基于物联网技术的温室智能监测系统

合集下载

基于物联网技术的智能温室大棚控制系统

基于物联网技术的智能温室大棚控制系统

基于物联网技术的智能温室大棚控制系统随着人们生活水平的不断提高和科技的不断发展,智能温室大棚控制系统在农业生产中的应用越来越广泛。

基于物联网技术的智能温室大棚控制系统可以实现对温室环境的实时监测和精准调控,从而提高农作物的产量和质量,节约能源和人力成本,减少环境污染。

本文将就基于物联网技术的智能温室大棚控制系统的实现原理、优势和发展前景进行深入探讨。

一、实现原理基于物联网技术的智能温室大棚控制系统是由传感器、执行器、控制器和通信模块等组成的。

传感器负责采集温室内的温度、湿度、光照、CO2浓度等环境参数;执行器负责控制灌溉、通风、遮阳和施肥等设备的运行;控制器根据传感器采集到的数据和预设的控制策略,决定执行器的操作;通信模块负责与云端服务器进行数据交互,实现对温室大棚的远程监控和调控。

整个系统通过物联网技术将传感器、执行器、控制器和云端服务器连接起来,实现了温室大棚的智能控制。

二、优势基于物联网技术的智能温室大棚控制系统相比传统的人工控制具有诸多优势。

1. 实时监测:传感器实时采集温室内的各种环境参数,并将数据传输到云端服务器,农户可以随时随地通过手机或电脑实现对温室环境的远程监测。

2. 精准调控:根据传感器采集的数据和预设的控制策略,控制器可以精准地调控灌溉、通风、遮阳和施肥等设备的运行,提高了作物的产量和质量。

3. 节约能源和成本:智能温室大棚控制系统可以根据实际需求进行灌溉和通风,避免能源和水资源的浪费,降低了人力成本。

4. 减少环境污染:智能温室大棚控制系统可以合理利用水资源和化肥,减少了对环境的污染。

三、发展前景基于物联网技术的智能温室大棚控制系统在未来具有广阔的发展前景。

1. 技术不断成熟:随着物联网技术的不断发展和成熟,传感器、通信模块、云端服务器等关键元件的性能不断提升,降低了成本,提高了系统的稳定性和可靠性。

2. 应用需求增加:随着人口的不断增长和生活水平的提高,对农产品的需求不断增加,农业生产的效率和质量成为社会关注的焦点,因此对智能温室大棚控制系统的需求也会越来越大。

基于物联网的温室大棚监控系统设计与实现

基于物联网的温室大棚监控系统设计与实现

谢谢观看
应用层主要包括云平台和客户端两部分。云平台负责数据的存储和处理,客 户端则可以通过电脑、手机等设备访问云平台,查看温室大棚的实时数据,并对 环境因素进行控制。
三、系统功能实现
1、数据采集:通过各类传感器采集温室大棚内的环境因素数据,如温度、 湿度、光照、二氧化碳等。
2、数据传输:通过无线通信技术将采集的数据传输到云平台。
2、数据存储和远程控制
为了方便用户对历史数据进行查询和分析,本系统需要将采集到MySQL数据库进行数据存储,并通过Java 程序实现数据的备份和恢复。
同时,为了实现远程控制,本系统需要将执行器与云平台进行连接。用户可 以通过手机APP或Web端对大棚内的设备进行远程控制,包括开关设备、调整设备 参数等。本系统使用Zookeeper进行设备管理,保证设备的可靠连接和稳定运行。
一、设计思路
基于物联网的温室大棚监控系统旨在通过各种传感器和执行器,实时监测大 棚内的环境参数,如温度、湿度、光照等,同时根据监测数据进行自动化调控, 以提供最适宜的农作物生长环境。
本系统的设计主要包括硬件和软件两部分。硬件部分主要包括各种传感器、 执行器、通讯模块和电源模块等;软件部分主要包括数据采集、处理、存储和远 程控制等功能。
二、硬件设计
1、传感器和执行器
本系统需要使用多种传感器和执行器,以实现环境参数的全面监测和调控。 传感器包括温度传感器、湿度传感器、光照传感器等,用于监测大棚内的环境参 数;执行器包括通风设备、灌溉设备、遮阳设备等,用于调控大棚内的环境条件。
2、通讯模块
通讯模块是连接传感器、执行器和数据中心的桥梁。本系统采用GPRS无线通 讯模块,实现数据的高速传输和实时监控。此外,系统还支持多种联网方式,如 Wi-Fi、以太网等,以满足不同用户的需求。

基于物联网技术的智能温室大棚控制系统

基于物联网技术的智能温室大棚控制系统

基于物联网技术的智能温室大棚控制系统
随着科技的发展,物联网技术正在逐渐应用于各领域,其中智能温室大棚控制系统是
一个很好的案例。

传统的温室大棚需要人工控制种植温度、湿度和光照等因素,而智能温
室大棚控制系统能够通过物联网技术实现精准控制,大幅提高种植效率和产量。

智能温室大棚控制系统基于物联网技术构建,包括传感器、控制器、执行器和云平台。

传感器用于实时监测温度、湿度、光照强度、二氧化碳浓度等环境参数,将数据通过无线
传输方式传送给控制器。

控制器根据预设的种植需求,对环境参数进行实时控制。

执行器
根据控制器的指令,对灌溉、通风、暖气等设备进行自动控制。

云平台用于实现大数据分
析和管理,能够远程监控和控制多个温室大棚。

智能温室大棚控制系统的优势在于能够实现精准控制,提高种植效率和产量。

比如,
通过控制温度和湿度,能够加快植物生长速度和提高品质;通过控制光照强度,能够增加
光合作用和促进花果生长;通过调节二氧化碳浓度,能够提高植物的光合作用效率。

此外,智能温室大棚控制系统还能够通过大数据分析和管理,实现自动化种植、精准灌溉、预测
病虫害等智能化功能,提高种植效率和减少人工成本。

基于物联网技术的智慧温室环境监测与控制系统设计

基于物联网技术的智慧温室环境监测与控制系统设计

基于物联网技术的智慧温室环境监测与控制系统设计随着物联网技术的迅速发展,智慧温室环境监测与控制系统在农业领域得到广泛应用。

该系统通过实时监测和控制温室内的环境参数,可以提高温室种植的效率和质量。

本文将介绍基于物联网技术的智慧温室环境监测与控制系统的设计原理和关键技术。

一、系统设计原理智慧温室环境监测与控制系统的设计原理是基于物联网技术,通过传感器实时监测温室内的环境参数,如温度、湿度、光照等,并将采集到的数据传输到云端服务器进行处理和分析。

同时,系统根据预设的阈值对环境参数进行控制,如调节温度、湿度、光照等,以维持温室内的良好生长环境。

二、关键技术1. 传感器技术:智慧温室系统需要使用多种传感器来实时监测环境参数。

例如,温度传感器可以用来监测温室内的温度变化,湿度传感器可以用来监测湿度的变化,光照传感器可以用来监测光照的强度等。

这些传感器需要能够准确地采集温室内各个位置的环境参数,并能够实时传输数据到云端服务器。

2. 云计算技术:通过将采集到的数据传输到云端服务器,可以实现对大量数据的存储和处理。

云端服务器可以使用大数据分析算法对温室内环境参数进行分析,提供决策支持和预测功能。

同时,云端服务器还可以将处理后的数据反馈给控制设备,实现对温室的实时控制。

3. 通信技术:智慧温室系统需要使用无线通信技术将传感器采集到的数据传输到云端服务器。

常用的通信技术包括Wi-Fi、蓝牙、LoRa 等。

这些通信技术需要满足传输距离远、功耗低、稳定可靠等要求,以确保数据能够准确传输。

4. 控制算法技术:智慧温室系统需要使用控制算法对环境参数进行控制。

控制算法可以根据温室内环境参数的变化和预设的阈值来调节温室内的灯光、通风设备等,以实现温室内环境的良好调节。

三、系统优势智慧温室环境监测与控制系统的设计具有以下优势:1.自动化控制:系统通过实时监测和控制温室内环境参数,可以实现对温室的自动化控制。

不需要人工干预,减少了人力成本,并提高了温室种植的效率和质量。

基于物联网的智能农业温室系统设计

基于物联网的智能农业温室系统设计

基于物联网的智能农业温室系统设计智能农业是近年来随着物联网技术的快速发展而兴起的一种新型农业模式。

基于物联网的智能农业温室系统设计是一个能够实现自动化管理和优化作物生长环境的系统。

本文将详细阐述该系统的设计原理、功能特点以及对农业发展的意义。

一、设计原理1. 物联网技术的应用:智能农业温室系统的设计离不开物联网技术的支持。

通过传感器和执行器的连接,将温室内各种参数的数据实时传输到云端,通过云计算和大数据分析,实现对温度、湿度、光照等环境因素的监测和调控。

2. 数据采集与分析:智能农业温室系统会安装各种传感器,如温湿度传感器、光照传感器等,以采集温室内不同位置的环境参数数据。

这些数据将会被发送到云服务器进行存储和分析,通过对数据的处理和分析,系统可以对温室的环境进行优化控制,提供最佳的生长条件。

3. 自动化管理与控制:设计的智能农业温室系统可以实现全自动化的环境管理和作物生长调控。

系统可以根据不同作物的需求,自动调节温度、湿度、光照、CO2浓度等环境因素,确保作物生长在最适宜的环境中,提高产量和质量。

二、功能特点1. 远程监控与控制:基于物联网的智能农业温室系统可以通过手机终端或电脑实现对温室环境的远程监控和控制。

用户可以随时随地从手机上了解温室内的环境参数,以及作物的生长状态,并能够通过终端设备控制系统进行调节。

2. 智能化决策支持:系统内部集成了温室环境参数的数据分析和模型预测功能。

通过对历史数据的学习和对大数据的分析,系统可以提供给农民一些关于肥料施用、排水调控等方面的决策支持,帮助农民进行农业生产的决策。

3. 节能环保:智能农业温室系统能够实现对温室环境因素的精确控制,避免了传统农业中大量能源的浪费。

系统利用传感器进行环境数据采集和分析,减少了人工测量的需求,提高了能源利用效率,实现了节能环保。

4. 降低风险:智能农业温室系统可以实现对温室环境的持续监测和预警功能。

一旦环境参数出现异常,系统会自动发送警报信息提醒农民进行处理。

基于Zigbee技术的农作物温室大棚监控系统的设计和实现

基于Zigbee技术的农作物温室大棚监控系统的设计和实现

参考内容
一、引言
随着科技的不断发展,智能化监控系统在许多领域得到了广泛的应用。特别 是在农业领域,温室大棚监控系统的应用对农作物的生长和产量有着重要的影响。 ZigBee作为一种低功耗、低成本、高可靠性的无线通信技术,为农业温室大棚监 控系统的设计与实现提供了新的解决方案。
二、系统设计
基于ZigBee的农业温室大棚监控系统主要包括传感器节点、ZigBee协调器、 数据传输模块和上位机软件。
二、技术ห้องสมุดไป่ตู้述
Zigbee是一种基于IEEE 802.15.4标准的低速无线个人区域网络通信技术。 它具有低功耗、低成本、高可靠性、大容量等特点,非常适合于智能家居、工业 自动化、农业等领域。在农作物温室大棚监控系统中,Zigbee技术可实现传感器 数据的实时采集、设备控制以及数据传输等功能。
三、系统设计
四、系统实现
1、部署方案
在温室大棚内,根据需要布置温度传感器、湿度传感器、光照传感器和CO2 传感器,并将传感器数据通过Zigbee模块传输到监控中心。监控中心部署有接收 器和显示设备,方便工作人员实时监测大棚环境参数。
2、操作方法
工作人员可通过监控中心的显示设备实时查看各个温室大棚的环境参数。根 据需要,可通过监控中心对温室大棚进行控制,如调整通风设备、灌溉系统等。 同时,监控中心可对历史数据进行记录和分析,以便更好地了解农作物生长情况 和优化温室环境。
2、网络构建
基于Zigbee技术的温室大棚监控系统采用星型网络结构。每个温室大棚作为 一个独立的网络节点,节点上布置有多个传感器和Zigbee模块。通过Zigbee模块 将传感器数据传输到监控中心,监控中心通过显示界面展示环境参数。
3、数据传输
系统采用无线传输方式,通过Zigbee模块将传感器数据传输到监控中心。数 据传输采用UDP协议,具有较低的延迟和较高的可靠性。同时,监控中心可对各 个温室大棚的环境参数进行实时监测,并根据需要对大棚环境进行调整。

基于物联网的番茄温室环境智能调控系统设计与实现

基于物联网的番茄温室环境智能调控系统设计与实现

1、传感器应用
1、传感器应用
本系统采用了多种传感器,包括温度传感器、湿度传感器、光照传感器等, 以监测温室环境中的各项参数。这些传感器通过无线传输方式将数据传输到数据 中心,为后续的环境调控提供数据支持。
2、无线传输设计
2、无线传输设计
为了实现实时监测和智能调控,本系统采用无线传输技术,将传感器采集的 数据传输到数据中心。同时,系统还可以根据环境参数的变化,通过无线方式控 制调节设备如通风设备、灌溉设备等的运行,以实现对环境的智能调控。
系统设计
系统设计
基于物联网的智能温室系统主要包括传感器、数据采集模块、传输网络、控 制算法等部分。
1、传感器选型
1、传感器选型
在智能温室系统中,传感器主要用于实时监测温室内温度、湿度、光照等参 数。根据实际需求,选择合适的传感器型号,需考虑其测量范围、精度、稳定性 等因素。
2、数据采集与处理
参考内容
内容摘要
随着科技的不断发展,物联网技术得到了广泛应用。在农业领域,基于物联 网的智能温室系统逐渐成为了一种新型的农业生产方式。本次演示将介绍基于物 联网的智能温室系统的设计与实现。
研究现状
研究现状
物联网技术在智能温室系统中的应用已经引起了广泛。国内外研究者针对这 一问题进行了大量研究。研究目的主要包括提高温室环境控制精度、节约能源、 提高作物产量等。研究方法主要包括传感器选型、数据采集与处理、控制算法设 计等。研究成果主要包括智能化温室环境监控系统、高效节能型温室等。
基于物联网的番茄温室环境智 能调控系统设计与实现
01 引言
03 设计 05 参考内容
目录
02 背景 04 实现
引言
引言
随着科技的不断发展,物联网技术广泛应用于各个领域,特别是在农业领域 中。番茄作为一种重要的经济作物,其生长环境对产量和质量有着重要影响。为 了提高番茄的产量和质量,本次演示设计了一种基于物联网的番茄温室环境智能 调控系统。该系统通过传感器、无线传输、云计算和大数据分析等技术,实现番 茄生长环境的实时监测和智能调控,为番茄的高产、优产提供了有力支持。

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案1、系统简介该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。

同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。

本系统适用于各种类型的日光温室、连栋温室、智能温室。

2、系统组成该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。

620)this.style.width=620;" border=0>(1)传感终端温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。

环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。

(2)通信终端及传感网络建设温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。

前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。

温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。

620)this.style.width=620;" border=0>(3)控制终端温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。

根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

《基于物联网的设施农业温室大棚智能控制系统研究》

《基于物联网的设施农业温室大棚智能控制系统研究》

《基于物联网的设施农业温室大棚智能控制系统研究》篇一一、引言随着科技的进步与物联网技术的迅速发展,农业现代化逐渐展现出其全新的面貌。

设施农业作为现代农业的重要组成部分,其智能化、自动化水平已成为衡量一个国家农业现代化程度的重要标志。

而作为设施农业核心的温室大棚,其智能控制系统的研究与应用更是对农业生产效率、环境控制、作物生长等方面产生了深远的影响。

本文将重点研究基于物联网的设施农业温室大棚智能控制系统,旨在推动设施农业的进一步发展。

二、物联网在设施农业中的应用物联网技术以其独特的优势,为设施农业带来了革命性的变革。

物联网技术通过传感器、网络通信、云计算等技术手段,实现了对农业生产环境的实时监测、智能控制以及数据化管理。

在设施农业中,物联网技术的应用主要体现在温室大棚的智能控制系统中,通过对温室内环境因素的实时监测与调控,为作物生长提供最适宜的环境条件。

三、温室大棚智能控制系统的研究1. 系统架构设计基于物联网的温室大棚智能控制系统主要包括感知层、网络层和应用层。

感知层通过各类传感器实时采集温室内的温度、湿度、光照、CO2浓度等环境因素;网络层通过无线通信技术将感知层的数据传输至云端服务器;应用层则通过云计算技术对数据进行分析处理,并根据预设的算法对温室环境进行智能调控。

2. 环境因素监测与调控系统通过传感器实时监测温室内的环境因素,当环境因素超出预设的范围时,系统将自动启动调控设备,如加热器、湿帘、通风设备等,以调整温室内的环境条件。

同时,系统还可以根据作物的生长需求,自动调节灌溉系统,为作物提供适量的水分。

3. 智能决策与控制系统通过云计算技术对采集的数据进行分析处理,根据作物的生长需求以及环境因素的变化,自动生成智能决策。

系统可以根据决策结果自动调整温室环境,为作物提供最适宜的生长环境。

此外,系统还可以根据用户的需求,实现远程控制,方便用户随时随地对温室进行管理。

四、系统实现与优化1. 系统实现基于物联网的温室大棚智能控制系统需要结合硬件设备与软件系统。

基于物联网的樱桃大棚环境监测系统研究设计

基于物联网的樱桃大棚环境监测系统研究设计

202研究与探索Research and Exploration ·智能检测与诊断中国设备工程 2024.04(上)1 前言被誉为“果中珍品”的樱桃,不仅味道鲜美,营养丰富,而且经济价值高,是天水地区农民发家致富的重要经济作物。

近年来,随着樱桃市场行情的迅速发展,樱桃种植范围持续扩大,但樱桃生长喜温暖,不耐旱,对温度、湿度和光强等环境因子具有严格要求,露地种植方式无法调控种植环境相关因素,极易受环境因素干扰造成减产甚至绝收等严重后果。

采用温室大棚可以减小外界天气对樱桃成长的影响,提升防御自然灾害的能力,避免晚霜冻、花季降雨等影响。

传统的温室大棚通过人工判断温室大棚内的环境,不仅劳动强度大、管理成本高,而且调控的及时性差,难以做到实时监测、精准控制。

传统农业温室大棚生产管理效率低、智能化程度不高,由于大棚樱桃栽培技术要求较高,生产技术环节上操作严格,要达到早产、丰产、优质,必须实现大棚生产环境与樱桃不同阶段需求高度基金项目:甘肃省2023年高校教师创新基金项目“双碳”背景下基于物联网的樱桃大棚环境监测系统研究”(2023A-255);2023年甘肃省科技专员专项项目-23CXGE0006-基于物联网的智慧果园系统设计。

基于物联网的樱桃大棚环境监测系统研究设计杨轶霞(甘肃工业职业技术学院,甘肃 天水 741025)摘要:针对传统温室大棚智能化程度低、环境参数调控不方便等问题,设计以无线传感网络为基础的智能大棚樱桃环境监测系统,基于物联网三层构架原则,运用Zig Bee 无线自组织网络采集、传输传感器监测的环境参数数据,通过WiFi 模块结合广域网实现远距离无线传输,通过云服务器搭建用户监管平台,农户通过电脑客户端、手机APP 实时监测智能大棚环境参数,控制终端设备工作,实现智能化监管。

实践证明,基于物联网的樱桃大棚环境监测系统时效性好,有效避免自然灾害损失,实用价值较高,可为智能温室大棚环境的自动化监测提供参考。

基于物联网的温室智能系统研究

基于物联网的温室智能系统研究

培知识与经验 , 实现温室综合环境 自动监测与报 警 管理 等功 能 , 保证 温 室 内作 物处 于适 宜 的生长
环境 , 为作 物 高 产 、 优质 、 高 效 和安 全 创 造 条 件 。 温 室智 能 系统功 能模 块 可 根据 需要 进 行 调整 , 适 用 于连栋 温 室 、 1 3 光 温 室及 塑料 大棚 等 。
3 . 1 . 3 土壤 温湿度 传 感器
的环境采集 、 温室 内部环境调控 、 灌溉 阀门和水
源控 制 、 视 频采 集等 。 中间层 是 网络 传输 与 云平 台 : 用 于温 室 园 区 内的低 功耗 自组 无 线传 感 网络 和 移动 互 联 网 , 实
土壤 水分 测 量方 法众 多 , 常 用方 法包 括介 电 原理 测 量法 、中子仪 测量 法 及 张力计 测 量法 等 。 温 室 智 能 系统 中的 土壤 湿 度 传 感 器 应 用 的是 介 电原理 测量 法 。 介 电原理 测量 法是 根据 土壤介 电 常 数 的变化 情况 来确 定 土壤 的水 分含 量 , 此原 理 是 目前 国 际上 最 流行 的 土壤 水 分 传 感 器测 量 方
无线 网关 是 无线 自组 网的 汇聚 节点 , 也 是无 线 自组 网与 I n t e r n e t 网络 的接 口,起 到 网络通 讯 转换 的功能 。无线 网关 一 般是具 有一 个 1 0 Mb p s
或 1 0 0 Mb p s的 广 域 网 口 f WA N ) 、多个 1 0 / 1 0 0 Mb p s 的局 域 网 口 f L AN ) 、一 个支 I E E E 8 0 2 . 1 l b 、
基 于物 联 网技术 的温 室智 能 系统 , 采 用 三层 网络 架构 , 如图 l 所示。 底层 是 信息 获 取 与控 制设 备 : 用 于温 室 内外

物联网在智能农业温室大棚控制中的实践

物联网在智能农业温室大棚控制中的实践

物联网技术在智能农业温室大棚控制中的应用实践一、引言物联网技术以其强大的数据收集、传输和处理能力,为农业领域带来了革命性的变革。

其中,智能农业温室大棚控制是物联网技术在农业领域的一个重要应用,它能够实现大棚环境的精确控制,提高农作物的生长效率和品质。

本文将围绕物联网在智能农业温室大棚控制中的实践进行探讨。

二、物联网在智能农业温室大棚控制中的应用1. 环境监测:物联网通过各种传感器和传感器网络,实时监测大棚内的温度、湿度、光照、CO2浓度等环境参数,为管理人员提供精确的数据支持。

这些数据可以用来指导环境控制设备的运行,以达到最佳的生长环境。

2. 智能控制:基于物联网技术,可以实现大棚环境的智能控制。

例如,根据环境监测数据,系统可以自动调节大棚内的温度、湿度、光照等环境参数,以满足作物生长的需求。

此外,系统还可以根据历史数据和作物生长模型,预测未来的环境需求,提前进行调节,提高管理的预见性。

3. 远程监控:物联网技术可以实现大棚的远程监控,管理人员可以通过网络随时了解大棚内的环境状况,及时发现问题并进行处理。

同时,远程监控也方便了农业生产的调度和管理,提高了生产效率。

4. 智能化种植:物联网技术可以实现智能化种植,即通过系统自动选择合适的种子、播种时间、生长周期等,实现农业生产的智能化和科学化。

三、实践效果1. 提高产量:通过精确的环境控制,可以提高农作物的生长效率,从而提高产量。

2. 改善品质:良好的生长环境可以保证农作物的品质,提高其口感和营养价值。

3. 节约成本:远程监控和智能控制可以节约人力成本,同时减少因环境问题导致的作物损失,降低生产成本。

4. 提升竞争力:智能化、精确化的农业生产方式可以提高产品的竞争力,吸引更多的消费者。

四、结论物联网在智能农业温室大棚控制中的应用实践,为农业带来了巨大的变革和效益。

通过环境监测、智能控制、远程监控和智能化种植等技术手段,可以实现精确的环境控制,提高农作物的生长效率和品质,降低生产成本,提升竞争力。

智能温室技术

智能温室技术

智能温室技术随着科技的不断发展,智能温室技术逐渐在农业领域崭露头角。

这种技术以环境感知为基础,通过精细化管理,为植物生长提供最佳环境条件,从而提高农作物产量和品质。

本文将详细介绍智能温室技术的概念、应用及优势。

智能温室技术是一种集成了物联网、大数据、人工智能等技术的农业种植管理方案。

它通过部署在温室内的传感器、执行器等设备,实时监测和调控温室环境因素,如温度、湿度、光照、二氧化碳浓度等,以满足植物生长的需求。

环境监测:通过传感器采集温室内各项环境参数,如温度、湿度、光照、二氧化碳浓度等,为作物生长提供数据支持。

智能控制:根据监测数据,自动调节温室设备(如通风设备、加热设备、喷水设备等),保持温室内环境因素的稳定。

病虫害预警:通过图像识别技术,监测作物的生长状况,及时发现病虫害迹象,提前采取防治措施。

产量预测:根据作物生长数据,预测作物产量,为农业生产提供决策支持。

提高产量:智能温室技术可以根据作物需求提供最佳的生长环境,从而提高农作物产量。

节约资源:通过精细化管理,可以合理分配水资源、肥料等资源,减少浪费。

减少病虫害:通过病虫害预警系统,可以及时发现病虫害,有效防止病虫害扩散。

提高生产效率:智能温室技术可以实现自动化、智能化管理,提高生产效率。

适应气候变化:智能温室技术可以调节温室环境,适应气候变化,保证农作物的稳定生长。

智能温室技术是未来农业发展的重要方向。

它将科技与农业生产紧密结合,实现了农业生产的自动化、智能化和精细化。

通过智能温室技术,我们能够更好地应对气候变化、资源紧张等问题,提高农作物产量和品质,推动农业生产的可持续发展。

随着科技的不断发展,物联网技术在智能家居、工业自动化等领域得到了广泛应用。

本文旨在研究基于物联网技术的智能温室大棚控制系统,旨在提高农业生产效率、优化农作物生长环境及降低人工成本。

在国内外相关研究中,许多学者对物联网技术在智能温室大棚控制系统中的应用进行了探讨。

例如,荷兰的郁志宏等(2021)设计了一种基于物联网的智能温室系统,可通过传感器实时监测土壤湿度、温度等信息,为农民提供准确的种植环境数据。

基于物联网的智慧温室环境监测与控制系统设计

基于物联网的智慧温室环境监测与控制系统设计

基于物联网的智慧温室环境监测与控制系统设计引言:随着智能科技的迅速发展,物联网在农业领域的应用越来越广泛。

智慧温室环境监测与控制系统是其中的一个重要应用。

本文将介绍一个基于物联网的智慧温室环境监测与控制系统设计方案。

一、需求分析1.温室环境监测:温度、湿度、光照强度、二氧化碳浓度等参数的监测;2.遥控控制温室环境:温度、湿度和光照等参数的控制调节;3.远程监测和操控:用户通过手机或电脑可以随时随地掌控温室环境;4.数据记录和分析:对温室环境数据进行存储和分析,以便农民调整种植计划。

二、系统设计1.硬件设计:(1)传感器:选择适当的传感器来监测温度、湿度、光照强度和二氧化碳浓度等参数。

确保传感器的准确性和可靠性。

(2)执行器:通过执行器控制温室内的加热器、通风设备和灯光,实现对温度、湿度和光照的调控。

(3)硬件平台:选择合适的物联网硬件平台,如Arduino、Raspberry Pi 等,用于搭建系统的硬件架构。

2.网络连接:(1)无线网络:采用Wi-Fi或移动网络实现温室与互联网的连接。

(2)数据传输:使用MQTT(Message Queuing Telemetry Transport)协议将温室环境数据传输到云端。

3.软件设计:(1)数据处理和存储:在云端服务器上设计数据库,用于存储温室环境数据。

借助云计算技术,实现大数据的处理和分析。

(2)用户界面:通过手机APP或网页端提供用户界面,实现用户远程监测和控制温室环境的功能。

(3)决策支持系统:通过算法和统计分析,提供决策支持系统,为农民提供种植计划和环境调控建议。

三、系统工作原理整个系统工作原理如下:1.传感器实时监测温室内环境参数;2.传感器将监测到的数据通过无线网络传输到云端服务器;3.云端服务器处理数据并存储在数据库中;4.用户可以通过手机APP或网页端访问云端服务器,实现远程监测和控制;5.用户根据数据分析结果进行科学调控温室环境。

四、系统优势1.实时监测:传感器可以实时监测温室内的温度、湿度、光照等参数,农民可以迅速了解温室内的环境状况。

《基于物联网的温室监控系统云平台的设计与实现》范文

《基于物联网的温室监控系统云平台的设计与实现》范文

《基于物联网的温室监控系统云平台的设计与实现》篇一一、引言随着科技的不断进步,物联网(IoT)技术逐渐在农业领域中崭露头角。

其中,基于物联网的温室监控系统云平台的设计与实现,成为了提高农业生产效率、优化资源分配和实现智能农业的重要手段。

本文将深入探讨基于物联网的温室监控系统云平台的设计与实现,分析其核心技术、架构设计和实施步骤,为农业物联网的进一步发展提供参考。

二、系统设计1. 需求分析在系统设计阶段,首先需要对温室监控系统的需求进行详细分析。

主要包括实时监测温室环境参数、远程控制温室设备、数据存储与分析以及用户管理等。

通过需求分析,为后续的设计与实现奠定基础。

2. 架构设计基于需求分析,设计出系统的整体架构。

该架构应包括感知层、传输层、平台层和应用层。

感知层负责采集温室环境参数和设备状态信息;传输层负责将数据传输至平台层;平台层负责数据的存储、处理和分析;应用层则提供用户界面和应用程序接口,实现远程控制和数据展示等功能。

3. 关键技术在系统设计中,需要关注的关键技术包括传感器技术、数据传输技术、云计算技术和大数据处理技术等。

传感器技术用于采集温室环境参数和设备状态信息;数据传输技术实现数据的远程传输;云计算技术提供数据存储和计算能力;大数据处理技术用于对海量数据进行处理和分析。

三、系统实现1. 硬件设备硬件设备包括传感器、执行器、网关等。

传感器用于采集温室环境参数,如温度、湿度、光照等;执行器用于控制温室设备,如灌溉系统、通风系统等;网关用于将传感器和执行器与云平台进行连接。

2. 软件系统软件系统包括云平台和应用程序。

云平台负责数据的存储、处理和分析,提供丰富的API接口供应用程序调用。

应用程序则提供用户界面和交互功能,实现远程控制和数据展示等功能。

3. 数据处理与分析数据处理与分析是系统实现的关键环节。

通过对采集到的数据进行预处理、清洗和存储,利用大数据处理技术对数据进行分析和挖掘,提取出有价值的信息,为农业生产提供决策支持。

物联网设施农业温室大棚智能控制系统的研究

物联网设施农业温室大棚智能控制系统的研究

目前,我国设施农业大棚建设还存在网络化水平低、运营管理落后、环境监管水平需要进一步提高等诸多问题,限制了改善设施农业温室的整体生产效率。

针对设施农业大棚生产中的一系列问题,本文探讨了基于物联网技术的设施农业大棚中物联网技术的应用设计,开发了设施智能控制系统。

希望本研究能够促进设施农业大棚的科学管理,促进农业大棚的科学化、网络化、智能化、自动化发展。

在物联网技术的不断发展中,农业生产向智能化发展,但我国缺乏对温室智能控制系统的研究,因此需要在系统设计时进行合理的调整。

建立内部结构和运行监控系统。

识别温室变化,实现温室增产目标,促进农业生产进一步发展。

此外,由于我国的农业生产技术尚且不够发达,农业企业和个人对温室智能控制系统的了解程度还有待提高,应用难度较大。

一、物联网概念物联网利用射频识别(RFID)卡、无线传感器等信息检测设备,按照传输协议以有线和无线方式将万物连接到互联网,并使用云计算等。

信息交换和通信技术等。

实现智能识别、定位、跟踪、监控和管理等功能的网络。

物联网建立在互联网之上,将用户端延伸和延伸到万事万物。

在物联网中,物品可以在无人为干预的情况下相互“交流”。

其本质是利用射频识别等技术,实现物品的自动识别和互联网上的信息共享。

智能农业利用遥感技术、地理定位系统技术、地理信息系统技术、计算机网络技术等技术,与土壤快速分析,自动灌溉、自动施肥施药、自动收割、自动采后处理和自动存储等智能农业机械技术融合的新型农业生产方式。

二、温室控制系统的主要功能智慧温室利用物联网搭建温室,自动或远程控制蔬菜的生长环境,使蔬菜全年都能获得最佳的生长环境,提高产量,实现蔬菜的合理种植。

通过作物所需的生长环境和物联网技术,智能温室实现以下功能。

1、数据收集根据作物的种类和生长特性,在温室各点放置温湿度传感器、二氧化碳传感器、照度传感器、水流传感器、土壤湿度传感器等设备,实时采集温室内环境信息。

采集到的信息通过无线射频设备发送到内置物联网网关,物联网网关再对数据进行分析处理后上传至服务器。

基于MQTT的草莓温室物联网监控系统设计

基于MQTT的草莓温室物联网监控系统设计

科技纵横农业开发与装备 2021年第12期基于MQTT的草莓温室物联网监控系统设计姬丽雯,高菊玲,刘永华(江苏农林职业技术学院,江苏句容 212400)摘要:为实现草莓温室的远程监控和管理,设计基于MQTT的草莓温室物联网监控系统。

系统采用MQTT协议作为数据通信协议,降低了通信成本,在带宽受限的农业物联网应用场景中具有较好的传输性能。

物理感知层通过PLC实时采集草莓温室的环境参数并控制温室设备。

网络传输层使用云服务器,搭配MySQL数据库,使用MQTT通讯协议发布/订阅主题,完成信息传输。

应用层采用响应式布局界面,适配多种用户终端。

系统实现草莓温室信息采集与远程控制,提高温室的管理水平。

关键词:温室;物联网;MQTT协议;PLC0 引言草莓是我国农业增效、农民增收的重要产业,我国的草莓生产面积和产量居世界第一。

目前草莓大多采用温室设施栽培生产,能提前上市,提高生产效益,因而对草莓温室的管理十分重要。

草莓温室环境参数的监控是抵御自然灾害,提高自动化程度的重要途径[1]。

如果依靠人工采集数据、现场调控设施,不仅会造成工作效率低、采集数据误差大,还会影响最终的控制效果。

基于物联网的草莓温室监控系统可以实现远程监测草莓的生长环境信息,并对设施环境进行智能化调控,以提高生产管理水平,促进农业发展方式转变[2]。

朱均超等设计了基于物联网的农业大棚环境监测系统,但是无法通过设施控制调节环境参 数[3]。

柳军等实现了温室环境数据的采集和监测,并列举了温室调控的执行机构,但并没有进行配套的控制功能开发[4]。

本文通过物联网和传感技术的融合,设计物联网监控系统,实现草莓温室环境参数的实时采集和远程控制。

使用轻量级的通信协议MQTT,降低了通信成本,在带宽受限的农业物联网应用场景中具有较好的传输性能。

采用分布式系统设计,可以使传感器实现即插即用。

设计响应式监控平台,满足不同终端用户需求。

1 系统总体架构基于MQTT的草莓温室物联网控制系统由三层架构组成,分别为物理感知层、网络传输层和终端应用层[5],总体结构如图1所示。

《基于物联网的设施农业温室大棚智能控制系统研究》范文

《基于物联网的设施农业温室大棚智能控制系统研究》范文

《基于物联网的设施农业温室大棚智能控制系统研究》篇一一、引言随着科技的不断进步,物联网(IoT)技术已广泛应用于农业领域,特别是在设施农业中,其对于提高农业生产力、减少资源浪费以及提升农业管理效率起到了显著作用。

本篇论文旨在探讨基于物联网的设施农业温室大棚智能控制系统的研究与应用。

该系统通过对温室环境的实时监控和自动调控,为作物生长提供最佳的生态环境,从而提高作物的产量和质量。

二、物联网在设施农业中的应用物联网技术为设施农业提供了全新的发展思路。

通过物联网技术,我们可以实时监测温室内的环境参数,如温度、湿度、光照、CO2浓度等,并根据作物的生长需求进行自动调控。

此外,物联网技术还可以实现远程监控和智能控制,使农业生产者可以随时随地对温室环境进行管理和调整。

三、智能控制系统架构基于物联网的设施农业温室大棚智能控制系统主要包括硬件和软件两部分。

硬件部分包括传感器、执行器、控制器等,软件部分则包括数据采集、数据处理、决策控制等模块。

传感器负责实时采集温室内的环境参数,如温度、湿度、光照等。

执行器则根据控制器的指令对温室环境进行调控,如开启或关闭通风口、调节遮阳网等。

控制器是整个系统的核心,它通过接收传感器采集的数据,根据预设的算法对数据进行处理,然后根据处理结果发出控制指令给执行器。

四、系统功能与实现基于物联网的设施农业温室大棚智能控制系统具有以下功能:1. 环境监测:实时监测温室内的环境参数,如温度、湿度、光照等。

2. 自动调控:根据作物的生长需求和预设的算法,自动调节温室环境,为作物提供最佳的生态环境。

3. 远程监控:农业生产者可以通过手机、电脑等设备随时随地对温室环境进行远程监控。

4. 智能控制:系统可以根据实时的环境参数和作物的生长状态,自动做出决策并发出控制指令。

系统实现过程中,首先需要搭建物联网平台,包括传感器、执行器、控制器等硬件设备的选型与配置。

然后,需要开发相应的软件系统,包括数据采集、数据处理、决策控制等模块的实现。

基于物联网技术的智能温室大棚控制系统

基于物联网技术的智能温室大棚控制系统

基于物联网技术的智能温室大棚控制系统随着人们生活水平的提高和环境污染的加重,在农业生产环境中,使用无公害的技术已经成为了国内外的趋势。

智能温室大棚控制系统是一种完全自动化的,集照明、空气调节、温度调节、湿度调节、二氧化碳调节、水分配等多种功能于一体的智能化设备。

该系统主要是通过物联网技术实现管理,不仅能够优化温室大棚的耕种环境,还能够有效地节约人力、物力、财力等资源,提高农产品生产的效率和质量,从而实现高效、智能和无公害农业生产的目标。

一、设计思想1.1开放性智能化的温室大棚控制系统应该是开放的,不仅可以与其他系统进行数据共享,而且可以通过数据来不断升级自身的功能,更好地服务于温室大棚的耕种环境。

1.2可靠性智能化的温室大棚控制系统需要具有高可靠性,系统的任何一个部分出现故障都会对农产品的生产造成严重的影响,因此系统需要具有自我诊断、自我维护等功能,能够及时发现、排除故障,保证温室大棚的正常运行。

智能化的温室大棚控制系统应该是可扩展的,能够根据用户的需求和市场的变化进行升级和扩展,增加新的功能和模块,适应不同的耕种环境。

二、系统结构智能化的温室大棚控制系统采用客户端/服务器结构,客户端主要采用单片机或嵌入式系统来实现,服务器端采用云端或大规模数据库来实现。

系统的整体结构如图1所示:三、系统功能智能化的温室大棚控制系统具有以下功能:3.1 温室大棚环境参数实时监测温室大棚内部环境参数的实时监测是系统的核心功能之一,温室大棚内部的环境参数包括光照强度、温度、湿度、二氧化碳浓度等多个方面。

系统需要通过传感器和控制器来实现这些参数的实时监测,并将监测到的数据上传到服务器端,进行进一步的处理和分析。

温室大棚安全设施的实时监控是系统的一个重要功能,因为温室大棚内部会使用较多的电器和设备,如果这些设备发生故障或出现其他问题,可能会对温室大棚内部的环境造成损坏或危害农民的生命安全。

系统需要通过安装不同类型的传感器来实现对温室大棚内部环境的实时监控,包括温度传感器、湿度传感器、烟雾传感器、二氧化碳传感器等等,如出现故障或异常行为,在第一时间进行报警或通知农民。

基于物联网技术的智能温室大棚控制系统

基于物联网技术的智能温室大棚控制系统

基于物联网技术的智能温室大棚控制系统1. 引言1.1 研究背景:利用物联网技术来实现智能化的温室大棚控制系统成为了当前研究的一个热点。

物联网技术可以通过将传感器、控制器和网络相连接,实现对温室环境参数的实时监测和远程控制,从而实现温室环境的智能化管理。

这不仅能够提高农作物的生长效率和质量,还可以节约能源和减少人力成本,具有重要的社会和经济意义。

为了应对现代农业生产的需求,研究基于物联网技术的智能温室大棚控制系统具有重要的理论和实践意义。

通过该系统的研究和开发,可以提高农业生产的效率和质量,促进农业的可持续发展,为我国农业现代化进程做出贡献。

1.2 研究意义随着全球气候变化加剧和人口增加,粮食安全与农业生产的可持续性成为世界各国亟需解决的问题。

传统的温室大棚控制方式存在着运作成本高、能耗问题严重、生产效率低等诸多不足之处。

而基于物联网技术的智能温室大棚控制系统的研究和应用能够有效解决这些问题,具有重要的社会和经济意义。

智能温室大棚控制系统能够实现温室环境参数的精准监测和智能调控,确保植物在最适宜的生长环境中生长,提高生产效率与品质。

该系统能够实现远程监控和控制,减少人力成本,提高生产管理的效率和灵活性。

智能温室大棚控制系统的研究还能推动农业现代化和智能化水平的提升,促进农业产业的可持续发展。

研究基于物联网技术的智能温室大棚控制系统具有重要的指导意义和推动作用,对提升农业生产效率、保障粮食安全、促进经济发展具有积极的意义和价值。

【字数:231】2. 正文2.1 智能温室大棚技术发展现状随着人们对食品安全和环境保护意识的增强,智能温室大棚技术逐渐受到重视和应用。

目前,全球智能温室大棚技术发展已经进入了一个快速发展阶段,在各个国家都有相关的研究和应用实例。

在欧美等发达国家,智能温室大棚技术已经相对成熟,应用广泛。

而在我国,智能温室大棚技术也在不断向前发展。

智能温室大棚技术不仅能够提高农作物的产量和质量,减少资源的浪费,还能够降低农业生产过程中的能耗和环境污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于物联网技术的温室智能监测系统
作者:王蓓
来源:《电子技术与软件工程》2016年第24期
物联网技术是一种融合了传感器、信息处理技术与互联网等技术的新型信息技术,被广泛应用到农业设施中,受到人们的认可。

近年来在现代温室环境监测和调控、产品溯源及病虫害诊治方面获得了巨大贡献。

文章主要从物联网技术入手,研究了物联网技术的温室智能监测系统的应用,以供参考完善。

【关键词】物联网技术温室智能监测系统设计路线
物联网技术的温室智能监测系统在农业生产的应用,能够实时远距离监控温室运行的情况,为温室内部的农作物生长提供良好的生态环境,及时管理温室中农作物生长的情况,从而提升农作物的生产产量与生产水平,促进信息化农业建设的发展。

1 温室智能环境监测系统框架
一般情况下,为了提升物联网技术的温室智能监测效率,大部分的温室智能环境监测会使用分布式系统架构方式来检测温室内部气候环境。

温室智能环境监测系统框架主要包括以下几部分:
1.1 温室现场监测控制层
作用是将温室内部的各种环境参数传送到控制层中,然后按照系统设置的系数对设备使用进行控制。

1.2 总控室群测群控层
通过无线传感网络将控制器中的因数传送到计算机主控室中,让技术人员按照规定来处理数据信息,达到自动化控制的目的。

1.3 网络远距离访问层
在系统远程综合服务平台上,利用授权的网络计算机对温室环境中的信息数据进行管理,达到提升远距离管理效率的目的。

2 系统设计技术路线
2.1 实时数据采集处理
在物联网技术背景下,温室智能监测系统在农业生产中的应用,主要是通过现场监控子系统对温室环境数据信息进行采集和处理,从而提升温室环境数据采集的准确性与真实性。

但是由于温室环境数据的采集受测量电路性能和传感器准确性等一系列因素的影响,因此,必须采用平滑方式对采集的数据信息进行处理。

具体操作方法为:使用分布图法将采集的温室环境数据中存在的离异值排除,防止传感器出现故障以及网络传输发生异常情况,降低平滑处理的效率,从而影响到数据采集的真实性。

2.2 异步数据交换
远距离监控子系统的作用即是将温室环境中数据采集与使用设备的状态进行监控,方便用户了解温室环境的基本情况。

但是由于远距离监控子系统内部包含了设备控制、历史数据查询、因数设置和报表分析的信息数据,必须采用Ajax技术的异步数据交互模式,建立一个远距离的监控系统,方便用户实时监控温室环境的同时,减轻服务器的负担,达到提升网络传输效率的目的。

例如在温室智能监测系统中,在用户远距离用户页面中的JavaScript定时向Set Interval函数发出请求,不断触发系统内部的Ajax引擎,将数据更新请求传输到Web服务其中,然后通过检索最新的温室环境数据,将采集的信息储存到数据库中,借助JOSN格式将储存的数据资料传输到原来的客户端中,实现温室环境数据的同步更新与共享。

2.3 设备控制
在物联网技术背景下,温室智能监测系统中的设备控制内容主要包括以下几方面:
2.3.1 设备状态的同步更新
该系统的功能是:当系统中某一部分的子系统运行状态改变后,可及时通知另一个子系统,确保子系统与子系统之间运行状态的同步更新,从而提升控制指令的安全性与准确性。

2.3.2 控制逻辑
现场控制指令执行后,会将采集信息传输到下一个现场监控软件中,将相应的控制子函数调取出来,对设备运行状态进行控制,等到设备运行状态改变后,就会传回到远距离客户端中。

2.3.3 温室温度系统智能控制
现阶段,我国温室控制设备中采用的智能控制系统时开关控制,该系统控制变量是分散的,能够连续扰动输入变量,是一个较为常用的典型混杂动态化系统。

2.4 设备状态识别和校准
温室智能监测系统中的双向型设备的无位置反馈装置,它的运行状态主要以时间为依据,因此在使用该装置的过程中,会受用户手动操作的影响,导致反馈装置检测的具体位置和控制系统识别记忆的位置存在明显差距,而图像识别技术自动校准的目的,主要是保证反馈装置监控位置与实际位置保持一致。

例如在设备自动校准中DS-2CD3212D-15型号的网络红外摄像机运用,主要是按照校准指令→获取图像→图像规格化→图像灰度比→滤波去噪→Zernike矩的提取→比对设置状态→运行时间的确认→天窗关闭等一系列流程来实时采集温室环境中的图像,借助系统内部的Zernike矩将采集的图像调取出来,将天窗开度的实时图像比例设置成0%、50%以及100%,然后比较系统中设置的特征状态的Zernike矩图像,对某一阶段的天窗状态运行情况进行识别,以此计算出当天开启与关闭所需要的时间。

经过试验证明,天窗从开始到关闭等整个运行过程所需要的时间是30s,提取的温室环境图像特征时间是2~3s,虽然存在误差,但是由于天窗中安装了限位开关,因此图像提取的运行时间误差的2~3s,不会影响到天窗运行的稳定性与安全性,符合温室环境监测的要求。

3 结束语
综上所述,本文在物联网技术的基础上,详细介绍了温室智能监控系统框架与实时数据采集处理、异步数据交换、设备控制以及设备状态识别和校准等系统设计技术路线的内容,有利于提升物联网技术的温室智能监测系统在农业生产中应用的效率,实现对温室中环境与湿度的远距离监控,为温室中农作物生长提供良好的生态环境。

参考文献
[1]徐伟,张晓峰.基于物联网技术的智能温室环境监控中的应用研究[J].中国市场,2015(24):51-52.
[2]秦琳琳,陆林箭,石春,等.基于物联网的温室智能监控系统设计[J].农业机械学报,2015,46(03):261-267.
[3]屈毅,王雪侠,史晶,等.基于物联网技术的温室智能监测系统的应用研究[J].电子设计工程,2015,23(13):79-81.
作者单位
上海电子信息职业技术学院上海市 201411。

相关文档
最新文档