裂解气的净化1

合集下载

第四章裂解气的净化与分离详解

第四章裂解气的净化与分离详解

表1-23是表示轻柴油裂解气组成。
轻柴油裂解气组成
成分 H2 CO CH4 C2H2 C2H4 C2H6 丙二烯+丙炔 C3H6 %,mol 13.1828 0.1751 21.2489 0.3688 29.0363 7.7953 0.5419 11.4757 成分 C3H8 1,3-丁二烯 异丁烯 正丁烯 C5 C6~C8非芳烃 苯 甲苯 %,mol 0.3558 2.4194 2.7085 0.0754 0.5147 0.6941 2.1398 0.9296 成分 二甲苯+乙苯 苯乙烯 C9~200℃馏分 CO2 硫化物 H2O %,mol 0.3578 0.2192 0.2397 0.0578 0.272 5.04
裂解气预处理
脱CO
脱酸性气体
净化过程
脱炔
脱水
一、 酸性气体的脱除
酸性气体 主要指CO2和H2S。此外,还含有少量 有机硫化物,如:COS(羰基硫)、 CS2、RSR(硫醚)、RSH(硫醇)、 C4H4S(噻吩)等。
酸性气体的来源 CO2,H2S和其他气态硫化物 (1)气体裂解原料带入的气体硫化物和CO2 (2)液体裂解原料中所含的硫化物高温氢解生 成
Na2CO3+H2O Na2S+2H2O
碱洗工艺流程说明
塔分三段: I段水洗塔为泡罩塔板 Ⅱ段和Ⅲ段为碱洗段填料层 碱液浓度由上而下降低: 新鲜碱液含量为18%~20%, Ⅱ段循环碱液NaOH含量约为5%~7% Ⅲ段循环碱液NaOH含量为2%~3%
碱洗工艺流程图
, 加 热 碱 器 液 ; 循 环 碱 泵 洗 ; 塔 ; 水 洗 循 环 泵 453 1两 段 碱 洗 工 艺 流 程 2-
二、裂解气分离方法和深冷法流程

裂解气的净化与分离技术

裂解气的净化与分离技术

章节标题课题裂解气的净化与分离技术课时4课时教学内容教学目标1、认知目标:2、技能目标:3、情感目标:教学重点教学难点教学活动及主要语言学生活动裂解气是组成复杂的气体混合物,其中,既有目的产物乙烯、丙烯,又有副产物丁二烯、饱和烃共,还有一氧化碳、二氧化碳、炔烃、水和含硫化合物等杂质。

为获取纯度单一的烯烃及其他馏分,必须对裂解气进行分离和提纯。

裂解气分离的方法有多种,工业上主要采用深冷分离法和油吸收精馏分离法。

(l)深冷分离法是将裂解气中除甲烷、氢以外的其他烃类全部冷凝为液体,然后根据各组分相对挥发度的不同,采用精馏操作逐一分离的方法。

裂解气的深冷分离是裂解气分离的主要方法,其技术指标先进,产品质量好,收率高。

但是分离流程复杂,动力设备多,需要大量的低温台金钢材,投资较高,适用于加工精度高的大工业生产。

(2)油吸收精馏分离法根据裂解气各组分在某种吸收剂中的溶解度不同,采用吸收剂吸收除氢和甲烷外的组分,然后用精馏的方法再把各组分从吸收剂中遥一分离的方法。

该法工艺流程简单,动力设备少,仅需少量合金钢,投资少。

但是,经济技术指标和产品纯度较差,适用于中小型石油化工企业。

前加氢和后加氢前加氢:在裂解气中H2未分离出来之前,利用裂解气中的H2加氢。

(氢气自给)特点:流程简单,投资少, 但操作稳定性差。

后加氢:先分离出C2和C3后,再分别加氢.(需外部加氢)特点:温度易控,不易飞温。

工艺流程(以后加氢工艺流程为例)加氢反应器特点2、加氢反应器特点为防止由于炔烃含量偏高、H2过量太多而引起的绝热反应器升温的现象,可将绝热反应通过逐段加氢、分段实施反应,以满足催化剂的适宜操作温度范围。

(教材P93 表3-29)3. 炔烃脱除特点:吸收其中的乙炔,可回收一定量的乙炔。

溶剂:二甲基甲酰胺(DMF)N-甲基吡咯烷酮(NMP)丙酮沸点和熔点也是选择溶剂的重要指标工艺流程(自学)4、二种脱炔方法的比较5、压缩和制冷系统1 裂解气的压缩(一) 压缩的必要性(二) 多段压缩的优点(三) 压缩流程(一)压缩的必要性5、多段压缩的优点降低出口温度借助于段间冷却,使出口温度不高于100℃,抑制随温度升高聚合速度提高的二烯烃的聚合。

裂解气的净化

裂解气的净化

由图中曲线可以看出: 脱除气体中微量水分以分子筛吸附水容量最高。 但是在相对湿度较高时,活性氧化铝和硅胶的吸附水容量都大于分子筛。 因此有的脱水流程是采用活性氧化铝与分子筛串联。 分子筛是人工合成的水合硅铝酸盐晶体 Mex/m[(Al2O3)x(SiO2)y]· mH2O(A、x、y) 裂解气脱水常用A型分子筛. A型分子筛有 3A(孔径 d=3.0~3.3埃),4A(d=4.2~4.7 埃),5A( d=4.9~5.6埃)等类型。 4A分子筛能吸附水和乙烷分子,而3A分子筛只能吸附水而不能吸附乙烷分子。 另外,分子筛是一种离子型极性吸附剂,是一种选择性吸附剂,它的效率高,寿命长。 分子筛吸附水是一个放热过程,降低温度有利于放热的吸附过程,高温则有利于吸热的 脱附过程由图可见,温度低,水的平衡吸附容量高;反之,则低。
• 即使是在常温操作条件下,在有碱液存在时,裂解气中的不炮和 烃仍会发生聚合,生成的聚合物将聚集于塔釜。这些聚合物为液 体,但与空气接触易形成黄色固态,通常称为“黄油”。“黄油” 的生成可能造成碱洗塔釜和废碱罐的堵塞,而且也为废碱液的处 理造成麻烦。由于“黄油”可溶干富含芳烃的裂解汽油,因此, 常常采用注人裂解汽油的方法,分离碱液池中的“黄油。
• 裂解气中含有H2S、CO2、H2O、C2H2、C3H4、 CO等气体杂质。来源主要有:一是原料中带来; 二是裂解反应过程生成;三是裂解气处理过程引 人。 • 这些杂质的含量虽不大,但对深冷分离过程是有 害的。而且这些杂质不脱除,进入乙烯,丙烯产 品,使产品达不到规定的标准。尤其是生产聚合 级乙烯、丙烯,其杂质含量的控制是很严格的, 为了达到产品所要求的规格,必须脱除这些杂质, 对裂解气进行净化。
如果裂解气中含有较高的硫化物时,还采用碱洗法,则是不经济的。因为碱 液不能回收,硫含量高,耗碱量就很大,这时,可考虑选用乙醇胺水溶液作 为吸收剂,脱去硫化氢和二氧化碳,这是一个可逆吸收过程,吸收剂可以再 生。反应方程式如下: 25~45℃2HOCH2CH2NH2+H2S<========> (HOCH2CH2NH3)2S <- 110~130℃ 25~45℃-> 2HOCH2CH2NH2+CO2+H2O<========>(HOCH2CH2NH3)2CO3 <- 110~130℃ 乙醇胺水溶液对脱除有机硫效果比较差,可以将碱洗法和乙醇胺水溶液吸 附法结合起来,首先应用乙醇胺水溶液脱去酸性气体,然后用碱洗方法进一 步将硫化物脱除干净,这两种方法结合起来,可以收到比较好的净化效果。

裂解气的净化

裂解气的净化

如果裂解气中含有较高的硫化物时,还采用碱洗法,则是不经济的。因为碱
液不能回收,硫含量高,耗碱量就很大,这时,可考虑选用乙醇胺水溶液作
为吸收剂,脱去硫化氢和二氧化碳,这是一个可逆吸收过程,吸收剂可以再 生。反应方程式如下: 25~45℃-
2HOCH2CH2NH2+H2S<========> (HOCH2CH2NH3)2S <- 110~130℃ 25~45℃->
• 醇胺虽可再生循环使用,但由于挥发和降解,仍有一定损耗。由于醇胺与羰 基硫、二硫化碳反应是不可逆的,当这些硫化物含量高时,吸收剂损失很大;
• 醇胺水溶液呈碱性,但当有酸性气体存在时,溶液PH值急剧下降,从而对碳 钢设备产生腐蚀。尤其在酸性气浓度高而且温度也高的部位(如换热器,汽 提塔及再沸器)腐蚀更为严重。因此,醇胺法对设备材质要求高,投资相应 较大;
2HOCH2CH2NH2+CO2+H2O<========>(HOCH2CH2NH3)2CO3 <- 110~130℃
乙醇胺水溶液对脱除有机硫效果比较差,可以将碱洗法和乙醇胺水溶液吸
附法结合起来,首先应用乙醇胺水溶液脱去酸性气体,然后用碱洗方法进一 步将硫化物脱除干净,这两种方法结合起来,可以收到比较好的净化效果。
• 裂解气中含有H2S、CO2、H2O、C2H2、C3H4、 CO等气体杂质。来源主要有:一是原料中带来; 二是裂解反应过程生成;三是裂解气处理过程引 人。
• 这些杂质的含量虽不大,但对深冷分离过程是有 害的。而且这些杂质不脱除,进入乙烯,丙烯产 品,使产品达不到规定的标准。尤其是生产聚合 级乙烯、丙烯,其杂质含量的控制是很严格的, 为了达到产品所要求的规格,必须脱除这些杂质, 对裂解气进行净化。

裂解气的净化和分离-第一章 烃类热裂解

裂解气的净化和分离-第一章 烃类热裂解

第一章烃类热裂解第三节裂解气的净化与分离一、概述(一)裂解气的组成和分离要求问题1:什么叫裂解气?1. 烃类经过裂解制得了裂解气,裂解气的组成是很复杂的,其中含有很有用的组份,也含有一些有害的杂质(见表1-23)。

裂解气净化与分离的任务就是除去裂解气中有害的杂质,分离出单一稀烃产品或烃的馏分,为基本有机化学工业和高分子化学工业等提供原料。

表1-23 轻柴油裂解气组成2. 需要净化与分离的裂解气,是由裂解装置送过来的。

3.裂解气的定义:它已经脱除了大部份C5以上的液态烃类,它是一个含有氢气,C1-C5的烃类和少量杂质气体的复杂气态混合物。

4.裂解气的分离要求:见表1-24,1-25.表1-24 乙烯聚合级规格表1-25 丙烯聚合极规格(二)裂解气分离方法简介问题2:深冷分离法的分离原理是什么?1.工业生产上采用的裂解气分离方法,主要有深冷分离法和油吸收精馏分离法两种。

本章重点介绍深冷分离方法。

2.在基本有机化学工业中,冷冻温度小于等于-100度的称为深度冷冻,简称“深冷”。

♀3.分离原理就是利用裂解气中各种烃的相对挥发度不同,在低温下除了氢气和甲烷以外,把其余的烃类都冷凝下来,然后在精馏塔内精馏塔进行多组份精馏分离,利用不同的精馏塔,把各种烃逐个分离下来。

其实质是冷凝精馏过程。

4.图1-24可知,深冷分离流程可以概括成三大部份:(1)气体净化系统;(2)压缩和冷冻系统;(3)精馏分离系统.二、酸性气体的脱除问题3:酸性气体有哪些?它们有什么危害?除去方法是什么?1.由表1-23的数据可以看出,裂解气中含有的少量硫化物、二氧化碳、一氧化碳、乙炔、丁炔以及水等杂质。

2.裂解气中的酸性气体,主要是二氧化碳(CO2)和硫化氢(H2S),另外还有有机硫化物。

3.这些酸性气体含量过多时,对分离过程会带来如下的危害:(1)硫化氢能腐蚀设备管道,并能使干燥用的分子筛寿命缩短,还能使加氢脱炔用的催化剂中毒;(2)二氧化碳能在深冷的操作中结成干冰,堵塞设备和管道,影响正常生产。

裂解气的净化——脱水

裂解气的净化——脱水


等温/等压吸附曲线
可能异常



1.干燥后水含量不合格 原因:1.干燥剂再生不好 2。使用周期过长 3.物料含水量过高 4.干燥剂结炭 5.装填量不够或干燥剂质量不合格
裂解气的净化 ——脱水
水分的来源

压缩机入口裂解气中的水为入口温度 和压力条件下的饱和水含量,在压缩 过程中国。随压力升高,可在冷凝期 间分离出部分水分。通常,出口压力 P=3.5~3.7MPa,冷至15℃后饱和水 含量(600~700)X10-6
危害和脱水要求


危害有二: 1.水在低温下结冰; 2.在加压低温条件下:生成CH4· 6H2O, C2H6· 7H2O, C3H8· 8H2O白色结晶水合物堵 塞设备。 要求: 将裂解气水含量降至1X10-6以下(质量分数) 即裂解气进入低温分离系统的露点<-70℃。
脱水方法:吸附Biblioteka 燥
适用与原料气中水含量低,而脱水后要求 干燥度高 3A分子筛的优点: 1.其是离子型极性吸附剂,对极性分子尤其 是水有极大的亲和性,易于吸附。可用于 裂解气和烃类干燥——烃的损失少; 2.也可减少高温再生由于形成聚合物或结焦 而使吸附剂性能劣化。



活性氧化铝的缺点: 1.会吸附C4不饱和烃,造成C4烯烃缺失, 影响操作周期 2.再生时易生成聚合物或结焦而使吸附剂性 能劣化。 因此裂解气脱水干燥吸附剂为3A分子筛, 设两个干燥剂罐,轮流进行干燥和再生。

第四章裂解气的净化与分离.

第四章裂解气的净化与分离.

2、净化与分离 A、目的 净化---除去③,主要为脱酸性气体、脱水、脱 炔; 分离---①、②、④ B、要求 据乙烯、丙稀用途而不同(表1-24.25)。 如,聚合用乙烯,丙稀要求高。在表124中,乙烯纯度要大于99.9%;在表1-25中, 丙烯纯度要大于98%。而用于次氯酸化法生产 环氧乙烷、环氧丙烷,则要求纯度较低的乙烯、 丙稀。
第四章
裂解气的净化与分离
任课教师:张玲
第四章
裂解气的净化与分离
第一节概述 一、裂解气的组成和分离要求 二、裂解气分离方法和深冷法流程 第二节裂解气预处理 一、酸性气体脱除 二、裂解气脱水 三、炔烃脱除 第三节压缩与制冷 一、裂解气压缩 二、裂解气分离系统能量利用 第四节精馏分离 一、脱甲烷塔 二、乙烯回收率 三、乙烯塔 四、丙烯塔 第五节裂解气深冷分离流程 一、三种流程工艺 二、三种流程比较
二、裂解气分离方法和深冷法流程
(重点讲)油吸收精馏分离法 1、油吸收精馏分离法 在裂解气中,除了H2、CH4以外的其余烃,用 溶剂油全部溶解吸收下来,然后用精馏法将各种 烃分离。
2、深冷分离法 ①、深冷 冷冻温度等于或者低于-100℃的,称深度冷冻, 简称“深冷”。 ②、深冷分离 在-100℃以下,除了H2、CH4以外的其余烃都冷 凝下来,然后在精馏塔内,据各组挥发度不同进行 多组分精馏分离。
第四章
裂解气的净化与分离
低级烃类 裂 解 气 的 组 成 及 分 离 方 法 1、组成 一、裂解气的组成 及分离要求 2、分离要求 深冷分离 二、裂解气分离方法简介 油吸收精馏分离 深冷操作的系统 组成 氢气 少量杂质
第四章
裂解气的净化与分离
第一节 概述
一、裂解气的组成和分离要求 1、组成
裂解气是复杂的混合物。 表1-23是表示轻柴油裂解气组成。

裂解气的净化与分离 PPT课件

裂解气的净化与分离 PPT课件
二甲基甲酰胺(DMF) N-甲基吡咯烷酮(NMP) 丙酮
2019/12/20
26
催化加氢法
将裂解气中乙炔加氢成为乙烯或乙烷, 由此达到脱除乙炔的目的
主反应: C2H2+H2
K1 C2H4+H1
副反应: C2H2+2H2 K2 C2H4+H2 mC2H2+nH2
C2H6+ H2 C2H6+( H2 - H1)
13
脱除酸性气体的方法
化学吸收法(酸碱中和)
吸收剂有:
NaOH溶液(碱洗法)、乙醇胺溶液、 N-甲基吡咯烷酮等
2019/12/20
14
2019/12/20
15
两段碱洗工艺流程
2019/12/20
16
乙醇胺脱出酸性气工艺流程
2019/12/20
17
二 脱水
2019/12/20
18
水的来源
稀释蒸汽、 急冷水、 脱酸碱洗
裂解气深冷分离工艺流程,包括许多个 操作单元。每个单元所处的位置不同,可以 构成不同的流程。
目前具有代表性三种分离流程是:顺序
分离流程,前脱乙烷分离流程和前脱丙烷分
离流程。 2019/12/20
41
产品规格
聚合级乙烯 乙烯含量(mol百分比)达到99.9%以上 甲烷和乙烷:1000ppm以下 丙稀:250ppm以下 杂质:10ppm以下 聚合级丙稀: 丙稀(mol百分含量)99.9%以上 丙烷:5000ppm以下 乙烯:50ppm以下 CO,CO2:5ppm以下 S,O:1ppm以下
各种有机产品的合成,对于原料纯度的要求是不同的。 所以分离的程度可根据后续产品合成的要求来确定。

裂解气的净化与分离

裂解气的净化与分离
ห้องสมุดไป่ตู้
1、乙烯、丙烯纯度降低 2、H2S:腐蚀设备管道;分子筛寿命降 低;使加氢脱炔用催化剂中毒 3、CO2:低温下结成干冰堵塞设备管道; 在生产聚乙烯等时酸性气体积累造成聚合 速度降低、聚乙烯的分子量降低
A
13
脱除酸性气体的方法
化学吸收法(酸碱中和)
吸收剂有:
NaOH溶液(碱洗法)、乙醇胺溶液、 N-甲基吡咯烷酮等
12.07.2020
A
14
12.07.2020
A
15
两段碱洗工艺流程
12.07.2020
A
16
乙醇胺脱出酸性气工艺流程
12.07.2020
A
17
二 脱水
12.07.2020
A
18
水的来源
❖ 稀释蒸汽、 ❖ 急冷水、 ❖ 脱酸碱洗
500-700ppm
12.07.2020
A
19
危害
❖ 低温下,水冻结成冰,而且与轻质烃形成白 色结晶水合物,如CH4·6H20、C2H6·7H20、 C3H8·7H20等。
12.07.2020
A
23
危害
❖ 少量乙炔、丙炔和丙二烯的存在严重地影响 乙烯、丙烯的质量。
❖ 乙炔的存在还将影响合成催化剂寿命,恶化 乙烯聚合物性能,若积累过多还具有爆炸的 危险。
❖ 丙炔和丙二烯的存在,将影响丙烯聚合反应 的顺利进行。
12.07.2020
A
24
脱炔方法
❖ 要求:
乙烯中:乙炔<5×10-6, 丙烯中:丙二烯< 1×10-5
丙炔<5×10-6
❖ 方法:
溶剂吸收法和催化加氢法
(mol分数)
12.07.2020

裂解气的净化1PPT课件

裂解气的净化1PPT课件
· 讲师: XXXX
· 时间:202X.XX.XX
75
1
整体 概述
一 请在这里输入您的主要叙述内容

请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
3
4
5
6
两段碱洗工艺流程
前脱乙烷流程
7
8
醇胺脱出酸性气工艺流程
9
缺优点点
碱洗法 碱碱不洗可再法生
消耗大
适除于黄酸酸油彻含问量题底低
废水处理量大
乙乙醇醇胺 胺法 法
吸设收备剂要可求再高生 吸适收用双酸烯含烃量再高生
100 压缩
112.034
脱 甲


脱 乙 烷 塔

97.00


0.066
107.504 0.284
0.40
47
48
3.6.3 脱甲烷塔(投资大、能耗多)
49
50
51
52
❖中压脱甲烷 : (1.05~1.25MPa)
53
54
3.6.4 乙烯塔
55
56
57
58
59
60
3.7 未来世界乙烯工业的发展趋势
复叠制冷循环
32
复叠制冷循环
33
3.6 裂解气的精馏分离系统
34
35
预分离后裂解气的组成
36
产品规格
37
38
3.6.1 分离流程的组织
39
40
顺序分离流程
41
前脱乙烷流程
42
前脱丙烷流程
43
44
3.6.2 分离流程的主要评价指标
45
46

有机工艺学--裂解气的分离与净化

有机工艺学--裂解气的分离与净化


裂解气的净化
(一)、酸性气体的脱除
1. 酸性气体的来源及危害
来源:
气体裂解原料带来的硫化物和二氧化碳; 液体原料中硫化物高温下与H2/H2O反应产物; 烃或炭在高温下与水蒸气反应; 混入的氧气。
危害:
eH2S腐蚀设备,使脱水分子筛中毒、脱炔的钯催 化剂中毒; eCO2低温转化为干冰,堵塞设备; eCO2和硫化物影响烯烃聚合催化剂的活性; eCO2和H2S的存在,降低烯烃的有效压力,从而 影响聚合速度和聚合物分子量分布
(7)二种脱炔方法的比较 表3-19 溶剂法和催化加氢脱乙炔的比较
项 目 流程 投资 乙炔含量高 乙炔含量低 操作费 乙炔含量高 乙炔含量低 相对设备费 生产成本 公用工程费 操作苛刻度 产品污染可能性 能否回收乙炔 适用场合 溶 剂 吸 收 复杂 大致相等 少 较低 低 1 1 1 大 大 能 乙炔含量高 催 化 加 氢 简单 大致相等 基准 基准 基准 0.5 0.96 0.54 小 小 不能 乙炔含量低
前加氢工艺钯系和非钯系催化剂对比
钯系 非钯系 多(5~20%)
金属用量 (对载体) 加氢活性 选择性 空速 对C4=组分的敏感性 对S和CO的敏感性
少(0.04~0.2%)
高,在较低温度下 稍差,在较高温度下 进行 进行 好,乙烯损失少 稍差 大,催化剂用量少 稍小,催化剂用量大 丁二烯易聚合 可暂时中毒 丁二烯含量可小于3% 适量尚可提高选择性
(二)、干燥脱水
1.水分存在的危害
裂解气压缩机出口压力3.3~3.7MPa,温度为15℃,饱和 水分600~700μg/g
深冷分离时会形成冰,与轻质烃形成水合物,H2中 含水会影响加氢效果,深度脱水不大于1μg/g, 裂解气露点不大于-70℃

第四章裂解气的净化与分离

第四章裂解气的净化与分离

2、净化与分离 A、目的 净化---除去③,主要为脱酸性气体、脱水、脱 炔; 分离---①、②、④ B、要求 据乙烯、丙稀用途而不同(表1-24.25)。 如,聚合用乙烯,丙稀要求高。在表124中,乙烯纯度要大于99.9%;在表1-25中, 丙烯纯度要大于98%。而用于次氯酸化法生产 环氧乙烷、环氧丙烷,则要求纯度较低的乙烯、 丙稀。
将富集于C2馏分中,甲基乙炔和丙二烯(简称 MAPD)将富集于C6馏分。 危害:
炔烃影响乙烯和丙烯衍生物生产过
程。
影响催化剂寿命;恶化产品质量
形成不安全因素;产生不希望的副产品
脱炔要求:炔<5×10-6,丙二烯< 5×10-5 脱炔方法:溶剂吸收法和催化加氢法 溶剂吸收法 • 吸收裂解气中的乙炔,同时回收一定量的 乙炔 • 常用的溶剂 二甲基甲酰胺(DMF) N-甲基吡咯烷酮(NMP) 丙酮
Na2CO3+H2O Na2S+2H2O
碱洗工艺流程说明
塔分三段: I段水洗塔为泡罩塔板 Ⅱ段和Ⅲ段为碱洗段填料层 碱液浓度由上而下降低: 新鲜碱液含量为18%~20%, Ⅱ段循环碱液NaOH含量约为5%~7% Ⅲ段循环碱液NaOH含量为2%~3%
碱洗工艺流程图
, 加 热 碱 器 液 ; 循 环 碱 泵 洗 ; 塔 ; 水 洗 循 环 泵 4523 1-
第四节
精馏分离
裂解气的精馏分离
精馏分离是深冷分离工艺的主体,其 目的是:把C1~C5的馏分逐一分开,对产品乙 烯、丙烯进行提纯精制。 精馏分离装置: 脱甲烷、 脱乙烷 、脱丙烷、脱 丁烷和乙烯丙烯产品塔
精馏分离方案
脱甲烷→脱乙烷→脱丙烷 脱乙烷→脱甲烷→脱丙烷
顺序分离流程 前脱乙烷流程
脱丙烷→脱甲烷→脱乙烷

乙烯的生产—裂解气的分离流程的组织

乙烯的生产—裂解气的分离流程的组织
对乙炔选择性高、吸收容量大,乙炔纯度达99.9% 以上,乙烯中含乙
炔<1μg/g,产品回收率达98%。
项目二 乙烯的生产 石油化工产品生产技术
流裂 任程解 务的气 五组分
织离
知识点3:裂解气的压缩
1.压缩的原因
需要大量冷量和耐低温设备 常压下,冷凝精馏分离温度低
裂解气常压下沸点很低
常压下沸点
解决办法
1.压缩的原因
为什么要多段压缩? 压缩后的气体温度必须要限制
✓ 原因:裂解气压缩是绝热过程,压力升高,温度升高。 ✓避免压缩过程温升过大造成裂解气中双烯烃尤其是 丁二烯之类的二烯烃在较高的温度下发生大量的聚 合,以至形成聚合物堵塞叶轮流道和密封件。 ✓生产上通过裂解气的多段压缩和段间冷却结合的方 法实现。(压缩机出口温度一般不超过100 ℃,各段 入口温度一般为38 ~40 ℃。)
有水生成
影响加氢效果
水分带入低温 系统造成冻堵
二、脱水
危害
低温下,水冻结成冰,而且与轻质烃形成白色结晶水合物(高 压低温下稳定) ,如CH4·6H20、C2H6·7H20、C3H8·7H20等。 这些固体附着在管壁上,既增加动能消耗,又堵塞管道。
脱水方法
固体吸附法(分子筛、硅胶、活性氧化铝),目前广泛采用 效果较好的是分子筛吸附剂。
顺利进行。
四、脱炔
乙炔的脱除方法主要有溶剂吸收法和催化加氢法。
催化加氢脱炔
特点:不会带入任何新杂质;工艺操作简单;将炔烃变成产品烯烃
1、原理:
主反应: 副反应:
CH≡CH十H2→CH2=CH2 CH≡CH十2H2→CH3—CH3 CH2=CH2十H2→CH3—CH3
mC2H2+nH2→低聚物(绿油)

有机工艺学-裂解气的分离与净化

有机工艺学-裂解气的分离与净化

裂解气的应用价值
提供化工原料
裂解气中的烃类气体可作为化工原料,用于合成 氨、甲醇、乙烯等化工产品的生产。
燃料
裂解气中的烃类气体可作为燃料,如天然气、液 化石油气等,具有高效、清洁、环保等特点。
能源利用
裂解气中的氢气可用于燃料电池、炼油工业等领 域,具有高效、清洁的能源利用特点。
03
裂解气的分离技术
详细描述
压缩分离法是一种常用的气体分离技术,通过提高气体的压力,使气体中的各组分在高压下溶解度发生变化,从 而实现各组分的分离。该方法适用于从气体中分离出溶解度差异较大的组分,如烃类、二氧化碳等。
吸附分离法
总结词
利用吸附剂对不同组分的吸附能力差异,将气体中的不同组分吸附在吸附剂表面,从而实现分离。
未来展望
未来,随着环保意识的提高和新 能源技术的不断发展,有机工艺 学将在绿色合成、可再生能源等
领域发挥更加重要的作用。
02
裂解气的产生与特性
裂解气的定义与产生过程
裂解气的定义
裂解气是指在高温或化学试剂的作用下,将大分子烃类物质 裂解成小分子烃类物质,并伴随产生的一类气体混合物。
裂解气的产生过程
05
裂解气分离与净化的挑战与解决方案
技术瓶颈与难题
1 2
高温高压环境下的分离效率问题
裂解气需要在高温高压条件下进行分离,但这种 条件下分离效率往往较低。
杂质脱除与回收难题
裂解气中往往含有多种杂质,难以有效脱除和回 收。
3
能耗高、成本高
传统的分离与净化技术往往能耗高,成本也较高。
解决方案与创新技术
冷凝分离法
总结词
基于气体在不同温度下冷凝成液体的原理,通过降温将高沸点的组分冷凝下来,从而实 现分离。

裂解气的净化

裂解气的净化
一概述一裂解气的组成和分离要求二裂解气分离方法简介二酸性气体的脱除三脱水五裂解气的压缩一概述一裂解气的组成和分离要求裂解气净化与分离的任务就是除去裂解气中有害的杂质分离出单一烯烃产品或烃馏分为基本有机化学工业和高分子化学工业等提供原料
第三节 裂解气的净化与分离 思考题:
一、概述 (一)裂解气的组成和分离要求 (二)裂解气分离方法简介 二、酸性气体的脱除 三、脱水 四、脱炔 五、裂解气的压缩
一、概述 (一)裂解气的组成和分离要求 裂解气净化与分离的任务就是除去裂解气中有害的 杂质,分离出单一烯烃产品或烃馏分,为基本有机化 学工业和高分子化学工业等提供原料。 有些产品的生产要求使用高纯度的烯烃原料。很多 聚合级产品的生产,对原料有很高的要求。例如,生 产聚乙烯、聚丙烯以及乙丙橡胶用的乙烯和丙烯,要 求纯度要达到99.9%。为了获得这样高纯度的产品, 必须对裂解气进行净化和分离。 裂解气是从裂解装置送来的氢气和C1~C5烷烃、 烯烃、炔烃,以及杂质性气体混合物。
• 第四节 裂解气深冷分离流程 • 思考题: • 一、深冷分离流程 生产流程的确定要考虑基建投资、能量消耗、 运转周期、生产能力、产品成本以及安全生产等 各方面的因素。有了工艺以后,怎样实现工艺问 题就属于工程上的问题。 • 1、三种深冷分离流程 • 2、三种深冷分离流程的比较 • 二、脱甲烷塔及操作条件 • 三、乙烯塔和丙烯塔 • 四、影响乙烯回收率诸因素
• 一、深冷分离流程 1、三种深冷分离流程 • 典型的深冷分离流程,主要有: • 顺序分离流程; • 前脱乙烷流程; • 前脱丙烷流程三种。 • 以下分别介绍这三种流程。 • (1)顺序分离流程(简图) 顺序分离流程见图1-34(P73)。
分子筛吸附了水分以后,用加热的方法可以使水分脱附出来,达到再生的目的,以便 重新用来脱水。 为了促进脱附,可以用氮气(N2)、氢气(H2)或者甲烷(CH4)加热以后作为分子筛的 再生载气。在温度高于80℃的时候就开始有比较好的再生效果。 分子筛吸附特性(规律): ①根据分子大小不同进行选择性吸附,如4A分子筛可吸附水、甲烷、乙烷分子,而3A 分子筛只能吸附水、甲烷分子,不能吸附乙烷分子; ②根据分子极性不同进行选择性吸附,由于分子筛是极性分子,优先吸附极性分子水 (水是强极性分子); ③根据分子的饱和程度不同进行选择性吸附,分子不饱和程度越大,越易被吸附,如分 子筛吸附能力:乙炔>乙烯>乙烷; ④根据分子的沸点不同进行选择性吸附,一般沸点越高,越易被吸附。

裂解气的净化与分离共87页文档

裂解气的净化与分离共87页文档

41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
裂解气的净化与分离
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固

有机工艺学--裂解气的分离与净化

有机工艺学--裂解气的分离与净化

洗塔
水洗塔
40
裂解
冷 却 器
冷 却 器
80

裂解
(二)、腐蚀及防腐 )、腐蚀及防腐
由于裂解气中含有H 由于裂解气中含有H2S、RSH、CO2、 RSH、 RCOOH、HCl,因而在急冷水、 RCOOH、HCl,因而在急冷水、工艺水及稀释蒸 汽发生系统构成H HCl腐蚀 腐蚀。 汽发生系统构成H2O-H2S-CO2-HCl腐蚀。 注氨、注碱和注缓蚀剂,PH=8~9为宜 为宜, 注氨、注碱和注缓蚀剂,PH=8~9为宜,太高易造 成急冷水乳化
石脑油 油洗塔气相负荷 水洗塔气相负荷 82% 96.8%
轻柴油 100% 100%
减压柴油 111.6% 107.6%
随着原料的变化,预分馏系统热负荷变化较处 随着原料的变化, 理量变化的幅度大得多,随着原料变重, 理量变化的幅度大得多,随着原料变重,废热锅炉 回收的高位能热量减少, 回收的高位能热量减少,相应急冷油和急冷水的热 负荷增加。 负荷增加。预分馏系统对不同裂解原料的操作弹性 主要取决于热量回收系统的设计, 主要取决于热量回收系统的设计,调整油洗塔塔釜 温度可以大大增加系统的操作弹性. 温度可以大大增加系统的操作弹性.
CO2H2S 裂解气 压缩
裂解
H2O 压缩 脱水
脱酸性气体
乙 冷冻 烯 精 馏 塔
CH4
丙 烯 精 馏 塔

脱CO
脱 脱 脱 乙 烷 塔 脱 丙 烷 脱 丁 烷
脱 甲 烷
C4 C5+

裂解气的净化
(一)、酸性气体的脱除 )、酸性气体的脱除
1. 酸性气体的来源及危害
来源: 来源:
气体裂解原料带来的硫化物和二氧化碳; 气体裂解原料带来的硫化物和二氧化碳; 液体原料中硫化物高温下与H 反应产物; 液体原料中硫化物高温下与H2/H2O反应产物; 烃或炭在高温下与水蒸气反应; 烃或炭在高温下与水蒸气反应; 混入的氧气。 混入的氧气。

裂解气的分馏与净化

裂解气的分馏与净化


急冷油用于发生稀释蒸汽

急冷水用于分离系统的工艺加热
3.4.2 预分馏主要过程--急冷
急冷的目的
终止裂解反应
回收废热
急冷的意义
决定清焦周期,甚至决定裂解炉的周期
影响全装置的能耗和原料的单耗
急冷方式
直接急冷 冷却介质(水、油)与裂解气直接接触,适用于极易结焦的重质烃
间接急冷 急冷锅炉 废热锅炉 用换热器回收大量的热量,冷却介质用高压水,以提高蓄热能力
清焦的化学反应和控制指标
C + O2 2C + O2 C + H2O
CO2 + Q 2CO + Q CO + H2+ Q
出口干气中CO+CO2含量低于 0.2%~0.5% 清焦结束
预分馏工艺过程
轻烃裂解装置的预分馏流程
原料
800~900℃ 裂解炉
200~300℃ 废热锅炉
急冷水 水洗塔
冷 却
裂解气 40℃

尽可能降低裂解气的温度

尽可能分馏出裂解气的重组分

在裂解气的预分馏过程中将裂解气中的稀释蒸汽以冷凝水的形式分离回收,用以
再发生稀释蒸汽

继续回收裂解气低能位热量
预分馏过程的作用

保证裂解气压缩机的正常运转,并降低裂解气压缩机的功耗,减少进入压缩分离系统的进料负


大大减少污水排放量

合理的热量回收
水直冷
乙、丙 丁烷
石脑油
较少 中等
较小
较少
中等
中等
较不易 较易
轻柴油
较多
较大
很多
较易

裂解气的预分馏及净化

裂解气的预分馏及净化

3.4 裂解气的预分馏及净化3.4.1裂解气预分馏的目的与任务(1)经预分馏处理,尽可能降低裂解气的温度,从而保证裂解气压缩机的正常运转,并降低裂解气压缩机的功耗。

(2)裂解气经预分馏处理,尽可能分馏出裂解气的重组分,削减进入压缩分别系统的进料负荷。

(3)在裂解气的预分馏过程中将裂解气中的稀释蒸汽以冷凝水的形式分别回收,用以再发生稀释蒸汽,从而大大削减污水排放量。

(4)在裂解气的预分馏过程中连续回收裂解气低能位热量。

通常,可由急冷油回收的热量发生稀释蒸汽,由急冷水回收的热量进展分别系统的工艺加热。

3.4.2预分馏工艺过程概述(1)轻烃裂解装置裂解气的预分馏过程(2)馏分油裂解装置裂解气预分馏过程馏分油裂解装置所得裂解气中含相当量的重质馏分,这些重质燃料油馏分与水混合后会因乳化而难于进展油水分别。

因此,在馏分油裂解装置中,必需在冷却裂解气的过程中先将裂解气中的重质燃料油馏分分馏出来,分馏重质燃料油馏分之后的裂解气再进一步送至水洗塔冷却,并分馏其中的水和裂解汽油。

3.4.3 裂解汽油与裂解燃料油(1) 裂解汽油烃类裂解副产的裂解汽油 C 至沸点 204O C 5以下的全部裂解副产物,也作为乙烯装置的副产品。

裂解汽油经一段加氢可作为高辛烷值汽油组分。

如需经芳烃抽提分别芳烃产品, 则应进展两段加氢,脱出其中的硫,氮,并使烯烃全部饱和。

(2) 裂解燃料油 烃类裂解副产的裂解燃料油是指沸点在200O C 以上的重组分。

其中沸程在 200-360O C 的馏分称为裂解轻质燃料油,相当于柴油馏分,但大局部为杂环芳烃,其中,烷基萘含量较高,可作为脱烷基制萘的原料,沸程在 360O C 以上的馏分称为裂解重质燃料油,相当于常压重油馏分。

除作燃料外,由于裂解重质燃料油的灰分低,是生产碳黑的良好原料。

3.4.4 裂解气的净化裂解气中含H 2 S 、CO 、H 2 2 O 、C 2 H 、CO 等气体杂质,来源主 2要有三方面:一是原料中带来;二是裂解反响过程生成;三是裂解气处理过程引入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结
3.6.1 裂解气的压缩
3.6.1 裂解气的压缩
3.6.2
3.6.2热泵 Nhomakorabea 热泵
复叠制冷循环
复叠制冷循环
复叠制冷循环
复叠制冷循环
3.6 裂解气的精馏分离系统
预分离后裂解气的组成
产品规格
3.6.1 分离流程的组织
顺序分离流程
前脱乙烷流程
前脱丙烷流程
3.6.2 分离流程的主要评价指标
两段碱洗工艺流程
前脱乙烷流程
醇胺脱出酸性气工艺流程
缺点 优点
碱洗法 碱洗法 碱不可再生
消耗大 适于酸含量低 除酸彻底 黄油问题 废水处理量大
乙醇胺法 乙醇胺法
设备要求高 吸收剂可再生 适用酸含量高 吸收双烯烃再生 易聚合
溶剂吸收法
nC2H4
3.6 压缩和制冷系统
3.6.1 裂解气的压缩
4.47 2.22
冷箱
2.25 9.88
100
压缩
112.034
脱 甲 烷 塔
脱 乙 烷 塔
乙 烯 塔
97.00
0.066 107.504 0.284 0.40
3.6.3 脱甲烷塔(投资大、能耗多)
中压脱甲烷 : (1.05~1.25MPa)
3.6.4 乙烯塔
3.7 未来世界乙烯工业的发展趋势
相关文档
最新文档