最新人教A版必修4高中数学 3.1.1 两角差的余弦公式教学设计
人教A版高中数学必修4 精选优课教案 3.1.1 两角差的余弦公式
两角和与差的余弦教学目标经历两角和与差余弦公式的推导过程,体会探究数学问题时猜想与证明的数学思想和方法。
大胆的猜想和严谨的证明相结合,培养学生从已知知识出发主动探索未知世界的意识及对待新知识的良好情感态度。
从公式的正用,逆用以及变形用三个层面去引导学生掌握两角和与差的余弦公式。
教学重难点重点:两角和与差的余弦公式的推导及公式的运用;难点:两角和与差的余弦公式的推导过程教材分析两角和与差的余弦位于人教版必修四第三章第一节,教材分别利用三角函数线和向量方法对两角差的余弦公式进行了推导。
其中,利用三角函数线仅对αβαβ为锐角的情况进行了推导,而,αβ为任意角时教材指出公式的推导是,,-复杂的,并没有给出推导过程。
利用向量方法推导两角差的余弦公式简洁明了,充分的体现出了向量的工具性作用。
所以这也是教材在编排上的一个考虑:在学生学完第一章任意角的三角函数后没能直接学习第三章三角恒等变换,而是先学习第二章平面向量。
然而为了更好的构建学生的知识体系,在学生学习完第一章后,能够直接进入第三章的学习,就必须给出另外一种推导两角和与差的余弦公式的方法。
因为该公式是全部和、差角公式,以及倍角、半角等公式的基础,是本章公式推导的“源”。
所以两角和与差的余弦公式不仅起着承上启下的核心作用,也是高考的重点考点。
学情分析数学是严谨的,从猜想开始证明一个数学公式,学生在情感上是不容易接受的。
然而,猜想与证明却是发现数学问题的主要思想方法之一。
所以培养学生对数学问题的猜想能力是有必要的。
学生主要的困难表现在:不敢猜,怕出错。
而不会猜,主要是缺乏数学意识。
教学设计一、提出问题,引入课题通过如何计算75︒角的余弦值引出课题设置情景:(1)让学生举手回答如何计算cos75︒。
【设计意图】虽然75︒角不是特殊角,但是它很明显可以写成30︒和45︒角的和,于是学生非常想知道75︒角的余弦值到底与30︒和45︒角的余弦值有什么关系呢?这样引出课题很自然,也很清晰,简洁。
2020高中数学 3.1.1两角差的余弦公式教学设计 新人教A版必修4
《两角差的余弦公式》教案一、教学目标1、知识目标通过两角差的余弦公式的探究,让学生在初步理解公式的结构及其功能的基础上记忆公式,并用之解决简单的数学问题,为后面推导其他和(差)角公式打好基础。
2、能力目标通过利用同角三角函数变换及向量推导两角差的余弦公式,让学生体会利用联系的观点来分析问题,解决问题,提高学生逻辑推理能力和合作学习能力3、情感目标使学生经历数学知识的发现、创造的过程,体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识以及努力分析问题、解决问题的激情。
二、教学重点、难点重点:通过探索得到两角差的余弦公式。
难点:探索过程的组织和适当引导。
三、教学过程(一) 问题引入 (1) 任意角的三角函数的定义?(2) 若角α与β的终边与单位圆的交点分别是A ,B ,则_____,______.OA OB ==u u u r u u u r______________.OA OB ⋅=u u u r u u u r(二) 公式探究第一步,明确探究途径与目的 提示学生联系与角的余弦相关的知识点,明确以向量运算中的数量积与三角函数线作为研究途径。
如右图,在单位圆中作出角βα,,它们的终边与单位圆分别交于A 、B 两点,先假设[]π,0,∈βα,且βα≥,提出以下问题:(3) 此时βα-的取值范围是多少?(4) 图中哪个角可以表示βα-?(5) βα-可以看作是哪两个向量的夹角?(问题设计目的:在探究公式的过程中,教材不要求学生做到一步到位。
首先对角选择较为特殊的范围来进行探究,能让学生从整体上感知本节课所要探究的途径与目的,让大部分学生都参与到探究中来,避免部分学生一开始就感觉到困难,提不起向下探究的兴趣。
)第二步,复习相关知识(1)向量的数量积运算(强调向量夹角的范围)),(),,(2211y x y x ==1212cos ,OA OB OA OB OA OB x x y y ⋅==+u u u r u u u r u u u r u u u r u u u r u u u r(2)三角函数线(结合图形,特别要强调方向问题)第三步,推导公式在证明公式之前先引导学生结合三角函数知识写出点A 、点B 的坐标。
高中数学 3.1.1两角差的余弦公式(讲)新人教A版必修4-新人教A版高中必修4数学教案
设计意图:尽量用动画课件把探索过程展示出来,使学生能从几何直观角度加强对公式结构形式的认识。
设角 终边与单位圆地交点为P1, 。
过点P作PM⊥X轴于点M,那么OM就是 的余弦线。
过点P作PA⊥OP1于A,过点A作AB⊥x轴于B,过点P作PC⊥AB于C
那么OA表示 ,AP表示 ,并且
(1) ;(2)
(让学生联系公式 和本题的条件,考虑清楚要计算 ,应作那些准备。)
解:由 ,得
又由 , 是第三象限角,得
所以
让学生结合公式 ,明确需要再求哪些三角函数值,可使问题得到解决。
变式训练:
(三)、质疑答辩,排难解惑,发展思维
1.利用两角和(差)的余弦公式,求
【点评】:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如: ,要学会灵活运用.
2.求值
3.化简
提示:利用拆角思想 的变换技巧
(设计意图:通过变式训练,进一步加深学生对公式的理解和应用,体验公式既可正用、逆用,还可变用.还可使学生掌握“变角”和“拆角”的思想方法解决问题,培养了学生的灵活思维品质,提高学生的数学交流能力,促进思维的创新。)
(四)发导学案、布置预习
本节我们学习了两角和与差的余弦公式,要求同学们掌握公式 的推导,能熟练运用公式 ,注意公式 的逆用。在解题过程中注意角 、 的象限,也就是符号问题,学会灵活运用.课下完成本节的课后练习以及课后延展作业,课本 习题2.3.4
3.1.1两角差的余弦公式(讲)
一、教材分析
《两角差的余弦公式》是人教A版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容。本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。
高中数学 人教A版必修4 第3章 3.1.1两角差的余弦公式
cos(α-β)≠cos α-cos β;
π π π 3 再如:当 α=3,β=6时,cos(α-β)=cos 6= 2 , 本
课 时 栏 目 开 关
π π 1- 3 而 cos α-cos β=cos 3-cos 6= 2 , cos(α-β)≠cos α-cos β.
研一研·问题探究、课堂更高效
本 课 时 栏 目 开 关
3.1.1
3.1.1
【学习要求】
两角差的余弦公式
1.了解两角差的余弦公式的推导过程.
本 2.理解用向量法导出公式的主要步骤. 课 时 3.熟记两角差的余弦公式的形式及符号特征,并能利用该公式进 栏 目 行求值、计算. 开 关 【学法指导】
1.学习两角差的余弦公式时,应从特例入手,归纳、提炼、拓展 到一般的两角差的余弦公式,从单位圆上的三角函数和向量两 种不同的途径探索、推导公式.
3.1.1
问题 2
请你计算下列式子的值, 并根据这些式子的共同特征,
写出一个猜想. ①cos 45° cos 45° +sin 45° sin 45° =1 ; 3 ②cos 60° cos 30° +sin 60° sin 30° = 2 ; ③cos 30° cos 120° +sin 30° sin 120° =0 ; 1 ④cos 150° cos 210° +sin 150° sin 210° =2 . 猜想: cos αcos β+sin αsin β= cos(α-β) ; 即: cos(α-β)=cos αcos β+sin αsin β .
3.1.1
2.要利用两角差的余弦公式来求具体的三角函数值,就要善于把 所求值的三角函数先转化为余弦函数,再把其角转化为两个特
本 课 殊角(30° ,45° ,60° ,„)的差,利用公式求其值. 时 栏 3.当给出 α、β 的某个三角函数值,在求 cos(α-β)值时,要善于 目 开 利用同角间的三角函数关系式求出 α、β 的正弦和余弦值,再 关
人教A版数学必修4第三章3.1.1两角差的余弦公式教学设计
§3.1.1两角差的余弦公式教学设计一、概述、1.三角恒等变换处于三角函数与数学变换的结合点和交汇点上,是前面所学三角函数知识的继续与发展,是培养学生推理能力和运算能力的重要素材.两角差的余弦公式是《三角恒等变换》这一章的基础和出发点,公式的发现和证明是本节课的重点,也是难点.2.由于和与差内在的联系性与统一性,我们可以在获得其中一个公式的基础上,通过角的变换得到另一个公式.我们可以用“随机、自然进入”的方式选择其中的一个作为突破口.教材选择两角差的余弦公式作为基础,其基本出发点是使公式的证明过程尽量简洁明了,易于学生理解和掌握,同时也有利于提高学生运用向量解决相关问题的意识和能力.3.教材没有直接给出两角差的余弦公式,而是分探求结果、证明结果两步进行探究,并从简单情况入手得出结果.这样的安排不仅使探究更加真实,也有利于学生学会探究、思维发展.4.由于本节课可以从不同的角度提出不同的问题,并且可以用不同的途径与方法解决问题,因此本节课为学生的思维发展提供了很好的空间和平台,教师要注意引导学生用观察、联想、对比、化归等方法分析、处理问题,寻找解决问题的思路.二、教学目标分析1.掌握两角差的余弦公式,并能简单运用这个公式求解教材上的练习和习题.2.全体学生能理解“探求结果,证明结果”这一常用的探究的步骤;多数学生能在两角差余弦公式的探究过程中体会以退求进、割补思想、分类讨论、观察联想等数学思想方法和思维方法,能体会到数学思维的合理性与条理性.3.能理解怎样运用向量解决问题,充分认识和感受向量的工具价值;课堂上能乐于思考和主动探究,并有愉悦的情感体验.(二)教学重、难点重点:两角差的余弦公式及公式的灵活应用;[设计意图]:课标要求要让学生经历数学知识的形成与应用过程;难点:余弦公式的探索,推导和证明;[设计意图]:高一学生逻辑思维能力还比较薄弱,对于公式的证明还存在很大的问题。
三、学习者特征分析1从学生已有的知识与方法看:高一学生已经学习了《平面向量》和《三角函数》的知识,从日常教学所反应的学生特点来看,学生对类比和分类讨论的思想有所体会,但是还是只停留在体会阶段,没有办法真正灵活的运用。
高中数学人教A版必修4第三章 3.1.1两角差的余弦公式教学设计
人教A版高中数学必修4 3.1.1两角差的余弦公式
一、教材分析
人教A版高中数学必修4第三章三角恒等变换是在学习三角函数和平面向量两章内容后的延续和发展,共分两大节,4小节内容。
本节课是第一节中的第一小节,通过对两角差的余弦公式的探究和推导,掌握公式的灵活应用,为今后建立其他和差角公式打好基础。
转化和化归思想是本节学习的一个重要思想,在解题中会灵活应用。
二、教学目标
1.知识与技能
正确理解两角差的余弦公式的推导,掌握两角差余弦公式的应用。
2.过程与方法
通过两角差的余弦公式的推导及应用过程,感知应用数学解决问题的方法,体会数形结合的思想方法。
3.情感态度与价值观
通过公式的探究,使学生经历了发现、猜想、论证的数学化的过程,并体验到了数学学习的严谨、求实的科学态度。
三、教学重点、难点
重点:两角差的余弦公式的探究过程及公式的运用。
难点:探究过程的组织和引导;两角差余弦公式的探究思路的发现。
四、教学方法与手段
教学方法:诱思探究教学法
学习方法:自主探究、观察发现、合作交流、归纳总结。
教学手段:多媒体辅助教学
五、教学过程
cos30
-的探究1:怎样联系单位圆上的三
(3)OA
设
的夹角公式得出
)
OA OB
β==
cos sin
αβ+
(以上推导是否有不严谨之处?应=cos cos
αβ+
45
sin
30
cos
45+。
高中数学3.1.1两角差的余弦公式教学设计新人教A版必修4
3.1.1 两角差的余弦公式教学目标(1) 了解两角差的余弦公式的推导,能够借助单位圆,运用向量的方法,推导出公式;(2) 掌握其公式并能利用它解决简单的求值和证明问题;(3) 通过对公式的推导,感受知识间的相互联系,培养逻辑思维能力,树立创新和运用意识,提高数学素养.教学重难点重点:通过探索得到两角差的余弦公式难点:探索过程的组织和适当引导教学过程一、复习引入前面我们已经学习了特殊角的三角函数,请回答: 3sin 60=1cos 602= tan 603=2sin 45= 2cos 45= tan 451= 对于上述特殊角,我们可以通过简单的-+、运算得到一系列新的角,比如6045105+=、 604515-=等等,那么如何求出它们的三角函数值呢?问题:cos15的三角函数值是多少?因为604515-=,那么能否用60,45的三角函数值表示出cos15呢?cos15cos60cos 45sin 60sin 45=+二、新课我们将问题一般化, 对于任意的角,αβ, cos()cos cos sin sin αβαβαβ-=+都成立?下面我们运用向量的知识来探究.在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角,αβ, 它们的终边与单位圆O 的交点分别为,A B . 则(cos ,sin ),(cos ,sin )OA OB ααββ==由数量积的坐标表示,有(cos ,sin )(cos ,sin )OA OB ααββ⋅=⋅cos cos sin sin αβαβ=+设OA 与OB 的夹角为θ,则||||cos cos cos cos sin sin OA OB OA OB θθαβαβ⋅=⋅==+ (**)注意:[0,]θπ∈下面关键就是找到θ和,αβ之间的关系。
由图(1)知,2k αβθπ=++;由图(2)知,2k αβθπ=-+,所以(2)k θβαπ=±-+所以cos cos()θβα=-,由 (**)得,cos()cos cos sin sin αβαβαβ-=+所以,对于任意的角,αβ,此公式给出了任意角,αβ的正弦、余弦值与其差角αβ-的余弦值之间的关系,称为差角的余弦公式,简记作()C αβ-。
《两角差的余弦公式》优质课教学设计
高中数学人教A版必修4第三章《3.1.1两角差的余弦公式》(第一学时)教学设计一、教学目标:1. 通过对两角差的余弦公式的猜想和探究过程,培养学生通过交流,探索,发现和获得新知(二)新知探究在平面直角坐标系xOy 中内作单位圆O ,以Ox 为始边作角βα,,它们的终边与单位圆的交 点分别为B A ,,则()(),sin ,cos ,sin ,cos ββαα==OB OA 由向量数量积的坐标表示有:βαβαsin sin cos cos +=⋅OB OA 。
设向量OA 与OB 的夹角为θ,由向量数量积的定义有:θθcos ==⋅OB OA ,所以βαβαθsin sin cos cos cos +=。
已知()()Z k k Z k k ∈+=∈++=πθβαπθβα2-2或,所以()Z k k ∈±=-θπβα2,所以()θβαcos cos =-,又因为βαβαθsin sin cos cos cos +=,所以可知对任意角βα,,都有()βαβαβαsin sin cos cos cos +=-。
(三)巩固理解例1、利用差角余弦公式求o15cos 的值。
分析:本题关键是将o15角分成o45与o30的差或者分解成o60与o45的差,再利用两角差的余弦公式即可求解。
例2、已知,135cos ,,2,54sin -=⎪⎭⎫⎝⎛∈=βππααβ是第三象限角,求()βα-cos 的值。
分析:观察公式()βα-cos 与本题已知条件应先计算出αcos ,βsin ,再代入公式求值。
求βαsin ,cos 的值可借助于同角三角函数的平方关系,并注意βα,的取值范围来求解。
例3、求值(1)oooo35sin 65sin 35cos 65cos + (2)απααπαsin 3sin cos 3cos ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+(3)oooo 40cos 110sin 50cos 110cos + (4)oooo42sin 78cos 42cos 12cos +为o50sin ,再逆向使用两角差余弦公,即可将原式化为o60cos ;对于(4),可先用诱导公式化o 78cos 为o 12sin ,再逆向使用两角差余弦公,即可将原式化为o 30cos 。
人教版高中数学全套教案导学案高中数学 (3.1.1 两角差的余弦公式)教案 新人教A版必修4
第三章三角恒等变换本章教材分析本章知识框图本章学习的主要内容是两角和与差的正弦、余弦和正切公式,以及运用这些公式进行简单的恒等变换.变换是数学的重要工具,也是数学学习的主要对象之一.在本册第一章,学生接触了同角三角函数公式.在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角变换公式,并运用这些公式进行简单的三角恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,并体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.本章内容安排按两条线进行,一条明线是建立公式,学习变换;一条暗线就是发展推理能力和运算能力,并且发展能力的要求不仅仅体现在学习变换过程之中,也体现在建立公式的过程之中.因此在本章教学中,教师要特别注意恰时恰点地提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使学生能依据三角函数式的特点,逐渐明确三角函数恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换,强化运用数学思想方法指导设计变换思路的意识.突出数学思想方法的教学,在类比、推广、特殊化等一般逻辑思考方法上进行引导,本章不仅关注使学生得到和(差)角公式,而且还特别关注公式推导过程中体现的数学思想方法.例如,在两角差的余弦公式这一关键性问题的解决中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,在这个过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、推广、特殊化、化归等思想方法,特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导,这对学生养成科学的数学思考习惯能起到积极的促进作用.另外,还在适当的时候对三角变换中的数学思想方法作了明确的总结.例如,在旁白中有“倍是描述两个数量之间关系的,2α是α的二倍,4α是2α的二倍,这里蕴含着换元的思想”等,都是为了加强思想方法而设置的.两角和与差的正弦、余弦、正切公式和二倍角公式是历届高考考查的“重点”和“热点”,在高考中占有重要的地位,主要考查对这十一个公式的正用、逆用、变形用,考查对公式的熟练掌握程度和灵活运用能力,其考查难度属低档,这就要求我们不要过分引导学生去挖掘一些特殊的变化技巧,应把主要精力放在学生掌握数学规律和通性通法上.教师在教学中,要注意控制好难度.因为近几年的高考中对三角部分的考查难度降低,但教材中部分习题却有一定难度,因此教师要把握好难度.本章教学时间约需8课时,具体分配如下(仅供参考):节次标题课时3.1.1 两角差的余弦公式1课时3.1.2 两角和与差的正弦、余弦、正切公式2课时3.1.3 二倍角的正弦、余弦、正切公式1课时3.2 简单的三角恒等变换2课时本章复习2课时3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式整体设计教学分析本节是以一个实际问题做引子,目的在于从中提出问题,引入本章的研究课题.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.以实例引入课题也有利于体现数学与实际问题的联系,增强学生的应用意识,激发学生学习的积极性,同时也让学生体会数学知识产生、发展的过程.本节首先引导学生对cos(α-β)的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假.这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案.方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出α-β角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导.方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:①在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;②结合有关图形,完成运用向量方法推导公式的必要准备;③探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完善;④补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式.本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:①要使学生了解公式的由来;②使学生认识公式的结构特征,加以记忆;③使学生掌握公式的推导和证明;④通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题.三维目标1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.重点难点教学重点:通过探究得到两角差的余弦公式.教学难点:探索过程的组织和适当引导.课时安排1课时教学过程导入新课思路 1.(问题导入)播放多媒体,出示问题,让学生认真阅读课本引例.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.在此基础上,再一般化而提出本节的研究课题进入新课.思路2.(复习导入)我们在初中时就知道cos45°=22,cos30°=23,由此我们能否得到cos15°=cos(45°-30°)=?这里是不是等于cos45°-cos30°呢?教师可让学生验证,经过验证可知,我们的猜想是错误的.那么究竟是个什么关系呢?cos(α-β)等于什么呢?这时学生急于知道答案,由此展开新课:我们就一起来探讨“两角差的余弦公式”.这是全章公式的基础.推进新课新知探究提出问题①请学生猜想cos(α-β)=?②利用前面学过的单位圆上的三角函数线,如何用α、β的三角函数来表示cos(α-β)呢? ③利用向量的知识,又能如何推导发现cos(α-β)=?④细心观察C (α-β)公式的结构,它有哪些特征?其中α、β角的取值范围如何? ⑤如何正用、逆用、灵活运用C (α-β)公式进行求值计算?活动:问题①,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到cos(α-β)=cos α-cos β的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性.如α=60°,β=30°,则cos(α-β)=cos30°=23,而cos α-cos β=cos60°-cos30°=231 ,这一反例足以说明cos(α-β)≠cos α-cos β. 让学生明白,要想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可.问题②,既然cos(α-β)≠cos α-cos β,那么cos(α-β)究竟等于什么呢?由于这里涉及的是三角函数的问题,是α-β这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?图1如图1,设角α的终边与单位圆的交点为P 1,∠P OP 1=β,则∠POx=α-β.过点P 作PM 垂直于x 轴,垂足为M,那么OM 就是角α-β的余弦线,即OM=cos(α-β),这里就是要用角α、β的正弦线、余弦线来表示OM.过点P 作PA 垂直于OP 1,垂足为A,过点A 作AB 垂直于x 轴,垂足为B,过点P 作PC 垂直于AB,垂足为 C.那么,OA 表示cos β,AP 表示sin β,并且∠P AC =∠P 1Ox=α.于是,OM=OB+BM=OB+CP=OAcosa+APsina=cos βcos α+sin βsin α,所以,cos(α-β)=cos αcos β+sin αsin β.教师引导学生进一步思考,以上的推理过程中,角α、β、α-β是有条件限制的,即α、β、α-β均为锐角,且α>β,如果要说明此结果是否对任意角α、β都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.图2问题③,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy 内作单位圆O,以Ox 为始边作角α、β,它们的终边与单位圆O 的交点分别为A 、B,则OA =(cos α,sin α),OB =(cos β,sin β),∠A OB=α-β.由向量数量积的定义有OA ·OB =|OA ||OB |·cos(α-β)=cos(α-β), 由向量数量积的坐标表示有 OA ·OB =(cos α,sin α)(cos β,sin β)=cos αcos β+sin αsin β,于是,cos(α-β)=cos αcos β+sin αsin β.我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角α-β必须符合条件0≤α-β≤π,以上结论才正确,由于α、β都是任意角,α-β也是任意角,因此就是研究当α-β是任意角时,以上公式是否正确的问题.当α-β是任意角时,由诱导公式,总可以找到一个角θ∈[0,2π),使cos θ=cos(α-β),若θ∈[0,π],则OA ·OB =cos θ=cos(α-β).若θ∈[π,2π],则2π-θ∈[0,π],且OA ·OB =cos(2π-θ)=cos θ=cos(α-β).由此可知,对于任意角α、β都有 cos(α-β)=cos αcos β+sin αsinβ(C (α-β))此公式给出了任意角α、β的正弦、余弦值与其差角α-β的余弦值之间的关系,称为差角的余弦公式,简记为C (α-β).有了公式C (α-β)以后,我们只要知道cos α、cos β、sin α、sin β的值,就可以求得cos(α-β)的值了.问题④,教师引导学生细心观察公式C (α-β)的结构特征,让学生自己发现公式左边是“两角差的余弦”,右边是“这两角的余弦积与正弦积的和”,可让学生结合推导过程及结构特征进行记忆,特别是运算符,左“-”右“+”.或让学生进行简单填空,如:cos(A-B)=__________,cos(θ-φ)=__________等.因此,只要知道了sin α、cos α、sin β、cos β的值就可以求得cos(α-β)的值了.问题⑤,对于公式的正用是比较容易的,关键在于“拆角”的技巧,而公式的逆用则需要学生的逆向思维的灵活性,特别是变形应用,这就需要学生具有较强的观察能力和熟练的运算技巧.如cos75°cos45°+sin75°sin45°=cos(75°-45°)=cos30°=23,cos α=cos [(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β.讨论结果:①—⑤略.应用示例思路1例1 利用差角余弦公式求cos15°的值.活动:先让学生自己探究,对有困难的学生教师可点拨学生思考题目中的角15°,它可以拆分为哪些特殊角的差,如15°=45°-30°或者15°=60°-45°,从而就可以直接套用公式C (α-β)计算求值.教师不要包办,充分让学生自己独立完成,在学生的具体操作下,体会公式的结构,公式的用法以及把未知转化为已知的数学思想方法.对于很快就完成的同学,教师鼓励其换个角度继续探究.解:方法一:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ 方法二:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45° =21×.426232222+=⨯+ 点评:本题是指定方法求cos15°的值,属于套用公式型的,这样可以使学生把注意力集中到使用公式求值上.但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式,灵活运用公式求值.本例也说明了差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形.至于如何拆分,让学生在应用中仔细体会.变式训练1.不查表求sin75°,sin15°的值解:sin75°=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=.42621322322+=⨯+⨯ sin15°= 15cos 12-=2)426(1+-=.426162628-=⨯- 点评:本题是例题的变式,比例题有一定的难度,但学生只要细心分析,利用相关的诱导公式,不难得到上面的解答方法.2.不查表求值:cos110°cos20°+sin110°sin20°.解:原式=cos(110°-20°)=cos90°=0.点评:此题学生一看就有似曾相识而又无从下手的感觉,需要教师加以引导,让学生细心观察,再结合公式C (α-β)的右边的特征,逆用公式便可得到cos(110°-20°).这就是公式逆用的典例,从而培养了学生思维的灵活性.例2 已知sin α=54,α∈(2π,π),cos β=135-,β是第三象限角,求cos(α-β)的值. 活动:教师引导学生观察题目的结构特征,联想到刚刚推导的余弦公式,学生不难发现,欲求cos(α-β)的值,必先知道sin α、cos α、sin β、cos β的值,然后利用公式C (α-β)即可求解.从已知条件看,还少cos α与sin β的值,根据诱导公式不难求出,但是这里必须让学生注意利用同角的平方和关系式时,角α、β所在的象限,准确判断它们的三角函数值的符.本例可由学生自己独立完成.解:由sin α=54,α∈(2π,π),得 cos α=.53)54(1sin 122-=--=--a又由cos β=135-,β是第三象限角,得 sin β=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cos αcos β+sin αsin β =.6533)1312(54)135()53(-=-⨯+-⨯- 点评:本题是直接运用公式C (α-β)求值的基础练习,但必须思考使用公式前应作出的必要准备.特别是运用同角三角函数平方关系式求值时,一定要弄清角的范围,准确判断三角函数值的符.教师可提醒学生注意这点,养成良好的学习习惯.变式训练已知sin α=54,α∈(0,π),cos β=135-,β是第三象限角,求cos(α-β)的值. 解:①当α∈[2π,π)时,且sin α=54,得cos α=53)54(1sin 122-=--=--a , 又由cos β=135-,β是第三象限角,得 sin β=22)135(1cos 1---=--β=1312-. 所以cos(α-β)=cos αcos β+sin αsin β =.6533)1312(54)135()53(-=-⨯+-⨯-. ②当α∈(0,2π)时,且sin α=54,得 cos α=53)54(1sin 122=-=-a , 又由cos β=135-,β是第三象限角,得 sin β=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cos αcos β+sin αsin β =.6563)1312(54)135(53-=-⨯+-⨯点评:本题与例2的显著的不同点就是角α的范围不同.由于α∈(0,π),这样cos α的符可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角α进行分类讨论,从而培养学生思维的严密性和逻辑的条理性.教师强调分类时要不重不漏.思路2例1 计算:(1)cos(-15°);(2)cos15°cos105°+sin15°sin105°;(3)sinxsin(x+y)+cosxcos(x+y).活动:教师可以大胆放给学生自己探究,点拨学生分析题目中的角-15°,思考它可以拆分为哪些特殊角的差,如-15°=15°-30°或-15°=45°-60°,然后套用公式求值即可.也可化cos(-15°)=cos15°再求值.让学生细心观察(2)(3)可知,其形式与公式C (α-β)的右边一致,从而化为特殊角的余弦函数.解:(1)原式=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ (2)原式=cos(15°-105°)=cos(-90°)=cos90°=0.(3)原式=cos [x-(x+y)]=cos(-y)=cosy.点评:本例重点是训练学生灵活运用两角差的余弦公式进行计算求值,从不同角度培养学生正用、逆用、变形用公式解决问题的能力,为后面公式的学习打下牢固的基础. 例2 已知cos α=71,cos(α+β)=1411-,且α、β∈(0, 2π),求cos β的值. 活动:教师引导学生观察题目中的条件与所求,让学生探究α、α+β、β之间的关系,也就是寻找已知条件中的角与所求角的关系.学生通过探究、讨论不难得到β=(α+β)-α的关系式,然后利用公式C (α-β)求值即可.但还应提醒学生注意由α、β的取值范围求出α+β的取值范围,这是很关键的一点,从而判断sin(α+β)的符进而求出cos β.解:∵α、β∈(0,2π),∴α+β∈(0,π). 又∵cos α=71,cos(α+β)=1411-, ∴sin α=,734cos 12=-a sin(α+β)=.1435)(cos 12=+-βa 又∵β=(α+β)-α,∴cos β=cos(α+β)cos α+sin(α+β)sin α =.21734143571)1411(=⨯+⨯- 点评:本题相对于例1难度大有提高,但是只要引导适当,学生不难得到β=(α+β)-α的关系式,继而运用公式解决.但值得注意的是α+β的取值范围确定,也是很关键的,这是我们以后解题当中常见的问题.变式训练1.求值:cos15°+sin15°.解:原式=22(2cos15°+22sin15°)=2(cos45°cos15°+sin45°sin15°) =2cos(45°-15°)= 2cos30°=26. 2.已知sin α+sin β=53,cos α+cos β=54,求cos(α-β)的值. 解:∵(sin α+sin β)2=(53)2,(cos α+cos β)2=(54)2, 以上两式展开两边分别相加得2+2cos(α-β)=1,∴cos(α-β)=21-. 点评:本题又是公式C (α-β)的典型应用,解决问题的关键就是将已知中的两个和式两边平方,从而得到公式C (α-β)中cos αcos β和sin αsin β的值,即可求得cos(α-β)的值,本题培养了学生综合运用三角函数公式解决问题的能力.3.已知锐角α、β满足cos α=54,tan(α-β)=31-,求cos β. 解:∵α为锐角,且cos α=54,得sin α=53. 又∵0<α<2π,0<β<2π, ∴-2π<α-β<2π. 又∵tan(α-β)= 31-<0, ∴cos(α-β)=103.从而sin(α-β)=tan(α-β)cos(α-β)=101-.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =54×).101(53103-⨯+ =50109. 知能训练课本本节练习.解答:1.(1)cos(2π-α)=cos 2πcos α+sin 2πsin α=sin α. (2)cos(2π-α)=cos2πcos α+sin2πsin α=cos α. 2.102. 3..348315- 4.125372-. 课堂小结1.先由学生自己思考、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变用及掌握变角和拆角的思想方法解决问题.然后教师引导学生围绕以下知识点小结:(1)怎么联系有关知识进行新知识的探究?(2)利用差角余弦公式方面:对公式结构和功能的认识;三角变换的特点.2.教师画龙点睛:本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业课本习题3.1 A 组2、3、4、5.设计感想1.本节课是典型的公式教学模式,因此本节课的设计流程为“实际问题→猜想→探索推导→记忆→应用”.它充分展示了公式教学中以学生为主体,进行主动探索数学知识发生、发展的过程.同时充分发挥教师的主导作用,引导学生利用旧知识推导、证明新知识,并学会记忆公式的方法,灵活运用公式解决实际问题,从而培养学生独立探索数学知识的能力,增强学生的应用意识,激发学生学习的积极性.2.纵观本教案的设计,学生发现推导出公式C (α-β)后就是应用,同时如何训练公式的正用、逆用、变形用也是本节的重点难点.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“研究问题、猜想探索公式、验证特殊情形、推导公式、学习应用”的探索创新式学习方法.这样做增强了学生的参与意识,教给了学生发现规律、探索推导,获取新知的途径,让学生真正尝到探索的喜悦,真正成为教学的主体.学生体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.。
高一下学期数学人教A版必修4第三章3.1.1 两角差的余弦公式 教案
3.1.1两角差的余弦公式一、 教材分析:《两角差的余弦公式》是人教A 版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容.本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论.本节承接必修4中单位圆中的三角函数线及诱导公式知识,并且通过两角差余弦公式的推导感受数学证明方法——算两次原理的妙用,为其他和差公式内容启下. 课时安排:1课时.二、 教学重点与难点重点:两角差的余弦公式的探索和简单应用难点:两角差的余弦公式的猜想与推导,探索过程的组织和引导三、教学目标1.知识目标:(1)借助单位圆中的三角函数线和向量的方法推导两角差的余弦公式(2)掌握公式的结构和特点,能够简单运用公式,为以后公式的推导打好基础 2.能力目标:(1)培养学生从一个量出发算两次的逻辑推理的思维能力,树立创新意识(2)在探究过程中体会从特殊与一般、分类与整合、数形结合、化归与转化等多种数学思想 (3)通过公式的探究、灵活运用,培养学生分析问题、解决问题的能力 3.情感目标:(1)通过公式的推导论证过程,培养学生学习数学的严谨 、求实的科学态度 (2)通过鉴赏)(βα-C 公式,发现其和谐匀称结构,让学生感受数学公式的美感四、学习者的特征分析本节课的学习者特征分析主要是根据教师平时对学生的了解而做出的,学生已有一定的单位圆中三角函数线、向量的坐标表示等知识,学生能熟练地特殊角的三角函数值及三角函数诱导公式,学生普遍思维活跃,能有一定逻辑思维能力,学生的合作学习的经验还不足,需要教师在一定程度上加以引导.五、教学策略的选择与设计Ⅰ教学方法:启发引导式:本教学设计总体采用设计情境问题串及变式训练实验猜想论证式:两角差的余弦公式的猜想与推导,探索过程的组织和引导六、课前准备Ⅰ学生准备:预习课本中《两角差的余弦公式》的内容,理解两种方法的推理过程 Ⅱ教师准备:课前预学案、课内探究学案、课后拓展学案七、教学设计教学流程活动流程图活动内容和目的活动1. 创设情景,揭示课题由特例思考引入,创设情境,发现问题,猜想结论,引出课题。
高一数学人教A版必修4第三章3.1.1 两角差的余弦公式 教案
《两角差的余弦公式》教学设计教材:人教版《普通高中课程标准实验教科书·数学(A版)》必修4课题:3.1.1 两角差的余弦公式课时:1课时一、教学内容分析三角恒等变换处于三角函数与数学变换的结合点和交汇处,是前面所学三角函数知识的继续与发展,是培养学生推理能力与运算能力的重要素材.由于和与差内在的联系性与统一性,教材选择两角差的余弦公式作为基础,使公式的证明过程尽量简洁明了,易于学生理解和掌握.教学没有直接给出两角差的余弦公式,而是分探求结果、证明结果两步进行探究,并从简单情况入手得出结果.这样安排不仅使探究更加真实,也有利于学生学会探究、发展思维.因此,本节课的教学重点是:利用诱导公式发现两角差的余弦公式,并运用向量方法证明公式.二、教学目标1.掌握两角差的余弦公式,并能正确运用公式进行简单的求值运算;2.经历用向量的数量积推导两角差的余弦公式的过程,进一步体会向量方法的作用;3.在利用诱导公式进行两角差余弦公式的探究过程中,体会“特殊到一般”、“数形结合”、“归纳猜想”等数学思想方法和思维方法,能体会到数学思维的合理性与条理性.三、学生学情分析学生此前已经掌握了任意角三角函数的概念、诱导公式的推导、向量的坐标表示以及向量数量积的坐标运算等知识.同时,学生多次经历了由特殊到一般,归纳猜想等数学思维方法,基本具备数形结合的能力,这些都为本节课的学习建立了良好的知识基础.教材根据一个实例提出本章所要研究的主要内容,然后直接提出研究两角差的余弦公式,学生会感到有些突然;教材中用几何方法研究两角差的余弦公式学生不易想到用“割补法”求正弦线、余弦线;用向量的数量积公式证明两角差的余弦公式,学生容易犯思维不严谨、不严密的错误.因此,我将本节课的教学难点确定为:发现并证明两角差的余弦公式.四、教学过程设计1.创设情景【情境问题】如图,某城市的电视发射塔CB 建筑市郊的一座小山CD 上,从山脚A 测得AC=50m,塔顶B的仰角(DAB ∠)为60︒,从A 点观测塔顶B 的视角(CAB ∠)约为45︒,求:A,B 两点间的距离.(请学生思考求解过程,某生表述:AB=2AD=2×50×()cos 6045︒-︒=100cos15︒.教师引导说明15︒角的余弦值是未知的,而60︒角、45︒角的三角函数值是已知的,不妨用它们来求差角6045︒-︒的余弦值.)【设计意图】从实际问题出发,有利于强调数学与实际的联系,增强学生的应用意识,激发学生学习的积极性,使其感受到实际问题中对研究差角公式的需要.【思考1】()cos 6045︒-︒如何求角60︒,45︒的正弦、余弦值来表示呢? (请学生大胆尝试说明,并根据自己的结论计算验证.在这个过程中,可将问题一般化:两角差αβ-的余弦值与这两个角,αβ的三角函数值之间有怎样的关系呢?引入课题:两角差的余弦公式)【设计意图】让学生体验如何用反例进行反驳,明确常犯的直接性错误为什么是错的,提出本节课的研究内容,统一对探究目标中“恒等”要求的认识.2.新知探究【思考2】在已学过的知识中,有没有类似求两角差余弦的式子呢?(请学生思考说明:诱导公式()cos cos πββ-=-,cos sin 2πββ⎛⎫-= ⎪⎝⎭.) ()()cos cos cos 2πβαβπβ--−−−→⎛⎫- ⎪⎝⎭特殊化 【说明】观察以上两式就是把角α用特殊角π、2π来替换.由于特殊中往往能反映一般规律,我们不妨从上述公式出发,建立研究思路,寻找两角差的余弦公式的一般性规律.【设计意图】从学生的学习实际出发,回想已有的关于两角差的余弦的式子,寻找新旧知识之间的联系,使两角差的余弦公式的发现与推导是用“随机、自然进入”的方式呈现给学生.【探究1】()cos πβ-如何用角π和β的正弦、余弦值来表示呢?本环节以教师引导探究为主,展现知识的生成过程.【问题1】根据三角函数的定义,你能写出点12,P P 的坐标吗?(请学生说明,点 ()()12cos ,sin ,cos ,sin P P ππββ.)【问题2】根据三角函数的定义,()cos πβ-是角πβ-的终边与单位圆交点的横坐标.那么,你能在图1中画出角πβ-的终边吗?(请学生说明自己画图的过程,可能会有两种做法:方法一:由角β的终边画出角β-的终边,然后将角β-旋转角π,得角πβ-的终边;方法二:以角π的终边为始边旋转角β,得角πβ-的终边.设角πβ-的终边与单位圆交于点3P ,则点3P 的坐标为()()()cos ,sin πβπβ--)【过渡】在已知各点坐标的情况下,我们不妨用向量知识来解决问题.【问题3】观察图1,有几组向量的夹角相等?(请学生说明:0312P OP POP ∠=∠,又向量的模相等,0312OP OP OP OP ∴⋅=⋅,由向量数量积的坐标运算得:()cos cos cos sin sin πβπβπβ-=+.)【活动】根据上述推导过程,请同学们整理研究思路,在学案(附后表1)β的终边y x π-β的终边1,0()π的终边P3P1P2O P0上完成图1对应的表格.【设计意图】根据三角函数的定义及任意角三角函数的定义,建立几何图形与点的坐标之间的联系——向量,加强新旧知识之间的关联性,使向量方法的引入自然、合理.本环节设计为引导探究的学习方式,将探究一拆分为三个问题,帮助学生建立研究思路.【探究2】根据上述做法, cos 2πβ⎛⎫- ⎪⎝⎭的值如何用角,2πβ的正弦、余弦值来表示呢?(请学生根据学案中的图2,四人一组完成探究. 教师引导说明角2πβ-的终边的形成过程,学生类比()cos πβ-的推导过程,以向量为工具,根据向量的夹角相等,得:0312OP OP OP OP ⋅=⋅βπβπβπsin 2sin cos 2cos 2cos +=⎪⎭⎫ ⎝⎛-∴【设计意图】再一次经历由图形对称得等量关系,运用向量数量积的坐标运算建立数与形的联系,推导两脚差余弦的一个表达式.使学生从知识、方法、策略上多层次的感受式子的推导过程.【思考3】观察上面两个式子,猜想:若,αβ是任意角,那么()cos αβ-= ?(学生观察上式,归纳说明.)【设计意图】有特殊到一般,猜想任意角两角差的余弦公式,使学生成为数学结论的发现者,这对增强学生学习数学的信心、学会学习数学是有意义的.【探究3】你能否证明自己的猜想?π(请学生类比上面两式的推导过程,在学案中自主探究完成,并与周围同学相互交流,解决自己存在的问题.其中,差角αβ-的形成过程教师可利用几何画板旋转得到,帮助学生认识图形间的内在联系.之后投影展示某生的证明过程,并请该生解说: 0312OP OP OP OP ⋅=⋅()cos cos cos sin sin αβαβαβ∴-=+)【设计意图】通过对猜想进行证明,体现数学知识的严谨性、合理性,使学生对公式的认识上升到理性高度.同时,体会向量方法的作用.【归纳】两角差的余弦公式:()cos cos cos sin sin αβαβαβ-=+【问题4】观察两角差的余弦公式,我们如记忆公式呢?(请学生尝试说明,教师从式子左右两边的三角函数名及符号给予归纳:余余正正异相连.)【设计意图】引导学生总结公式特点,帮助学生记忆公式.3.应用举例例.求cos15︒的值.(本例由情景问题提出,可引导学生采用不同的方法求值,认识到拆分角的多样性.)【设计意图】帮助学生掌握两角差的余弦公式的应用,拓展数学思维,体会拆分的多样性,决定变换的多样性.4.课堂小结【问题5】本节课你学到了哪些知识,有什么样的心得体会?(学生说明,师生共同归纳总结.)(1)两角差的余弦公式:()cos cos cos sin sin αβαβαβ-=+;(2)向量作为工具性知识的运用;(3)解决数学问题的思路:由已知到未知、由特殊到一般.β的终边α)【设计意图】让学生对探究的过程、思路与方法有一个清晰的认识,获得知识和能力的共同进步.5.作业布置(1)课本127页,练习2,3题;(2)查一查“两角差的余弦公式”还有其他证明方法吗?【设计意图】巩固所学知识,拓展解决数学问题的思路.。
人教版高中数学必修四 3.1. 1 两角差的余弦公式 【教案】
必修四第三章 3.1.1 两角差的余弦公式【教学目标】
1.知识与技能:
通过两角差的余弦公式的探究及简单应用,使学生初步理解公式的结构及其功能。
并为建立其他和(差)角公式打好基础。
2.过程与方法:
通过利用同角三角函数变换及向量推导两角差的余弦公式,让学生体会利用联系的观点来分析问题,提高学生分析问题、解决问题的能力。
3.情感态度价值观:
使学生经历数学知识的发现、创造的过程。
体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识、努力分析问题、解决问题的激情。
【重点难点】
1.教学重点:两角和与差的余弦公式的理解与灵活运用。
2.教学难点:两角和与差的余弦公式的推导。
【教学策略与方法】
1.教学方法:合作探究、启发诱导,学生动手尝试相结合.
2.教具准备:多媒体
【教学过程】
()
=-
cos15cos4530
或
()
=-
cos6045
5cos β==)4(cos(⨯-=-∴α。
两角差的余弦公式教学设计
=OAcos+APsin
=coscos+sinsin
cos(-)=coscos+sinsin
用非锐角的特殊角或任意角进行验证
coscos+sinsin等于两向量
OA与OB的数量积
进一步培养学生的探究意识,让学生学会以退为进,思维受阻时怎样转化为直角三角形或单位圆中构造角进行讨论的方法。
让学生感受化陌生问题为熟悉问题的过程,通过作辅助线,用“割补法”寻找量与量之间的联系.
引导学生构造图中的直角三角形,用三角函数线证明
问题3:上述公式是否对任意角、都成立?
问题4::仔细观察上面式子的构成要素和结构特征,看看从中会产生怎样的联想?或有什么新的发现?
设∠XOQ=,∠POQ=,作PA⊥OQ,PC⊥AB,AB⊥OX,PM⊥OX,则有∠PAC=∠QOX=,故
cos(-)=OM
=OB+BM
☆教学目标
(1)知识目标:两角差的余弦公式的推导过程,两角差的余弦公式的简单应用。
(2)能力目标:培养学生的逆向思维和数形结合的意识和习惯,培养学生观察、逻辑推理、合作学习的能力。
(3)情感目标:通过观察让学生体会公式的线形美和对称美,培养学生的语言表达和思考能力,使学生对新知识产生良好的情感态度。
☆教学重点和难点
重点:两角差的余弦公式的理解与灵活应用。
难点:两角差的余弦公式的推导过程及公式的灵活应用
☆教学流程示意
教学流程:提出问题引出课题→明确探索目标及途径→学生自主探索→使用公式解决问题→归纳小结
☆教学过程
教学环节
教师活动
预设学生行为
设计意图
一、提出问题引出课题
问题1::观察诱导公式
高中数学 3.1.1 两角差的余弦公式教案 新人教A版必修4
3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出 ()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin302=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin302=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活运用.(五)作业:15012.P T T -精美句子1、善思则能“从无字句处读书”。
高中数学 必修四 (3.1.1 两角差的余弦公式)教案 新人教A版必修4
第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式整体设计教学分析本节是以一个实际问题做引子,目的在于从中提出问题,引入本章的研究课题.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.以实例引入课题也有利于体现数学与实际问题的联系,增强学生的应用意识,激发学生学习的积极性,同时也让学生体会数学知识产生、发展的过程.本节首先引导学生对cos(α-β)的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假.这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案.方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出α-β角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导.方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:①在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;②结合有关图形,完成运用向量方法推导公式的必要准备;③探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完善;④补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式.本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:①要使学生了解公式的由来;②使学生认识公式的结构特征,加以记忆;③使学生掌握公式的推导和证明;④通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题.三维目标1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.重点难点教学重点:通过探究得到两角差的余弦公式.教学难点:探索过程的组织和适当引导.课时安排1课时教学过程导入新课思路 1.(问题导入)播放多媒体,出示问题,让学生认真阅读课本引例.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.在此基础上,再一般化而提出本节的研究课题进入新课.思路2.(复习导入)我们在初中时就知道cos45°=22,cos30°=23,由此我们能否得到cos15°=cos(45°-30°)=?这里是不是等于cos45°-cos30°呢?教师可让学生验证,经过验证可知,我们的猜想是错误的.那么究竟是个什么关系呢?cos(α-β)等于什么呢?这时学生急于知道答案,由此展开新课:我们就一起来探讨“两角差的余弦公式”.这是全章公式的基础.推进新课新知探究提出问题①请学生猜想cos(α-β)=?②利用前面学过的单位圆上的三角函数线,如何用α、β的三角函数来表示cos(α-β)呢? ③利用向量的知识,又能如何推导发现cos(α-β)=?④细心观察C (α-β)公式的结构,它有哪些特征?其中α、β角的取值范围如何?⑤如何正用、逆用、灵活运用C (α-β)公式进行求值计算?活动:问题①,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到cos(α-β)=cos α-cos β的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性.如α=60°,β=30°,则cos(α-β)=cos30°=23,而cos α-cos β=cos60°-cos30°=231 ,这一反例足以说明cos(α-β)≠cos α-cos β. 让学生明白,要想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可.问题②,既然cos(α-β)≠cos α-cos β,那么cos(α-β)究竟等于什么呢?由于这里涉及的是三角函数的问题,是α-β这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?图1如图1,设角α的终边与单位圆的交点为P 1,∠P OP 1=β,则∠POx=α-β.过点P 作PM 垂直于x 轴,垂足为M,那么OM 就是角α-β的余弦线,即OM=cos(α-β),这里就是要用角α、β的正弦线、余弦线来表示OM.过点P 作PA 垂直于OP 1,垂足为A,过点A 作AB 垂直于x 轴,垂足为B,过点P 作PC 垂直于AB,垂足为 C.那么,OA 表示cos β,AP 表示sin β,并且∠P AC =∠P 1Ox=α.于是,OM=OB+BM=OB+CP=OAcosa+APsina=cos βcos α+sin βsin α,所以,cos(α-β)=cos αcos β+sin αsin β.教师引导学生进一步思考,以上的推理过程中,角α、β、α-β是有条件限制的,即α、β、α-β均为锐角,且α>β,如果要说明此结果是否对任意角α、β都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.图2问题③,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy 内作单位圆O,以Ox 为始边作角α、β,它们的终边与单位圆O 的交点分别为A 、B,则=(cos α,sin α),=(cos β,sin β),∠A OB=α-β.由向量数量积的定义有·=||||·cos(α-β)=cos(α-β),由向量数量积的坐标表示有 ·=(cos α,sin α)(cos β,sin β)=cos αcos β+sin αsin β,于是,cos(α-β)=cos αcos β+sin αsin β.我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角α-β必须符合条件0≤α-β≤π,以上结论才正确,由于α、β都是任意角,α-β也是任意角,因此就是研究当α-β是任意角时,以上公式是否正确的问题.当α-β是任意角时,由诱导公式,总可以找到一个角θ∈[0,2π),使cos θ=cos(α-β),若θ∈[0,π],则·=cos θ=cos(α-β).若θ∈[π,2π],则2π-θ∈[0,π],且OA ·OB =cos(2π-θ)=cos θ=cos(α-β).由此可知,对于任意角α、β都有此公式给出了任意角α、β的正弦、余弦值与其差角α-β的余弦值之间的关系,称为差角的余弦公式,简记为C (α-β).有了公式C (α-β)以后,我们只要知道cos α、cos β、sin α、sin β的值,就可以求得cos(α-β)的值了.问题④,教师引导学生细心观察公式C (α-β)的结构特征,让学生自己发现公式左边是“两角差的余弦”,右边是“这两角的余弦积与正弦积的和”,可让学生结合推导过程及结构特征进行记忆,特别是运算符号,左“-”右“+”.或让学生进行简单填空,如:cos(A-B)=__________,cos(θ-φ)=__________等.因此,只要知道了sin α、cos α、sin β、cos β的值就可以求得cos(α-β)的值了.问题⑤,对于公式的正用是比较容易的,关键在于“拆角”的技巧,而公式的逆用则需要学生的逆向思维的灵活性,特别是变形应用,这就需要学生具有较强的观察能力和熟练的运算技巧.如cos75°cos45°+sin75°sin45°=cos(75°-45°)=cos30°=23,cos α=cos [(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β.讨论结果:①—⑤略.应用示例思路1例1 利用差角余弦公式求cos15°的值.活动:先让学生自己探究,对有困难的学生教师可点拨学生思考题目中的角15°,它可以拆分为哪些特殊角的差,如15°=45°-30°或者15°=60°-45°,从而就可以直接套用公式C (α-β)计算求值.教师不要包办,充分让学生自己独立完成,在学生的具体操作下,体会公式的结构,公式的用法以及把未知转化为已知的数学思想方法.对于很快就完成的同学,教师鼓励其换个角度继续探究.解:方法一:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ 方法二:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45° =21×.426232222+=⨯+ 点评:本题是指定方法求cos15°的值,属于套用公式型的,这样可以使学生把注意力集中到使用公式求值上.但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式,灵活运用公式求值.本例也说明了差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形.至于如何拆分,让学生在应用中仔细体会.变式训练1.不查表求sin75°,sin15°的值解:sin75°=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=.42621322322+=⨯+⨯ sin15°= 15cos 12-=2)426(1+-=.426162628-=⨯- 点评:本题是例题的变式,比例题有一定的难度,但学生只要细心分析,利用相关的诱导公式,不难得到上面的解答方法.2.不查表求值:cos110°cos20°+sin110°sin20°.解:原式=cos(110°-20°)=cos90°=0.点评:此题学生一看就有似曾相识而又无从下手的感觉,需要教师加以引导,让学生细心观察,再结合公式C (α-β)的右边的特征,逆用公式便可得到cos(110°-20°).这就是公式逆用的典例,从而培养了学生思维的灵活性.例2 已知sin α=54,α∈(2π,π),cos β=135-,β是第三象限角,求cos(α-β)的值. 活动:教师引导学生观察题目的结构特征,联想到刚刚推导的余弦公式,学生不难发现,欲求cos(α-β)的值,必先知道sin α、cos α、sin β、cos β的值,然后利用公式C (α-β)即可求解.从已知条件看,还少cos α与sin β的值,根据诱导公式不难求出,但是这里必须让学生注意利用同角的平方和关系式时,角α、β所在的象限,准确判断它们的三角函数值的符号.本例可由学生自己独立完成.解:由sin α=54,α∈(2π,π),得 cos α=.53)54(1sin 122-=--=--a又由cos β=135-,β是第三象限角,得 sin β=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cos αcos β+sin αsin β =.6533)1312(54)135()53(-=-⨯+-⨯- 点评:本题是直接运用公式C (α-β)求值的基础练习,但必须思考使用公式前应作出的必要准备.特别是运用同角三角函数平方关系式求值时,一定要弄清角的范围,准确判断三角函数值的符号.教师可提醒学生注意这点,养成良好的学习习惯.变式训练已知sin α=54,α∈(0,π),cos β=135-,β是第三象限角,求cos(α-β)的值. 解:①当α∈[2π,π)时,且sin α=54,得cos α=53)54(1sin 122-=--=--a , 又由cos β=135-,β是第三象限角,得 sin β=22)135(1cos 1---=--β=1312-. 所以cos(α-β)=cos αcos β+sin αsin β =.6533)1312(54)135()53(-=-⨯+-⨯-. ②当α∈(0,2π)时,且sin α=54,得 cos α=53)54(1sin 122=-=-a , 又由cos β=135-,β是第三象限角,得 sin β=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cos αcos β+sin αsin β =.6563)1312(54)135(53-=-⨯+-⨯点评:本题与例2的显著的不同点就是角α的范围不同.由于α∈(0,π),这样cos α的符号可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角α进行分类讨论,从而培养学生思维的严密性和逻辑的条理性.教师强调分类时要不重不漏.思路2例1 计算:(1)cos(-15°);(2)cos15°cos105°+sin15°sin105°;(3)sinxsin(x+y)+cosxcos(x+y).活动:教师可以大胆放给学生自己探究,点拨学生分析题目中的角-15°,思考它可以拆分为哪些特殊角的差,如-15°=15°-30°或-15°=45°-60°,然后套用公式求值即可.也可化cos(-15°)=cos15°再求值.让学生细心观察(2)(3)可知,其形式与公式C (α-β)的右边一致,从而化为特殊角的余弦函数.解:(1)原式=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ (2)原式=cos(15°-105°)=cos(-90°)=cos90°=0.(3)原式=cos [x-(x+y)]=cos(-y)=cosy.点评:本例重点是训练学生灵活运用两角差的余弦公式进行计算求值,从不同角度培养学生正用、逆用、变形用公式解决问题的能力,为后面公式的学习打下牢固的基础. 例2 已知cos α=71,cos(α+β)=1411-,且α、β∈(0, 2π),求cos β的值. 活动:教师引导学生观察题目中的条件与所求,让学生探究α、α+β、β之间的关系,也就是寻找已知条件中的角与所求角的关系.学生通过探究、讨论不难得到β=(α+β)-α的关系式,然后利用公式C (α-β)求值即可.但还应提醒学生注意由α、β的取值范围求出α+β的取值范围,这是很关键的一点,从而判断sin(α+β)的符号进而求出cos β.解:∵α、β∈(0,2π),∴α+β∈(0,π). 又∵cos α=71,cos(α+β)=1411-, ∴sin α=,734cos 12=-a sin(α+β)=.1435)(cos 12=+-βa 又∵β=(α+β)-α,∴cos β=cos(α+β)cos α+sin(α+β)sin α =.21734143571)1411(=⨯+⨯- 点评:本题相对于例1难度大有提高,但是只要引导适当,学生不难得到β=(α+β)-α的关系式,继而运用公式解决.但值得注意的是α+β的取值范围确定,也是很关键的,这是我们以后解题当中常见的问题.变式训练1.求值:cos15°+sin15°.解:原式=22(2cos15°+22sin15°)=2(cos45°cos15°+sin45°sin15°) =2cos(45°-15°)= 2cos30°=26. 2.已知sin α+sin β=53,cos α+cos β=54,求cos(α-β)的值. 解:∵(sin α+sin β)2=(53)2,(cos α+cos β)2=(54)2, 以上两式展开两边分别相加得2+2cos(α-β)=1,∴cos(α-β)=21-. 点评:本题又是公式C (α-β)的典型应用,解决问题的关键就是将已知中的两个和式两边平方,从而得到公式C (α-β)中cos αcos β和sin αsin β的值,即可求得cos(α-β)的值,本题培养了学生综合运用三角函数公式解决问题的能力.3.已知锐角α、β满足cos α=54,tan(α-β)=31-,求cos β. 解:∵α为锐角,且cos α=54,得sin α=53. 又∵0<α<2π,0<β<2π, ∴-2π<α-β<2π. 又∵tan(α-β)= 31-<0, ∴cos(α-β)=103.从而sin(α-β)=tan(α-β)cos(α-β)=101-.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =54×).101(53103-⨯+ =50109. 知能训练课本本节练习.解答:1.(1)cos(2π-α)=cos 2πcos α+sin 2πsin α=sin α. (2)cos(2π-α)=cos2πcos α+sin2πsin α=cos α. 2.102. 3..348315- 4.125372-. 课堂小结1.先由学生自己思考、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变用及掌握变角和拆角的思想方法解决问题.然后教师引导学生围绕以下知识点小结:(1)怎么联系有关知识进行新知识的探究?(2)利用差角余弦公式方面:对公式结构和功能的认识;三角变换的特点.2.教师画龙点睛:本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业课本习题3.1 A 组2、3、4、5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章三角恒等变换本章教材分析本章知识框图本章学习的主要内容是两角和与差的正弦、余弦和正切公式,以及运用这些公式进行简单的恒等变换.变换是数学的重要工具,也是数学学习的主要对象之一.在本册第一章,学生接触了同角三角函数公式.在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角变换公式,并运用这些公式进行简单的三角恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,并体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.本章内容安排按两条线进行,一条明线是建立公式,学习变换;一条暗线就是发展推理能力和运算能力,并且发展能力的要求不仅仅体现在学习变换过程之中,也体现在建立公式的过程之中.因此在本章教学中,教师要特别注意恰时恰点地提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使学生能依据三角函数式的特点,逐渐明确三角函数恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换,强化运用数学思想方法指导设计变换思路的意识.突出数学思想方法的教学,在类比、推广、特殊化等一般逻辑思考方法上进行引导,本章不仅关注使学生得到和(差)角公式,而且还特别关注公式推导过程中体现的数学思想方法.例如,在两角差的余弦公式这一关键性问题的解决中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,在这个过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、推广、特殊化、化归等思想方法,特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导,这对学生养成科学的数学思考习惯能起到积极的促进作用.另外,还在适当的时候对三角变换中的数学思想方法作了明确的总结.例如,在旁白中有“倍是描述两个数量之间关系的,2α是α的二倍,4α是2α的二倍,这里蕴含着换元的思想”等,都是为了加强思想方法而设置的.两角和与差的正弦、余弦、正切公式和二倍角公式是历届高考考查的“重点”和“热点”,在高考中占有重要的地位,主要考查对这十一个公式的正用、逆用、变形用,考查对公式的熟练掌握程度和灵活运用能力,其考查难度属低档,这就要求我们不要过分引导学生去挖掘一些特殊的变化技巧,应把主要精力放在学生掌握数学规律和通性通法上.教师在教学中,要注意控制好难度.因为近几年的高考中对三角部分的考查难度降低,但教材中部分习题却有一定难度,因此教师要把握好难度.本章教学时间约需8课时,具体分配如下(仅供参考):节次标题课时3.1.1 两角差的余弦公式1课时3.1.2 两角和与差的正弦、余弦、正切公式2课时3.1.3 二倍角的正弦、余弦、正切公式1课时3.2 简单的三角恒等变换2课时本章复习2课时3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式整体设计教学分析本节是以一个实际问题做引子,目的在于从中提出问题,引入本章的研究课题.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.以实例引入课题也有利于体现数学与实际问题的联系,增强学生的应用意识,激发学生学习的积极性,同时也让学生体会数学知识产生、发展的过程.本节首先引导学生对cos(α-β)的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假.这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案.方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出α-β角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导.方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:①在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;②结合有关图形,完成运用向量方法推导公式的必要准备;③探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完善;④补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式.本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:①要使学生了解公式的由来;②使学生认识公式的结构特征,加以记忆;③使学生掌握公式的推导和证明;④通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题.三维目标1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.重点难点教学重点:通过探究得到两角差的余弦公式.教学难点:探索过程的组织和适当引导.课时安排1课时教学过程导入新课思路1.(问题导入)播放多媒体,出示问题,让学生认真阅读课本引例.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.在此基础上,再一般化而提出本节的研究课题进入新课.思路2.(复习导入)我们在初中时就知道cos45°=22,cos30°=23,由此我们能否得到cos15°=cos(45°-30°)=?这里是不是等于cos45°-cos30°呢?教师可让学生验证,经过验证可知,我们的猜想是错误的.那么究竟是个什么关系呢?cos(α-β)等于什么呢?这时学生急于知道答案,由此展开新课:我们就一起来探讨“两角差的余弦公式”.这是全章公式的基础.推进新课新知探究提出问题①请学生猜想cos(α-β)=?②利用前面学过的单位圆上的三角函数线,如何用α、β的三角函数来表示cos(α-β)呢?③利用向量的知识,又能如何推导发现cos(α-β)=?④细心观察C (α-β)公式的结构,它有哪些特征?其中α、β角的取值范围如何?⑤如何正用、逆用、灵活运用C (α-β)公式进行求值计算?活动:问题①,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到cos(α-β)=cosα-cosβ的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性.如α=60°,β=30°,则cos(α-β)=cos30°=23,而cosα-cosβ=cos60°-cos30°=231 ,这一反例足以说明cos(α-β)≠cosα-cosβ.让学生明白,要想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可.问题②,既然cos(α-β)≠cosα-cosβ,那么cos(α-β)究竟等于什么呢?由于这里涉及的是三角函数的问题,是α-β这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?图1如图1,设角α的终边与单位圆的交点为P 1,∠P OP 1=β,则∠POx=α-β.过点P作PM 垂直于x 轴,垂足为M,那么OM 就是角α-β的余弦线,即OM=cos(α-β),这里就是要用角α、β的正弦线、余弦线来表示OM.过点P 作PA 垂直于OP 1,垂足为A,过点A 作AB 垂直于x 轴,垂足为B,过点P 作PC 垂直于AB,垂足为C.那么,OA表示cosβ,AP 表示sinβ,并且∠P AC =∠P 1Ox=α.于是,OM=OB+BM=OB+CP=OAcosa+APsina =cosβcosα+sinβsinα,所以,cos(α-β)=cosαcosβ+sinαsinβ.教师引导学生进一步思考,以上的推理过程中,角α、β、α-β是有条件限制的,即α、β、α-β均为锐角,且α>β,如果要说明此结果是否对任意角α、β都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.图2问题③,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α、β,它们的终边与单位圆O的交点分别为A、B,则OA=(cosα,sinα),OB=(cosβ,sinβ),∠A OB=α-β.由向量数量积的定义有OA·OB=|OA||OB|·cos(α-β)=cos(α-β),由向量数量积的坐标表示有OA·OB=(cosα,sinα)(cosβ,sinβ)=cosαcosβ+sinαsinβ,于是,cos(α-β)=cosαcosβ+sinαsinβ.我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角α-β必须符合条件0≤α-β≤π,以上结论才正确,由于α、β都是任意角,α-β也是任意角,因此就是研究当α-β是任意角时,以上公式是否正确的问题.当α-β是任意角时,由诱导公式,总可以找到一个角θ∈[0,2π),使cosθ=cos(α-β),若θ∈[0,π],则OA·OB=cosθ=cos(α-β).若θ∈[π,2π],则2π-θ∈[0,π],且OA·OB=cos(2π-θ)=cosθ=cos(α-β).由此可知,对于任意角α、β都有c os(α-β)=cosαcosβ+sinαsinβ(C(α-β))此公式给出了任意角α、β的正弦、余弦值与其差角α-β的余弦值之间的关系,称为差角的余弦公式,简记为C(α-β).有了公式C(α-β)以后,我们只要知道cosα、cosβ、sinα、sinβ的值,就可以求得cos(α-β)的值了.问题④,教师引导学生细心观察公式C(α-β)的结构特征,让学生自己发现公式左边是“两角差的余弦”,右边是“这两角的余弦积与正弦积的和”,可让学生结合推导过程及结构特征进行记忆,特别是运算符号,左“-”右“+”.或让学生进行简单填空,如:cos(A-B)=__________,cos(θ-φ)=__________等.因此,只要知道了sinα、cosα、sinβ、cosβ的值就可以求得cos(α-β)的值了.问题⑤,对于公式的正用是比较容易的,关键在于“拆角”的技巧,而公式的逆用则需要学生的逆向思维的灵活性,特别是变形应用,这就需要学生具有较强的观察能力和熟练的运算技巧.如cos75°cos45°+sin75°sin45°=cos(75°-45°)=cos30°=23, cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ.讨论结果:①—⑤略.应用示例思路1例1 利用差角余弦公式求cos15°的值.活动:先让学生自己探究,对有困难的学生教师可点拨学生思考题目中的角15°,它可以拆分为哪些特殊角的差,如15°=45°-30°或者15°=60°-45°,从而就可以直接套用公式C (α-β)计算求值.教师不要包办,充分让学生自己独立完成,在学生的具体操作下,体会公式的结构,公式的用法以及把未知转化为已知的数学思想方法.对于很快就完成的同学,教师鼓励其换个角度继续探究. 解:方法一:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ 方法二:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45° =21×.426232222+=⨯+ 点评:本题是指定方法求cos15°的值,属于套用公式型的,这样可以使学生把注意力集中到使用公式求值上.但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式,灵活运用公式求值.本例也说明了差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形.至于如何拆分,让学生在应用中仔细体会.变式训练1.不查表求sin75°,sin15°的值解:sin75°=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621322322+=⨯+⨯ sin15°= 15cos 12-=2)426(1+-=.426162628-=⨯- 点评:本题是例题的变式,比例题有一定的难度,但学生只要细心分析,利用相关的诱导公式,不难得到上面的解答方法.2.不查表求值:cos110°cos20°+sin110°sin20°.解:原式=cos(110°-20°)=cos90°=0.点评:此题学生一看就有似曾相识而又无从下手的感觉,需要教师加以引导,让学生细心观察,再结合公式C (α-β)的右边的特征,逆用公式便可得到cos(110°-20°).这就是公式逆用的典例,从而培养了学生思维的灵活性.例2 已知sinα=54,α∈(2π,π),cosβ=135-,β是第三象限角,求cos(α-β)的值.活动:教师引导学生观察题目的结构特征,联想到刚刚推导的余弦公式,学生不难发现,欲求cos(α-β)的值,必先知道sinα、cosα、sinβ、cosβ的值,然后利用公式C (α-β)即可求解.从已知条件看,还少cosα与sinβ的值,根据诱导公式不难求出,但是这里必须让学生注意利用同角的平方和关系式时,角α、β所在的象限,准确判断它们的三角函数值的符号.本例可由学生自己独立完成.解:由sinα=54,α∈(2π,π),得 cosα=.53)54(1sin 122-=--=--a 又由cosβ=135-,β是第三象限角,得 sinβ=.1312)135(1cos 122-=---=--β所以cos(α-β)=cosαcosβ+sinαsinβ =.6533)1312(54)135()53(-=-⨯+-⨯- 点评:本题是直接运用公式C (α-β)求值的基础练习,但必须思考使用公式前应作出的必要准备.特别是运用同角三角函数平方关系式求值时,一定要弄清角的范围,准确判断三角函数值的符号.教师可提醒学生注意这点,养成良好的学习习惯.变式训练已知sinα=54,α∈(0,π),cosβ=135-,β是第三象限角,求cos (α-β)的值. 解:①当α∈[2π,π)时,且sinα=54,得cosα=53)54(1sin 122-=--=--a , 又由cosβ=135-,β是第三象限角,得 sinβ=22)135(1cos 1---=--β=1312-. 所以cos(α-β)=cosαcosβ+sinαsinβ =.6533)1312(54)135()53(-=-⨯+-⨯-. ②当α∈(0,2π)时,且sinα=54,得 cosα=53)54(1sin 122=-=-a , 又由cosβ=135-,β是第三象限角,得 sinβ=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cosαcosβ+sinαsinβ =.6563)1312(54)135(53-=-⨯+-⨯ 点评:本题与例2的显著的不同点就是角α的范围不同.由于α∈(0,π),这样cosα的符号可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角α进行分类讨论,从而培养学生思维的严密性和逻辑的条理性.教师强调分类时要不重不漏.思路2例1 计算:(1)cos(-15°);(2)cos15°cos105°+sin15°sin105°;(3)sinxsin(x+y)+cosxcos(x+y).活动:教师可以大胆放给学生自己探究,点拨学生分析题目中的角-15°,思考它可以拆分为哪些特殊角的差,如-15°=15°-30°或-15°=45°-60°,然后套用公式求值即可.也可化cos(-15°)=cos15°再求值.让学生细心观察(2)(3)可知,其形式与公式C (α-β)的右边一致,从而化为特殊角的余弦函数.解:(1)原式=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ (2)原式=cos(15°-105°)=cos(-90°)=cos90°=0.(3)原式=cos [x-(x+y)]=cos(-y)=cosy.点评:本例重点是训练学生灵活运用两角差的余弦公式进行计算求值,从不同角度培养学生正用、逆用、变形用公式解决问题的能力,为后面公式的学习打下牢固的基础.例2 已知cosα=71,cos(α+β)=1411-,且α、β∈(0, 2π),求cosβ的值. 活动:教师引导学生观察题目中的条件与所求,让学生探究α、α+β、β之间的关系,也就是寻找已知条件中的角与所求角的关系.学生通过探究、讨论不难得到β=(α+β)-α的关系式,然后利用公式C (α-β)求值即可.但还应提醒学生注意由α、β的取值范围求出α+β的取值范围,这是很关键的一点,从而判断sin(α+β)的符号进而求出cosβ.解:∵α、β∈(0,2π),∴α+β∈(0,π). 又∵cosα=71,cos(α+β)=1411-, ∴sinα=,734cos 12=-a sin(α+β)=.1435)(cos 12=+-βa又∵β=(α+β)-α,∴cosβ=cos(α+β)cosα+sin(α+β)sinα =.21734143571)1411(=⨯+⨯- 点评:本题相对于例1难度大有提高,但是只要引导适当,学生不难得到β=(α+β)-α的关系式,继而运用公式解决.但值得注意的是α+β的取值范围确定,也是很关键的,这是我们以后解题当中常见的问题.变式训练1.求值:cos15°+sin15°.解:原式=22(2cos15°+22sin15°)=2(cos45°cos15°+sin45°sin15°) =2cos(45°-15°)= 2cos30°=26. 2.已知sinα+sinβ=53,cosα+cosβ=54,求cos(α-β)的值. 解:∵(sinα+sinβ)2=(53)2,(cosα+cosβ)2=(54)2, 以上两式展开两边分别相加得2+2cos(α-β)=1,∴cos(α-β)=21-. 点评:本题又是公式C (α-β)的典型应用,解决问题的关键就是将已知中的两个和式两边平方,从而得到公式C (α-β)中cosαcosβ和sinαsinβ的值,即可求得cos(α-β)的值,本题培养了学生综合运用三角函数公式解决问题的能力.3.已知锐角α、β满足cosα=54,tan(α-β)=31-,求cosβ. 解:∵α为锐角,且cosα=54,得sinα=53. 又∵0<α<2π,0<β<2π, ∴-2π<α-β<2π. 又∵tan(α-β)= 31-<0,∴cos(α-β)=103.从而sin(α-β)=tan(α-β)cos(α-β)=101-.∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β) =54×).101(53103-⨯+ =50109. 知能训练课本本节练习.解答: 1.(1)cos(2π-α)=cos 2πcosα+sin 2πsinα=sinα. (2)cos(2π-α)=cos2πcosα+sin2πsinα=cosα. 2.102. 3..348315- 4.125372-. 课堂小结1.先由学生自己思考、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变用及掌握变角和拆角的思想方法解决问题.然后教师引导学生围绕以下知识点小结:(1)怎么联系有关知识进行新知识的探究?(2)利用差角余弦公式方面:对公式结构和功能的认识;三角变换的特点.2.教师画龙点睛:本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业课本习题3.1 A组2、3、4、5.设计感想1.本节课是典型的公式教学模式,因此本节课的设计流程为“实际问题→猜想→探索推导→记忆→应用”.它充分展示了公式教学中以学生为主体,进行主动探索数学知识发生、发展的过程.同时充分发挥教师的主导作用,引导学生利用旧知识推导、证明新知识,并学会记忆公式的方法,灵活运用公式解决实际问题,从而培养学生独立探索数学知识的能力,增强学生的应用意识,激发学生学习的积极性.后就是应用,同时如何训练公式2.纵观本教案的设计,学生发现推导出公式C(α-β)的正用、逆用、变形用也是本节的重点难点.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“研究问题、猜想探索公式、验证特殊情形、推导公式、学习应用”的探索创新式学习方法.这样做增强了学生的参与意识,教给了学生发现规律、探索推导,获取新知的途径,让学生真正尝到探索的喜悦,真正成为教学的主体.学生体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.。