风管阻力计算
风管阻力(1)
通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3; l ————风管长度,mRs————风管的水力半径,m;Rs=f/P f————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种:流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。
风管阻力计算方法介绍
风管阻力计算方法介绍☆风管阻力计算方法送风机静压Ps〔Pa〕按下式计算P S = P D + P A式中:P D——风管阻力〔Pa〕,P D = RL〔1 + K〕说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。
引荐的风管压力损失分配〔按局部阻力和磨擦阻力之比〕P D = R〔L + Le〕式中Le为一切局部阻力的当量长度。
PA——空气过滤器、冷热盘管等空调装置的阻力之和〔Pa〕☆引荐的风管压力损失分配〔按送风与回风管之阻力〕☆低速风管系统的引荐和最大流速m/s☆低速风管系统的最大允许流速m/s☆引荐的送风口流速m/s☆以噪声规范控制的允许送风流速m/s☆回作风栅的引荐流速m/s依据YORK公司产品手册整理2004年4月3日常用单位换算公式集合大全常用单位换算公式集合大全换算公式面积换算1平方公里〔km2〕=100公顷〔ha〕=247.1英亩〔acre〕=0.386平方英里〔mile2〕1平方米〔m2〕=10.764平方英尺〔ft2〕1平方英寸〔in2〕=6.452平方厘米〔cm2〕1公顷〔ha〕=10000平方米〔m2〕=2.471英亩〔acre〕1英亩〔acre〕=0.4047公顷〔ha〕=4.047×10-3平方公里〔km2〕=4047平方米〔m2〕1英亩〔acre〕=0.4047公顷〔ha〕=4.047×10-3平方公里〔km2〕=4047平方米〔m2〕1平方英尺〔ft2〕=0.093平方米(m2)1平方米〔m2〕=10.764平方英尺〔ft2〕1平方码〔yd2〕=0.8361平方米〔m2〕1平方英里〔mile2〕=2.590平方公里〔km2〕体积换算1美吉耳〔gi〕=0.118升〔1〕1美品脱〔pt〕=0.473升〔1〕1美夸脱〔qt〕=0.946升〔1〕1美加仑〔gal〕=3.785升〔1〕1桶〔bbl〕=0.159立方米〔m3〕=42美加仑〔gal〕1英亩·英尺=1234立方米〔m3〕1立方英寸〔in3〕=16.3871立方厘米〔cm3〕1英加仑〔gal〕=4.546升〔1〕10亿立方英尺〔bcf〕=2831.7万立方米〔m3〕1万亿立方英尺〔tcf〕=283.17亿立方米〔m3〕1百万立方英尺〔MMcf〕=2.8317万立方米〔m3〕1千立方英尺〔mcf〕=28.317立方米〔m3〕1立方英尺〔ft3〕=0.0283立方米〔m3〕=28.317升〔liter〕1立方米〔m3〕=1000升〔liter〕=35.315立方英尺〔ft3〕=6.29桶〔bbl〕长度换算1千米〔km〕=0.621英里〔mile〕1米〔m〕=3.281英尺〔ft〕=1.094码〔yd〕1厘米〔cm〕=0.394英寸〔in〕1英寸〔in〕=2.54厘米〔cm〕1海里〔n mile〕=1.852千米〔km〕1英寻〔fm〕=1.829〔m〕1码〔yd〕=3英尺〔ft〕1杆〔rad〕=16.5英尺〔ft〕1英里〔mile〕=1.609千米〔km〕1英尺〔ft〕=12英寸〔in〕1英里〔mile〕=5280英尺〔ft〕1海里〔n mile〕=1.1516英里〔mile〕质量换算1长吨〔long ton〕=1.016吨〔t〕1千克〔kg〕=2.205磅〔lb〕1磅〔lb〕=0.454千克〔kg〕[常衡] 1盎司〔oz〕=28.350克(g)1短吨〔sh.ton〕=0.907吨〔t〕=2000磅〔lb〕1吨〔t〕=1000千克〔kg〕=2205磅〔lb〕=1.102短吨〔sh.ton〕=0.984长吨〔long ton〕密度换算1磅/英尺3〔lb/ft3〕=16.02千克/米3〔kg/m3〕API度=141.5/15.5℃时的比重-131.51磅/英加仑〔lb/gal〕=99.776千克/米3〔kg/m3〕1波美密度〔B〕=140/15.5℃时的比重-1301磅/英寸3〔lb/in3〕=27679.9千克/米3〔kg/m3〕1磅/美加仑〔lb/gal〕=119.826千克/米3〔kg/m3〕1磅/〔石油〕桶〔lb/bbl〕=2.853千克/米3〔kg/m3〕1千克/米3〔kg/m3〕=0.001克/厘米3〔g/cm3〕=0.0624磅/英尺3〔lb/ft3〕运动粘度换算1斯〔St〕=10-4米2/秒〔m2/s〕=1厘米2/秒〔cm2/s〕1英尺2/秒〔ft2/s〕=9.29030×10-2米2/秒〔m2/s〕1厘斯〔cSt〕=10-6米2/秒〔m2/s〕=1毫米2/秒〔mm2/s〕动力粘度换算动力粘度1泊〔P〕=0.1帕·秒〔Pa·s〕1厘泊〔cP〕=10-3帕·秒〔Pa·s〕1磅力秒/英尺2〔lbf·s/ft2〕=47.8803帕·秒〔Pa·s〕1千克力秒/米2〔kgf·s、m2〕=9.80665帕·秒〔Pa·s〕力换算1牛顿〔N〕=0.225磅力〔lbf〕=0.102千克力〔kgf〕1千克力〔kgf〕=9.81牛〔N〕1磅力〔lbf〕=4.45牛顿〔N〕1达因〔dyn〕=10-5牛顿〔N〕温度换算K=5/9〔°F+459.67〕K=℃+273.15n℃=(5/9·n+32) °F n°F=[(n-32)×5/9]℃1°F=5/9℃〔温度差〕压力换算压力1巴〔bar〕=105帕〔Pa〕1达因/厘米2〔dyn/cm2〕=0.1帕〔Pa〕1托〔Torr〕=133.322帕〔Pa〕1毫米汞柱〔mmHg〕=133.322帕〔Pa〕1毫米水柱〔mmH2O〕=9.80665帕〔Pa〕1工程大气压=98.0665千帕〔kPa〕1千帕〔kPa〕=0.145磅力/英寸2〔psi〕=0.0102千克力/厘米2〔kgf/cm2〕=0.0098大气压〔atm〕1磅力/英寸2〔psi〕=6.895千帕〔kPa〕=0.0703千克力/厘米2〔kg/cm2〕=0.0689巴〔bar〕=0.068大气压〔atm〕1物理大气压〔atm〕=101.325千帕〔kPa〕=14.696磅/英寸2〔psi〕=1.0333巴〔bar〕传热系数换算1千卡/米2·时〔kcal/m2·h〕=1.16279瓦/米2〔w/m2〕1千卡/〔米2·时·℃〕〔1kcal/(m2·h·℃)〕=1.16279瓦/〔米2·开尔文〕〔w/(m2·K)〕1英热单位/〔英尺2·时·°F〕〔Btu/(ft2·h·°F)〕=5.67826瓦/〔米2·开尔文〕〔〔w/m2·K〕〕1米2·时·℃/千卡〔m2·h·℃/kcal〕=0.86000米2·开尔文/瓦〔m2·K/W〕热导率换算1千卡〔米·时·℃〕〔kcal/(m·h·℃)〕=1.16279瓦/〔米·开尔文〕〔W/(m·K)〕1英热单位/〔英尺·时·°F〕〔But/(ft·h·°F) =1.7303瓦/〔米·开尔文〕〔W/(m·K)〕比容热换算1千卡/〔千克·℃〕〔kcal/(kg·℃)〕=1英热单位/〔磅·°F〕〔Btu/(lb·°F)〕=4186.8焦耳/〔千克·开尔文〕〔J/〔kg·K〕〕热功换算1卡〔cal〕=4.1868焦耳〔J〕1大卡=4186.75焦耳〔J〕1千克力米〔kgf·m〕=9.80665焦耳〔J〕1英热单位〔Btu〕=1055.06焦耳〔J〕1千瓦小时〔kW·h〕=3.6×106焦耳〔J〕1英尺磅力〔ft·lbf〕=1.35582焦耳〔J〕1米制马力小时〔hp·h〕=2.64779×106焦耳〔J〕1英马力小时〔UKHp·h〕=2.68452×106焦耳1焦耳=0.10204千克·米=2.778×10-7千瓦·小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位功率换算1英热单位/时〔Btu/h〕=0.293071瓦〔W〕1千克力·米/秒〔kgf·m/s〕=9.80665瓦〔w〕1卡/秒〔cal/s〕=4.1868瓦〔W〕1米制马力〔hp〕=735.499瓦〔W〕速度换算1英里/时〔mile/h〕=0.44704米/秒〔m/s〕1英尺/秒〔ft/s〕=0.3048米/秒〔m/s〕渗透率换算1达西=1000毫达西1平方厘米〔cm2〕=9.81×107达西地温梯度换算1°F/100英尺=1.8℃/100米〔℃/m〕1℃/公里=2.9°F/英里〔°F/mile〕=0.055°F/100英尺〔°F/ft〕油气产量换算1桶〔bbl〕=0.14吨〔t〕〔原油,全球平均〕1万亿立方英尺/日〔tcfd〕=283.2亿立方米/日〔m3/d〕=10.336万亿立方米/年〔m3/a〕10亿立方英尺/日〔bcfd〕=0.2832亿立方米/日〔m3/d〕=103.36亿立方米/年〔m3/a〕1百万立方英尺/日〔MMcfd〕=2.832万立方米/日〔m3/d〕=1033.55万立方米/年〔m3/a〕1千立方英尺/日〔Mcfd〕=28.32立方米/日〔m3/d〕=1.0336万立米/年〔m3/a〕1桶/日〔bpd〕=50吨/年〔t/a〕〔原油,全球平均〕1吨〔t〕=7.3桶〔bbl〕(原油,全球平均)气油比换算1立方英尺/桶〔cuft/bbl〕=0.2067立方米/吨〔m3/t〕热值换算1桶原油=5.8×106英热单位〔Btu〕1吨煤=2.406×107英热单位〔Btu〕1立方米湿气=3.909×104英热单位〔Btu〕1千瓦小时水电=1.0235×104英热〔Btu〕1立方米干气=3.577×104英热单位〔Btu〕〔以上为1990年美国平均热值〕〔资料来源:美国国度规范局〕热当量换算1桶原油=5800立方英尺自然气〔按平均热值计算〕1立方米自然气=1.3300千克规范煤1千克原油=1.4286千克规范煤。
风管沿程阻力计算公式
风管沿程阻力计算公式
风管阻力是指风管内风流的摩擦阻力和弯曲阻力,计算风管沿程
阻力需要结合多个因素,如风管形状、风速、管道长度、管道内壁粗
糙度等。
一般来说,风管沿程阻力的计算公式包括:Darcy–Weisbach公式、Colebrook公式、Fanning公式等。
其中,Darcy–Weisbach公式比较
常用,其公式为:hf = f * (L/D) * (V^2/2g)。
其中,hf表示风管沿程阻力,f表示风管内的摩擦系数,L表示风管长度,D表示风管内直径,V表示风速,g表示重力加速度。
在实际应用中,为了更精确地计算风管沿程阻力,需要进行多次
实验和数据处理。
一般来说,可以利用CFD(计算流体动力学)软件进行模拟计算;也可以通过测试仪器测量风管内流体的速度、温度、压
力等参数,来计算阻力。
此外,在设计风管系统时,还需要充分考虑
风管的材料、管道的连接方式、管道附属设备等因素,以保证系统的
安全、稳定运行。
总之,风管沿程阻力计算是设计和优化风管系统的重要环节,应
该进行充分的实验和计算,并结合系统的实际情况,进行合理的改进
和调整,以确保系统的运行效率和稳定性。
风机计算_通风管道阻力计算
通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。
通风管道阻力计算
通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,m ;Rs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1.弯头布置管道时,应尽量取直线,减少弯头。
通风工程管道阻力计算
通风工程管道阻力计算通风工程中的管道阻力计算是重要的一项工作,它直接关系到系统的通风效果和节能效果。
本文将详细介绍通风工程中的管道阻力计算方法及其影响因素。
一、管道阻力计算方法:通风系统中的管道阻力是指空气在管道中流动时所遇到的阻力。
通常采用以下公式计算:ΔP=K×L×ρ×(V/3600)^2(1)其中,ΔP为管道阻力(Pa),K为阻力系数(Pa/m),L为管道长度(m),ρ为空气密度(kg/m³),V为风量(m³/h)。
阻力系数K是根据流量速度(m/s)和管道直径(m)来计算的。
对于圆形截面的管道,可以使用以下公式计算:K=(0.51+0.002D)×(V/D)^2(2)其中,D为管道直径(m),V为流量速度(m/s)。
二、影响因素:1.管道材质:不同材质的管道具有不同的内表面粗糙度,粗糙度越大,摩擦阻力越大,导致管道阻力增加。
2.管道长度:管道长度越长,空气流动经过的阻力表面越多,阻力增加。
3.管道直径:管道直径越大,流通面积越大,阻力减小。
4.管道弯头和弯管:弯头和弯管的存在会增加管道的阻力,尤其是对空气流动有较大影响的90度弯头。
5.风量:风量越大,管道阻力越大。
三、实际计算:1.根据风量和设计条件选择管道直径。
2.根据管道直径计算阻力系数K。
3.根据管道直径和长度计算总阻力。
4.根据管道阻力和所需风压,判断所选管道是否满足要求。
5.根据需要,可以进行多次迭代计算,直到找到满足要求的管道尺寸。
四、优化策略:1.尽量选择材质光滑、粗糙度低的管道,以减小阻力。
2.在管道设计中尽量减少弯头和弯管的使用,或者采取流线型弯头,以减小阻力。
3.如果风量较大,可以考虑分段设计,通过增加出风口数量来减小单个风口的风量,从而减小管道阻力。
4.在实际计算中可根据实验数据进行修正,以提高计算精度。
总结:通风工程中的管道阻力计算是一个复杂的过程,需要综合考虑管道材质、直径、长度、弯头等因素,并进行科学合理的计算和优化。
(完整版)管道阻力的基本计算方法
管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
通风管道阻力的计算与公式
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1.弯头布置管道时,应尽量取直线,减少弯头。
风管阻力计算方法
PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风% 90 80 70 60 50回风% 10 20 30 40 50☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0 空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8 加热排管 2.3 2.5 2.5 3.0 3.0 3.5 冷却排管 2.3 2.3 2.5 2.5 3.0 3.0 风机出口 6.0 8.5 9.0 11.0 10.0 14.0 主风管 4.0 6.0 6.0 8.0 9.0 11.0 支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0 支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0 ☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间 5.0 7.5 6.5 6.0 5.0 办公室、图书馆 6.0 10.0 7.5 8.0 6.1 大礼堂、戏院 4.0 6.5 5.5 5.0 4.0 银行、高级餐厅7.5 10.0 7.5 8.0 6.0 百货店、自助餐厅9.0 12.0 7.5 8.0 6.0 工厂12.5(上限) 15.0 9.0 11.0 7.5一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ———摩擦阻力系数ν———风管内空气的平均流速,m/s;ρ———空气的密度,Kg/m3;l———风管长度,mRs———风管的水力半径,m;Rs=f/Pf———管道中充满流体部分的横断面积,m2;P———湿周,在通风、空调系统中既为风管的周长,m;D———圆形风管直径,m。
(完整版)管道阻力的基本计算方法
管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
风管阻力计算
CSU625风机总风量为18000m 3/h ,从静压箱总共分三根风管,每根风管的风量为L=6000m 3/h(下图为其中一根风管)。
风管尺寸为1000*350,风口尺寸为800*300。
l=3470 1 l=2200 2 l=2200 3P v1 v2 v3v v v公式: Pq=Pd+Pj Pj=Pq-Pd-(Rm+Z)沿程阻力和局部阻力假设开口处全压为P ,各风口均匀送风,所以风管各处速度为:v1=4.76m/s v2=3.17m/s v3=1.59m/s风口速度为: v=2.32m/s1口静压为:P=Pj1+Pd1+Rm*l1=Pj1+212ρ⨯v +Rm ×l1 =Pj1+21.276.42⨯+0.1×3.47 (比摩阻查表得Rm=0.1) =Pj1+13.6+0.35Pj1=P-13.952口静压为:Pq2=Pq1-Rm*l2-Z2Pj2+ Pd2=Pj1+Pd1-(Rm*l2+Z2)Pj2=Pj1+Pd1-(Rm*l2+Z2)-Pd2Pj2=Pj1+212ρ⨯v -(Rm ×l2+ξ×212ρ⨯v )-222ρ⨯v (局部阻力系数ξ查表得ξ=0.016)Pj2=Pj1+2 1.276.42⨯-(0.1×2.2+0.016×2 1.276.42⨯)-21.217.32⨯ Pj2=P-13.95+13.6-0.44-6.33Pj2=P-7.123口静压为:Pq3=Pq2-Rm*l3-Z3Pj3+ Pd3=Pj2+Pd2-(Rm*l3+Z3)Pj3=Pj2+Pd2-(Rm*l3+Z3)-Pd3Pj3=Pj2+222ρ⨯v -(Rm ×l3+ξ×222ρ⨯v )-232ρ⨯v (局部阻力系数ξ查表得ξ=0.7)Pj3=Pj2+2 1.217.32⨯-(0.1×2.2+0.7×2 1.217.32⨯)-21.259.12⨯ Pj3=P-7.12+6.33-4.65-1.52Pj3=P-6.96从以上数据可以看出,三个送风口处的静压不相等,所以送风量也不相等。
风管阻力平衡计算
风管阻力平衡计算风管阻力平衡计算在空调、通风系统中具有重要意义。
通过进行风管阻力平衡计算,可以确保系统正常运行,保证室内空气流通和舒适度。
本文将介绍风管阻力平衡计算的基本原理和计算方法。
一、风管阻力平衡计算的基本原理风管阻力平衡计算是通过计算风管系统中的各个部分的阻力,以确保风量分配合理,保持系统的正常运行。
在风管系统中,风量会因为风管的长度、直径、形状、弯头等因素而发生变化,这些因素会造成风阻。
而风阻的大小会直接影响到风量的分配,进而影响系统的通风效果。
二、风管阻力平衡计算的基本步骤1. 确定系统的设计风量:根据建筑物的使用功能和面积,结合空气质量要求,确定系统的设计风量。
2. 制定风管系统布置图:根据建筑物的结构和布局,绘制风管系统的布置图,包括主干风管、分支风管和末端风口等。
3. 确定风管长度和直径:根据建筑物的布局和风管系统的布置图,确定各个风管段的长度和直径。
风管的长度和直径决定了风阻的大小。
4. 计算风管的阻力:根据风管的长度、直径和形状等参数,使用风管阻力计算公式,计算出各个风管段的阻力。
风管的阻力与风管材质、内壁光滑度等因素有关。
5. 进行风量分配计算:根据风管的阻力和系统的设计风量,进行风量分配计算。
根据风阻的大小,合理分配风量,使得各个风口的风量达到设计要求。
6. 进行压力平衡计算:根据风量分配计算的结果,计算出各个风管段的压力损失。
通过调整系统的风机静压,使得各个风管段的压力损失达到平衡,保证系统的正常运行。
三、风管阻力平衡计算的注意事项1. 考虑风管的净尺寸:在计算风管阻力时,要考虑风管的净尺寸,即风管内部的有效空间。
风管内部的隔板、支架等构件会对风阻产生影响,需要进行合理的修正计算。
2. 考虑风口的阻力:风口是风管系统的末端出口,也会对风阻产生影响。
在计算风管阻力平衡时,要考虑风口的阻力,并进行相应的修正计算。
3. 考虑风机的特性曲线:风机在不同工况下的风量和静压特性是根据实际测试得到的。
(完整版)管道阻力的基本计算方法
管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:242v R R s m(5—3) 式中Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s(5—4)式中D ——风管直径,m 。
对矩形风管)(2b a ab R s(5—5)式中a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力22v D R m (5—6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21D K (5—7)式中K ——风管内壁粗糙度,mm ;Re ——雷诺数。
vd Re(5—8) 式中υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
通风管道阻力计算
通风管道阻力计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,m;Rs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
风管沿程阻力估算
风管沿程阻力估算一、引言风管是在工业、建筑等领域中常见的输送气体的设备,其设计和运行过程中需要考虑到阻力对气流的影响。
本文将探讨风管沿程阻力的估算方法。
二、风管沿程阻力的意义风管沿程阻力是指气流在风管内传输过程中所受到的阻碍力,对于风管系统的设计和运行具有重要意义。
准确估算风管沿程阻力可以帮助我们选择合适的风机和调节设备,确保系统的正常运行。
三、风管沿程阻力的计算方法1. 风管沿程阻力的计算公式风管沿程阻力可以使用Darcy-Weisbach公式进行估算。
该公式表示为ΔP= f × (L/D) × (ρv^2/2),其中ΔP为风管沿程阻力,f 为阻力系数,L为风管长度,D为风管内径,ρ为空气密度,v为气流速度。
2. 阻力系数的确定阻力系数f是风管沿程阻力计算中的重要参数,其值取决于风管的形状、内壁粗糙度以及气流速度等因素。
对于光滑内壁的圆形风管,可以使用经验公式来估算阻力系数。
3. 风管长度的考虑风管沿程阻力与风管长度成正比,通常情况下,风管长度越长,阻力越大。
因此,在进行风管沿程阻力估算时,需要考虑风管的实际长度。
四、风管沿程阻力的影响因素1. 风管形状风管的形状对沿程阻力有重要影响。
圆形风管由于其光滑的内壁,相对于其他形状的风管具有较小的沿程阻力。
2. 风管内壁粗糙度风管内壁的粗糙度也会影响沿程阻力的大小。
对于粗糙的内壁,沿程阻力会增加。
3. 气流速度气流速度越大,风管沿程阻力越大。
因此,在设计风管系统时,需要合理选择气流速度,以满足系统的要求。
五、风管沿程阻力的应用风管沿程阻力的准确估算对于风管系统的设计和运行非常重要。
在实际应用中,我们可以根据风管长度、形状和内壁粗糙度等因素,结合阻力系数和气流速度,进行风管沿程阻力的估算。
六、总结风管沿程阻力的估算是风管系统设计和运行中的重要环节。
通过合理选择阻力系数和考虑风管长度、形状和内壁粗糙度等因素,可以准确估算风管沿程阻力,确保系统的正常运行。
风管单位长度摩擦阻力
风管单位长度摩擦阻力
根据我所了解的情况,风管单位长度的摩擦阻力是风管内部流体运动中的摩擦力。
摩擦阻力与流体的黏性、流速、管道直径和管道表面粗糙度等因素有关。
一般来说,当流速较高或管道直径较小、表面粗糙度较大时,摩擦阻力也会较大。
风管单位长度的摩擦阻力通常可以通过克劳齐-科尔莫哥洛夫方程进行计算。
该方程可以用来计算层流状态下风管的阻力:
f = (ΔP) /L = ( 4 * f * ρ * L * V^2 ) / (2 * D * ρ)
f为单位长度摩擦阻力,ΔP为风管两端的压强差,L为管道长度,V为流速,ρ为空气密度,D为管道直径。
需要注意的是,这个方程被广泛应用于风管工程计算中,但实际情况常常受到风管特性、空气流动情况和实际摩擦阻力系数的影响。
在实际应用中,通常需要根据具体的风管参数和实测数据进行修正和调整,以获得更准确的结果。
为了减小摩擦阻力,一些提高风管内壁平滑度的方法,如使用光滑的风管材料、进行管道内壁抛光等也是常用的做法。
通过优化风管设计和施工工艺,可以进一步提高风管的流体运动效率,减少摩擦阻力的损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通风管道阻力计算
对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。
对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。
可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。
否则别的就更不用考虑了。
管道内风量主要是由风管内阻力影响的。
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。
一:摩擦阻力(沿程阻力)计算
摩擦阻力(沿程阻力)计算一:(公式推导法)
根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D
以上各式中:
ΔPm———摩擦阻力(沿程阻力),Pa。
λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式:
其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】
莫台曲线图
表1-1 一般通风管道中K、Re、λ的经验取值
类别材料
新装风
管K值
旧用风管
K值
新装风管
Re值
旧用风管
Re值
新装风管
λ值
旧用风管
λ值
工业通风
镀锌板
(常用)
0.15 0.17 8×1042×104查图查图
材料K值范围Re值范围λ值范围
镀锌板0.15-0.18 8×103 -9×1040.017-0.034
PVC、PP板0.01-0.05 5×104 -4×1060.010-0.025
玻璃钢板、0.2-0.3 6×103 -6×1040.024-0.045
ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s)
类别风管材料干管支管室内进风口室内回风口新空气入口
工业建筑通风薄钢板6--14 2--8 1.5—3.5 2.5—3.5 5.5--6.5
ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】
表1-3 标准大气压、不同温度下的空气密度(℃)温度(℃)密度(Kg/m3)温度(℃)密度(Kg/m3)
0 1.239 35 1.146
5 1.270 40 1.128
10 1.248 50 1.093
15 1.226 60 1.060
20 1.205 70 1.029
25 1.185 80 1.000
30 1.165 90 0.973
L ———风管长度,m 【横断面形状不变的管道长度】
D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直
径:;圆形风管D为风管直径】
摩擦阻力(沿程阻力)计算二:(比摩阻法)
由以上计算看出计算V和D较容易而计算λ难度很大,所以我们选择查表更合适快捷。
风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D
摩擦阻力(沿程阻力)计算公式可改写为:ΔPm= Rs×L
为了便于工程设计计算, 人们对Rm的确定已作出了线解图, 设计时只需根据管内【(风量Q、流量当量直径D L、管壁粗糙度K)或(流速V、流速当量直径D V:管壁粗糙度K)由线解图上即可查出Rm值,】
摩擦阻力(沿程阻力)计算三:(综合摩擦阻力系数法)
由:摩擦阻力(沿程阻力):ΔPm=λν2ρL/2D
风管内空气的平均流速ν=Q/F,m/s;
设综合摩擦阻力系数K M =λρL/2DF2 ,N·S2/m8。
则摩擦阻力(沿程阻力):ΔPm= K M×Q2 采用此计算式更便于管道系统的分析及风机的选择,因此,在管网系统运行分析与调节计算时,多采用该计算式。
软件应用:
现在的科技发展出现了很多软件计算,所以沿程阻力计算请参考下列软件
二:局部阻力计算
当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)由于流动方向、速度、风量的改变而产生局部漩涡和撞击,也要产生阻力、损失能量称为局部损失。
一般由实验测出管件前后的全压差即局部阻力。
局部阻力计算:ΔPm=ξν2ρ/2
式中ξ——局部阻力系数(由于通风、空调系统中空气的流动都处于自模区,局部阻力系数ξ只取决于管件的形状,一般不考虑相对粗糙度和雷诺数的影响)。
局部阻力系数一般用实验方法确定。
有的还整理成经验公式,但必须注意ξ值所对应的气流速度。
常见的几种局部损失系数:
1》断面突然收缩及突然扩大公式:ξ=0.5η(1-A小/A大)
面积比性能值A小/A大
管件名称局部阻力系数
0.01 0.1 0.2 0.4 0.6 0.8 0.9 1.0
突然扩大ξ0.93 0.81 0.64 0.36 0.16 0.04 0.01 0
突然缩小ξ0.5 0.47 0.45 0.34 0.25 0.15 0.09 0
2》管道入口公式:ξ=0.5+0.303sinα+0.226sin2α
管件名称状态情况局部阻力系数一般取值
斜角入口边缘光滑ξ=0.2
直角入口边缘尖锐ξ=0.5
圆角入口边缘及其光滑ξ=0.05-0.1
3 》流入静止大容器的管道入口和弯管的局部阻力系数
管件名称计算公式局部阻力系数一般取值流入静止大容器
管道入口
ξ=(1-A小/A大)2 1.0
半S折管ξ=0.946 sin2 (α/2)+0.205sin4(α/2) 0.05-0.99
圆滑弯管ξ={0.131+0.163(D/R)2.5 }2α/π
4》其他局部阻力系数
名称性
能
性能参数对应的局部阻力计算
90度弯头公
式
ξ=0.131+0.163(D/R)2.5
D/R 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 ξ0.13 0.14 0.15 0.16 0.18 0.21 0.24 0.29 0.44 0.66 0.98 1.41 1.9
逐渐扩大公
式
ξ=λ{1-(1-A小/A大)2}/8sin(α/2)+K(1-A小/A大)α 2 4 6 8 10 12 14 16 20 23
ξ0.02 0.05 0.07 0.10 0.14 0.18 0.22 0.27 0.39 0.65
逐渐缩小公
式
ξ=λ{1-(1-A小/A大)2}/8sin(α/2)ξξ=0.005-0.05一般取0.01
风阀开
度
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ξ200 65 20 16 8.3 4 1.8 0.85 0.48 0.3
三通型式T型分流三通T型汇流三通Y型分流三通Y型汇流三通ξ 2.0 3.0 1.0 2.0
局部阻力计算软件参考下列软件:
此软件不包括特殊的消声器和消声弯头,故做此计算公式ΔPm=ξ5ν2r/g(Pa),设η=ξr. 则有ΔPm=η5ν2/g(Pa)
不同消声系列产品的η值。