点E,BF⊥x轴于点F,若BF=2AE,△ACE的面积是1,则k的值是.14.如图,在Rt△OAB中,∠OAB=90°,∠B=45°,点A,B恰巧都落在反比例函数y =的图象上,若点A的横坐标为1,则k的值为.15.如图,已知反比例函数y1=,y2=在第一象限的图象,过y2上任意一点P作x轴的垂线交y1于点A,交x轴于点B,过点P作y轴的垂线交y1于点C,交y轴于点D,连接AC,BD,则=.三.解答题16.如图,一次函数的图象与反比例函数的图象相交于点A(2,1),B(﹣1,n)两点.(1)求n的值;(2)连接OA和OB,则△OAB的面积为.17.如图,在平面直角坐标系xOy中,已知矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),反比例函数y=(x>0)的图象与AB,BC交于点M,N,直线MN与坐标轴交于D(0,3)和E(6,0)两点.(1)求直线MN的函数表达式和k的值;(2)求△BMN的面积.18.如图,一次函数y1=k1x+b的图象与反比例函数y2=的图象相交于A,B两点,其中点A的坐标为(1,2),点B的纵坐标为﹣1.(1)求这两个函数的表达式;(2)点C为反比例函数图象上的一点,且点C在点A的上方,当S△CAB=S△AOB时,求点C的坐标.参考答案一.选择题1.解:∵双曲线y=的图象的一支位于第四象限,∴k+1<0,解得k<﹣1.故选:A.2.解:∵矩形的中心为直角坐标系的原点O,∴矩形OCAD的面积是8,设D(x,y),则4xy=8,xy=2,反比例函数的解析式为y=,∴m=2.故选:A.3.解:∵k<0,∴函数图象在二,四象限,由x1<0<x2<x3可知,横坐标为x1的点在第二象限,横坐标为x2,x3的点在第四象限.∵第四象限内点的纵坐标总小于第二象限内点的纵坐标,∴y1最大,在第二象限内,y随x的增大而增大,∴y2<y3<y1.故选:B.4.解:∵反比例函数y=的图象经过点(2,1),∴k=2×1=2,故说法A正确;∴该函数的图象在第一、三象限,故选项B正确;当x>0时,y随x的增大而减小,故选项C错误、选项D正确;故选:C.5.解:当k>0时,反比例函数的图象位于第一、三象限,一次函数的图象交y轴于正半轴,y随着x的增大而减小,B选项符合,A、C选项错误;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于负半轴,y 随着x的增大而增大,D错误;故选:B.6.解:A、∵y3<y1<y2,如果k>0,y3最小,则有y1>y2,不符合题意,如果k<0,则有x1<0,x2<0,x3>0,则x1•x2•x3>0,本选项不正确,B、由题意当y1<y3<y2,函数图象如图所示,∴x1<0,x2>0.x3>0,∴x1•x2•x3<0,本选项正确.C、∵y2<y3<y1,如果k>0,则x1<0,x2<0,x3<0,则x1•x2•x3<0,如果k<0,则x1<0,x2>0,x3>0,则x1•x2•x3<0,本选项不正确.D、∵y2<y1<y3,如果k>0,则x1<0,x2<0,x3>0,则x1•x2•x3>0,如果k<0,不可能y2最小,故本选项错误,不符合题意;故选:B.7.解:连接OC,如图,∵AB⊥OA,AC:BC=1:3,∴AC:AB=1:4,∴S△AOC=S△AOB=1,而S△AOC=|k|=1,又∵k<0,∴k=﹣2.故选:D.8.解:设AB与y轴交于C,∵A在反比例函数y=的图象上,AB∥x轴,∴OC•AC=1,∴S△AOC=OC•AC=,∵S△AOB=2,∴S△BOC=,∴BC•OC=,∴BC•OC=3,∵点B在反比例函数y=的图象上且B在第二象限,∴k=﹣3,故选:D.9.解:分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,CF⊥BE于F,设A(﹣4a,a)(a >0),∵OA=2BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD=2a,∵点B在直线y=﹣x+2上,∴B(﹣2a,a+2),∵点A、B在双曲线y=上,∴﹣4a•a=﹣2a•(a+2),解得a=,∴A点的坐标为(﹣,),∴k=﹣×=﹣.故选:A.10.解:过点A作AH⊥x轴于点H,AH交OC于点E,∵OA=AB,AH⊥OB,∴2OH=2BH=OB=8,OH=BH=4,∵OA=4=,∴AH=12,∵A(4,12),∴k=4×12=48,∴,∵OB=6,∴C(8,6),∵AH⊥x轴,BC⊥x轴,∴AH∥BC,由平行线分线段成比例得:,OE=CE,,∴EH=3,AE=AH﹣EH=9,,设CD=2x,则DE=3x,CE=OE=5x,OC=10x.∴,所以三角形BCD的面积.故选:C.二.填空题11.解:∵反比例函数y=(k为正整数),在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐减小,∴2﹣k>0,解得k<2,而k为正整数,∴k=1,故答案为:1.12.解:如图,过点C作CE⊥y轴于E,过点D做DF⊥x轴于F,设C(a,),则CE=a,OE=,∵四边形ABCD为正方形,∴BC=AB=AD,∵∠BEC=∠AOB=∠AFD=90°,∴∠EBC+∠OBA=90°,∠ECB+∠EBC=90°,∴∠ECB=∠OBA,同理可得:∠DAF=∠OBA,∴Rt△BEC≌Rt△AOB≌Rt△DF A(AAS),∴OB=EC=AF=a,∴OA=BE=FD=﹣a,∴OF=a+﹣a=,∴点D的坐标为(,﹣a),把点D的坐标代入y=(x>0),得到(﹣a)=2,解得a=﹣1(舍),或a=1,∴点C的坐标为(1,2),故答案为:(1,2).13.解:连接OA、OB,∵AE⊥x轴于点E,BF⊥x轴于点F,∠ACE=∠BCF,∴△ACE∽△BCF,∴,∴S△BCF=4.设△AOC的面积是a,则△BOC的面积是2a,根据反比例函数中k的几何意义可得:S△AOE=S△BOF,∴4﹣2a=1+a,解得a=1,∴△AOE的面积是1+1=2,所以k=4.故答案为:4.14.解:过点B作BM⊥y轴于点M,过点A作AN⊥x轴于点N,并延长MB,NA交于一点P,∴四边形MONP是矩形,由点A的横坐标为1,则A点坐标为:(1,k),在Rt△OAB中,∠OAB=90°,∠B=45°,∴△OAB是等腰直角三角形,∴AB=AO,∵∠OAB=90°,∴∠BAP+∠OAN=90°,∵∠AON+∠OAN=90°,∴∠BAP=∠AON,在△AON和△BAP中,,∴△AON≌△BAP(AAS),∴AP=NO=1,PB=AN=k,∴MB=1﹣k,∴B(1﹣k,1+k),∵B在反比例函数y=的图象上,∴k=(1﹣k)(1+k),即k2﹣k﹣1=0,解得:k1=,k2=(不合题意舍去).故答案为.15.解:设点P的坐标为(m,),则C(,),D(0,),A(m,),B(m,0),∴PC=m﹣=m,PD=m,P A=﹣=,PB=,∴=,=,∴==,又∵∠P=∠P,∴△P AC∽△PBD,∴=()2=()2=,故答案为:.三.解答题16.解:(1)设反比例函数的解析式为.把A(2,1)代入中,得.∴k=2.∴,把B(﹣1,n)代入中,得.(2)设一次函数的解析式是y=ax+b,把A(2,1),B(﹣1,﹣2)代入得:,解得:,∴y=x﹣1,设AB交x轴于C,当y=0时,0=x﹣1,∴x=1,∴C(1,0),∴OC=1,∴S△AOB=S△AOC+S△BOC=×1×1+×1×2=1.5,故答案为:1.5.17.解:(1)设直线MN的解析式是y=kx+b,把D、E的坐标代入得:,解得:,∴直线MN的解析式是:y=﹣x+3,∵矩形AOCB,B(4,2),∴把y=2代入y=﹣x+3得:x=2,∴M的坐标是(2,2).∵反比例函数y=(x>0)经过点M,∴k=2×2=4,即反比例函数的解析式是y=;(2)∵B(4,2),∴把x=4代入y=﹣x+3得:y=1,∴N的坐标是(4,1),∴BN=2﹣1=1,∵M(2,2),∴BM=4﹣2=2,∴S△BMN==1.18.解:(1)把点A(1,2)代入反比例函数y2=得,k2=1×2=2,∴反比例函数的解析式为y2=,将y=﹣1代入y2=得,﹣1=,交点x=﹣2,∴B(﹣2,﹣1),将A、B的坐标代入y1=k1x+b得,解得,∴一次函数的解析式为y1=x+1;(2)∵y1=x+1,∴直线与y轴的交点为(0,1),∵点C为反比例函数图象上的一点,且点C在点A的上方,S△CAB=S△AOB,∴点C就是直线y=x+1向上平移1个单位后与反比例函数的交点,将直线y=x+1向上平移1个单位后得到y=x+2,解得或,∴C点的坐标为(﹣1+,1+).。

苏教版六年级下册《第5章_正比例与反比例》小学数学-有答案-单元测试卷

苏教版六年级下册《第5章_正比例与反比例》小学数学-有答案-单元测试卷

苏教版六年级下册《第5章正比例与反比例》小学数学-有答案-单元测试卷一、填空题.(25分)1. 两种________的量,一种量变化,另一种量________,如果这两种量中________的两个数的________一定,这两种量就叫做成正比例的量,它们的关系叫做________,关系式是________.2. 比例尺=________:________,比例尺实际上是一个________.3. 平行四边形面积一定,底与高成________比例。

4. 长方形的长一定,它的宽与面积成________比例。

5. 在路程一定时,速度和时间成________比例。

6. 在一张图纸上,用30厘米表示实际距离900米,这张图的比例尺是________.7. 比例尺一定,图上距离与实际距离成________比例。

8. 在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离________千米。

也就是图上距离是实际距离的________,实际距离是图上距离的________倍。

9. 下表中x和y两个量成反比例,请把表格填写完整10. 购买练习本的总价=练习本本数×练习本的单价。

当________一定时,________和________成________比例。

11. a÷b=c,当c一定时a和b________;当a一定时b和c________A.成正比例B.成反比例C.不成比例。

二、判断题(在括号内打×或√)(20分)正方形的面积和边长成正比例。

________.(判断对错)圆的面积和半径成正比例。

________.(判断对错)比例尺10:1表示图上距离是实际距离的10倍。

________.(判断对错)图上距离和实际距离成正比例。

________.分数的大小一定,它的分子和分母成正比例。

________(判断对错)订阅《小学生数学报》的份数与应付的报款数成正比例。

________.(判断对错)工作总量一定,已完成的量和未完成的量成反比例。

2024-2025北师大版九年级(上)第六单元 反比例函数 单元测试卷(含答案)

2024-2025北师大版九年级(上)第六单元 反比例函数 单元测试卷(含答案)

第六单元反比例函数测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.下列函数中,y 是x 的反比例函数的是 ( )A. x(y-1)=1B.y =1x +1 C.y =1x2 D.y =13x 2.已知甲、乙两地相距s( km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度 v( km/h)的函数关系图象大致是 ( )3.已知反比例函数 y =kx(k ≠0)的图象经过点(2,3),若点(1,n)在反比例函数的图象上,则n 等于( )A.(-2,3)B.(-2,-3)C.(2,3)D.(3,2)5.已知反比例函数 y =−3x,则下列描述不正确的是 ( )A.图象位于第二、第四象限B.图象必经过点(-3,1)C.图象不可能与坐标轴相交D. y 随x 的增大而增大6.如果等腰三角形的面积为10,底边长为x ,底边上的高y ,则y 与x 的函数关系式为( )A.y =10xB.y =5xC.y =20xD.y =x 207.如图,在同一平面直角坐标系中,直线y =k ₁x (k ₁≠0)与双曲线y =k 2x(k 2≠0)相交于A ,B 两点,已知点 A 的坐标为(1,2),则点B 的坐标为 ( )A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)8.如图所示,A ,B 是函数 y =1x的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC平行于x 轴,△ABC 的面积为S ,则 ( )A. S=1 B. S=2 C.1<S<2 D. S>29.在同一直角坐标系中,函数y= kx-k 与 y =kx (k ≠0)的图象大致是 ( )10.如图,在第一象限内,A 是反比例函数y= k1x (k 1⟩0)图象上的任意一点,AB 平行于 y 轴交反比例函数 y =k 2x(k 2<0)的图象于点 B ,作以 AB 为边的平行四边形 ABCD,其顶点 C,D在 y 轴上,若 S ABCD =7,则这两个反比例函数可能是 ( )A.y =2x 和y =−3x B.y =3x 和y =−4x C.y =4x 和y =−5x D.y =5x和y =−6x 二、填空题(本大题共5小题,每小题3分,共15分)11.反比例函数 y =(m +2)x m 2−10的图象分布在第二、四象限内,则m 的值为 .12.若A(-2,y ₁),B(--1,y ₂),C(1,y ₃)三点都在函数 y =kx(k<0)的图象上,则 y ₁,y ₂,y ₃的大小关系是 (用“>”“<”或“=”连接)。

六年级数学下册 《第四章 正比例与反比例》单元测试题(有答案)北师大版

六年级数学下册   《第四章 正比例与反比例》单元测试题(有答案)北师大版

2020-2021学年北师大版小学六年级数学下册《第四章正比例与反比例》单元测试题一.选择题(共10小题)1.a与b成反比例关系的条件是()A.=c(一定)B.a×c=b(一定)C.a×b=c(一定)2.表示x和y成正比例关系的式子是()A.x+y=10B.x﹣y=10C.y=10x3.关于莫比乌斯带,以下叙述错误的是()A.普通纸能做成莫比乌斯带B.莫比乌斯带在生活中有很多应用C.莫比乌斯带只有一个面D.莫比乌斯带是用物理学家的姓名命名的4.如果科技书和文艺书本数的比是3:4,那么下面的说法正确的是()A.文艺书比科技书多B.科技书比文艺书少C.科技书占全部书的D.文艺书比科技书多全部书的5.PM2.5颗粒是导致雾霾天气的“罪魁祸首之一”,PM2.5颗粒的最大直径是2.5微米,人的头发直径一般为50微米。

PM2.5颗粒的最大直径与人的头发一般直径的最简整数比是()A.2.5:50B.25:500C.1:200D.1:206.下面图中表示淘气爸爸在高速路上某段路程匀速行驶的是()A.B.C.D.7.在①x+y=12,②y=2x,③=y,④25%:y=x:40中,表示x和y成反比例的式子有()个.A.1B.2C.3D.48.一袋纯牛奶1.50元,购买纯牛奶的袋数和总钱数()A.成正比例B.成反比例C.不成比例9.两个相关联的量x、y,如果=,那么x和y()A.成正比例B.成反比例C.不成比例10.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例二.填空题(共8小题)11.速度一定,路程和时间成比例;圆的周长和直径成比例.12.在ab=c(a、b、c均不为0)中,当b一定时,a和c成比例;当c一定时,a 和b成比例.13.把100g糖放入4kg水中,糖与水的质量比是,糖和糖水的质量比是。

14.莫比乌斯带是数学家莫比乌斯在年发现的,它在生活中和生产中都有应用.15.如图是一张按一定比例尺绘制的平面图,图中的A点(小明家)到B点(学校)的实际距离是500米,C点是公园.先测量再填空,这幅图的比例尺是,学校到公园的实际距离是米.(测量时取整厘米数)16.A、B、C三种量的关系是:A=,如果C一定,那么A和B成比例.17.下面各题的两种量中,成正比例的是,成反比例的是.A.圆的周长和它的直径B.花200元钱买练习册,买的册数和单价C.圆柱的底面积和它的高D.看200页的一本故事书,已看的页数与和剩下的页数18.周六下午,雯雯去看电影。

2021北师大版数学六年级下册第四单元正比例与反比例测试题及答案

2021北师大版数学六年级下册第四单元正比例与反比例测试题及答案

北师大版六年级数学下册第四单元测试卷一、判断题(共5题;共10分)1.在100米赛跑中,所用的时间与速度成反比例。

()2.x 3= 4y(x和y均不为0),x和y成正比例关系。

()3.全班学生的总人数一定,出勤率和出勤人数成反比例.()4.三角形的面积一定,底和高成反比例。

()5.如果ab+5=17,则a与b成反比例。

()二、填空题(共10题;共25分)6.右图表示一辆汽车在公路上行驶-的时间与路程的关系,这辆汽车行驶的时间与路程成________ 比例。

照这样计算,5.5小时行驶________千米。

7.三角形的面积一定,它的底和高成________比例;圆的周长和半径成________比例。

8.如果y=5x,那么x和y成________比例;如果x:5=6:y,那么x与y成________比例。

9.汽车行驶总路程一定,所用时间与速度成________比例。

如果汽车行驶的速度一定,所用时间与总路程成________比例。

10.如图是某造纸厂今年5月上旬的生产情况统计图:这个造纸厂4天的生产量是________吨;生产640吨纸需要________天;这家造纸厂的生产量与时间成________比例.11.在下表中,如果x和y成正比例,那么空格处应填________;如果x和y成反比例,那么空格处应填________x 6y 12 2412.若5:x=3:y,那么x和y成________比例。

13.总价÷数量=单价(一定)________和________是两种相关联的量,________变化,________也随着变化。

而总价和数量相对应的比值一定,也就是________一定,我们说总价和数量成________比例。

14.如果号23a= 12b,那么a:b=________:________,a和b成________比例关系。

15.同一时间、同一地点测得3棵树的树高及其影长如下表,表中的x=________,y=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021比例和反比例单元测试卷及答案
一、比例和反比例
1.一辆货车从甲地去相距315千米的乙地送货。

已知前3时行了135千米,如果用同样的速度行完剩下的路程,还要行几时?(用比例解)
【答案】解:设还要行x时。

=
x =4
答:还要行4时。

【解析】【分析】因为速度相同即一定,故路程与时间成正比例,所以,前3小时行的路程:3=剩下的路程:需要的时间,设所需时间为x小时,则可以用这个等量关系列出比例式。

2.下表中x与y两种量成反比例,请把表格填写完整。

X33060
y40.312
X33040601
y40.40.30.212
应的两个数的积一定,这两种量叫做成反比例的量,它们的关系叫做反比例关系,据此先求出x与y的积,然后用积÷一个量=另一个量,据此解答。

3.某工程队要铺设一条公路,前20天已铺设了2.8千米,照这样计算,剩下的4.2千米,还要多少天才能铺完?(用比例解)
【答案】解:设还要x天才能铺完。

2.8∶20=4.2∶x
x=30
答:还要30天才能铺完。

【解析】【分析】照这样计算的意思就是每天铺的长度不变,铺的长度与天数成正比例,先设出未知数,根据每天铺的长度不变列出比例解答即可。

4.表中x和y是两个成比例的量,观察表格并填完整。

X36181210
y51020
X361812109
y510151820
空位中x和y的值。

5.有6箱蜜蜂一年可以酿蜂蜜450千克.小明家养了这样的蜜蜂18箱,一年可以酿蜂蜜多少千克?(用两种方法计算)
【答案】解:方法一:450÷6×18
=75×18
=1350(千克)
方法二:设一年可以酿蜂蜜x千克,
6x=450×18
x=
x=1350
答:一年可以酿蜂蜜1350千克。

【解析】【分析】先求出平均每箱一年酿蜂蜜多少千克,再求18箱一年可以酿多少千克。

也可以设一年可以酿蜂蜜x千克,再用方程解答即可。

6.一个修路队,原计划每天修400米,15天可以修完.结果12天就完成任务,实际每天修多少米?(用比例解)
【答案】解:实际每天修x米,
12x=400×15
12x=6000
x=500
答:实际每天修500米。

【解析】【分析】此题主要考查了用比例解决问题,根据题意可知,这条路的全长是不变的,设实际每天修x米,用实际每天修的米数×实际修的天数=计划每天修的米数×计划修的天数,据此列比例解答.
7.妈妈有一辆自行车,A和B是自行车的两个齿轮(如图),骑车时用脚驱动A带动B,从而使自行车前进。

(1)这辆自行车,齿轮A有50个齿,齿轮B有20个齿。

当齿轮A转动1圈时,齿轮B 转动多少圈?
(2)这辆自行车的车轮直径约是60cm,妈妈每天上班的路程大约是3000m。

妈妈骑车上班大约要置多少圈(即齿轮A转动的圈数)?(计算时π取3,最后结果保留整数)
【答案】(1)解:50×1÷20=2.5(圈)
答:齿轮B转动2.5圈。

(2)解:60cm=0.6m
3000÷(0.6×3×2.5)≈667(圈)
答:妈妈骑车上班大约要置667圈。

【解析】【分析】(1)根据题意可知,用齿轮A的齿数×转动的圈数÷齿轮B的齿数=齿轮B转动的圈数,据此列式解答;
(2)根据题意可知,先求出自行车齿轮B每圈走过的路程,用周长公式:C=πd,然后根据齿轮A转1圈,齿轮B转2.5圈,可以求出齿轮A每圈走过的路程,用齿轮B每圈走过的路程×齿轮B转动的圈数=齿轮A每圈走过的路程,最后用上班的总路程÷齿轮A每圈走过的路程=齿轮A转动的圈数,据此列式解答,结果保留整数.
8.一幅地图上,用3cm的线段表示实际距离900km。

一条长480km的高速公路,在这幅地图上是多少厘米?(用比例解)
【答案】解:设该条公路在这幅地图上是x厘米.
900km=90000000cm,480km=48000000cm,
90000000x=3×48000000
x=1.6
答:该条公路在这幅地图上是1.6厘米.
【解析】【分析】设这条公路在这幅图上是x厘米,根据图上距离与实际距离的比不变列出比例,解比例求出图上距离即可.
9.表中x和y两个量成反比例关系,请把表填写完整.
x2 2.5________
y5________40.1
【答案】 100;50
【解析】【解答】解:2×5=10;10÷0.1=100;10÷=50。

故答案为:100;50。

【分析】因为两个量乘反比例,因此先计算出相对应的两个数的乘积,然后用乘积除以已知的量即可求出对应的未知的量。

10.在一次科学实验中,小伟同学记录了一壶水加热过程中的水温变化情况,并把它制成了统计图。

①未加热时,水温是________摄氏度。

②烧开之后水达到100摄氏度用了________分钟。

③根据上图中整个加热过程的水温变化情况,水温与时间________比例关系。

(选择正确的答案填写:成正,成反,不成)
④如果继续加热到第12分钟水温是________摄氏度。

【答案】10;9;不成;100
【解析】【解答】观察统计图可得,
①未加热时,水温是10摄氏度。

②烧开之后水达到100摄氏度用了9分钟。

③根据上图中整个加热过程的水温变化情况,水温与时间不成比例关系。

④如果继续加热到第12分钟水温是100摄氏度。

故答案为:①10;②9;③不成;④100.
【分析】①观察折线统计图可知,当时间为0时,水温是10摄氏度;
②观察折线统计图可知,在第9分钟时,水沸腾了,到达100摄氏度;
③观察加热过程中的水温变化可知,水温与时间不成比例关系;
④水沸腾后,继续加热,温度不再上升,据此解答.
11.如果,那么和b成________比例;如果,那么和m成________比例。

【答案】正;反
【解析】【解答】解:a和b的比值一定,a和b成正比例;
因为,所以am=84,乘积一定,a和m成反比例。

故答案为:正;反。

【分析】根据数量关系判断两个相关联的量的比值一定还是乘积一定,如果比值一定就成正比例,如果乘积一定就成反比例。

12.圆锥的体积一定,它的底面积和高成________比例关系;圆锥的底面积一定,它的体积和高成________比例关系。

【答案】反;正
【解析】【解答】解:圆锥的底面积×高=体积×3(一定),它的底面积和高成反比例关系;
圆锥的体积÷高=底面积×3(一定),它的体积和高成正比例关系。

故答案为:反;正。

【分析】根据圆锥的体积公式判断出底面积和高的关系、体积和高的关系,如果二则的比值一定就成正比例,如果乘积一定就成反比例,否则不成比例。

13.比例尺一定,图上距离和实际距离()。

A. 正比例
B. 反比例
C. 不成比例
【答案】 A
【解析】【解答】解:图上距离:实际距离=比例尺(一定),图上距离与实际距离成正比例。

故答案为:A。

【分析】根据比例尺的意义判断图上距离与实际距离的比值一定还是乘积一定,如果比值一定就成正比例,如果乘积一定就成反比例,否则不成比例。

14.下列两种相关联的量,成比例的是()
A. 和是10的两个加数
B. 一个人的年龄和体重
C. 订《学习报》的份数与总钱数
D. 长方形的宽一定,周长与长
【答案】 C
【解析】【解答】解:A、和是10的两个加数,这两个数不成比例;
B、一个人的年龄和体重不成比例;
C、总钱数÷份数=每份的钱数(一定),份数与总钱数成正比例;
D、周长与长的比值和乘积都不一定,不成比例。

故答案为:C。

【分析】先判断相关联的两个量的比值一定还是乘积一定,如果比值一定就成正比例,如果乘积一定就成反比例,否则不成比例。

15.把一个圆柱的侧面展开,刚好可以得到一个正方形,这个圆柱的底面直径和高的比是()。

A. 1:1
B. 1:π
C. 1:d
D. 3:4
【答案】 B
【解析】【解答】解:设底面直径是d,则底面直径与高的比是:d:πd=1:π。

故答案为:B。

【分析】侧面展开后是一个正方形,说明圆柱的底面周长和高相等,设出底面直径,表示出高,写出底面直径和高的最简比即可。

相关文档
最新文档