真空感应炉熔炼工艺

合集下载

真空感应炉设备及冶炼工艺探讨

真空感应炉设备及冶炼工艺探讨

技术改造真空感应炉设备及冶炼工艺探讨龚玉哲 程兴达 关腾飞(凯美龙精密铜板带(河南)有限公司,河南 新乡 453000)摘 要:本次研究当中主要介绍了真空感应炉设备的主要构成以及开展冶炼时涉及到的一些具体的工艺程序。

希望可以为具体的冶炼工作开展和相关技术应用奠定理论方面的基础。

关键词:真空感应炉;设备;冶炼工艺在真空冶炼当中,所需要的必要设备之一就是真空冶炼炉。

了解真空冶炼炉设备的基本构成和涉及到的冶炼工艺,可以帮助我们在实际冶炼当中找到更优的冶炼方法,最大限度提高冶炼效率。

1.真空感应炉设备主要构成不管是无削成形还是有削成形,哪一种冶炼产品工艺都会出现真空烧结相关问题。

所谓烧结,指的就是需要把希望烧制成的坯块烧成热锻时所需要使用到的预成型件。

而且还必须要确保所得到的延性结构、可锻性都比较好。

这样才可以减少在热锻当中制品出现不必要的缺陷。

真空冶炼炉是冶炼高温材料、精密合金、电磁和高温材料的主要设备[1]。

可以分为半连续和间断式两种类型。

若容量低于150kg,一般会选择间断式;若容量处于150kg到300kg之间,这两种炉子类型都会使用;超过500kg的都选择使用半连续式。

在国外会经常使用到一些5吨到7吨左右的大型真空冶炼炉。

国内常用的还是一些规模比较小的真空感应炉,现在随着各项技术的不断发展也正在积极朝着大型方向发展。

但仍然面临着一个关键问题,即怎样获得真空。

真空感应炉当中所设定的温度大约为2000度。

此种温度下想要达到10Torr甚至更高的空间度都是存在着较大困难的。

而用户在实际生产活动开展当中是很希望能够得到更高的真空度。

真空感应炉包含炉体、真空泵系统、电源等几种关键的部分,炉体部分主要是完成冶炼的空间[2]。

主体部分有翻炉机构、取样装置、加料装置、坩埚、真空壳室体等。

真空系统则包含有真空阀、真空泵等,主要是在冶炼当中提供必须要的真空条件。

在处于相对封闭的真空室当中,坩埚密封在其中,其热源主要来自于电磁感应所产生的涡流电源。

真空感应炉冶炼原理及工艺

真空感应炉冶炼原理及工艺

2.3 罗茨泵
罗茨真空泵(简称罗茨泵)是一种旋转式变容真空泵。根据罗茨真空泵工作范围的 不同,又分为直排大气的低真空罗茨泵、中真空罗茨泵(又称机械增压泵)和高真空多 级罗茨泵。
图 5 罗茨真空泵结构示意图
4
罗茨泵的结构如图 5 所示。在泵腔内,有二个“8”字形的转子相互垂直地安装在一 对平行轴上,由传动比为 1 的一对齿轮带动作彼此反向的同步旋转运动。在转子之间, 转子与泵壳内壁之间,保持有一定的间隙,可以实现高转速运行。由于罗茨泵是一种无 内压缩的真空泵,通常压缩比很低,故高、中真空泵需要前级泵。罗茨泵的极限真空除 取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。为了提高泵的极限真空 度,可将罗茨泵串联使用。 实际设备中往往用多个泵的串联来组成真空泵组,获得真空室中符合要求的真空 度。
3.1 感应加热原理
感应熔炼是除电弧炉以外较重要的一种电炉熔炼方法。与电弧炉相比,其特点有: (1)电磁感应加热。由于加热方式不同,感应炉没有电弧加热所必须的石墨电极, 从而杜绝了电极增碳的可能,因而可以熔炼电弧炉很难熔炼的含碳量极低的钢和合金。 (2)熔池中存在一定强度的电磁搅拌,可促进钢水成分和温度均匀,钢中夹杂合 并、长大和上浮。 (3)熔池比表面积小。优点是熔炼过程中容易控制气氛,无电弧及电弧下高温区, 合金元素烧损少、吸气少,所以有利于成分控制、气体含量低和缩短熔炼时间;缺点是 渣钢界面面积小,再加上熔渣不能被感应加热,渣温低,流动性差,反应力低,不利于 渣钢界面冶金反应的进行,特别是脱硫、脱磷等,因而对原材料要求较为严格。 (4)烟尘少对环境污染小。熔炼过程中基本无火焰,也无燃烧产物。 感应加热原理主要依据两则电学基本定律。一是法拉第电磁感应定律: E B L v sin (v B)

真空感应熔炼原理及工艺

真空感应熔炼原理及工艺

真空感应熔炼原理及工艺一、引言真空感应熔炼是一种常用的金属熔炼技术,它利用感应加热和真空环境来实现金属的高温熔化和精细处理。

本文将介绍真空感应熔炼的原理和工艺,并探讨其在金属加工领域的应用。

二、真空感应熔炼的原理1. 感应加热原理真空感应熔炼是基于感应加热原理进行的。

感应加热是利用电磁感应现象,通过变化的磁场在导体内感应出涡流,从而产生热量。

在真空感应熔炼中,通过感应线圈产生的高频交变磁场作用下,金属料块内部产生涡流,并迅速升温,最终达到熔化温度。

2. 真空环境的作用真空环境对于真空感应熔炼至关重要。

首先,真空环境可以减少金属与氧、氮等气体的接触,避免金属被氧化或气体吸收,从而提高金属的纯度和质量。

其次,真空环境可以降低金属的气化温度,使金属在较低温度下熔化,减少能源消耗和金属蒸发损失。

最后,真空环境还可以减少金属与炉膛内壁的接触,避免污染和杂质的产生。

三、真空感应熔炼的工艺1. 准备工作在进行真空感应熔炼之前,需要对金属料块进行预处理,包括清洗、切割和称重等。

同时,还需要准备好感应线圈、感应炉膛和真空系统等设备,并进行检查和调试,确保正常运行。

2. 熔炼过程将预处理好的金属料块放入感应炉膛内,然后启动感应线圈,产生高频交变磁场。

金属料块受到磁场的作用,内部涡流产生,温度迅速升高,最终达到熔化温度。

同时,开启真空系统,将炉膛内的气体抽出,形成真空环境。

在熔炼过程中,可以根据需要进行金属的合金化和成分调整。

3. 精细处理在金属熔化后,可以进行一系列的精细处理,包括脱气、去杂、调温等。

通过控制真空度和温度,可以实现金属的脱气和杂质的去除,提高金属纯度和质量。

同时,还可以根据需要调整金属的温度,以满足后续工艺的要求。

四、真空感应熔炼的应用真空感应熔炼广泛应用于金属材料的制备和加工领域。

首先,它可以用于高纯度金属的制备,如高纯铜、高纯铝等。

其次,它可以用于合金的制备,如钢、铜合金等。

此外,真空感应熔炼还可以用于金属粉末的制备、金属材料的再生利用等方面。

3.真空感应炉熔炼-西安建筑科技大学

3.真空感应炉熔炼-西安建筑科技大学

3[Ca]+2[P]=Ca 3P2
参与反应的钙可以 是金属钙也可以是 钙的合金(硅钙合 金)或钙的化合物 (CaC2)
31
3.6 新技术在感应炉冶炼中的应用
反应产物Ca3P2不溶于钢液,在炼钢温度下会以液态上浮而进入 渣中,在炼钢条件下不稳定,是一种强的还原剂,当炉内气氛氧 势偏高和渣中存在易还原的氧化物时,会发生如下反应:
镁特定的物化性质决定着,在镁的加入操作中,镁的加入 方式回收率的控制都是难以完善解决的工艺问题,使用镁合金 如:Ni-Mg、Ni-Mg-Me以降低镁的蒸汽压,提高熔点和沸点。 镁处理的操作过程为: 精炼期结束后,若要求添加B、Ce,在B、Ce加入后,调节 熔池温度,使温度低于出钢温度20℃; 真空室内充高纯氩气至13-27kPa; 镁以块状的含镁中间合金加入金属熔池; 镁加入后立即大功率搅拌,时间不宜过长,为减少镁的 损失,加镁后,通常1-5min内出钢;
22
3.3真空感应炉冶炼工艺过程
3.3.4 出钢和浇注
合金化结束后,坩埚中的金属液达到预定的成分 和温度,真空度也符合要求,则可出钢; 采用真空浇注,小型炉用上注,大型炉也可以下 注。
23
3.4元素的挥发与控制
所有金属都存在一个平衡的蒸汽压pi*,它取决于该金属的物 性、气态的存在形式(单原子、双原子还是多原子组成气态分 子)以及温度。i物质的蒸汽压pi*,与温度的关系式为:
40CrNiMo(SAE4340),(C:0.42%;Mn:0.76%;Cr:0.77%;
Ni:1.67%;Mo:0.20%)
14
3.1.3 真空感应炉熔炼的特点
不同熔炼方法生产的钢与合金中夹杂物含量
钢与合金
Cr20 Cr16Ni25W5AlTi2 氧化物夹杂/%

磁悬浮真空熔炼

磁悬浮真空熔炼

磁悬浮真空熔炼磁悬浮真空熔炼(magnetic levitation vacuum melting)是一种高温材料加工技术,是一种将磁力与真空相结合的特殊熔炼工艺。

它可以生产各种高质量的金属、合金和非金属材料,并广泛用于航空航天、电子、化工、制药和其他领域。

磁悬浮真空熔炼主要由以下几个步骤组成:(1)准备环境:首先需要将工作室或工作环境净化,并建立真空环境,以限制杂质和氧化物的存在,从而保证高质量的材料制造。

(2)预制备熔体:将原材料粉末混合,并在预先设定的比例下混合。

将混合后的材料放到熔化加热炉中,让其达到熔化温度并混合均匀。

(3)真空熔炼:将预制备的熔体放入磁悬浮盘上,用高频感应加热炉对其进行加热,同时用磁力将其悬浮,并使其不接触任何实体表面。

这样可以防止杂质和氧化物的污染,并且能够产生高质量的合金。

(4)冷却:当熔体达到所需温度和合金成分时,关闭加热炉的电源,开始冷却。

通过各种冷却方式,如气体冷却、水冷却、流速旋转冷却等来确保冷却速度合适。

合适的冷却速度可以使材料结构更加紧密。

磁悬浮真空熔炼存在很多优点,如下:(1)高质量:由于真空流环境,防止氧化和杂质的污染,因此可以获得高质量的金属材料和合金材料。

(2)均匀性好:由于磁力悬浮效应,使得熔体可以更加均匀地加热,并且可以防止材料堵塞或溢出。

(3)高效率:加热时间更短,冷却效率更高,生产效率更高。

(4)节能环保:由于使用真空环境,减少了杂质和氧化物的污染,同时更加节约能源。

总之,磁悬浮真空熔炼技术是一种高科技的材料加工技术,它具有快速、高效和节能环保的特点,使得其在各个领域中得到广泛应用。

近些年,随着科技的不断提升,磁悬浮真空熔炼技术也在不断完善,在制造材料方面也在不断创新和突破。

我们相信,在不久将来,磁悬浮真空熔炼技术将成为各个领域中的得力支撑。

真空感应熔炼炉原理

真空感应熔炼炉原理

真空感应熔炼炉原理
真空感应熔炼炉是一种利用感应加热和真空环境进行金属熔炼和精炼的设备。

其原理可以归纳如下:
1. 感应加热原理:感应加热是利用变化磁场在金属导体中产生涡流并产生热量的过程。

当通电线圈中通过交流电时,会产生变化的磁场,这个磁场会穿透到工作线圈中的金属导体。

金属导体由于交变磁场的作用,导致其内部产生涡流。

涡流通过电阻热效应产生热量,使金属导体迅速升温。

2. 真空环境:真空状况下,可以有效地减少氧气、水蒸气等气体对金属的污染和氧化。

同时,真空环境可以避免金属表面的气体泡沫和熔渣的形成,提高金属的纯度和质量。

真空感应熔炼炉的工作过程如下:
1. 在感应熔炼炉中,先将金属材料放入感应线圈中,在外部供电的作用下,感应线圈中产生变化的磁场。

2. 由于金属导体的存在,感应线圈中的变化磁场会产生涡流,并在金属导体内部产生热量。

3. 金属材料在涡流的作用下,迅速升温,最终达到熔点,开始熔化。

4. 在金属熔化的同时,真空泵将炉腔中的气体抽除,使腔内形成高真空环境。

5. 在高真空环境下进行熔炼和精炼过程,可以避免污染、氧化以及气泡和熔渣的形成,提高金属的纯度和质量。

6. 当金属熔化、纯化达到要求后,通过倾炉或其他方式,将熔融金属倒出。

通过上述原理和工作过程,真空感应熔炼炉可以实现对金属材料的高温融化和精炼,具有较高的熔炼效率和精度。

同时,利用真空环境可以提高金属材料的纯度和质量,适用于各种金属的熔炼和冶炼工艺。

感应炉熔炼的原理及工艺

感应炉熔炼的原理及工艺
所炼钢种不同,脱氧程度也有所区别。 例如,为了得到致密的镇静钢,钢锭模中钢液的含氧量应该很小, 少到结晶时CO不能析出,实现平静的结晶凝固成锭,要求脱氧尽可 能彻底。
13
4.2 感应熔炼过程中元素的氧化与脱氧
4.2.2各种脱氧方法的基本特点
4.2.2.1 沉淀脱氧
1)沉淀脱氧的原理。沉淀脱氧是指向钢液中加入对氧亲合力大于铁的元 素,以期与钢液中的溶解氧发生化合,形成不溶于钢液的氧化物,该氧 化物借助于浮力自钢液中排出,从而使钢液的含氧量降低的方法。
12
4.2 感应熔炼过程中元素的氧化与脱氧
4.2.1.1 脱氧的基本任务
去除钢中的过剩氧,同时完成调整钢的成分和合金化的任务。
一次脱氧产物:钢液中加入脱氧剂进行脱氧时,产生的1-40μm的细 小夹杂物,以弥散方式存在与钢液中。
危害:一次脱氧产物的夹杂物在之后的铸锭过程中,由于脱氧反应 继续进行,会继续长大,必然影响钢的质量。
中频感应炉的成套设备包括:电源及电器控制部分、炉体部分、传动 装置及水冷系统
7
4.1 感应炉熔炼的特点
序号 1
2 3 4
比较内容 供热方法
造渣条件
金属液 搅拌条件 冶金功能
电弧炉
感应炉
金属炉料在石墨电极高 温电弧直接作用下被加 热、熔化、精炼,元素 有挥发、氧化损失及增 碳
金属炉料在感应磁场作用下,产生 涡流,靠电阻热实现加热、熔化、 精炼(无直接加热),温度易控制, 元素挥发、氧化损失很小,合金回 收率高
(3)熔池的比表面积小。 这对减少金属熔池中易氧化元素的损失和减少 吸气是有利的,所以感应炉为熔炼高合金钢和合金,特别是含钛、铝或硼 等元素的品种,创造了较为良好的条件。但是容易形成流动性差,反应力 低,不利于渣钢界面冶金反应的进行的“冷渣”。为此,感应炉熔炼对原 材料的要求较为严格。

金属冶炼中的真空冶炼技术

金属冶炼中的真空冶炼技术
特殊合金制备
对于一些难以通过常规方法制备的特殊合金,如高强度铝合金、钛 合金等,真空感应熔炼技术也具有显著优势。
有色金属熔炼
除了钢铁等黑色金属外,真空感应熔炼技术也可应用于铜、铝等有 色金属的熔炼和提纯。
CHAPTER 03
真空电弧熔炼
真空电弧熔炼原理
真空电弧熔炼是在高真空条件下,利 用电流通过金属电极(通常为两根石 墨电极)产生电弧来熔炼金属的工艺 。
金属冶炼中的真空冶 炼技术
汇报人:可编辑 2024-01-06
目录
• 真空冶炼技术概述 • 真空感应熔炼 • 真空电弧熔炼 • 真空电子束熔炼 • 真空冶炼技术的发展趋势与展望
CHAPTER 01
真空冶炼技术概述
定义与原理
定义
真空冶炼技术是指在真空环境中进行 的金属冶炼过程,通过降低压力和气 体含量,实现金属的高效提取和纯化 。
电子枪是设备的核心部分 ,能够产生高能电子束。
真空室用于提供熔炼所需 的真空环境,同时收集和 排出熔炼过程中产生的气 体和烟尘。
控制系统用于控制设备的 各项参数,保证熔炼过程 的稳定性和准确性。
冷却系统用于控制设备的 温度,保证设备的稳定运 行。
真空电子束熔炼工艺参数
真空度
电子束功率
真空度是影响熔炼过程的重要参数,它决 定了熔炼过程中气体的分压,从而影响金 属的纯度和凝固组织。
真空电子束熔炼
真空电子束熔炼原理
电子束熔炼是一种利用高能电 子束作为热源的真空熔炼技术 。
电子束熔炼过程中,高能电子 束与金属材料相互作用,使金 属材料熔化并形成液态金属。
液态金属在真空环境下进行净 化、精炼和凝固,最终得到高 纯度、高性能的金属材料。
真空电子束熔炼设备

25公斤真空感应熔炼炉技术方案范文--14-图文

25公斤真空感应熔炼炉技术方案范文--14-图文

25公斤真空感应熔炼炉技术方案范文--14-图文ZG-0.025L周期式真空感应熔炼炉技术一、设备用途ZG-0.025L周期式真空感应电炉是熔炼坩埚封闭在真空室中,利用电磁感应产生的涡流热做热源(电能转换成热能)。

在真空状态下进行高温合金的真空熔炼炼、真空浇铸浇铸,从而得到高质量材料的熔炼设备。

本套电炉用于熔炼铜合金。

主要由炉体、炉盖、合金加料、测温装置、机械搅拌装置、底吹气装置、中频电源、进电装置、倾炉浇铸装置、真空系统、中频电源、电气控制系统、设备冷却系统等构成型号:ZG-0.025L表示:25kg真空感应熔炼炉,立式结构,可控硅中频电源。

二、主要参数1、熔炼炉部分名称单位数值设备总功率千瓦(Kw)100电源电压伏(V)380(三相)电源频率赫(Hz)50额定容量公斤(Kg)25中频电源功率千瓦(Kw)50熔化时间分钟(Min)30-40额定电压(中频输出)伏(V)250-375额定频率赫兹(Hz)2500最高工作温度度(℃)2000(石墨坩埚)工作温度度(℃)1650极限真空度帕(Pa)≦6.67某10-3工作真空度帕(Pa)≦6.67某10-2泄漏率帕/小时(Pa/h)4.0抽真空时间:由大气压力下至工作真空度时间≦10分钟|(热炉)测温方式钨铼热电偶测温+红外线测温坩埚材质适用石墨坩埚、氧化镁坩埚、三氧化二铝坩埚、氧化钙、金属坩埚等模具形式:钢模、石墨模具、水冷模具模具高度:600mm 冷却水循环量:立方米/小时(m/h)12.0设备布局:长4500mm宽3000mm高2500mm3三.ZG-0.025L周期式真空感应熔炼炉的结构ZG-0.025L周期式真空感应熔炼炉主要由:真空熔炼炉体、感应线圈、真空系统、中频电源、电控装置、测温等辅助功能系统、水冷却系统等组成组成。

4.1熔炼炉体:熔炼炉体由主炉盖、炉体、侧开门、炉盖升降移动机构等组成。

4.1.1炉体熔炼炉体内壁为304不锈钢,外壁及加强筋为Q235碳钢,内外炉壁之间通冷却水的双层立式水冷结构,炉体内外壁之间有加强筋,足够刚度和强度,抽负压不会变形,安全可靠。

3.真空感应炉熔炼-西安建筑科技大学

3.真空感应炉熔炼-西安建筑科技大学
13
பைடு நூலகம்
3.1.3 真空感应炉熔炼的特点
不同熔炼方法生产的SAE4340钢中气体含量
冶炼方法 炉料 电弧炉 非真空感应炉 真空感应炉 w[O]/% 0.0251 0.0031 0.0030 0.0003 W[H]/% 0.00018 0.00017 0.00010 0.00001 W[N]/% 0.0029 0.0039 0.0053 0.0005
3
真空感应炉熔炼设备
4
ALD生产实验室用真空感应熔炼炉
基本设备为单室系统,含有一个可倾倒坩埚、一个垂直铸模室、一 个真空泵装置和一个冶炼电源。
冷坩埚 熔炼炉
从图看出,除了坩埚和炉体外,其他部分都与真空感应炉相同。冷 坩埚采用铜合金制成,中间通水冷却,坩埚直径可以从0.06m到 lm,高度可达2.5m。整个冷坩埚是由数个中间带通水孔的矩形体 组成,这样增加了坩埚内矩形体之间的电阻,减少铜合金坩埚感应 产生环流。
抽真空时间和熔炼周期短,便于温度压力控制、易 于回收易挥发元素和成分控制准确等特点; 自1988年出现以来,被发达国家列为大型真空 感应炉的重点选择对象。
2
3.1 概述
3.1.1 真空感应炉设备
真空感应炉设备按照作业方式分为:间歇式炉子、半连续 和连续式作业的炉子。 真空感应炉配套的设备可以分为电源及电气控制系统、 炉体、真空系统、水冷系统。见下图:
(2)装料要求
下层紧密,上层较松,防止架桥; 根据金属料物化特性装在不同温度分布区域;
19
3.3.2 熔化期
当装料完毕后,封闭真空室,开始抽真空。 当真空室压力达到0.67Pa时,便可送电加热炉料。 考虑到炉料在熔化过程中的放气作用,熔化初期不要求 输入最大功率。而是根据炉料的放气情况,逐渐增大 功率,避免大量放气造成喷溅。 当出现剧烈沸腾或喷溅时,可采取减少输入功率或适 当提高熔炼室压力的办法加以控制。 熔池熔清的标志是:熔池表面平静,无气泡逸出。可 转入精炼期。

真空熔炼炉的工作原理

真空熔炼炉的工作原理

真空熔炼炉的工作原理
真空熔炼炉是一种将金属材料熔化和精炼的设备,其工作原理如下:
1. 创建真空环境:真空熔炼炉首先通过抽取炉腔内的气体,将其压力降至较低的水平。

这样可以防止氧气、水分或其他杂质与熔炼材料发生反应。

2. 加热材料:接下来,将金属材料放入炉腔中,并通过电阻加热器或感应加热器加热。

加热器产生的热量将直接传递给金属材料,使其逐渐升温。

3. 熔化过程:随着金属材料的加热,其温度逐渐升高,当达到金属的熔点时,金属开始熔化。

熔化过程中,真空环境可以防止氧化反应的发生,保证金属的纯度。

4. 精炼过程:一旦金属完全熔化,可以通过加入适量的合金元素以达到所需的合金成分。

在真空环境中,合金元素与金属材料相互溶解,实现合金的精炼。

5. 熔体处理:在合金达到所需成分后,可以对熔体进行进一步处理,如脱气、脱硫、去杂等。

这些处理有助于提高合金的纯度和性能。

6. 出炉冷却:当完成所需的熔炼和精炼过程后,可以停止加热,并逐渐将炉腔冷却至室温。

此过程可以控制合金的晶粒大小,影响材料的性能。

综上所述,真空熔炼炉利用真空环境、加热和冷却控制来实现金属材料的熔化和精炼,以提高合金的性能和质量。

真空感应熔炼法(VIM)和真空电弧重熔法(VAR)介绍

真空感应熔炼法(VIM)和真空电弧重熔法(VAR)介绍
参 考文 献
势看出, 本 次连 铸浇 注时结 水 口现象 一直 存在 , 钢 水 纯净度不 高 , 夹杂物 剥落和结 晶器卷渣是 造成脆
性夹杂物 的主要 原因。
4 结论
【 1 】 戚新军. 圆钢表 面裂纹的原 因分析及 解决措-  ̄l J ] . 金属制
品. 2 0 0 6 ( 3 ) : 2 4  ̄ 2 6 .
var法最初是作为熔炼mozrti等高熔点合金的冶炼方法而得到发展的由于该法能够发挥以不用担心耐火材料的污染而进行脱气为首的真空精炼的效果而且能够因积层凝固得到凝固组织状态良好的铸锭因此也适用于熔炼高合金钢和高温合金今天已经和电渣重熔法esr一起成为特种冶炼方法的主流工艺
第2 3 卷第1 期
陈洪 : C : f 5 3 棒材皮下裂纹及 脆性夹杂物质量分析
・5 3・
从 以上液位 图可 以看 出, 第一 至第三连铸 组结 晶器 液位波动 幅度极大 , 而且从液位 图塞棒裂纹 的形成 原因主要是连铸坯 的
边角裂在轧制后未焊合造成 。
( 2 ) C f 5 3 脆性夹杂物 的来 源主要是结 晶器液位 波动造成保护渣卷渣 。
土金属 的熔炼 , 今 后还可期待废 钢的熔 炼或廉价 的熔炼 法 。而且要达 到与钙 质耐火 材料脱氧脱硫 同样 的效 果. 也可以通过使用钙质造渣剂实现 . 将熔剂 添加入炉 中或 真空室内安装 的盛钢桶中即可。 V A R法最初是 作为熔 炼 Mo 、 z r 、 T i 等高熔 点合 金 的冶炼方法而得 到发展 的 , 由于该法 能够 发挥 以不用担 心耐火 材料 的污染 而进行 脱气 为首的真 空精炼 的效果 , 而且 能 够因积层 凝 固得 到凝 固组 织状态 良好的铸 锭, 因此也适用于熔炼 高合金 钢和高温合金 , 今天 已经 和电渣 重熔法 ( E s R 1 一起成 为特种冶炼 方法 的主流工

真空熔炼工艺规程

真空熔炼工艺规程
泵和罗茨泵即可。
4.4 炉体送电操作
4.4.1 在送电操作前,仔细阅读KGPS集成化晶闸管变频装置使用说明书。(送电试验可以在大气状
态下进行,将铁磁性物体‘钢锭或石墨芯’放入感应器内,放入的物体应与感应器绝缘,送电试验也可以在打坩埚后,烧结坩埚前进行)。
4.4.2 接通炉体、感应器、晶闸管冷却水及所有冷却水,将水压调整致0.2~0.3MPa。
3.3.2 罗茨真空泵
型号:J-1200 抽气速率:1200L/S 转速:1460r/min
电机功率:15KW 重量:1275kg 出厂日期:95年3月
极限压力:3×10-1Pa
3.3.3 2X-30型旋片式真空泵
抽气速率:30L/S 转速:410r/min 极限真空度:6×10-2Pa
出厂日期:95年4月 电机功率:4KW
真空炉熔炼工艺规程
执行日期
2005年1月1日
页码
共8页第4页
维护保养:
1)泵安装应调整水平,并用地脚螺钉固定以防震动。
2)泵在通电加热前,前级泵必须保证提供10~20帕以下预真空,防止泵油氧化。
3)被抽气体应是无腐蚀性的,尽可能是无灰尘的干净、干燥气体。当抽除带有灰尘的气体时,必须装有过滤器。
4)环境温度、湿度和冷却水温度,对于泵的性能有很大影响,ZL系列油增压泵性能指标是在下列环境条件下测试的。
4.4.3 晶闸管变频装置送电启动过程
A、启动程序:
(1)按“控制电路通”按钮,则“控制电路显示灯”亮。
(2)装置给水。
(3)合主电路空气开关,则“主电路显示灯”亮。
(4)按“逆变电路合”按钮,“逆变显示灯”亮。
(5)顺时针缓慢旋动“调功电位器”,若装置无问题则应听到中频声,视为启动成功。

真空感应炉冶炼原理及工艺

真空感应炉冶炼原理及工艺
2
真空度,并联情况下可提高排气量。整个泵体需浸在机械泵油中,油除了起润滑和密封 作用外,还可起充填排气口与顶部之间“死角”的作用。机械真空泵可直接向大气排气, 它还常用作隔离真空系统的前级泵。 3 1 2 2
图 3 机械真空泵的抽气过程 机械真空泵和其它真空泵一样有两个重要参量:一是极限真空,一是抽气速率。 (1)极限真空:在被抽容器的漏气及容器内壁放气可忽略的情况下,真空泵能抽得的 最高真空度称为极限真空。旋片式机械泵的极限真空度可达 l0-5托,但在一般实验室情 况下只能抽到10-2托。 (2)抽气速率: 在某一给定压强下, 单位时间内从泵的进气口处抽入泵内的气休体积, 称为泵在该压强下的抽气速率。 单位一般为升/秒。 旋片式机械泵的抽气速率主要决定于 转子的尺寸和转速。在160托到儿托的压强范围内,机械泵的抽气速率变化很小,在几 托压强以下,抽气速率迅速下降,到极限真空时降为零。下降的原因主要是:漏气、油 放气和油本身的汽化造成了抽气过程的不完善。 一般旋片式机械真空泵给出的抽气速率 是指泵在进气口处压强为760托时的抽气速率。 使用旋片式真空泵时应注意: (1)使用前检查油箱中油量是否适当,即油面是否达到规定的刻线。 (2)带动泵转子旋转的电动机的转动方向是否与标明的箭头相符。 否则会喷油或损坏 刮板。 (3)停泵后进气口必须通大气, 否则大气会通过缝隙把泵内的油缓慢地从进气口倒压 进被抽容器,造成返油,严重影响真空系统的正常工作。
2.3 罗茨泵
罗茨真空泵(简称罗茨泵)是一种旋转式变容真空泵。根据罗茨真空泵工作范围的 不同,又分为直排大气的低真空罗茨泵、中真空罗茨泵(又称机械增压泵)和高真空多 级罗茨泵。
图 5 罗茨真空泵结构示意图
4
罗茨泵的结构如图 5 所示。在泵腔内,有二个“8”字形的转子相互垂直地安装在一 对平行轴上,由传动比为 1 的一对齿轮带动作彼此反向的同步旋转运动。在转子之间, 转子与泵壳内壁之间,保持有一定的间隙,可以实现高转速运行。由于罗茨泵是一种无 内压缩的真空泵,通常压缩比很低,故高、中真空泵需要前级泵。罗茨泵的极限真空除 取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。为了提高泵的极限真空 度,可将罗茨泵串联使用。 实际设备中往往用多个泵的串联来组成真空泵组,获得真空室中符合要求的真空 度。

真空感应熔炼气雾化制粉工艺步骤

真空感应熔炼气雾化制粉工艺步骤

真空感应熔炼气雾化制粉工艺步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言气雾化制粉工艺已成为现代金属粉末制备领域的主流技术之一,其优点包括制粉粒度均匀、化学成分纯净等。

真空感应炉熔炼雾化3D打印镍-钛形状记忆合金丝材和球形粉末

真空感应炉熔炼雾化3D打印镍-钛形状记忆合金丝材和球形粉末

DOI: 10.3969/j.issn.1000-6826.2021.01.0009真空感应炉熔炼雾化3D打印镍-钛形状记忆合金丝材和球形粉末3D Printing of Ni-Ti Shape Memory AlloyWire and Spherical Powder by Melting and Atomizing in Vacuum Induction Furnace供稿|周睿之1,李享2,郭嘉昕3,郭永喜3 / ZHOU Rui-zhi1, LI Xiang2, GUO Jia-xin3, GUO Yong-xi3金属3D打印技术是以计算机三维设计为蓝本,通过构件分层离散和数控成型系统,采用激光烧结成型工艺、激光熔覆成型工艺或等离子快速沉积工艺等制作三维金属实体的新型工艺技术。

3D打印机按照三维的CAD模型分成若干层将3D打印金属雾化球粉末或专用高端3D打印用的Ni-Ti合金丝材等材料烧结或粘合在一起,然后层层叠加起来,通过不同圈形一层一层的累加,最后打印成一个三维成型实体。

3D打印形状记忆合金材料及制备质量要求形状记忆合金材料经受低温变形后能记住其原来形状,这种现象称为合金形状记忆。

形状记忆合金从稳定的高温奥氏体状态转变为稳定的低温马氏体过程中发生了品体结构转变,相变温度为‒20~80 ℃,变形温度0~5 ℃,可以通过成分轻微变化和热处理来调整。

其中Ti-56Ni、Ti-31Ni、Ti54-57Ni等合金被广泛应用在医学领域。

例如,应用生物医学的外科植入物—人工骨关节、颅骨、头盖骨、胸骨、肋骨、髋骨、膑骨爪、环抱骨接骨板、骨髖内针、牙医骨骼、血管支架等生物材料。

医疗器械、外科植入物对3D打印材料要求严格,从材料生物力学的物理性能和生物相容性考虑,其性能必须满足的主要要求为:(1)国家标准GB24627—2009医疗器械和外科植入物用镍钛形状记忆合金加工材料;(2)具有优良抗腐蚀性能;(3)具有优良生物相容性、生物粘附性、骨骼融合性;(4)具有优良的力学性能、高强度、高稳定、高作者单位:1. 西安工业大学,陕西 西安 710021;2. 陕西秦邦环保科技股份有限公司,陕西 西安 710065;3. 宝钛集团有限公司,陕西 宝鸡 721014抗疲劳强度、高抗拉强度、弹性模量小。

钕铁硼熔炼工艺

钕铁硼熔炼工艺

钕铁硼熔炼工艺一般分为真空熔炼和真空气雾化熔炼两种:
1.真空熔炼:在真空感应炉中,将原料(主要是稀土金属和铁的
合金)熔化,浇入预热的铸型中,并在重力下形成一定厚度的铸件。

这种方法虽然简单,但很难达到控制磁场的目的,而且磁体的尺寸也受到了限制。

2.真空气雾化熔炼:这是一种更先进的熔炼方法,它利用氧气和
氩气的混合物,将原料粉末喷到感应炉中,在高温下熔化成液体,并在磁场的作用下凝固成微小的颗粒。

这些颗粒在气体中冷却后,形成了一种叫做“磁粉”的材料。

这种方法不仅可以精确地控制磁场的强度和方向,而且还可以生产出更小、更均匀的磁体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空感应炉熔炼工艺真空感应熔炼(VIM)是在真空条件下,利用电磁感应在金属导体内产生涡流加热炉料进行熔炼的方法,具有熔炼室体积小,抽真空时间和熔炼周期短,便于温度压力控制、可回收易挥发元素、准确控制合金成分等特点。

由于以上特点,现在已发展为特殊钢、精密合金、电热合金、高温合金及耐蚀合金等特殊合金生产的重要工序之一。

1、基本原理:真空感应熔炼的两个基本原理应用是:感应加热和真空环境。

1.1 感应熔炼是除电弧炉以外较重要的一种电炉熔炼方法。

与电弧炉相比,其特点有:(1)电磁感应加热。

由于加热方式不同,感应炉没有电弧加热所必须的石墨电极,从而杜绝了电极增碳的可能,因而可以熔炼电弧炉很难熔炼的含碳量极低的钢和合金。

(2)熔池中存在一定强度的电磁搅拌,可促进钢水成分和温度均匀,钢中夹杂合并、长大和上浮。

(3)熔池比表面积小。

优点是熔炼过程中容易控制气氛,无电弧及电弧下高温区,合金元素烧损少、吸气少,所以有利于成分控制、气体含量低和缩短熔炼时间;缺点是渣钢界面面积小,再加上熔渣不能被感应加热,渣温低,流动性差,反应力低,不利于渣钢界面冶金反应的进行,特别是脱硫、脱磷等,因而对原材料要求较为严格。

(4)烟尘少对环境污染小。

熔炼过程中基本无火焰,也无燃烧产物。

感应加热的原理:感应加热原理主要依据两则电学基本定律:一是法拉第电磁感应定律:E=B·L·v·si n∠(v·B)E:导体两端所感应的电势;B:磁感应强度;v:相对速度;∠(v·B):磁感应强度的方向与速度方向之间的夹角。

当一座无芯感应炉的感应线圈中通有频率为f的交变电流时,则在感应圈所包围的空间和四周产生一个交变磁场,该交变磁场的极性、磁感应强度与交变频率随着产生该交变磁场的交变电流而变化。

若感应线圈内砌有坩埚并装满金属炉料,则交变磁场的一部分磁力线将穿过金属炉料,磁力线的交变就相当于金属炉料与磁力线之间产生了切割磁力线的相对运动。

因此,在金属炉料中将产生感应电动势(E),其大小通常以下式确定:E=4.44Ф·f·nФ:感应线圈中交变磁场的磁通量,Wb;f:交变电流的频率,Hz;n:炉料所形成回路的匝数,通常n=1。

二是焦耳-楞茨定律:又称为电流热效应原理。

当电流在导体内流动时,定向流动的电子要克服各种阻力,这种阻力用导体的电阻来描述,电流克服电阻所消耗的能量将以热能的形式放出。

这就是电流的热效应:Q=I2RtQ: 焦耳-楞茨热,J;I:电流强度,A;R:导体电阻,Ω;t:导体通电时间,s。

当感应炉通以交流电后,在感应线圈内坩埚里的金属炉料由一法拉第电磁感应定律产生感应电动势,由于金属炉料本身形成一闭合回路,所以在金属炉料中产生感应电流:I=4.44Ф·f/R,(R:金属炉料的有效电阻,Ω)。

该感应电流又依照二焦耳-楞茨定律在炉料中放出热量,使炉料被加热。

1.2 真空冶金的原理:影响一个化学反应的外部因素主要是:温度、浓度和压力。

真空冶金就是通过改变外界压力对冶金过程中诸多化学反应中有气相参加的反应产生影响,当反应生成物中的气体摩尔数大于反应物中的气体摩尔数,减小系统的压力(即增加真空度)则可以使平衡反应向着增加气态物质的方向移动,促使反应进行的更完全。

以下几类反应器中发生的反应属于此类:真空下的碳脱氧反应:〔C〕+〔O〕→CO↑真空下的脱气反应: 2〔H〕→H2↑2〔N〕→N2↑金属中元素的挥发:〔Me〕→Me↑(1) 在真空环境下,碳的行为很有意思。

在常压下,碳的脱氧能力较弱,因此常用金属脱氧剂(如硅、铝等)来进行沉淀脱氧,但硅、铝脱氧后形成的氧化物夹杂会部分残留在钢中,降低钢的纯洁度。

在一般条件下,当钢中〔C〕=0.20%,与之平衡的〔O〕=0.01%,当钢中〔C〕降低时,与之平衡的〔O〕还要升高,而现今有些特殊用途的钢和合金中的氧含量要求又远低于0.01%,因而在一般条件下仅用碳来脱氧是达不到脱氧要求的。

碳氧反应的平衡常数为:K=P CO/(a c ·a O)= P CO/(〔%C〕·f C·〔%O〕·f O)即:〔%C〕·〔%O〕= P CO/K由于K值在某一温度下是一常数,当将炉内CO不断抽走,即降低炉内的P CO,〔%C〕·〔%O〕的数值也会同时降低,即在真空条件下,碳氧反应会进行的更完全。

当气相压力降至0.1atm时,碳的脱氧能力可超过硅;若气相压力降至133.322Pa时,碳的脱氧能力可超过铝。

但碳的脱氧能力并不会随着真空度的提高而无限制的提高,因为只有液气分界面的碳氧反应仅只遵循上述热力学原理,金属液体内部的碳氧反应不仅遵循上述热力学原理,还要受到动力学条件的约束。

金属液体内部如果要形成CO气泡,那么CO的生成压必须大于炉气压力、气泡产生处金属液柱的静压力和表面张力造成的压力之和。

因而仅减小炉气压力(即增加真空度)是不够的,此时限制碳脱氧的主要因素是表面张力和静压力。

此原理不仅能降低溶解于金属中的氧,还能还原金属夹杂中的氧,如: MnO+〔C〕→〔Mn〕+CO↑SiO2+2〔C〕→〔Si〕+2CO↑Al2O3+3〔C〕→2〔Al〕+3CO↑同时,真空下碳这一特性也会作用于坩埚耐火材料。

在真空熔炼的精炼期,此时熔池处于高温、高真空下,炉衬中的氧化物及杂质会分解并与碳发生还原反应。

因而坩埚材料的选择很重要。

由于以上过程的存在,反过来也会消耗〔C〕,降低钢中〔C〕。

(2)真空下的脱气:金属中的气体是指溶解在其中的氢和氮而言。

氢和氮在空气中以分子状态存在,在金属中则以单原子或离子状态存在,这种双原子气体在金属中的溶解度与气体分压力的平方根成正比。

〔%H〕=K H√P H2〔%N〕=K N√P N2(3)真空下杂质及合金元素的挥发:在真空条件下,金属中某些蒸气压较高的元素,当熔室内压力降低至低于其蒸气压力时,这些元素就会从液态金属中挥发出来。

因而应合理制定工艺制度,促进杂质的挥发、减少有用元素的挥发。

500kg真空感应炉1、真空系统2、加料系统3、感应线圈4、坩埚5、电源6、锭模车2、真空感应炉熔炼的工艺过程:就是结合真空冶金与感应熔炼的特点制定合理有效的工艺。

其整个周期可分为以下几个主要阶段,即装料、熔化、精炼、浇注。

(1)装料:真空感应炉所用炉料一般都是经过表面除锈和油污后的高纯原料,有的合金元素还以纯金属形式加入。

严禁采用潮湿的炉料,以免带入气体和在熔炼时产生喷溅。

装料时,应做到上松下紧,以防熔化过程中上部炉料因卡住或焊接而出现“架桥”;在装大料前,应先在炉底铺垫一层细小的轻料;高熔点不易氧化的炉料应装在坩埚的中、下部高温区;易氧化的炉料应在金属液脱氧良好的条件下加入;易挥发的元素加入时,熔炼室应先充以惰性气体Ar为好。

(2)熔化期:装料完毕后,应开始抽真空。

当真空室压强达到0.67Pa时,便可送电加热炉料。

熔化初期,由于感应电流的集肤效应,炉料逐层熔化。

这种逐层熔化非常有利于去气和去除非金属夹杂,所以熔化期要保持较高真空度和缓慢的熔化速度。

所以开始熔化时不要求输入最大的功率,而是根据金属炉料的不同特点,逐级增加输入功率,使炉料以适当的速度熔化。

若熔化过快,则气体有可能从金属液中急剧析出,这将会引起熔池的剧烈沸腾,甚至产生喷溅。

如果发生喷溅,可采取降低熔化速度(减小输入功率)或适当提高熔炼室压力(关闭真空阀门或充入一定量的惰性气体)的方法加以控制。

若采用两次加料熔化时,第二次炉料应在坩埚炉料熔化70%~80%时加入,并等到补加料开始发红后再提高输入功率,以免冷料突然加入而放出大量气体产生喷溅。

当金属全部熔化,熔池表面无气泡逸出时,熔炼进入精炼期。

(3)精炼期:精炼期的主要任务是:脱氧、去气、去除挥发性夹杂、调整温度、调整成分。

为完成上述任务必须控制好精炼温度、真空度和真空下保持时间等工艺参数。

a、精炼温度:温度升高有利于碳氧反应的进行、夹杂的分解挥发;但温度过高会加剧坩埚与金属间的反应、增加合金元素的挥发损失,所以通常合金钢的精炼温度控制在所炼金属的熔点以上100℃。

b、真空度:真空度提高将促进碳氧反应,随着CO气泡的上浮排出,有利于〔H〕和〔N〕的析出、非金属夹杂的上浮、氮化物的分解、微量有害元素的挥发。

但过高的真空度会加剧坩埚与金属间的反应、增加合金元素的挥发损失,所以对于大型真空感应炉,精炼期的真空度通常控制在15~150Pa;小型炉则控制在0.1~1Pa。

c、真空下保持时间:金属液内氧含量是先降后升的,所以当氧含量达到最低值的时间就是精炼时间,500kg的炉子精炼时间为50~70min。

炉料熔清后,应立即加入适量的块状石墨或其他高碳材料进行碳氧反应。

精炼后期,充分脱氧、去气、挥发夹杂物时,加入活泼金属和微量添加元素,调整成分,加入顺序一般为Al、Ti、Zr、B、Re、Mg、Ca,应做到均匀、缓慢,以免产生喷溅,加入后用大功率搅拌1~2min,以加速合金的熔化和分布均匀,由于Mn的挥发性较强,一般在出钢前3~5min加入。

(4)浇注:合金化后,温度成分合格后即可出钢浇注。

浇注时采用保温帽或绝热板。

对于成分复杂的高温合金,浇注后可在真空下冷却。

3、结语:真空感应熔炼作为制造高温合金、精密合金、特殊功能材料等的重要工序之一,其作用将越来越重要、应用将越来越广泛。

相关文档
最新文档