2019-2020学年高中数学 不等式解法(第1课时)学案新人教A版必修5.doc
【高中数学说课稿】人教A版数学必修5《一元二次不等式的解法(第一课时)》说课稿
一元二次不等式的解法(第一课时)说课稿
一、教材分析
1、教学内容
本节课是人教A版普通高中课程标准实验教科书数学必修5第三章第二节《一元二次不等式及其解法》第1课时。
2、教材地位和作用
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出本现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
3、教学目标
知识目标:正确理解一元二次不等式、一元二次方程、二次函数的关系。
熟练掌握一元二次不等式的解法。
能力目标:培养数形结合思想、抽象思维能力和形象思维能力。
思想目标:在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。
情感目标:通过具体情境,使学生体验数学与实践的紧密联系,感受数学魅力,激发学生求知欲望。
4、重难点
重点:一元二次不等式的解法。
难点:一元二次方程,一元二次不等式与二次函数的关系。
二、教法探讨
1、选择教法的原则和依据
根据学生的原有知识和现有的认知规律,以发展学生的能力和应试水平为原则。
2、教法选择
探究、启发诱导法,分层教学法。
重点以引导学生为主,让学生积极主动的参与到新知识的探究中去。
三、学法分析
结合本节内容和学生实际,适当引入研究性学习,采用讲练结合方法,通过阅读发现问题,分析探索,合作交流最终形成技能。
使学生在观察、思考、交流中体验数学学习的乐趣。
高中数学不等式2一元二次不等式及其解法第1课时一元二次不等式及其解法课后课时精练课件新人教A版必修5
(2)由题意,得14- +a2+ a+b= b=0, 0, 解得ba==--21, . ∴-x2+x-2<0,∴x2-x+2>0, ∴不等式 x2-x+2>0 的解集为 R.
10.已知 M 是关于 x 的不等式 2x2+(3a-7)x+3+a- 2a2<0 的解集,且 M 中的一个元素是 0,求实数 a 的取值范 围,并用 a 表示出该不等式的解集.
9.已知不等式 x2-2x-3<0 的解集为 A,不等式 x2+x -6<0 的解集为 B.
(1)求 A∩B; (2)若不等式 x2+ax+b<0 的解集为 A∩B,求不等式 ax2 +x+b<0 的解集.
解 (1)由 x2-2x-3<0,得-1<x<3, ∴A=(-1,3). 由 x2+x-6<0,得-3<x<2, ∴B=(-3,2),∴A∩B=(-1,2).
4.已知不等式 ax2-5x+b>0 的解集为{x|-3<x<2},则 不等式 bx2-5x+a>0 的解集为( )
A.x-13
1 <x<2
B.xx<-31 或x>21
C.{x|-3<x<2}
D.xx<-21 或x>31
解析 由题意可知,ax2-5x+b=0 的两个根分别为- 3,2,利用根与系数的关系可得,-3+2=5a,-3×2=ba, 解得 a=-5,b=30,则所求不等式可化为 30x2-5x-5>0, 即(2x-1)(3x+1)>0,解得 x<-13或 x>12.故选 B.
04课后课时精练
A 级:基础巩固练 一、选择题 1.函数 y= x2+x-12的定义域是( ) A.{x|x<-4 或 x>3} B.{x|-4<x<3} C.{x|x≤-4 或 x≥3} D.{x|-4≤x≤3}
高中数学 第三章 不等式 3.2 简单的分式不等式与高次不等式解法教学设计 新人教A版必修5(1)(
高中数学第三章不等式3.2 简单的分式不等式与高次不等式解法教学设计新人教A版必修5(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章不等式3.2 简单的分式不等式与高次不等式解法教学设计新人教A版必修5(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章不等式3.2 简单的分式不等式与高次不等式解法教学设计新人教A版必修5(1)的全部内容。
简单的分式不等式与高次不等式解法一、教学目标:掌握简单的分式不等式和高次不等式的解法; 二、教学重点:简单的分式不等式和高次不等式的解法三、教学难点:简单分式不等式与高次不等式的等价变形. 四、 教学过程: 1.分式不等式的解法 例1 解不等式:073<+-x x . 解法1:化为两个不等式组来解: ∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或⇔x ∈φ或37<<-x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x 。
解法2:化为二次不等式来解: ∵073<+-x x ⇔0)7)(3(<+-x x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x 变式1:解不等式073≤+-x x 解:073≤+-x x ⇔70)7)(3(-≠≤+-x x x 且⇔37≤<-x 原不等式∴的解集是{x| —7〈x ≤3}变式2:解不等式173<+-x x 解:}7{707100173173->∴->∴<+-⇔<-+-⇔<+-x x x x x x x x 原不等式的解集是归纳分式不等式的解法:(1) 化分式不等式为标准型:方法:移项,通分,右边化为0,左边化为)()(x g x f 的形式 (2) 将分式不等式转化为整式不等式求解如:()0()f x g x >⇔ 0)()(>x g x f ()0()f x g x <⇔0)()(<x g x f ()0()f xg x ≥⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ()0()f x g x ≤⇔⎩⎨⎧≠≤0)(0)()(x g x g x f 练习: 1.不等式0121>+-x x的解集是 。
2020学年高中数学第3章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法练习新人教A版必修5
第1课时 一元二次不等式的解法1.不等式6x 2+x -2≤0的解集为A.⎩⎨⎧⎭⎬⎫x |-23≤x ≤12)B.⎩⎨⎧⎭⎬⎫x |x ≤-23或x ≥12)C.⎩⎨⎧⎭⎬⎫x |x ≥12)D.⎩⎨⎧⎭⎬⎫x |x ≤-23)解析 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-23≤x ≤12).答案 A2.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎪⎫x -1a <0的解集为A.⎩⎨⎧⎭⎬⎫x |x <a 或x >1a B.{x |x >a }C.⎩⎨⎧⎭⎬⎫x |x >a 或x <1aD.⎩⎨⎧⎭⎬⎫x |x <1a 解析 ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a>a ,∴x >1a或x <a .答案 A3.不等式2x 2-x -1>0的解集是________.解析 由2x 2-x -1>0,得(x -1)(2x +1)>0,解得x >1或x <-12,从而得原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 ⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞)4.二次函数y =ax 2+bx +c (x ∈R)的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46则不等式ax 2+bx +c >0的解集是________.解析 由表格可知,函数的图象开口向上,且零点为x =-2,x =3,因此图象关于x=12对称,从而不等式ax 2+bx +c>0的解集为(-∞,-2)∪(3,+∞). 答案 (-∞,-2)∪(3,+∞)5.已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎨⎧⎭⎬⎫x |x <-2或x >-12),则ax 2-bx +c>0的解集为________.解析 由题意,-2,-12是方程ax 2+bx +c =0的两个根且a <0,故⎩⎪⎨⎪⎧-2+⎝ ⎛⎭⎪⎫-12=-b a(-2)×⎝ ⎛⎭⎪⎫-12=c a, 解得a =c ,b =52c .所以不等式ax 2-bx +c >0即为2x 2-5x +2<0, 解得12<x <2,即不等式ax 2-bx +c >0的解集为⎩⎨⎧⎭⎬⎫x |12<x <2.答案 ⎩⎨⎧⎭⎬⎫x |12<x <2[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.(2016·全国Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B = A.⎝⎛⎭⎪⎫-3,-32B.⎝⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 解析 由题意得,A ={x |1<x <3},B =⎩⎨⎧⎭⎬⎫x |x >32),则A ∩B =⎝ ⎛⎭⎪⎫32,3.答案 D2.设-1<a <0,则关于x 的不等式(x -a )(ax -1)>0的解集为A.⎩⎨⎧⎭⎬⎫x |x <a 或x >1a B.{x |x >a }C.⎩⎨⎧⎭⎬⎫x |1a<x <aD.⎩⎨⎧⎭⎬⎫x |x <1a 解析 ∵-1<a <0,∴(x -a )(ax -1)>0可化为(x -a )·a ⎝⎛⎭⎪⎫x -1a >0,∴(x -a )⎝ ⎛⎭⎪⎫x -1a <0.又-1<a <0,∴a >1a,∴原不等式解集为1a<x <a .答案 C3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为 A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0, 所以-2<x <1. 答案 B4.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是A.(-∞,-1)∪(3,+∞)B.(-1,3)C.(1,3)D.(-∞,1)∪(3,+∞)解析 ∵关于x 的不等式ax -b >0的解集是(1,+∞),∴⎩⎪⎨⎪⎧a >0,a -b =0, 即⎩⎪⎨⎪⎧a >0,a =b . ∴不等式(ax +b )(x -3)>0⇔a (x +1)(x -3)>0⇔(x +1)(x -3)>0⇔x <-1或x >3. 答案 A5.已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >12,则f (10x)>0的解集为A.{x |x <-1或x >lg 2}B.{x |-1<x <lg 2}C.{x |x >-lg 2}D.{x |x <-lg 2}解析 由题意可知f (x )=-(x +1)(2x -1),则f (10x)=-(10x+1)(2·10x-1)>0, 即(10x+1)(2·10x-1)<0,∵10x+1>0,∴2·10x-1<0,解得x <-lg 2. 答案 D6.(能力提升)已知f (x )=(x -a )(x -b )+2(a <b ),且α,β(α<β)是方程f (x )=0的两根,则α,β,a ,b 的大小关系是A.a <α<β<bB.a <α<b <βC.α<a <b <βD.α<a <β<b解析 ∵α,β(α<β)是方程f (x )=0的两根,∴α,β为f (x )=(x -a )(x -b )+2的图象与x 轴交点的横坐标. ∵a ,b 为(x -a )(x -b )=0的根, 令g (x )=(x -a )(x -b ),∴a ,b 为g (x )的图象与x 轴交点的横坐标.由于f (x )的图象可由g (x )的图象向上平移2个单位得到,故选A. 答案 A二、填空题(每小题5分,共15分)7.若0<t <1,则不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为________.解析 ∵0<t <1,∴1t>1,所以(x -t )⎝ ⎛⎭⎪⎫x -1t <0的解集为⎩⎨⎧⎭⎬⎫x |t <x <1t ).答案 ⎩⎨⎧⎭⎬⎫x |t <x <1t )8.已知f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0,则不等式f (x )>x 的解集为________.解析 f (x )>x ⇔⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧0>x ,x =0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0⇔x >5或-5<x <0.∴不等式f (x )>x 的解集为(-5,0)∪(5,+∞). 答案 (-5,0)∪(5,+∞)9.(能力提升)关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为________.解析 ∵ax 2+bx +2>0的解集为{x |-1<x <2}, ∴⎩⎪⎨⎪⎧2a =-2,-b a =1,解得⎩⎪⎨⎪⎧a =-1,b =1,∴bx 2-ax -2>0,即x 2+x -2>0, 解得x >1或x <-2. 答案 {x |x >1或x <-2}三、解答题(本大题共3小题,共35分)10.(11分)解下列关于x 的不等式: (1)(7-x )(x +2)≥0;(2)-9x 2+3x -14≥0;(3)-12x 2+2x -5>0;(4)-2x 2+3x -2<0.解析 (1)原不等式化为(x -7)(x +2)≤0, 所以-2≤x ≤7.故所求不等式的解集为{x |-2≤x ≤7}.(2)原不等式化为9x 2-3x +14≤0,即⎝⎛⎭⎪⎫3x -122≤0,所以x =16. 故所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =16. (3)原不等式化为x 2-4x +10<0,即(x -2)2+6<0,故所求不等式的解集为∅.(4)原不等式化为2x 2-3x +2>0,即2⎝ ⎛⎭⎪⎫x -342+78>0.所以x ∈R.故所求不等式的解集为R.11.(12分)解关于x 的不等式:ax 2+(1-a )x -1>0(a ∈R). 解析 原不等式可化为(x -1)(ax +1)>0. (1)当a =0时,原不等式为x -1>0, 所以解集为{x |x >1}. (2)当a >0时,-1a<1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >1或x <-1a .(3)当a <0时,①当-1<a <0时,-1a>1.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <-1a .②当a =-1时,原不等式变为-(x -1)2>0, 所以解集为∅.③当a <-1时,-1a<1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-1a<x <1.12.(12分)已知不等式ax 2+bx +c >0的解集为{x |α<x <β},其中β>α>0,求不等式cx 2+bx +a <0的解集.解析 ∵ax 2+bx +c >0的解集为{x |α<x <β}, ∴α,β是方程ax 2+bx +c =0的两根,且a <0.∴αβ=c a ,α+β=-b a,∴c =aαβ,b =-a (α+β). ∵cx 2+bx +a <0,∴a αβx 2-a (α+β)x +a <0. 整理,得αβx 2-(α+β)x +1>0. ∵β>α>0,∴αβ>0,1α>1β,∴x 2-⎝⎛⎭⎪⎫1α+1βx +1αβ>0.∵方程x 2-⎝ ⎛⎭⎪⎫1α+1βx +1αβ=0的两根为1α,1β.∴x 2-⎝⎛⎭⎪⎫1α+1βx +1αβ>0的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1α或x <1β,即不等式cx2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1α,或x <1β.。
高中数学第三章不等式3.2.2一元二次不等式的解法(第1课时)练习(含解析)新人教A版必修5
高中数学第三章不等式3.2.2一元二次不等式的解法(第1课时)练习(含解析)新人教A 版必修5一、选择题:1.不等式-x 2-x +2≥0的解集为( )A .{x |x ≤2或x ≥1}B .{x |-2<x <1}C .{x |-2≤x ≤1}D .∅【答案】C【解析】:由-x 2-x +2≥0,得x 2+x -2≤0,即(x +2)(x -1)≤0,所以-2≤x ≤1,所以原不等式解集为{x |-2≤x ≤1}.2.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)【答案】B【解析】由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1. 3.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧a >0Δ>0B.⎩⎪⎨⎪⎧a >0Δ<0C.⎩⎪⎨⎪⎧a <0Δ>0D.⎩⎪⎨⎪⎧a <0Δ<0 【答案】D【解析】结合二次函数的图象,可知若ax2+bx +c <0,则⎩⎪⎨⎪⎧a <0Δ<0.4.若不等式ax 2+bx +2>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-14 【答案】D【解析】由已知得,ax 2+bx +2=0的解为-12,13.所以⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎪⎨⎪⎧a =-12,b =-2,所以a +b =-14.5.已知不等式ax 2+3x -2>0的解集为{x |1<x <b }.则a ,b 的值等于( )A .a =1,b =-2B .a =2,b =-1C .a =-1,b =2D .a =-2,b =1【答案】C【解析】 因为不等式ax 2+3x -2>0的解集为{x |1<x <b },所以方程ax 2+3x -2=0的两个根分别为1和b ,根据根与系数的关系,得1+b =-3a ,b =-2a,所以a =-1,b =2.6.设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B .[0,+∞)C.⎣⎢⎡⎭⎪⎫-94,+∞ D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)【答案】D【解析】由x <g (x ),得x <x 2-2,则x <-1或x >2;由x ≥g (x ),得x ≥x 2-2,则-1≤x ≤2.因此f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2,即f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x +122+74,x <-1或x >2,⎝ ⎛⎭⎪⎫x -122-94,-1≤x ≤2. 因为当x <-1时,y >2;当x >2时,y >8.所以 当x ∈(-∞,-1)∪(2,+∞)时,函数f (x )的值域为(2,+∞).当-1≤x ≤2时, -94≤y ≤0. 所以当x ∈[-1,2] 时,函数f (x )的值域为⎣⎢⎡⎦⎥⎤-94,0.综上可知,函数f (x )的值域为⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).二、填空题:7.设0<b <1+a .若关于x 的不等式(x -b )2>(ax )2的解集中的整数解恰有3个,则a 的取值范围为________. 【答案】(1,3)【解析】 原不等式转化为[(1-a )x -b ][(1+a )x -b ]>0,①当a ≤1时,结合不等式解集形式知不符合题意;②当a >1时,b 1-a <x <b a +1,由题意知0<ba +1<1,所以要使原不等式解集中的整数解恰有3个,则需-3≤b1-a<-2.整理,得2a -2<b ≤3a -3.结合题意b <1+a ,有2a -2<1+a .所以a <3,从而有1<a <3.综上可得a ∈(1,3).8.若0<t <1,则不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为________.【答案】⎩⎨⎧⎭⎬⎫x ⎪⎪⎪t <x <1t【解析】因为0<t <1,所以1t>1,所以(x -t )⎝ ⎛⎭⎪⎫x -1t <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |t <x <1t . 9.关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为________.【答案】{x |x >1或x <-2}【解析】 因为ax 2+bx +2>0的解集为{x |-1<x <2},所以⎩⎪⎨⎪⎧2a =-2,-b a =1,解得⎩⎪⎨⎪⎧a =-1,b =1.所以bx 2-ax -2>0,即x 2+x -2>0,解得x >1或x <-2.10.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________. 【答案】(-∞,1]【解析】 A ={x |3x -2-x 2<0}={x |x 2-3x +2>0}={x |x <1或x >2},B ={x |x <a }.若B ⊆A ,如图,则a ≤1.三、解答题 11.解下列不等式:(1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1; (3)x 2-2x +3>0. 【答案】见解析【解析】 (1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <2. (2)原不等式可化为2x 2-x -1≥0,所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-12或x ≥1.(3)因为Δ=(-2)2-4×3=-8<0, 故原不等式的解集是R. 12.解不等式组:-1<x 2+2x -1≤2. 【答案】见解析【解析】 原不等式组等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2, 即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0;由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.所以原不等式组的解集为{x |-3≤x <-2或0<x ≤1}, 13.设f (x )=(m +1)x 2-mx +m -1.(1)当m =1时,求不等式f (x )>0的解集;(2)若不等式f (x )+1>0的解集为⎝ ⎛⎭⎪⎫32,3,求m 的值. 【答案】见解析【解析】 (1)当m =1时,不等式f (x )>0为2x 2-x >0,因此所求解集为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.(2)不等式f (x )+1>0,即(m +1)x 2-mx +m >0,由题意知32,3是方程(m +1)x 2-mx +m =0的两根.因此⎩⎪⎨⎪⎧32+3=mm +132×3=mm +1⇒m =-97.。
高中数学 3.4基本不等式(一)全册精品教案 新人教A版必修5
3.4 基本不等式第一课时 基本不等式(一)一、教学目标(1)知识与技能:理解两个实数的平方和不小于它们之积的2倍的不等式的证明;理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释(2)过程与方法 :本节学习是学生对不等式认知的一次飞跃。
要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。
变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。
两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质(3)情感与价值:培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力二、教学重点、难点教学重点:两个不等式的证明和区别教学难点:理解“当且仅当a=b 时取等号”的数学内涵三、教学过程提问1:我们把“风车”造型抽象成图3.4-2.在正方形ABCD 中有4个全等的直角三角形.设直角三角形的长为a 、b ,那么正方形的边长为多少?面积为多少呢?22a b +) 提问2:那4个直角三角形的面积和是多少呢? (2ab )提问3:根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,222a b ab +≥。
什么时候这两部分面积相等呢?(当直角三角形变成等腰直角三角形,即a b =时,正方形EFGH 变成一个点,这时有222a b ab +=)1、一般地,对于任意实数 a 、b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。
提问4:你能给出它的证明吗?证明:222)(2b a ab b a +=-+ 0)(2>-≠b a ,b a 时当 0)(2=-=b a ,b a 时当所以 222a b ab +≥注意强调 (1) 当且仅当a b =时, 222a b ab += (2)特别地,如果,0,0>>b a 用a 和b 代替a 、b ,可得ab b a 2≥+,(0,0)2a b a b +≤>>,引导学生利用不等式的性质推导提问5:观察图形3.4-3,你能得到不等式0,0)2a b a b +≥>>的几何解释吗? 的算术平均数,为称b a b a ,2 .2+ . , 的几何平均数为b a ab 为两两不相等的实数,已知例c b a ,,1. . 222ca bc ab c b a ++>++求证:练习、已知:,0,0,0>>>c b a 求证:c b a cab b ac a bc ++≥++ , ,,, 2. 都是正数已知例d c b a .4 ))(( abcd bd ac cd ab ≥++求证: 例3、若1>>b a ,b a P lg lg ⋅=,)lg (lg 21b a Q +=,2lg b a R += 比较R P 、、Q 、的大小 例4、当1->x 时,求函数113)(2++-=x x x x f 的值域。
高中数学第三章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修5
B.a=2,b=-1
C.a=-2,b=2
D.a=-2,b=1
解析:因为不等式 ax2+3x-2>0 的解集为{x|1<x<b},所以 a<0,且
方程 ax2+3x-2=0 的两个根分别为 1 和 b.根据根与系数的关系,得
1+b=-3a,b=-2a,所以 a=-1,b=2.
答案:C
[随堂训练]
1.已知不等式
ax2-5x+b>0
的解集为x
x<-13或x>12,则不等式
bx2-5x+a>0 的解集为( )
A.x
-13<x<12
C.{x|-3<x<2}
B.x
x<-13或x>12
D.{x|x<-3 或 x>2}
综上所述: 当 a<0 或 a>1 时,原不等式的解集为{x|x<a 或 x>a2}; 当 0<a<1 时,原不等式的解集为{x|x<a2 或 x>a}; 当 a=0 时,原不等式的解集为{x|x≠0}; 当 a=1 时,原不等式的解集为{x|x≠1}.
解含参数的一元二次不等式应注意事项 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论; (4)若 ax2+bx+c>0(a>0)可分解为 a(x-x1)(x-x2)>0.讨论时只需比 较 x1,x2 大小即可.
3.若不等式 ax2+5x-2>0 的解集是x
1
2019年高中数学第三章不等式3.5绝对值不等式第一课时绝对值不等式(1)课件新人教A版必修5
2.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.当且仅当 (a-b) . (b-c)≥0 时,等号成立.
几 何 解 释 : 在 数 轴 上 ,a,b,c 所 对 应 的 点 分 别 为 A,B,C, 当 点 B 在 点 A,C 之 间 时 ,|a-c|=|a-b|+|b-c|. 当 点 B 不 在 点 A,C 之 间 时 :① 点 B 在 点 A 或 点 C 上 时,|a-c|=|a-b|+|b-c|;②点B不在点A,C上时,|a-c|<|a-b|+|b-c|. 应用:利用该定理可以确定绝对值函数的值域和最值.
(2)若关于x的不等式|x-1|-|x-2|≥a2+a+1(x∈R)的解集为空集,则实
数a的取值范围是( )
(A)(0,1)
(B)(-1,0)
(C)(-∞,-1) (D)(-∞,-1)∪(0,+∞)
解析:(2)由题意得(|x-1|-|x-2|)max<a2+a+1, 因为(|x-1|-|x-2|)max=2-1=1, 所以1<a2+a+1,
解得实数a的取值范围为(-∞,-1)∪(0,+∞).故选D.
题型三 绝对值三角不等式的综合考查
【例 3】 (1)已知 f(x)=|x+ 1 -a|+|x- 1 -a|+2x-2a(x>0)的最小值为 3 ,则实
x
x
2
数 a=
.
(1)解析:f(x)=|x+ 1 -a|+|x- 1 -a|+2x-2a|(x+ 1 -a)-(x- 1 -a)|+2x-2a=
根据绝对值的几何意义,可知 1 和 5 到点 1 和 2 的距离和为 2,所以不等式的解 22
高中数学 第三章 不等式 3.1 不等关系与不等式(第1课时)练习(含解析)新人教A版必修5-新人教
3.1《不等关系与不等式》(第1课时)一、选择题:1.设M =x 2,N =-x -1,则M 与N 的大小关系是( )A .M >NB .M =NC .M <ND .与x 有关 【答案】A【解析】 M -N =x 2+x +1=(x +12)2+34>0,∴M >N .2.若a <b <0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a |>|b |D .(12)a >(12)b 【答案】B【解析】 ∵a <b ,y =2x 单调递增,∴2a <2b,故选B . 3.已知a <0,-1<b <0,则下列各式正确的是( )A .a >ab >ab 2B .ab >a >ab 2C .ab 2>ab >a D .ab >ab 2>a 【答案】D【解析】 ∵-1<b <0,∴1>b 2>0>b >-1,即b <b 2<1,两边同乘以a 得,∴ab >ab 2>a .故选D .4.如果a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2D .ac (a -c )<0 【答案】C【解析】 ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A、B 、D 均正确.∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立.5.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b【答案】B【解析】 选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不等成立,故选B .6.下列各式中,对任何实数x 都成立的一个式子是( )A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C .1x 2+1≤1 D.x +1x≥2 【答案】C【解析】 A 中x >0;B 中x =1时,x 2+1=2x ;C 中任意x ,x 2+1≥1,故1x 2+1≤1;D 中当x <0时,x +1x≤0.7.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c【答案】D【解析】本题考查不等式的性质,a c -b d =ad -bccd,cd >0,而ad -bc 的符号不能确定,所以选项A 、B 不一定成立.a d -b c =ac -bddc,dc >0,由不等式的性质可知ac <bd ,所以选项D 成立.本题也可以对实数a 、b 、c 、d 进行适当的赋值逐一排查.8.设a =sin15°+cos15°,b =sin16°+cos16°,则下列各式正确的是( )A .a <a 2+b 22<b B .a <b <a 2+b 22C .b <a <a 2+b 22D .b <a 2+b 22<a【答案】B【解析】a =sin15°+cos15°=2sin60°,b =sin16°+cos16°=2sin61°,∴a <b ,排除C 、D 两项.又∵a ≠b ,∴a 2+b 22-ab =a -b22>0,∴a 2+b 22>ab =2sin60°×2sin61°=3sin61°>2sin61°=b ,故a <b <a 2+b 22成立.9.已知-1<a <0,A =1+a 2,B =1-a 2,C =11+a ,比较A 、B 、C 的大小结果为( ) A .A <B <C B .B <A <C C .A <C <B D .B <C <A【答案】B【解析】 不妨设a =-12,则A =54,B =34,C =2,由此得B <A <C ,排除A 、C 、D ,选B .具体比较过程如下:由-1<a <0得1+a >0,A -B =(1+a 2)-(1-a 2)=2a 2>0得A >B , C -A =11+a-(1+a 2)=-a a 2+a +11+a=-a ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +122+341+a>0,得C >A ,∴B <A <C .二、填空题:10.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. 【答案】x <y【解析】x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,∴x <y . 11.给出四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推得1a <1b成立的是________.【答案】①、②、④【解析】 1a <1b ⇔b -aab<0,∴①、②、④能使它成立.12.a ≠2、b ≠-1、M =a 2+b 2、N =4a -2b -5,比较M 与N 大小的结果为________. 【答案】M >N【解析】 ∵a ≠2,b ≠-1,∴M -N =a 2+b 2-4a +2b +5=(a -2)2+(b +1)2>0,∴M >N . 三、解答题13.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式. 【答案】见解析【解析】 设每天派出甲型卡车x 辆,乙型卡车y 辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数. (2)车队每天至少要运360 t 矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎩⎪⎨⎪⎧x +y ≤910×6x +6×8y ≥3600≤x ≤40≤y ≤7,即⎩⎪⎨⎪⎧x +y ≤95x +4y ≥300≤x ≤40≤y ≤7.14.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:关系的不等式. 【答案】见解析【解析】设需安排x 艘轮船和y 架飞机,则⎩⎪⎨⎪⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎪⎨⎪⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.15.设a >0,b >0且a ≠b ,试比较a a b b与a b b a的大小. 【答案】见解析【解析】 根据同底数幂的运算法则.a a b b a b b a =a a -b ·b b -a =(a b)a -b,当a >b >0时,ab >1,a -b >0,则(a b)a -b>1,于是a a b b>a b b a . 当b >a >0时,0<a b <1,a -b <0,则(a b)a -b>1,于是a a b b>a b b a.综上所述,对于不相等的正数a 、b ,都有a a b b>a b b a.。
2019-2020学年新人教A版必修一 不等式知识的综合应用 教案
重难点归纳1 应用不等式知识可以解决函数、方程等方面的问题,在解决这些问题时,关键是把非不等式问题转化为不等式问题,在化归与转化中,要注意等价性2 对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型,然后利用不等式的知识求出题中的问题典型题例示范讲解例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V的最大值(求解本题时,不计容器厚度)命题意图 本题主要考查建立函数关系式,棱锥表面积和体积的计算及用均值定论求函数的最值知识依托 本题求得体积V 的关系式后,应用均值定理可求得最值错解分析 在求得a 的函数关系式时易漏h >0技巧与方法 本题在求最值时应用均值定理解 ①设h ′是正四棱锥的斜高,由题设可得⎪⎪⎩⎪⎪⎨⎧=+='⋅+12222412214h a a a h a 消去)0(11:.2>+='a h a h 解得 ②由)1(33122+==h h h a V (h >0)得 2121)1(31=⋅=++=h h h h hh V 而 所以V ≤61,当且仅当h =h1即h =1时取等号 故当h =1米时,V 有最大值,V 的最大值为61立方米 例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明 |c |≤1;(2)证明 当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )命题意图 本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力知识依托 二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂错解分析 本题综合性较强,其解答的关键是对函数f (x )的单调性的深刻理解,以及对条件“-1≤x ≤1时|f (x )|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局技巧与方法 本题(2)问有三种证法,证法一利用g (x )的单调性;证法二利用绝对值不等式 ||a |-|b ||≤|a ±b |≤|a |+|b |;而证法三则是整体处理g (x )与f (x )的关系(1)证明 由条件当=1≤x ≤1时,|f (x )|≤1,取x =0得 |c |=|f (0)|≤1,即|c |≤1(2)证法一 依题设|f (0)|≤1而f (0)=c ,所以|c |≤1 当a >0时,g (x )=ax +b 在[-1,1]上是增函数,于是g (-1)≤g (x )≤g (1),(-1≤x ≤1) ∵|f (x )|≤1,(-1≤x ≤1),|c |≤1,∴g (1)=a +b =f (1)-c ≤|f (1)|+|c |=2, g (-1)=-a +b =-f (-1)+c ≥-(|f (-2)|+|c |)≥-2, 因此得|g (x )|≤2 (-1≤x ≤1);当a <0时,g (x )=ax +b 在[-1,1]上是减函数, g (-1)≥g (x )≥g (1),(-1≤x ≤1), ∵|f (x )|≤1 (-1≤x ≤1),|c |≤1∴|g (x )|=|f (1)-c |≤|f (1)|+|c |≤2综合以上结果,当-1≤x ≤1时,都有|g (x )|≤2证法二 ∵|f (x )|≤1(-1≤x ≤1)∴|f (-1)|≤1,|f (1)|≤1,|f (0)|≤1,∵f (x )=ax 2+bx +c ,∴|a -b +c |≤1,|a +b +c |≤1,|c |≤1,因此,根据绝对值不等式性质得 |a -b |=|(a -b +c )-c |≤|a -b +c |+|c |≤2, |a +b |=|(a +b +c )-c |≤|a +b +c |+|c |≤2,∵g (x )=ax +b ,∴|g (±1)|=|±a +b |=|a ±b |≤2,函数g (x )=ax +b 的图象是一条直线, 因此|g (x )|在[-1,1]上的最大值只能在区间的端点x =-1或x =1处取得,于是由|g (±1)|≤2得|g (x )|≤2,(-1<x <1))21()21(])21()21([])21()21([)2121(])21()21[()(,)21()21(4)1()1(:22222222--+=+-+--++++=--++--+=+=∴--+=--+=x f x f c x b x a c x b x a x x b x x a b ax x g x x x x x 证法三 当-1≤x ≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∵|f (x )|≤1,(-1≤x ≤1),∴|f )21(+x |≤1,|f (21-x )|≤1; 因此当-1≤x ≤1时,|g (x )|≤|f )21(+x |+|f (21-x )|≤2 (3)解 因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即g (1)=a +b =f (1)-f (0)=2 ①∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图象的对称轴,由此得-ab 2<0 ,即b =0 由①得a =2,所以f (x )=2x 2-1 例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2<a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1; (2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 解 (1)令F (x )=f (x )-x ,因为x 1,x 2是方程f (x )-x =0的根,所以F (x )=a (x -x 1)(x -x 2) 当x ∈(0,x 1)时,由于x 1<x 2,得(x -x 1)(x -x 2)>0,又a >0,得F (x )=a (x -x 1)(x -x 2)>0,即x <f (x )x 1-f (x )=x 1-[x +F (x )]=x 1-x +a (x 1-x )(x -x 2)=(x 1-x )[1+a (x -x 2)]∵0<x <x 1<x 2<a1,∴x 1-x >0,1+a (x -x 2)=1+ax -ax 2>1-ax 2>0 ∴x 1-f (x )>0,由此得f (x )<x 1(2)依题意 x 0=-ab 2,因为x 1、x 2是方程f (x )-x =0的两根,即x 1,x 2是方程ax 2+(b -1)x +c =0的根∴x 1+x 2=-ab 1- ∴x 0=-aax ax a x x a a b 2121)(22121-+=-+=,因为ax 2<1, ∴x 0<2211x a ax = 学生巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a )A ①③B ②④C ①④D ②③2 下列四个命题中 ①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若yx 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________3 某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1;(2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围参考答案1 解析 由题意f (a )=g (a )>0,f (b )=g (b )>0,且f (a )>f (b ),g (a )>g (b )∴f (b )-f (-a )=f (b )+f (a )=g (a )+g (b )而g (a )-g (-b )=g (a )-g (b )∴g (a )+g (b )-[g (a )-g (b )]=2g (b )>0,∴f (b )-f (-a )>g (a )-g (-b )同理可证 f (a )-f (-b )>g (b )-g (-a ) 答案 A2 解析 ①②③不满足均值不等式的使用条件“正、定、等”④式 |x -y |=|(x -2)-(y -2)|≤|(x -2)-(y -2)|≤|x -2|+|y -2|<ε+ε=2ε 答案 ④3 解析 由已知y 1=x 20;y 2=0 8x (x 为仓库与车站距离) 费用之和y =y 1+y 2=0 8x + x20≥2x x 208.0⋅=8当且仅当0 8x =x20即x =5时“=”成立 答案 5公里处 4 证明 (1)设g (x )=f (x )-x =ax 2+(b -1)x +1,且x >0∵x 1<2<x 2<4,∴(x 1-2)(x 2-2)<0,即x 1x 2<2(x 1+x 2)-4, 12)42(212)(212)()(2121)(21)11(21221212121210-=++->++-=++-+>-+=---⋅=-=x x x x x x x x x x a a b a b x 于是得(2)解 由方程g (x )=ax 2+(b -1)x +1=0可知x 1·x 2=a1>0,所以x 1,x2 1°若0<x 1<2,则x 2-x 1=2,∴x 2=x 1+2>2,∴g (2)<0,即4a +2b -1<0 ① 又(x 2-x 1)2=44)1(22=--a a b ∴2a +1=1)1(2+-b (∵a >0)代入①式得, 21)1(2+-b <3-2b② 解②得b <41 2°若 -2<x 1<0,则x 2=-2+x 1<-2∴g (-2)<0,即4a -2b +3<0③ 又2a +1=1)1(2+-b ,代入③式得 21)1(2+-b <2b -1④ 解④得b >47 综上,当0<x 1<2时,b <41,当-2<x 1<0时,b >47。
2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析
§3.4 基本不等式:ab ≤a +b2第1课时 基本不等式学习目标 1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一 算术平均数与几何平均数一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.两个正数的算术平均数不小于它们的几何平均数,即ab ≤a +b2. 几何解释 如图,AB 是圆O 的直径,点Q 是AB 上任一点,AQ =a ,BQ =b ,过点Q 作PQ 垂直于AB 且交圆O 于点P ,连接AP ,PB .则PO =AB 2=a +b2.易证Rt △APQ ∽Rt △PBQ ,那么PQ 2=AQ ·QB ,即PQ =ab .知识点二 基本不等式常见推论由公式a 2+b 2≥2ab (a ,b ∈R )和a +b2≥ab (a >0,b >0)可得以下结论:①a b +ba ≥2(a ,b 同号); ②21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).1.对于任意a ,b ∈R ,a 2+b 2≥2ab .( √ ) 2.n ∈N *时,n +2n ≥2 2.( √ )3.x ≠0时,x +1x≥2.( × )4.a >0,b >0时,1a +1b ≥4a +b.( √ )题型一 常见推论的证明例1 证明不等式a 2+b 2≥2ab (a ,b ∈R ). 证明 ∵a 2+b 2-2ab =(a -b )2≥0, ∴a 2+b 2≥2ab . 引申探究1求证a +b 2≥ab (a >0,b >0).证明 方法一a +b 2-ab =12[(a )2+(b )2-2a ·b ]=12·(a -b )2≥0,当且仅当a =b ,即a =b 时,等号成立. 方法二 由例1知,a 2+b 2≥2ab .∴当a >0,b >0时有(a )2+(b )2≥2a b , 即a +b ≥2ab , a +b2≥ab . 引申探究2证明不等式⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R ). 证明 由例1,得a 2+b 2≥2ab , ∴2(a 2+b 2)≥a 2+b 2+2ab ,两边同除以4,即得⎝⎛⎭⎫a +b 22≤a 2+b 22,当且仅当a =b 时,取等号. 反思感悟 (1)作差法与不等式性质在证明中常用,注意培养应用意识.(2)不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b 2成立的条件是不同的,前者要求a ,b 都是实数,后者要求a ,b 都是正数.跟踪训练1 当a >0,b >0时,求证:21a +1b ≤ab .证明 ∵a >0,b >0, ∴a +b ≥2ab >0, ∴1a +b ≤12ab,∴2ab a +b ≤2ab2ab=ab . 又∵2ab a +b =21a +1b ,∴21a +1b ≤ab (当且仅当a =b 时取等号). 题型二 用基本不等式证明不等式 例2 已知x ,y 都是正数. 求证:(1)y x +xy≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 证明 (1)∵x ,y 都是正数, ∴x y >0,yx >0, ∴y x +x y≥2 y x ·x y =2,即y x +xy≥2, 当且仅当x =y 时,等号成立. (2)∵x ,y 都是正数, ∴x +y ≥2xy >0,x 2+y 2≥2x 2y 2>0,x 3+y 3≥2x 3y 3>0, ∴(x +y )(x 2+y 2)(x 3+y 3) ≥2xy ·2x 2y 2·2x 3y 3=8x 3y 3, 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3, 当且仅当x =y 时,等号成立.反思感悟 利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②同向不等式相加是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式证明的可重新组合,形成基本不等式模型,再使用.跟踪训练2 已知a ,b ,c 都是正实数,求证:(a +b )(b +c )·(c +a )≥8abc . 证明 ∵a ,b ,c 都是正实数,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0, ∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ca =8abc ,即(a +b )(b +c )(c +a )≥8abc , 当且仅当a =b =c 时,等号成立. 题型三 用基本不等式比较大小例3 某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( ) A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2答案 B解析 第二年产量为A +A ·a =A (1+a ),第三年产量为A (1+a )+A (1+a )·b =A (1+a )(1+b ). 若平均增长率为x ,则第三年产量为A (1+x )2. 依题意有A (1+x )2=A (1+a )(1+b ), ∵a >0,b >0,x >0, ∴(1+x )2=(1+a )(1+b )≤⎣⎡⎦⎤(1+a )+(1+b )22,∴1+x ≤2+a +b 2=1+a +b 2,∴x ≤a +b2(当且仅当a =b 时,等号成立).反思感悟 基本不等式a +b2≥ab 一端为和,一端为积,使用基本不等式比较大小要擅于利用这个桥梁化和为积或者化积为和.跟踪训练3 设a >b >1,P =lg a ·lg b ,Q =lg a +lg b 2,R =lg a +b2,则P ,Q ,R 的大小关系是( ) A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q答案 B解析 ∵a >b >1,∴lg a >lg b >0, ∴lg a +lg b2>lg a ·lg b ,即Q >P .① 又a +b2>ab >0, ∴lga +b 2>lg ab =12(lg a +lg b ),即R >Q .② 综合①②,有P <Q <R .演绎:条件不等式的证明典例 (1)当x >0,a >0时,证明x +ax ≥2a ;(2)当x >-1时,证明x 2+7x +10x +1≥9.证明 (1)∵x >0,a >0,∴ax >0.由基本不等式可知,x +ax≥2x ·ax=2a . 当且仅当x =a 时,等号成立. (2)x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5.∵x >-1,∴x +1>0. ∴(x +1)+4x +1≥24=4,∴(x +1)+4x +1+5≥9,即x 2+7x +10x +1≥9.当且仅当x =1时,等号成立.[素养评析] 逻辑推理主要有两类:从特殊到一般,从一般到特殊,演绎就是从一般到特殊的一种推理形式.在本例中,“一般”指基本不等式a +b 2≥ab .当我们对a ,b 赋予特殊值.如令a =x ,b =ax ,就有x +ax≥2a ;①再令①中的x =x +1,a =4,就有x +1+4x +1≥2 4.基本不等式的应用关键就是给a ,b 赋予什么样的值.1.若0<a <b ,则下列不等式一定成立的是( ) A .a >a +b 2>ab >bB .b >ab >a +b2>aC .b >a +b 2>ab >aD .b >a >a +b2>ab答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b2>ab .∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b2>ab >a .2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.2xx 2+1≤1 D .x +1x≥2答案 C解析 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立;对于C ,x 2+1≥2x ,∴2xx 2+1≤1恒成立.故选C. 3.若四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d 2>bcB.a +d2<bcC.a +d 2=bcD.a +d 2≤bc答案 A解析 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d 2=b +c2>bc .4.lg 9×lg 11与1的大小关系是( ) A .lg 9×lg 11>1 B .lg 9×lg 11=1 C .lg 9×lg 11<1 D .不能确定 答案 C解析 ∵lg 9>0,lg 11>0, ∴lg 9×lg 11<⎝⎛⎭⎫lg 9+lg 1122=⎣⎡⎦⎤lg (9×11)22=⎝⎛⎭⎫lg 9922<⎝⎛⎭⎫lg 10022=1, 即lg 9×lg 11<1.5.设a >0,b >0,给出下列不等式: ①a 2+1>a ;②⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4; ③(a +b )⎝⎛⎭⎫1a +1b ≥4;④a 2+9>6a . 其中恒成立的是 .(填序号)答案 ①②③解析 由于a 2+1-a =⎝⎛⎭⎫a -122+34>0,故①恒成立; 由于a +1a ≥2,b +1b≥2,∴⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,当且仅当a =b =1时,等号成立,故②恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故(a +b )⎝⎛⎭⎫1a +1b ≥4,当且仅当a =b 时,等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.1.两个不等式a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式,对于“当且仅当…时,取等号”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b2=ab 时,也有a =b .2. 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.一、选择题1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立). 2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误; 对于B ,C ,当a <0,b <0时,显然错误;对于D ,∵ab >0,∴b a +ab ≥2b a ·ab=2, 当且仅当a =b 时,等号成立.3.已知m =a +1a -2(a >2),n =⎝⎛⎭⎫1222x - (x <0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =n D .m ≤n 答案 A解析 ∵m =(a -2)+1a -2+2≥2(a -2)·1a -2+2=4,n =222x -<22=4,∴m >n ,故选A.4.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .p =r <q C .q =r >p D .p =r >q答案 B解析 因为0<a <b ,所以a +b2>ab .又因为f (x )=ln x 在(0,+∞)上单调递增, 所以f ⎝⎛⎭⎫a +b 2>f (ab ),即p <q .而r =12(f (a )+f (b ))=12(ln a +ln b )=12ln(ab )=ln ab , 所以r =p ,故p =r <q ,故选B.5.已知a ,b ∈(0,+∞),则下列不等式中不成立的是( ) A .a +b +1ab≥2 2 B .(a +b )⎝⎛⎭⎫1a +1b ≥4 C.a 2+b 2ab ≥2abD.2ab a +b>ab 答案 D 解析 a +b +1ab ≥2ab +1ab ≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时,等号成立,B 成立; ∵a 2+b 2≥2ab >0,∴a 2+b 2ab ≥2ab ,当且仅当a =b 时,等号成立,C 成立;∵a +b ≥2ab ,且a ,b ∈(0,+∞), ∴2ab a +b ≤1,2aba +b≤ab , 当且仅当a =b 时,等号成立,D 不成立. 6.下列说法正确的是( )A .若x ≠k π,k ∈Z ,则⎝⎛⎭⎫sin 2x +4sin 2x min =4 B .若a <0,则a +4a≥-4C .若a >0,b >0,则lg a +lg b ≥2lg a ·lg bD .若a <0,b <0,则b a +a b ≥2答案 D解析 对于A ,x ≠k π,k ∈Z ,则sin 2x ∈(0,1].令t =sin 2x ,则y =t +4t ,函数y 在(0,1]上单调递减,所以y ≥5,即sin 2x +4sin 2x ≥5,当sin 2x =1时,等号成立.对于B ,若a <0,则-a >0,-4a >0.∴a +4a =-⎣⎡⎦⎤(-a )+⎝⎛⎭⎫-4a ≤-4, 当且仅当a =4a ,即a =-2时,等号成立.对于C ,若a ∈(0,1),b ∈(0,1), 则lg a <0,lg b <0,不等式不成立. 对于D ,a <0,b <0,则b a >0,ab >0,∴b a +ab≥2b a ·ab=2, 当且仅当b a =ab ,即a =b 时,等号成立.二、填空题7.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t log a t +12.(填“>”“≥”“≤”或“<”) 答案 ≤解析 ∵a 2+a -2>0,∴a >1或a <-2(舍), ∴y =log a x 是增函数, 又t +12≥ t ,∴log a t +12≥log a t =12log a t . 8.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎫a +b 22;③a +b 2≥ab a +b ;④a b +b a ≥2.其中恒成立的不等式是 . 答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎫a +b 22,可知②正确; 当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b =-12,可知③不正确;当a =1,b =-1时,可知④不正确.9.已知a >b >c ,则(a -b )(b -c )与a -c2的大小关系是 .答案(a -b )(b -c )≤a -c2解析 因为a >b >c ,所以a -b >0,b -c >0,所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立.10.设a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是 .(用“>”连接) 答案 m >p >n解析 ∵a >1,∴a 2+1>2a >a +1,∴log a (a 2+1)>log a (2a )>log a (a +1),故m >p >n . 三、解答题11.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .证明 ∵a ,b ,c 都是正数, ∴bc a ,ca b ,abc也都是正数, ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +abc ≥2b , 三式相加得2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ), 即bc a +ca b +abc≥a +b +c ,当且仅当a =b =c 时,等号成立.12.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b , ∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时,等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时,等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab. 由(1)知,1a +1b +1ab≥8, 故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab ≥9,当且仅当a =b =12时,等号成立.13.设0<a <1<b ,则一定有( )A .log a b +log b a ≥2B .log a b +log b a ≥-2C .log a b +log b a ≤-2D .log a b +log b a >2答案 C解析 ∵0<a <1<b ,∴log a b <0,log b a <0,-log a b >0,-log b a >0,∴(-log a b )+(-log b a )=(-log a b )+⎝⎛⎭⎫-1log a b ≥2,当且仅当ab =1时,等号成立,∴log a b +log b a ≤-2.14.设x ,y 为正实数,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥2(2+1) 答案 A解析 ∵x ,y 为正实数,且xy -(x +y )=1,xy ≤⎝⎛⎭⎫x +y 22,∴⎝⎛⎭⎫x +y 22-(x +y )-1≥0,解得x +y ≥2(2+1),当且仅当x =y =1+2时取等号.。
2019-2020年高中数学3.4基本不等式第1课时教案新人教A版必修5
019-2020年高中数学3.4基本不等式第1课时教案新人教A 版必修5【教学目标】1学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号 取等号的条件是:当且仅当这两个数相等;2 .过程与方法:通过实例探究抽象基本不等式;3 .情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【教学重点】 应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程; 【教学难点】基本不等式等号成立条件 【教学过程】 1.课题导入基本不等式的几何背景:探究:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色 的明暗使它看上去象一个风车,代表中国人民热情好客。
2合作探究(1)问题1 :你能在这个图案中找出一些相等关系或不等关系 吗?(教师引导学生从面积的关系去找相等关系或不等关。
系)提问2:我们把“风车”造型抽象成图在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的长为、,那么正方形的边长为多少?面积为多少呢?生答:,提问3: 那 4个直角三角形的面积和呢? 生答:提问4:好,根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等 式,。
什么时候这两部分面积相等呢?生答:当直角三角形变成等腰直角三角形,即时,正方形 EFGH 变成一个点,这时有结论:(板书)一般地,对于任意实数 、,我们有,当且仅当时,等号成立。
提问5:你能给出它的证明吗? (学生尝试证明后口答,老师板书)证明:a 2 b 2 -2ab = (a -b)2,当 a = b 时,(a -b)2 0,当 a = b 时,(a -b )2 = 0, 所以注意强调 当且仅当时,⑵ 特别地,如果a 0,b0,用 的和分别代替a 、b,可得a,也可写成'-品乞色步@0,b 0),引导学生利用不等式的性质推导(板书,请学生上台板演): 要证:①即证_______ ②要证②,只要证 ________ ③要证③,只要证 (- __________________ )④显然,④是成立的,当且仅当时,④的等号成立(3)观察图形3.4-3,得到不等式①的几何解释 两个正数的算术平均数不小于它们的几何平均数 探究:课本中的“探究”在右图中,AB 是圆的直径,点 C 是AB 上的一点,AC=a,BC=b 过点C 作垂直于 AB 的弦DE 连接AD BD 你能利用这个图形得出基本不等式的几何解释吗?易证 R t △ A C AR t △ D C B,那么 C D 2= C A- C B 即 C D=. 这个圆的半径为,显然,它大于或等于 CD 即,其中当且仅当与圆心重合,即a = b 时,等号成立.因此:基本不等式几何意义是“半径不小于半弦” 评述:1.如果把看作是正数 a 、b 的等差中项,看作是正数 a 、等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项即学即练:即(x + y ) (x 2+ y 2) (x 3 + y 3)>8 x 3y 3.变式训练:X> 0,当X 取何值时X +有最小值,最小值是多少 解析:因为X> 0,X + >2=21若且,则下列四个数中最大的是A. B.( C. 2ab) D. a2 a , b 是正数,则三个数的大小顺序是A. B. C.D.答案B C 例题分析:已知x 、y 都是正数,求证:(1) >2;(2) (x + y ) (x 2 + y 2) (x 3+ y 3)>8 x 3y 3.分析:在运用定理:时, 成立的条件),进行变形•解:••• x , y 都是正数 (1) = 2 即》2. (2) x + y >2> 02 2•••( x + y ) (x + y )(注意条件 a 、b 均为正数, 结合不等式的性质(把握好每条性质x 3+ y 2•••> 0,> 0, x2 2x + y >2> 03')>2 • 2 • 2=8> 0,3 3xy点C的当且仅当X =时即x=1时有最小值2点评:此题恰好符合基本不等式的用法,1正2定3相等 可以具体解释每一项的意思。
2019-2020年高中数学 不等式小结(一)全册精品教案 新人教A版必修5
2019-2020年高中数学 不等式小结(一)全册精品教案 新人教A 版必修5授课类型:复习课【教学目标】1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;【教学重点】不等式性质的应用,一元二次不等式的解法, 【教学难点】利用不等式加法法则及乘法法则解题。
【教学过程】1.本章知识结构2.知识梳理(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:(2)传递性:(3)加法法则:;d b c a d c b a +>+⇒>>,(4)乘法法则:;bd ac d c b a >⇒>>>>0,0(5)倒数法则:(6)乘方法则:)1*(0>∈>⇒>>n N n b a b a nn 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小--------作差法3、应用不等式性质证明(二)一元二次不等式及其解法一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:二次函数()的图象一元二次方程有两相异实根 有两相等实根 无实根R3.1、用不等式表示不等关系例1、某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装软件,根据需要,软件至少买3片,磁盘至少买2盒,写出满足上述不等关系的不等式。
例2、咖啡馆配制两种饮料,甲种饮料用奶粉、咖啡、糖,分别为9g 、4g 、3g ;乙种饮料用奶粉、咖啡、糖,分别为4g 、5g 、5g.已知买天使用原料为奶粉3600g,咖啡2000g,糖3000g 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 不等式解法(第1课时)学案新人教A
版必修5
学习目标 1. 掌握一元一次不等式的解法 2. 掌握一元二次不等式的解法
学习重点 归纳和掌握一元二次不等式的解法
学习难点 理解二次函数、一元二次方程与一元二次不等式解集的关系 学 习 内 容 学法指导 一. 知识点 1. 一元一次不等式
练习:(1)012>+-x (2)053≤-x
2.二次不等式
(1)a x >2
的解集为 ;a x <2
的解集为 (2)一元二次不等式的解法
ac b 42-=∆
的图像
)0(2>++=a c bx ax y
02=++c bx ax )0(>a 的根
02>++c bx ax )0(>a 的解集
02<++c bx ax )
0(>a 的解集
二.典型例题
注意二次项的系数的符号
例1 求下列不等式的解集
(1)15442>-x x (2)01032≤--x x (3)01562
>-+-x x
例2:求下列不等式的解集 (1)01442>+-x x (2)0322>-+-x x (3)252042
≤-x x
三.当堂练习----解下列不等式:
(1)02
>+x x (2)022
>+-x x (3)x x 22
->
(4)022
≥--x x (5)0122
<--x x (6)02522
>++x x
(7)06722
≤-+-x x (8)0132
<++x x (9)01222
≥-+x x
(10)0122
≤++x x (11)022
<+-x x (12)0132
>++x x
(13)04532
>-+-x x (14)0322
<++x x 因式分解
法:
判别式有
关的不等式。