全等三角形的判定条件学习教材PPT课件

合集下载

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

三角形全等的判定ppt课件

三角形全等的判定ppt课件

知4-讲
1. 基本事实:两角和它们的夹边分别相等的两个三角形全 等(可以简写成“角边角”或“ASA”).
感悟新知
2. 书写格式:如图12 . 2-8, 在△ ABC 和△ A′B′C′ 中, ∠ B= ∠ B′, BC=B′C′, ∠ C= ∠ C′, ∴△ ABC ≌△ A′B′C′( ASA).
第十二章 全等三角形
12.2 三角形全等的判定
感悟新知
知识点 1 基本事实“边边边”或“SSS”
知1-讲
1. 基本事实:三边分别相等的两个三角形全等(可以简写成 “边边边”或“SSS”). 这个基本事实告诉我们:当三角形的三边确定后, 其形状、大小也随之确定. 这是说明三角形具有稳定性的 依据.
感悟新知
感悟新知
知5-练
例5 如图12.2-11,AB=AE,∠ 1= ∠ 2,∠ C= ∠ D. 求证:△ ABC ≌△ AED.
感悟新知
思路引导:
知5-练
感悟新知
知5-练
技巧点拨:判定两个三角形全等,可采用执果 索因的方法,即根据结论反推需要的条件. 如本 题还缺少∠ BAC= ∠ EAD,需利用已知条件∠ 1= ∠ 2 进行推导.
感悟新知
知2-练
③以点M′为圆心,以MN 长为半径作弧,在∠ BAC 内 部交②中所画的弧于点N′; ④过点N′作射线DN′交BC 于点E. 若∠ B=52°,∠C=83°,则∠ BDE= ___4_5_°__.
感悟新知
知识点 3 基本事实“边角边”或“SAS”
知3-讲
1. 基本事实:两边和它们的夹角分别相等的两个三角形全 等(可以简写成“边角边”或“SAS”).
感悟新知
解:∵∠BAD=∠EAC, ∴∠BAD+∠CAD=∠EAC+∠CAD, 即∠BAC=∠EAD.

三角形全等的判定(共23张PPT)

三角形全等的判定(共23张PPT)

2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角
三角形全等吗?为什么?
3.两个直角三角形中,两直角边对应相等,这两个直角三角形全等 吗?为什么?
请你动手画一画
任∠意C'=画9出0°一,个RBt'C△'=ABBCC,,∠AC'B='9=0°AB.再. 画一个Rt△A'B'C',使得A
按照下面的步骤画Rt△A´B´C´: ⑴ 作∠MC´N=90°; ⑵ 在射线C´M上取段B´C´=BC;
求证:BD平分EF
B
F
A
E
G
C
D
变式训练2
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF
想想:BD平分EF吗?
(简写成“边角边”或“SAS”)
旧知回顾:我们学过的判定三角形全等的方法
(简写为“斜边、直角边”或“HL”)
证明:∵ AE⊥BC,DF⊥BC
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF
∴ Rt△ABC' ≌Rt△A'B'C' (HL)
(课本42)例:如图:AC⊥BC,BD⊥AD,AC=BD.
求证:BC=AD.
D
证明: ∵AC⊥BC,BD⊥AD,
∴∠C=∠D=90°
在Rt△ABC和Rt△BAD中, A
AB=BA AC=BD
∴Rt△ABC≌ Rt △BAD (HL)
∴BC=AD (全等三角形对应边相等)
⑶ 以B´为圆心,AB为半径画弧,交 射线C´N于点A´;
⑷ 连接A´B´.
B
NC
AA
∟ ∟
M
B
B
C

《三角形全等的判定》全等三角形PPT课件

《三角形全等的判定》全等三角形PPT课件
好的△ ′′′剪下来,放到△ 上,它们全等吗?
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你

《三角形全等的判定》PPT教学课件

《三角形全等的判定》PPT教学课件
就是AB的长.为什么? ∵ △ABC≌△EDC(AAS)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
∴DE=AB
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
补充练习
图中的两个三角形全等吗?请说明理由.
(1)
△ADC≌△ABC(ASA)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
探究新知
规律:
两角分别相等且其中一组等角的对边相 等的两个三角形全等(可以简写成“角角边” 或“AAS”).
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
探究新知
例:如下图,点D在AB上,点E在AC上,
AB=AC,∠B=∠C.求证:AD=AE.
激情,这是鼓满船帆的风.风有时会把 船帆吹断;但没有风,帆船就不能航 行.
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
角角边 (AAS)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
随堂练习
1.如图,AB⊥BC,AD ⊥ DC,垂足分别为B,D, ∠1= ∠2.求证: AB=AD.
证明: ∵ AB⊥BC,AD ⊥ DC ∴ ∠ B=∠D=90 ° 在△ABC和△ADC中,
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
补充练习
图中的两个三角形全等吗?请说明理由.
29°
29°
(2)
△AEC与△BCD不一定全等
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

全等三角形及性质PPT课件

全等三角形及性质PPT课件

角角边定理
两角和一边对应相等的两个三角 形全等,简称AAS。
若两个三角形有两个角相等,且 其中一个角的对边也相等,则这
两个三角形全等。
举例:若△ABC和△DEF中, ∠A=∠D,∠B=∠E,BC=EF,则
△ABC≌△DEF。
04
全等三角形与相似三角形关系
相似三角形定义及性质
定义:两个三角形如果它们 的对应角相等,则称这两个
行推导。
全等三角形在几何证明中作用
01
02
03
04
证明线段相等
通过全等三角形的对应边相等 来证明两条线段相等。
证明角相等
通过全等三角形的对应角相等 来证明两个角相等。
证明垂直关系
通过全等三角形的性质来证明 两条直线垂直。
证明平行关系
通过全等三角形的性质来证明 两条直线平行。
典型例题解析
例题1
已知△ABC和△DEF全等,且AB=DE,BC=EF,∠B=∠E。 求证:AC=DF。
HL全等(直角三角形)
在直角三角形中,斜边和一条直 角边分别相等的两个三角形全等 。
典型例题解析
解析
根据SAS全等的判定方法,已知两边和夹角分别相等,因 此可以判定△ABC和△DEF全等。
例2
已知△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC 于D,DE⊥AB于E,且AB = 6cm,求△DEB的周长。
边角边判定
如果两个多边形的一组对 应边和它们之间的对应角 都相等,则它们是全等的 。
角边角判定
如果两个多边形的一组对 应角和它们之间的夹边都 相等,则它们是全等的。
典型例题解析
1. 例题一
已知两个四边形ABCD和EFGH,其中AB=EF, BC=FG, CD=GH, DA=HE,且∠A=∠E, ∠B=∠F, ∠C=∠G, ∠D=∠H。求证:四边形ABCD与四边形EFGH全等。

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)
使用几何拼接条探究三个元素相等的三角形是否全等?1.用绿色、蓝色、橙色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?2.用红色、蓝色、黄色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?
三角相等:
三边相等:
基本事实一
如果两个三角形的三边对应相等,那么这两个三角形全等.
基本事实一可简记为“边边边”或“SSS”.
拓展提升
1.如图,已知AB=AE,AD=AC,BC=ED,BC,DE交于点O.求证:∠BAD=∠EAC.
证明:在△BAC和△EAD中,AB=AE,AC=AD,BC=ED.∴△BAC≌△EAD(SSS).∴∠BAC=∠EAD.∴∠BAC-∠DAC=∠EAD-∠DAC,即∠BAD=∠EAC.
归纳小结
能够完全重合的两个三角形叫做全等三角形.
全等三角形的性质:全等三角形的对应边相等,对应角相等.
探究一
新知探究
知识点1 边边边
通过作图探究一个元素相等能否判定两个三角形全等?
一条边相等:
一个角相等:
探究二
通过几何拼接条探究两个元素相等的三角形是否全等?
两条边相等:
两个角相等:
一边一角相等:
探究三
探究四
知识点2 三角形的稳定性
用拼接条制作三角形和四边形框架,并拉动它们,你发现了什么?
三角形的形状和大小是固定不变的,而四边形的会改变.
三角形所具有的这一性质叫做三角形的稳定性.四边形具有不稳定性.
在生活中,我们经常会看到应用三角形稳定性的例子.
在生活中,我们也经常会看到应用四边形不稳定性的例子.
随堂练习
1.已知:如图,AB=EF,AC=ED,BF=CD.求证:∠A=∠E.
证明:∵BF=CD,∴BF+FC=CD+FC∴BC=FD∵AB=EF,AC=ED∴△ABC≌△EFD(SSS)∴∠A=∠E.

全等三角形的判定ppt课件完整版

全等三角形的判定ppt课件完整版

注意事项
在证明过程中,需要注意两边和所夹 的角分别相等的条件必须同时满足, 且所夹的角必须是两边的夹角,否则 不能得出全等的结论。
角边角(ASA)判定定理证明
基本思路
证明方法
注意事项
如果两个三角形有两个角和它们的夹边 分别相等,则这两个三角形全等。
可以通过构造法或者余弦定理来证明。 构造法可以构造出两个三角形,然后通 过证明它们有两个角和夹边分别相等来 得出它们全等的结论。余弦定理可以通 过三角形的边角关系来证明两个三角形 有两个角和夹边分别相等,从而得出它 们全等的结论。
注意事项
在证明过程中,需要注意两个角和其 中一个角的对边分别相等的条件必须 同时满足,否则不能得出全等的结论。 同时,AAS和ASA的区别在于所给的条 件不同,但都可以用来判定两个三角 形是否全等。
04
全等三角形的应用举例
Chapter
在几何证明中的应用
证明线段相等
通过证明两个三角形全等,可以推出它们对应的边相等,从而证 明线段相等。
全等三角形的判定ppt课件完整版
目录
• 引言 • 全等三角形的判定方法 • 全等三角形判定定理的证明 • 全等三角形的应用举例 • 实验操作与探究 • 全等三角形判定的拓展与延伸
01
引言
Chapter
三角形的定义与性质回顾
三角形的定义
由不在同一直线上的三条线段首尾顺 次相接所组成的图形。
三角形的分类
在证明过程中,需要注意两个角和夹边 分别相等的条件必须同时满足,且所夹 的边必须是两个角的夹边,否则不能得 出全等的结论。
角角边(AAS)判定定理证明
基本思路
证明方法
如果两个三角形有两个角和其中一个 角的对边分别相等,则这两个三角形 全等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习:
2、如图,AE是平行四边形ABCD的高,将△ABE沿AD 方向平移,使点A与点D重合,点E与点F重合,则 △ABE≌_________ ° △DCF , ∠F=_________ 90
(第 2 题)
3、如图,点D是等腰直角三角形ABC内一点,AB=AC, 将△ABD绕点A逆时针旋转90°,点D与点E重合, AE △ACE , AD=_________ 则△ABD≌_________ , CE BD=_________ .
小结:有一组对应相等的元素,这两个三角形不全等
两组呢?
两组对应相等的元素,想一想,会有几种可能的 情况? 两角;两边;一角一边
按照下面的条件,用刻度尺或量角器画三角形,并和周围 的同学比较一下,所画的图形是否全等.
(1)
三角形的两个内角分别为30°和70°;
(2)
三角形的两条边分别为3cm和5cm;
一、定义: 全 等 三 角 形
能够完全重合的两个三角形叫做全等三角形
互相重合的顶点叫做对应顶点. 互相重合的边叫做对应边. 互相重合的顶点角叫做对应角
对于两个全等三角形来说,它的六个元素()有何关系呢?
练习:如图,点O是平行四边形ABCD的对角线的交点, COD △AOB绕O旋转180º ,可以与△__________ 重合, COD 这说明△AOB≌△___________. 这两个三角形的对应边 CO ,OB与______ OD ,BA与________ DC 是AO与______ ; ∠COD ∠ODC 对应角是∠AOB与______ ,∠OBA与_________, ∠DCO ∠BAO与___________.
( 3)
三角形的一个内角为60°,一条边为3cm;
这条长3cm的边是60°角的邻边;
( i)
( 3)
(ii)
三角形的一个内角为60°,一条边为3cm;
这条长3cm的边是60°角的对边.
讨论
小结:有两组对应相等的元素,这两个三角形不全等
也就是,如果只知道两个三角形有一组或两组对应相等 的元素(边或角),那么这两个三角形不一定全等 (甚至形状都不相同).
第3题
思考 如果两个三角形有三组对应相等的元素(边或角), 那么会有哪几种可能的情况?这时,这两个三角形 一定会全等吗?
(两边一角;两角一边;三角;三边)

全等三角形的对应边相等,对应角相等。
只知道两个三角形有一组或两组对应相等
的元素(边或角),那思考题: 分四种情况: (两边一角;两角一边;三角;三边) 分别作图(每样要求一种) 参考P69-75的(做一做)
(第 1 题)
全等三角形的对应边相等,对应角相等。
反之?
能否再减少一些条件? 对两个三角形来说,六个元素(三条边、三个角)中 至少要有几个元素分别对应相等,两个三角形才会 全等呢?
试一试:
1、如图:如果∠A=∠A’,那么 △ABC≌△A’B’C’吗?
2、如图:如果AB=A’B’ , 那么△ABC≌△A’B’C’吗?
相关文档
最新文档