数据挖掘WEKA实验报告4
weka实验总结
weka实验总结
Weka实验总结:
在数据挖掘和机器学习领域,Weka是一个广泛使用的开源软件工具,提供了
丰富的机器学习算法和数据预处理工具。
经过本次实验,我对Weka的功能和应用
有了更深入的了解。
首先,Weka提供了丰富的机器学习算法,包括分类、回归、聚类、关联规则等。
通过在实验中应用这些算法,我们可以通过输入数据来训练模型,然后利用模型对新数据进行预测和分类。
例如,在分类问题中,我们可以使用决策树算法来构建一个分类模型,然后利用该模型对未知数据进行分类。
其次,Weka还提供了数据预处理的功能,包括数据清洗、特征选择和特征变
换等。
在实验中我们可以使用Weka提供的数据预处理工具,对数据进行处理和准备。
例如,我们可以使用Weka中的缺失值处理工具来处理数据中的缺失值,在数
据清洗的过程中,我们还可以进行数据规范化、去除异常值等操作。
另外,Weka具有友好的用户界面,使得使用起来更加简单和直观。
无论是数
据导入、算法选择还是结果分析,Weka都提供了易于使用的界面。
这对于初学者
来说非常友好,也方便了快速上手和使用。
总之,Weka是一个功能强大且易于使用的数据挖掘和机器学习工具。
通过本
次实验,我发现Weka提供了丰富的算法和功能,能够满足不同实验和研究的需求。
我相信Weka将在我今后的学习和研究中发挥重要的作用。
weka实验报告总结
weka实验报告总结
Weka是一款非常流行的机器学习和数据挖掘工具,用于实现各
种数据分析任务。
下面是对Weka实验报告的总结:
在本次实验中,我们使用Weka工具进行了一系列的数据挖掘和
机器学习实验。
我们首先对数据集进行了探索性数据分析,包括数
据的统计特征、缺失值处理、异常值检测等。
通过这些分析,我们
对数据集的特点有了更全面的了解,并为后续的实验做好了准备。
接下来,我们使用Weka提供的各种机器学习算法进行了模型的
训练和评估。
我们尝试了多种算法,包括决策树、支持向量机、朴
素贝叶斯等。
通过对比不同算法在训练集和测试集上的表现,我们
评估了它们的性能,并选择了最合适的算法作为我们的模型。
在模型训练过程中,我们还进行了特征选择和特征工程的实验。
通过选择最相关的特征或者提取新的特征,我们尝试提高模型的性
能和泛化能力。
同时,我们还使用交叉验证等方法来评估模型的稳
定性和鲁棒性。
最后,我们对模型进行了性能评估和结果分析。
通过计算准确
率、召回率、F1值等指标,我们评估了模型的分类效果。
同时,我们还进行了误差分析,找出模型在分类错误的样本上的共同特征,以便进一步改进模型。
综上所述,本次实验中我们使用Weka工具进行了一系列的数据挖掘和机器学习实验。
通过探索性数据分析、模型训练和评估、特征选择和工程,以及性能评估和结果分析,我们得到了一个具有较好性能的模型,并对数据集有了更深入的理解。
这些实验为我们进一步研究和应用机器学习提供了有益的经验和启示。
weka实验报告
weka实验报告
Weka实验报告
Weka是一款流行的数据挖掘工具,它提供了丰富的机器学习算法和数据预处
理工具,使得数据分析和模型建立变得更加简单和高效。
在本次实验中,我们
将使用Weka工具进行数据分析和模型建立,以探索其在实际应用中的效果和
性能。
实验数据集选取了UCI机器学习库中的经典数据集“鸢尾花数据集”,该数据集
包含了150个样本,每个样本包括了4个特征和一个类别标签。
我们首先使用Weka进行数据预处理,包括缺失值处理、特征选择和数据变换等步骤,以保
证数据的质量和可用性。
接着,我们选择了几种常用的机器学习算法,包括决策树、支持向量机和K近
邻等,使用Weka进行模型建立和性能评估。
通过交叉验证和ROC曲线等方法,我们评估了不同算法在该数据集上的分类性能,并比较它们的准确度、召回率
和F1值等指标,以找出最适合该数据集的模型。
实验结果显示,Weka工具在数据预处理和模型建立方面表现出色,能够快速
高效地完成数据分析任务。
在鸢尾花数据集上,我们发现决策树算法和支持向
量机算法表现较好,能够达到较高的分类准确度和稳定性,而K近邻算法的性
能相对较差。
总的来说,Weka作为一款优秀的数据挖掘工具,具有丰富的功能和易用的界面,能够帮助用户快速建立和评估机器学习模型。
通过本次实验,我们对
Weka的性能和效果有了更深入的了解,相信它将在未来的数据分析工作中发
挥重要作用。
weka 数据挖掘实验报告
weka 数据挖掘实验报告Weka 数据挖掘实验报告引言数据挖掘是一种从大量数据中发现隐藏模式、关系和规律的技术。
Weka 是一款流行的开源数据挖掘软件,它提供了丰富的算法和工具,可以帮助用户进行数据挖掘分析。
本实验旨在使用Weka软件对一个真实数据集进行挖掘分析,并得出相关结论。
实验设计本次实验选择了一个关于房价预测的数据集,其中包含了房屋的各种属性(如面积、地理位置、建筑年代等)以及其对应的销售价格。
我们将使用Weka软件中的不同算法来对这个数据集进行挖掘分析,比较它们的效果和性能。
实验步骤1. 数据预处理:首先,我们对数据集进行了清洗和预处理,包括处理缺失值、标准化数据等操作,以确保数据的质量和一致性。
2. 特征选择:接着,我们使用Weka中的特征选择算法来确定哪些属性对于房价预测是最重要的,从而减少模型的复杂度和提高预测准确性。
3. 模型建立:然后,我们尝试了不同的机器学习算法(如决策树、支持向量机、神经网络等)来建立房价预测模型,并使用交叉验证等方法来评估模型的性能。
4. 结果分析:最后,我们对比了不同算法的预测效果和性能指标,得出了相关结论并提出了改进建议。
实验结果经过实验分析,我们发现决策树算法在这个数据集上表现较好,其预测准确性和泛化能力都较高。
而支持向量机和神经网络算法虽然在训练集上表现良好,但在测试集上的表现并不理想。
此外,特征选择对于模型的性能和复杂度也有着重要的影响。
结论与展望本实验通过Weka软件对房价预测数据集进行了挖掘分析,得出了不同算法的性能比较和结论。
未来,我们将进一步探索更多的数据挖掘技术和算法,以提高模型的预测准确性和实用性。
总结Weka 数据挖掘实验报告通过对房价预测数据集的挖掘分析,展示了Weka软件在数据挖掘领域的应用和优势。
通过本次实验,我们不仅对数据挖掘的流程和方法有了更深入的理解,也为未来的数据挖掘工作提供了一定的参考和借鉴。
数据挖掘WEKA实验报告
数据挖掘WEKA实验报告一、实验目的本次实验的目的是使用WEKA软件对一个数据集进行数据挖掘,并通过数据挖掘的方法来预测数据集中其中一特定变量的值。
二、实验流程1. 数据集的导入:首先,我们将数据集导入WEKA软件中。
在WEKA主界面中,选择“Explorer”选项,并在弹出的窗口中选择“Open File”选项,然后选择要导入的数据集文件即可。
2. 数据预处理:在导入数据集后,我们需要对数据集进行预处理。
预处理的目的是为了提高数据挖掘的准确性和可靠性。
在WEKA中,我们可以通过选择“Preprocess”选项进行数据预处理。
常见的数据预处理方法有缺失值处理、异常值处理、离散化、标准化等。
3. 数据分析与建模:在数据预处理完成后,我们需要进行数据分析和建模。
在WEKA中,我们可以使用分类、回归、聚类等方法进行数据分析。
在本次实验中,我们选择使用朴素贝叶斯分类器进行数据分析与建模。
在WEKA中,我们可以通过选择“Classify”选项,并在弹出的窗口中选择“NaiveBayes”选项来使用朴素贝叶斯分类器。
4.模型评估与优化:在完成数据分析与建模后,我们需要对模型进行评估与优化。
在WEKA中,我们可以使用交叉验证、混淆矩阵、ROC曲线等方法进行模型评估。
根据评估结果,我们可以对模型进行优化,以提高模型的准确性和可靠性。
5.结果可视化:最后,我们可以对挖掘结果进行可视化展示。
在WEKA中,我们可以使用图表和图形来展示挖掘结果。
根据可视化结果,我们可以更加直观地理解和分析挖掘结果。
三、实验结果与分析在本次实验中,我们选择了一个含有1000个样本的数据集,并使用朴素贝叶斯分类器进行数据挖掘。
经过数据预处理和模型评估,我们最终得到了一个准确率为80%的分类模型。
通过对模型进行优化,我们成功的预测了数据集中其中一特定变量的值。
四、实验总结通过本次实验,我们学习了如何使用WEKA软件进行数据挖掘。
WEKA是一个功能强大的数据挖掘工具,它提供了丰富的数据预处理和分析方法,可以帮助我们进行高效准确的数据挖掘。
数据挖掘weka实验报告
数据挖掘weka实验报告数据挖掘Weka实验报告引言:数据挖掘是一门利用统计学、人工智能和机器学习等技术从大量数据中提取有用信息的学科。
Weka是一款强大的数据挖掘工具,它提供了丰富的算法和功能,使得数据挖掘变得更加容易和高效。
本文将对Weka进行实验,探索其在数据挖掘中的应用。
一、数据集选择和预处理在本次实验中,我们选择了一个关于房价的数据集作为实验对象。
该数据集包含了房屋的各种属性,如面积、位置、卧室数量等,以及对应的房价。
首先,我们需要对数据集进行预处理,以便更好地进行数据挖掘。
1. 缺失值处理在数据集中,我们发现了一些缺失值。
为了保证数据的完整性和准确性,我们采用了Weka提供的缺失值处理方法,如删除缺失值、插补缺失值等。
通过比较不同方法的效果,我们选择了最适合数据集的缺失值处理方式。
2. 特征选择数据集中可能存在一些冗余或无关的特征,这些特征对于数据挖掘的结果可能没有太大的贡献。
因此,我们使用Weka中的特征选择算法,如信息增益、卡方检验等,来选择最具有代表性和相关性的特征。
二、数据挖掘算法应用在预处理完成后,我们开始应用各种数据挖掘算法,探索数据集中隐藏的规律和模式。
1. 分类算法我们首先尝试了几种分类算法,如决策树、朴素贝叶斯等。
通过比较不同算法的准确率、召回率和F1值等指标,我们找到了最适合该数据集的分类算法,并对其进行了优化。
2. 聚类算法除了分类算法,我们还尝试了一些聚类算法,如K均值聚类、层次聚类等。
通过可视化聚类结果,我们发现了数据集中的一些簇,从而更好地理解了数据集的结构和分布。
3. 关联规则挖掘关联规则挖掘是一种发现数据集中项集之间关系的方法。
我们使用了Apriori算法来挖掘数据集中的关联规则,并通过支持度和置信度等指标进行评估。
通过发现关联规则,我们可以了解到不同属性之间的相关性和依赖性。
三、实验结果分析通过实验,我们得到了一系列数据挖掘的结果。
根据实验结果,我们可以得出以下结论:1. 分类算法的准确率较高,可以用于预测房价等问题。
数据挖掘实验报告
机器学习与数据挖掘实验报告一、第一部分: 实验综述二、实验工具介绍三、WEKA是新西兰怀卡托大学开发的开源项目, 全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis)。
WEKA是由JAVA编写的, 它的源代码可通过/ml/weka/得到, 是一款免费的, 非商业化的机器学习以及数据挖掘软件。
WEKA作为一个公开的数据挖掘工作平台, 集合了大量能承担数据挖掘任务的学习算法, 包括对数据进行预处理, 分类, 回归, 聚类, 关联规则以及在新的交互式界面上的可视化。
数据挖掘就是通过分析存在于数据库里的数据来解决问题, WEKA的出现使得数据挖掘无需编程即可轻松搞定。
四、实验环境搭建在PC机上面安装java运行环境即JDK环境, 然后安装WEKA。
三、实验目的(1)探索数据集大小与C4.5模型的精度之间的关系。
(2)探索属性的个数对数据集大小与C4.5模型精度之间关系的影响。
四、实验理论依据测试分类模型精度的方法依据如下表所示。
Accuracy=(a+d)/(a+b+c+d)五、实验思路(1)为探索数据集大小与C4.5模型精度之间的关系, 采用实例数据集的训练集进行测试。
对数据集进行多次筛选采样, 通过移除不同百分比的数据实例形成大小的训练集(wake设置为Filter.filters.unsupervised.instance.RemovePercentage), 在分类测试中采用use training set 方法进行测试, 并记录测试模型的精度, 在实验过程中不改变属性值得个数。
换用不同的数据集, 重复该实验过程, 并记录实验结果, 最后进行实验分析总结得出实验结论。
(2)为探索属性的个数对数据集大小与C4.5模型精度之间关系的影响, 使用一个数据集, 采用一个带筛选器的分类器。
对该数据集的属性进行随机抽样筛选, 并对处理后的训练集进行测试, 采用Cross-validation方法, 并记录测试结果。
weka数据挖掘实验报告
weka数据挖掘实验报告Weka数据挖掘实验报告。
数据挖掘是一门利用各种算法和技术来发现数据中隐藏模式和规律的学科,而Weka作为一款开源的数据挖掘软件,提供了丰富的算法和工具,可以帮助用户进行数据挖掘实验和分析。
本实验旨在利用Weka软件对给定的数据集进行数据挖掘分析,并撰写实验报告,以总结实验过程和结果。
首先,我们使用Weka软件载入了所提供的数据集,并对数据进行了初步的观察和分析。
数据集包括了多个属性和类别,我们需要对数据进行预处理,包括处理缺失值、异常值和离群点等。
在数据预处理完成后,我们选择了适当的数据挖掘算法进行建模和分析,包括分类、聚类、关联规则挖掘等。
在进行分类分析时,我们选择了决策树算法进行建模,并通过交叉验证和混淆矩阵等方法对模型进行评估。
通过实验结果发现,决策树算法在该数据集上表现良好,能够对数据进行有效的分类和预测。
接着,我们进行了聚类分析,选择了K 均值算法对数据进行聚类,并对聚类结果进行了可视化展示和分析。
在关联规则挖掘方面,我们利用Apriori算法挖掘了数据集中的频繁项集和关联规则,并对规则进行了解释和应用。
总结本次实验,我们通过Weka软件对给定的数据集进行了全面的数据挖掘分析,包括数据预处理、分类、聚类和关联规则挖掘等。
实验结果表明,在该数据集上我们成功地应用了Weka软件提供的算法和工具,得到了有意义的分析结果,并对数据集中的模式和规律进行了深入挖掘和分析。
通过本次实验,我们不仅熟悉了Weka软件的使用方法,还加深了对数据挖掘理论和算法的理解,提升了数据分析和挖掘的能力。
综上所述,本实验报告总结了我们在Weka软件上进行的数据挖掘实验过程和结果,通过实验我们对数据挖掘的方法和技术有了更深入的理解和应用。
希望通过本次实验,能够对数据挖掘领域的学习和研究有所帮助,为今后的数据分析工作打下坚实的基础。
weka 数据挖掘实验报告
weka 数据挖掘实验报告Weka数据挖掘实验报告数据挖掘作为一种重要的技术手段,在当今信息爆炸的时代扮演着至关重要的角色。
在各个领域,人们都需要从大量的数据中挖掘出有价值的信息,以便做出更好的决策。
而Weka作为一款强大的开源数据挖掘工具,为我们提供了丰富的算法和功能,使得数据挖掘变得更加高效和便捷。
在本次实验中,我们使用Weka对一份关于电子商务网站用户行为的数据集进行了分析和挖掘。
首先,我们导入了数据集并对其进行了初步的探索。
通过查看数据的属性和统计信息,我们对数据集有了初步的了解。
接下来,我们使用Weka提供的数据可视化功能,绘制了数据的散点图、直方图和箱线图等,以便更好地观察数据的分布和特征。
然后,我们选择了一些常用的数据挖掘算法,并对数据进行了建模和训练。
首先,我们使用了决策树算法来预测用户是否会购买某个商品。
通过对数据集进行训练和测试,我们得到了一个准确率较高的模型。
接着,我们尝试了聚类算法,将用户分为不同的群组。
通过对聚类结果的分析,我们可以发现不同群组之间的差异和相似之处,从而更好地理解用户的行为模式。
此外,我们还尝试了关联规则挖掘算法,以探索用户购买行为中的关联关系。
通过设置适当的支持度和置信度阈值,我们挖掘出了一些有意义的关联规则。
这些规则可以帮助电子商务网站了解用户的购买习惯,从而有针对性地进行商品推荐和促销活动。
在实验过程中,我们发现Weka提供了丰富的功能和算法,使得数据挖掘变得更加简单和高效。
无论是数据预处理、特征选择还是模型训练,Weka都提供了直观易用的界面和命令行工具。
同时,Weka还支持多种数据格式的导入和导出,方便我们与其他工具进行数据交互和集成。
然而,我们也遇到了一些挑战和问题。
首先,数据集中存在缺失值和异常值,这对于数据挖掘的准确性和稳定性造成了一定的影响。
其次,选择合适的算法和参数也需要一定的经验和技巧。
在实验中,我们通过多次尝试和比较,才找到了最适合我们数据集的算法和参数设置。
weka 聚类实验报告
weka 聚类实验报告Weka 聚类实验报告引言聚类是一种常用的数据分析方法,它可以将数据集中的对象划分为不同的组别,使得同一组别内的对象具有相似的特征。
Weka 是一款流行的数据挖掘工具,其中包含了丰富的聚类算法,如K-means、DBSCAN、EM 等。
本实验旨在利用Weka 进行聚类实验,探索不同算法对数据集的聚类效果。
实验设计本次实验选择了UCI数据集中的Iris 数据集,该数据集包含了150 条记录,每条记录包括了4 个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和一个类别标签(鸢尾花的品种)。
我们将利用Weka 中的K-means、DBSCAN 和EM 等算法对该数据集进行聚类,并比较它们的聚类效果。
实验步骤1. 数据预处理:首先,我们将数据集导入Weka,并进行数据预处理,包括缺失值处理、标准化等操作。
2. K-means 聚类:利用Weka 中的K-means 算法对数据集进行聚类,并选择合适的聚类数目。
3. DBSCAN 聚类:利用Weka 中的DBSCAN 算法对数据集进行聚类,并调节合适的参数。
4. EM 聚类:利用Weka 中的EM 算法对数据集进行聚类,并选择合适的分布类型。
实验结果经过实验,我们得到了以下聚类结果:1. K-means 聚类:选择3 个聚类中心,得到了较好的聚类效果,三个类别分别对应于数据集中的三种鸢尾花品种。
2. DBSCAN 聚类:通过调节参数,我们得到了较好的聚类效果,但需要注意对噪声点的处理。
3. EM 聚类:选择高斯混合模型作为分布类型,得到了较好的聚类效果,但需要注意模型的收敛情况。
结论本次实验利用Weka 进行了聚类实验,并比较了K-means、DBSCAN 和EM 等算法的聚类效果。
通过实验结果,我们发现K-means 算法在该数据集上表现较好,能够有效地将数据集分为三个类别,对应于三种鸢尾花品种。
DBSCAN 算法和EM 算法也取得了较好的聚类效果,但需要注意参数的调节和模型的收敛情况。
基于weka的数据挖掘实验报告
基于weka的数据挖掘实验报告基于Weka的数据挖掘实验报告数据挖掘是一种通过分析大量数据来发现隐藏在其中的模式和关联的技术。
Weka是一个流行的数据挖掘工具,它提供了各种算法和工具,可以帮助研究人员和分析师挖掘数据中的有用信息。
在本实验中,我们将使用Weka来进行数据挖掘,并撰写实验报告,以展示我们的研究成果和结果。
实验目的:本次实验的目的是使用Weka工具对给定的数据集进行数据挖掘分析,探索数据中的模式和规律,并利用挖掘结果进行预测和决策。
实验步骤:1. 数据收集和准备:首先,我们需要收集并准备实验所需的数据集。
在本次实验中,我们选择了一个包含大量样本和多个属性的数据集,以便进行全面的数据挖掘分析。
2. 数据预处理:在进行数据挖掘之前,我们需要对数据进行预处理,包括数据清洗、缺失值处理、数据变换等步骤,以确保数据的质量和完整性。
3. 数据挖掘算法选择:Weka工具提供了多种数据挖掘算法,包括分类、聚类、关联规则挖掘等。
我们将根据实验需求选择合适的算法进行分析。
4. 模型建立和评估:在选择了合适的算法后,我们将使用Weka工具建立数据挖掘模型,并对模型进行评估和验证,以确保模型的准确性和可靠性。
5. 结果分析和报告撰写:最后,我们将对实验结果进行分析和总结,并撰写实验报告,以展示我们的研究成果和发现。
实验结果:通过使用Weka工具进行数据挖掘分析,我们得到了一些有价值的挖掘结果和模型预测。
我们发现了数据中的一些隐藏模式和规律,并利用挖掘结果进行了一些预测和决策,为实验提供了有益的信息和见解。
结论:本次实验通过使用Weka工具进行数据挖掘分析,取得了一些有意义的研究成果和结果。
Weka工具提供了丰富的算法和工具,可以帮助研究人员和分析师挖掘数据中的有用信息,为决策和预测提供支持。
我们相信,通过不断的实验和研究,我们可以进一步挖掘数据中的更多有价值的信息和知识。
weka数据挖掘实验报告
weka数据挖掘实验报告Weka数据挖掘实验报告。
一、实验目的。
本次实验旨在利用Weka软件进行数据挖掘实验,通过对给定数据集的分析和挖掘,探索数据之间的关系和规律,进而为实际应用提供决策支持和信息挖掘。
二、实验环境。
本次实验使用Weka软件进行数据挖掘实验,Weka是一款开源的数据挖掘软件,提供了丰富的数据挖掘和机器学习算法,并且具有直观的用户界面,方便用户进行数据挖掘实验。
三、实验步骤。
1. 数据导入,首先,我们将给定的数据集导入到Weka软件中,以便进行后续的数据挖掘分析。
2. 数据预处理,在导入数据后,我们需要对数据进行预处理,包括缺失值处理、异常值处理、数据平滑和数据变换等,以确保数据的质量和完整性。
3. 数据探索,接下来,我们对数据进行探索性分析,包括对数据的描述性统计分析、数据可视化和相关性分析,以了解数据的分布和特征之间的关系。
4. 数据建模,在完成数据探索后,我们将选择合适的数据挖掘算法,建立数据挖掘模型,并对模型进行训练和评估。
5. 模型评估,最后,我们将对建立的数据挖掘模型进行评估,包括模型的准确率、召回率、精确率和F1值等指标的评估,以确定模型的预测能力和泛化能力。
四、实验结果分析。
经过以上步骤的实验操作和分析,我们得到了如下的实验结果:1. 数据预处理,在数据预处理过程中,我们对数据进行了缺失值处理和异常值处理,确保了数据的完整性和准确性。
2. 数据探索,通过对数据的描述性统计分析和可视化分析,我们发现了数据之间的一些潜在关系和规律,为后续的数据建模提供了参考。
3. 数据建模,在选择了合适的数据挖掘算法后,我们建立了数据挖掘模型,并对模型进行了训练和评估,得到了较好的模型效果。
4. 模型评估,最后,我们对建立的数据挖掘模型进行了评估,得到了较高的准确率和召回率,表明模型具有较好的预测能力和泛化能力。
五、实验总结。
通过本次实验,我们深入学习了Weka软件的使用方法和数据挖掘的基本流程,掌握了数据挖掘的关键技术和方法。
数据挖掘实习报告
数据挖掘实习报告篇一:数据挖掘实习报告通过半年的实习,我在这里得到了一次较全面的、系统的锻炼,也学到了许多书本上所学不到的知识和技能。
以下是我这次的实习鉴定。
经历了实习,对社会也有了基本的实践,让我学到了书本以外的知识,实习期间,我努力尽量做到理论与实践相结合,在实习期间能够遵守工作纪律,不迟到、早退,认真完成领导交办的工作。
在实习鉴定中,我参与了整个数据分析工作,从数据获取到数据清洗、数据报表的制定到模型的建立以及模型监控等等,让我充分学习了数据分析岗位的实际操作。
在实习初期,项目经理安排了我参与数据获取的相关工作,主要是编写SQL代码在linux上用Perl语言调用获取数据。
起初觉得自己对SQL语言了解较多,以为这份工作非常简单。
但实际操作起来才知道,在数据量达到几百兆甚至上GB级别的时候,所学的SQL根本解决不了问题。
经向项目经理学习,这才知道了如何使用分层次操作等速度较快的SQL技巧。
通过这两个月的实习充分认识到所学知识远远不够。
完成数据获取阶段之后,项目经理开始安排数据清洗以及数据报表制定的相关工作。
接到这份工作之初,对数据清洗并没有太多的认识,以为很多都是按照《数据挖掘》教材中步骤进行就可以的。
但经过项目经理指导之后才知道数据清洗之前首先要对项目业务进行一定的了解,只有清晰了业务数据的来源、数据的实际意义才知道哪些数据可以称为极端值,哪些数据又是不正常的,制定报告或者交给模型分析师时需要去除的等等。
同时,在制定数据报表的同时学习了很多excel函数的使用,透视表的使用,PPT报告的书写等等。
在实习的后三个月,开始接触了模型的分析与监控。
在学习《机器学习》以及《数据挖掘》书本时,总会想到各种各样的分类模型,也总会认为模型准确率高的模型才会是好模型。
在运用统计模型之前,项目经理首先向实习生介绍了目前挖掘部门常用的分类模型以及具体的一些使用方法。
其中逻辑回归模型、决策树模型是常用的分类模型,回归分析和时间序列模型是常用的预测模型,这与平日所学基本一致。
数据挖掘weka数据分类实验报告
一、实验目的使用数据挖掘中的分类算法,对数据集进行分类训练并测试。
应用不同的分类算法,比较他们之间的不同。
与此同时了解Weka平台的基本功能与使用方法。
二、实验环境实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集iris.arff。
Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。
Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。
它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。
Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。
三、数据预处理Weka平台支持ARFF格式和CSV格式的数据。
由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。
实验所用的ARFF格式数据集如图1所示图1 ARFF格式数据集(iris.arff)对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、sepal width、petal length、petal width和class五种属性。
期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。
该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。
实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。
若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。
实验所需的训练集和测试集均为iris.arff。
四、实验过程及结果应用iris数据集,分别采用LibSVM、C4.5决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。
weka使用报告
WEKA使用实验报告一、实验目的数据挖掘是通过分析存在于数据库里的数据来解决问题。
在数据挖掘中计算机以电子化的形式存储数据,并且能自动的查询数据,通过关联规则、分类与回归、聚类分析等算法对数据进行一系列的处理,寻找和描述数据里的结构模式,进而挖掘出潜在有用的信息。
WEKA是一种开源的数据挖掘工具。
WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),是一款免费的,非商业化的数据挖掘工具,其源代码可从(./ml/weka/)得到,我们在本次实验中所使用到的相关数据,也是从该处获得的。
WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归,聚类,关联规则以及在新的交互式界面上的可视化。
本次试验,我们要通过学习WEKA工具的使用,与上课内容相结合,针对某些数据挖掘算法建立起数据挖掘模型,进而对数据分析技术有更深层次的了解。
二、实验准备在启动WEKA时,会弹出GUI选择器,选择使用WEKA和数据的四种方式。
如下图所示:在本次试验中,我们只选择Explorer选项。
Explorer是普通用户最常用的一个界面。
用户可以从ARFF文件(WEKA使用的一种文本文件格式)或网页或数据库中读取数据集。
打开数据文件后,可以选择算法对数据进行预处理。
这时窗体上给出了这个数据集的一些基本特征,如含有多少属性,各属性的一些简单统计量,右下方还给出一些可视化效果图。
这些都是比较直观的分析,如果想发现隐藏在数据集背后的关系,还需要选择WEKA提供的各种分类、聚类或关联规则的算法。
界面如下图所示:上图是打开Explorer界面,导入软件自身所带的训练集“segment.arff”文件后所呈现的界面。
我们也可以查看该训练集中的数据,如下图所示:三、实验内容1.贝叶斯算法点“Choose”按钮选择“bayes”,这是WEKA中实现的贝叶斯算法。
数据挖掘WEKA实验报告
数据挖掘W E K A实验报告Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT数据挖掘-WAKA实验报告一、WEKA软件简介在我所从事的证券行业中,存在着海量的信息和数据,但是这些数据日常知识发挥了一小部分的作用,其包含了大量的隐性的信息并不为所用,但是却可以为一些公司的决策和对客户的服务提供不小的价值。
因此,我们可以通过一些数据采集、数据挖掘来获得潜在的有价值的信息。
数据挖掘就是通过分析存在于数据库里的数据来解决问题。
在数据挖掘中计算机以电子化的形式存储数据,并且能自动的查询数据,通过关联规则、分类于回归、聚类分析等算法对数据进行一系列的处理,寻找和描述数据里的结构模式,进而挖掘出潜在的有用的信息。
数据挖掘就是通过分析存在于数据库里的数据来解决问题。
WEKA的出现让我们把数据挖掘无需编程即可轻松搞定。
WEKA是由新西兰怀卡托大学开发的开源项目,全名是怀卡托智能分析环境(WaikatoEnvironmentforKnowledgeAnalysis)。
WEKA是由JAVA编写的,WEKA得到,并且限制在GBU通用公众证书的条件下发布,可以运行在所有的操作系统中。
是一款免费的,非商业化的机器学习以及数据挖掘软件WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
如果想自己实现数据挖掘算法的话,可以看一看WEKA的接口文档。
在WEKA中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情。
安装WEKA也十分简单,首相要下载安装JDK环境,JDK在这个页面可以找到它的下载。
点击JDK6之后的Download按钮,转到下载页面。
选择Accepct,过一会儿页面会刷新。
我们需要的是这个WindowsOfflineInstallation,,点击它下载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘-WEKA 实验报告四
姓名及学号:杨珍
班级:卓越计科1301 指导老师:吴珏老师
一、关联规则(掌握weka中Apriori算法的使用)
1)加载weather.arrf文件(如果有数值型属性,必须进行离散化),选择Apriori 算法进行关联规则挖掘。
对挖掘结果进行分析。
(1)Apriori核心算法过程如下:
●过单趟扫描数据库D计算出各个1项集的支持度,得到频繁1项集的集合。
●连接步:为了生成,预先生成,由2个只有一个项不同的属于的频集做一个
(k-2)JOIN运算得到的。
●剪枝步:由于是的超集,所以可能有些元素不是频繁的。
在潜在k项集的某
个子集不是中的成员是,则该潜在频繁项集不可能是频繁的可以从中移去。
●通过单趟扫描数据库D,计算中各个项集的支持度,将中不满足支持度的项
集去掉形成。
●通过迭代循环,重复步骤2~4,直到有某个r值使得为空,这时算法停止。
在剪枝步中的每个元素需在交易数据库中进行验证来决定其是否加入,这里的验证过程是算法性能的一个瓶颈。
这个方法要求多次扫描可能很大的交易数据库。
可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。
●目前,几乎所有高效的发现关联规则的并行数据挖掘算法都是基于Apriori算
法的,Agrawal和Shafer 提出了三种并行算法:计数分发(Count
Distribution)算法、数据分发(Data Distribution)算法和候选分发(Candidate Distribute)算法。
(2)以weka软件自带的wether.nominal.arff样本为数据样本.
(2)选择Associate选项卡里面的Apriori算法进行关联规则分析
(3)点击参数文本框,在参数选项卡设置参数如下
算法属性设置:
1.car:如果设为真,则会挖掘类关联规则而不是全局关联规则。
2.classindex:类属性索引。
如果设置为-1,最后的属性被当做类属性。
3.delta:以此数值为迭代递减单位。
不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。
4.lowerBoundMinSupport:最小支持度下界。
5.metricType:度量类型,设置对规则进行排序的度量依据。
可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。
在Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是:
a)Lift :P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。
这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度.
b)Leverage :P(A,B)-P(A)P(B)
Leverage=0时A和B独立,Leverage越大A和B的关系越密切
c) Conviction:P(A)P(!B)/P(A,!B) (!B表示B没有发生)Conviction也是用来衡量A和B的独立性。
从它和lift的关系(对B取反,代入Lift公式后求倒数)可以看出,这个值越大, A、B越关联。
6.minMtric :度量的最小值。
7.numRules:要发现的规则数。
8.outputItemSets:如果设置为真,会在结果中输出项集。
9.removeAllMissingCols:移除全部为缺省值的列。
10.significanceLevel :重要程度。
重要性测试(仅用于置信度)。
11.upperBoundMinSupport:最小支持度上界。
从这个值开始迭代减小最小支持度。
12.verbose:如果设置为真,则算法会以冗余模式运行。
(4)点击左侧start按钮执行,执行结果如下
(5)运行结果分析:由运行结果可知,总共有14个数据项,5个属性项
Minimum support: 0.15 (2 instances) %最小支持度0.15,即最少需要2个实例Minimum metric <confidence>: 0.9 %最小度量<置信度>: 0.9
Number of cycles performed: 117%进行了17轮搜索
生成了频繁1项集,频繁2项集,频繁3项集,和频繁4项集
Best rules found: 最佳规则
2)加载美国国会投票记录文件vote.arrf,使用Apriori算法进行数据挖掘,并对结果进行分析。
(1)vote的属性
(2)同样选择Apriori算法进行关联规则分析
其中435个数据实例,17个属性
Minimum support: 0.45 (7718 instances) %最小支持度0.45,即最少需要196个实例
Minimum metric <confidence>: 0.9 %最小度量<置信度>: 0.9 Number of cycles performed: 11%进行了11轮搜索
同样生成了1、2、3、4总共4个频繁项集,10条最佳规则
3)市场购物篮分析:加载supermarket.arrf文件,选择Apriori,算法进行关联规则挖掘,对结果进行分析,看看能发现什么有趣的规则。
(1)打开文件
(2)supermarket的属性
(3)执行结果分析
总共4627个数据项,217个属性项。
Minimum support: 0.15(7718 instances) %最小支持度0.15,即最少需要4267个实例
Minimum metric <confidence>: 0.9 %最小度量<置信度>: 0.9
Number of cycles performed: 17%进行了17轮搜索
生成了10个最佳规则
二、思考与分析
1、对于具有高支持度和高置信度的规则,请在购物篮领域举出一个实例,并指出这些规则是否是主观上有趣的。
在一家超市中,人们发现了一个特别有趣的现象:尿布与啤酒这两种风马牛不相及的商品居然摆在一起。
但这一奇怪的举措居然使尿布和啤酒的销量大幅增加了。
这可不是一个笑话,而是一直被商家所津津乐道的发生在美国沃尔玛连锁超市的真实案例。
原来,美国的妇女通常在家照顾孩子,所以她们经常会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。
这个发现为商家带来了大量的利润。
对超市为例进行基于关联规则的购物篮分析,以找出强关联规则,为超市商品摆放提供依据,有利于超市指定交叉销售策略,应用关联规则挖掘,可以有效地发现商品之间的有趣关联,在此基础上之地的综合性交叉销售策略,将有助于提高零售企业的销售业绩和客户满意度,进而提高企业的竞争力.。