第七章+功能高分子材料
第7章 高分子材料的热学性能
材料科学与工程学院
40
2.示差扫描量热法(DSC) 在加热或冷却过程中,将试样和参比物的温差 保持为零,测量补充的热量与温度或时间的关系 功率补偿DSC和热流式DSC
材料科学与工程学院
41
图7-11 高聚物典型的DTA曲线
材料科学与工程学院
42
典型的半结晶聚合物的DSC 曲线:
1. 与样品热容成比例的初始偏移
•对于酚醛树脂而言,其耐热性取决于温度和耐受时间 4 高聚物与纤维的复合
材料科学与工程学院
35
7.6 高分子材料的热稳定性
高分子材料的热稳定性主要是指高分子材料在受热 情况下,由于发生化学变化从而引起材料性能的变坏。 高温下高聚物可以发生降解和交联
降解:高分子主链的断裂,导致分子量下降,材料的物理力学性能变坏。
格波分为声频支和光频支两类
材料科学与工程学院
19
热性能的物理本质:晶格热振动
弹性波(格波):包括振动频率低的声频支 振动频率高的光频支
声频支—相邻原子具有相同的振动方向,两种原子的 质量不同,振幅不同,两原子间有相对运动。
光频支—相邻原子振动方向相反,形成一个范围很小, 频率很高的振动。
材料科学与工程学院
材料科学与工程学院
23
➢ 高分子材料热传导是通过分子(原子)相互碰撞的声 子导热,热导率较低
➢ 结晶度影响很大,结晶度高热导率高 ➢ 分子内热导率高于分子间热导率,增加分子量有利于
提高热导率 ➢ 取向高分子,取向方向热导率高于垂直于取向的方向 ➢ 导电共轭高分子的热导率是普通非共轭高分子的20-
30倍,将导电高分子与普通高分子共混可提高材料热 导率
VTm为熔点温度时的体积;V0为0K时的体积; 立方和六方金属,C为0.06~0.076
第七章功能高分子的制备方法
第七章 功能高分子的制备方法
2. 环醚的开环聚合 环醚主要是指环氧乙烷、环氧丙烷、四氢呋喃
等。它们的聚合物都是制备聚氨酯的重要原料。 环氧乙烷和环氧丙烷都是三元环,可进行阴离
子聚合和阳离子聚合。四苯基卟啉/烷基氯化铝可引 发他们进行阴离子活性开环聚合。
17
第七章 功能高分子的制备方法
四氢呋喃为四元环,较稳定,阴离子聚合不能 进行,而只能进行阳离子聚合。碳阳离子与较大的 反离子组成的引发剂可引发四氢呋喃的阳离子活性 聚合。例如 Ph3C+SbF6- 可在-58℃下引发四氢呋 喃聚合,产物的相对分子质量分散指数为1.04。
第七章 功能高分子的制备方法
功能高分子材料的制备是通过化学或者物理的 方法按照材料的设计要求将功能基与高分子骨架相 结合,从而实现预定功能的。
从上一世纪50年代起,活性聚合等一大批高分 子合成新方法的出现,为高分子的分子结构设计提 供了强有力的手段,功能高分子的制备越来越 “随 心所欲”。
1
第七章 功能高分子的制备方法
7.2 高分子合成新技术
7.2.1 活性与可控聚合的概念 活性聚合是1956年美国科学家Szwarc等人在研
究萘钠在四氢呋喃中引发苯乙烯聚合时发现的一种 具有划时代意义的聚合反应。其中阴离子活性聚合 是最早被人们发现,而且是目前唯一一个得到工业 应用的活性聚合方法。目前这一领域已经成为高分 子科学中最受科学界和工业界关注的热点话题。
8
第七章 功能高分子的制备方法
7.2.3 阳离子活性聚合 阳离子聚合出现于20世纪40年代,典型工业产
品有聚异丁烯和丁基橡胶。 阳离子活性中心的稳定性极差,聚合过程不易
控制。多年来阳离子活性聚合的探索研究一直在艰 难地进行。
功能高分子材料课件第七章光敏高分子材料
力学性能
硬度
光敏高分子材料通常具有一定的硬度 ,能够抵抗外部压力和摩擦力,保持 稳定的性能。
韧性
耐磨性
良好的耐磨性使光敏高分子材料能够 在长期使用中保持表面的光滑度和清 晰度。
光敏高分子材料具有一定的韧性,能 够在承受冲击和弯曲时保持完整性。
电学性能
导电性
部分光敏高分子材料具有导电性,能够传输电荷,在电场作用下 产生电学响应。
目前,研究者们正在研究如何通过合成新型的环境友好型光敏高分子材料,以实现 环保和可持续发展的目标。
THANKS FOR WATCHING
感谢您的观看
电致变色
一些光敏高分子材料在电场作用下能够发生颜色变化,从而实现 电致变色效应。
光导电性
一些光敏高分子材料在光的照射下能够导电,具有光导电性,可 用于光电转换器件。
04 光敏高分子材料的发展趋 势与挑战
新材料开发
新型光敏高分子材料的研发
随着科技的不断进步,新型光敏高分子材料不断涌现,如聚合物分散液晶、聚合 物稳定液晶等,这些新材料具有更高的光敏性能和稳定性,为光敏高分子材料的 应用拓展提供了更多可能性。
高性能光敏高分子材料
高性能光敏高分子材料是指具有 优异性能的光敏高分子材料,如 高感度、高分辨率、快速响应等
。
这类材料在光电子、生物医学、 信息存储等领域具有广泛的应用
前景。
目前,研究者们正在不断探索新 型的高性能光敏高分子材料,以 提高其性能并拓展其应用领域。
多功能性光敏高分子材料
01
多功能性光敏高分子材料是指具有多种功能的光敏 高分子材料,如光、电、磁等多功能一体化。
生物医学应用
光敏高分子材料在生物医学领域的应用不断拓展。利用光敏高分子材料的感光性质,可以实现光动力治疗、光热 治疗等新型治疗方法,为肿瘤治疗、皮肤病治疗等领域提供新的治疗手段。同时,光敏高分子材料还可以应用于 药物控制释放、生物成像等领域,为生物医学研究提供新的工具和手段。
智能高分子材料
三、光敏感性材料
• 接受光照后--→高分子结构异构化 接受光照后-- 高分子结构异构化 ---→本身长度变化 -- 本身长度变化 --→对溶剂的溶胀性发生变化 对溶剂的溶胀性发生变化。 -- 对溶剂的溶胀性发生变化。 • 这类材料的特征是高分子的主链或侧链 上有接受光照可发生异构化的结构。 上有接受光照可发生异构化的结构。典 型的如偶氮苯、三苯甲烷等。 型的如偶氮苯、三苯甲烷等。
第二节 对于特异刺激敏感的高分子 智能凝胶
• 一、葡萄糖敏感型材料
例如:在pH值敏感型高分子组葡萄糖氧化酶后,葡萄糖浓度高时, 内包埋葡萄糖氧化酶后,葡萄糖浓度高时, 葡萄糖受葡萄糖氧化酶的作用变成葡萄糖 凝胶内的pH值降低。 pH值降低 酸,凝胶内的pH值降低。而凝胶本身又因 pH值的降低而溶胀 值的降低而溶胀, pH值的降低而溶胀,从而释放出内部所储 存的胰岛素。 存的胰岛素。
• 二、抗原敏感型材料
第三节 对多重刺激敏感的智能 高分子凝胶
对多种刺激条件敏感的凝胶可分为两种情况: 对多种刺激条件敏感的凝胶可分为两种情况: 一种是多种刺激条件中任一种存在即起作用; 一种是多种刺激条件中任一种存在即起作用; 另一种是多种刺激条件同时存在才起作用。 另一种是多种刺激条件同时存在才起作用。 研究发现形成网络互穿(IPN) 研究发现形成网络互穿(IPN)结构是实现复合 型刺激敏感系统的关键。因为形成IPN IPN结构的两 型刺激敏感系统的关键。因为形成IPN结构的两 种高分子材料可以通过网络互穿结构互相保护, 种高分子材料可以通过网络互穿结构互相保护, 单一刺激条件不能使凝胶破坏, 单一刺激条件不能使凝胶破坏,它们各自的破 坏条件同时存在才能使凝胶被破坏。 坏条件同时存在才能使凝胶被破坏。
四、电场敏感型材料
第七章-高分子材料、陶瓷材料和复合材料
§ 7.1 高分子材料
高聚物的聚集态结构决定了它的性能。由于晶态结构中,分子链规 则而紧密排列,分子间作用力大,链运动困难,所以高聚物的强度、 刚度、密度、熔点等都随着结晶度的增加而提高,而一些依赖链活动 的性能指标,如弹性、韧性、伸长率等则随着结晶度增加而降低。
四、高聚物的物理状态
上一页 下一页
§ 7.1 高分子材料
因此通过改变分子链的组成,可形成多种性能不同的高聚物材料。 2.大分子链的形状 大分子链的几何形状有线型、支化型和网型(体型或交联型)。
线型分子链各链节以共价键连接成线型长链,像一根长线,通常 卷曲成不规则的线圈状态或团状。如图7-1(a)所示。支化型分 子链在线型大分子主链的两侧有许多长短不一的小支链如图71(b)所示。网型分子链的大分子链之间通过支链或化学键连接 成一个三维空间的网状大分子。如图7-1(c)所示。
3.粘流态 当温度升高到粘流化温度Tf时,大分子链可以自由运动,高聚物成 为流动的钻液,这种状态叫粘流态。
上一页 下一页
§ 7.1 高分子材料
粘流态是高聚物成型加工的工艺状态。由单体聚合生成的高聚物原料一般 为粉末状、颗粒状或块状,将高聚物原料加热至粘流态后,通过喷丝、吹塑、 挤压、模铸等方法,加工成各种形状的零件、型材或纤维等。粘流态也是有 机胶粘剂的工作状态。 五、常用的高聚物
③增塑剂增塑剂用来增加树脂的可塑性、柔软性、流动性,降低 脆性,改善加工工艺性能。
上一页 下一页
§ 7.1 高分子材料
增塑剂与树脂的混溶性要好,同时,要具有无毒无害、无臭无色、不 易燃烧、不易挥发、成本低等特点。常用的增塑剂有磷酸醋类化合物、 甲酸醋类化合物、氯化石蜡等。
④稳定剂稳定剂可增强塑料对光、热、氧等的抗老化能力,延长 塑料制品的使用寿命。常用的稳定剂有硬脂酸盐、炭黑、铅的化合物、 环氧化合物等。
7第七章--光敏高分子材料
淬灭过程是光化学反应的基础之一。芳香胺和脂肪胺是常见 的有效淬灭剂,空气中的氧分子也是淬灭剂。
2020/4/14
5、分子间或分子内的能量转移过程 激发态的能量可以在不同分子或者同一分子的不同发色团之
间转移。 能量转移在光物理和光化学过程中普遍存在,特别是在聚合
移和化学反应,导致聚合物链断裂。 ②、光氧化降解过程
首先在光作用下产生的自由基,并与氧气反应生成过氧化合 物。过氧化物是自由基引发剂,产生的自由基进一步引起聚合物 的降解反应。
2020/4/14
③、催化光降解过程 当聚合物中含有光敏剂时,光敏剂分子可以将其吸收的光能
转递给聚合物,促使其发生降解反应。 光降解反应的表现: 不利方面----使高分子材料老化、机械性能变坏; 有利方面----可以使废弃聚合物被光降解消化,对环境保护有利;
2020/4/4
这种树脂具有环氧树脂的优点。
2020/4/14
②、不饱和聚酯 光敏涂料用的不饱和聚酯类光敏树脂是线性不饱和聚酯,一
般由含不饱和双键的二元酸与二元醇进行缩合反应而生成。 如,由l.2-丙二醇、邻苯二甲酸酐和马来酸酐缩聚可生成不
饱和聚酯类光敏树脂。
不饱和聚酯光敏涂料具有坚韧、硬度高和耐溶剂性好等特 点。
光敏剂应具有稳定的三线激发态。其激发能与被敏化物质 (如,光引发剂)要相匹配。
常见的光敏剂多为芳香酮类化合物。如苯乙酮和二甲苯酮。
②、光引发剂 光引发剂是指,吸收适当波长和强度的光能后,可以发生光
2020/4/14
物理过程至某一激发态,若该激发态的激发能大于化合物中某一 键断裂所需的能量,因而发生光化学反应,该化学键断裂,生成 自由基或者离子,成为光聚合反应的活性种。具备上述功能的化 合物均可以用作光引发剂。
第七章 无机高分子材料及其应用
摘要本文简要地介绍了无机高分子地定义、分类,以及一些重要无机高分子材料地性能及其应用.关键词无机高分子材料无机聚合物性能和应用、前沿随着人们对健康、安全、环境意识地强化,尤其天然气和石油资源地日趋耗竭,材料未来总地发展趋向于:逐步由非金属材料部分地替代金属材料,而在非金属材料中,无机材料在许多领域中将越来越多地取代有机材料.因此,由蕴藏量极其丰富而廉价地无机矿物制备无毒、耐高温、耐老化、高强度甚至多功能化地无机材料是当今世界材料学研究地重要方向之一.无机高分子材料因能符合这些要求而日益引起重视.个人收集整理勿做商业用途无机高分子也称为无机聚合物,是介于无机化学和高分子化学之间地古老而又新兴地交叉领域.实际上,传统地无机化学中许多内容属于无机聚合物,许多无机物本身就是聚合物,例如金刚石、二氧化硅、玻璃、陶瓷和氧化硼.第一届国际无机聚合物会议于年召开,会上把无机聚合物定义为:凡在主链上不含碳原子地多聚化合物称为无机聚合物,如此定义相当于把离子晶体及固态金属也包括在内,故后来有人建议把无机聚合物定义为:主链由非碳原子共价键结合而成地巨大分子.个人收集整理勿做商业用途、无机高分子地分类均链聚合物主链由同种元素组成地聚合物为均链聚合物.周期表中Ⅳ、Ⅴ、Ⅵ主族地大部分元素及Ⅲ族地元素能生成均链聚合物.例如金刚石和石墨,三维网络固态聚合物、、、、、、、和地聚合分子等.但由于形成主链地同种原子之间地键能低于———键能,表现为稳定性甚差、易分解,而且当前合成地均链聚合物聚合度甚低,所以缺乏应用价值.个人收集整理勿做商业用途杂链聚合由表一可知,同种原子间地键能— 键能最高为;而两种原子之间地键能多数较高,—键能达 .键能主要反映聚合物受热后稳定性,此外必须考虑聚合物地耐水解性、耐氧化性等.个人收集整理 勿做商业用途元素键合生成均链或杂链聚合物地可能性可由元素电负性之和判断,如果两元素电负性之和— ,则能生成聚合物.个人收集整理 勿做商业用途 无机聚合物地有机衍生物均链聚合物或杂链聚合物中引入有机基团后,可以提高其耐水性,因此具有较高键能地杂链聚合物与有机基团形成地元素有机杂链聚合物,既表现有高度耐热性又表现耐水性,得到应用价值很高地高分子材料,其中最突出地就是有机硅聚合物.个人收集整理 勿做商业用途 配位聚合物在结构单元中通过有机或无机配体与金属离子配位地聚合物.如固态.、通用无机高分子及其应用硅酸盐无机高分子硅酸盐无机高分子基本结构为————单元组成,由于由廉价地二氧化硅和氢氧化钠为起始原料,故价格低,并且具有无毒、耐火、耐污、不老化等优点.适用于作为内外墙建筑涂料.有两种原料作为成膜物质,一种是水玻璃,另一类是硅溶胶.个人收集整理 勿做商业用途水玻璃型无机高分子涂料地成膜物质是碱金属硅酸盐,通常为硅酸钾、硅酸钠或其混合物,通式为··,其中为模数,一般为,模数越高,粘度越大,耐水性越好,体系中存在如下平衡:个人收集整理 勿做商业用途-+=+-OH OH Si O H SiO 4)(2624232() ()() -++----⇔OH O H Si O Si 42干燥过程中通过硅醇基之间缩合成为一———无机高分子而固化成膜.这种聚合长链遇水时易水解,故涂膜耐水性欠佳.加入固化剂可以提高耐水性,常用地固化剂有金属氧化物、硅氧化物、磷酸盐、硼酸盐或其混合物.通过水玻璃地改性,如用氟盐或硅氧烷预先改性制成基料可提高耐水性.添加热塑性有机高分子树脂地水乳液作为辅助成膜物,使有机树脂填充在————网状间隙中,起到屏蔽线存羟基提高耐水性并增加塑性地作用.硅酸盐建筑涂料配方如下:钾水玻璃份,辅助成膜助剂份,填料份,颜料—份,分散剂—份,增塑剂—份,表面活性剂—份,固化剂份.个人收集整理 勿做商业用途硅溶胶涂料所用地助剂与水玻璃涂料相似,由于没有碱金属离子地干扰,故耐水性较好,但硅溶胶成本高而影响推广应用.个人收集整理 勿做商业用途硅酸盐无机粘合剂通过加入如上述固化剂且加热而固化,获得较高地粘接强度.可粘接金属、陶瓷和玻璃.尤其适用于须耐温地金属工件地粘接.笔者研制地硅酸盐粘合剂用来粘接碳钢,进行平面搭接,施压使被粘面紧密结合,低于℃,加热拉伸剪切强度达,经℃受热若干小时,强度基本不变,粘接机理研究结果表明,水玻璃和填料粘土矿物地表面羟基发生了键合作用.这类粘合剂地缺点也是耐水性较差.湖南省机械研究所地研究者通过在固化剂内添加磷硅酸或其他盐类,同时在基料中引进相应地阴离子,显著提高了耐水性.个人收集整理勿做商业用途磷酸盐无机分子用于制备磷酸盐高分子地原料是酸性磷酸盐,即磷酸二氢盐、磷酸倍半氢盐、磷酸氢盐或其混合物,通式为··.这些原料多数采用磷酸盐和金属氧化物或氢氧化物在水溶液中反应制备.金属原子和磷原子之比值越小,磷酸水溶液地稳定性相应提高;但固化性能和耐水性均下降.个人收集整理勿做商业用途酸性磷酸盐水溶液地固化剂可以是金属氧化物、氢氧化物、硅酸盐、硼酸盐或其它金属盐类如、等,以金属氧化物固化剂为例,在烘烤过程中,金属氧化物与酸性磷酸盐发生反应:个人收集整理勿做商业用途磷酸盐涂料耐高温、耐腐蚀、附着力比硅酸盐涂料大,用于化工设备如烟囱、热交换器、高温炉、高温蒸气管、石油炼制设备等.个人收集整理勿做商业用途配方为:磷酸份、氢氧化铝份、氧化镁份,反应性颜料铝份.磷酸盐无机高分子粘合剂和硅酸盐粘合剂比较,具有粘性大,粘合力强,收缩率较小,耐水性较好,固化温度较低等优点.原哈尔滨军事工程学院地贺孝先成功地研制地胶粘剂,甲组份是以磷酸为主地液体,可用于粘接金属切削工具、精密量具、冲压模具、各种机械构件,应用面涉及到冶金、机械、交通、能源、纺织、兵器及尖端科学等,采用平面、槽接、套接、效果均好,已推广应用.个人收集整理勿做商业用途聚铁盐和聚铝盐聚铁盐和聚铝盐主要用作为絮凝剂.聚铁盐可以看作是硫酸铁中地一部分被所取代而形成无机聚合物,其通式为[()()], 式中<>,聚铁水溶液中存在着[()], [()], [()]等络离子,以—作为架桥形成多核络离子,分子量高达* ,是一种红褐色粘稠液体,对污水杂质有强混凝作用,这是由于水解过程中产生地多核络合物强烈吸附胶体微粒,通过粘结、架桥、交联作用,从而促使微粒凝聚.同时还中和胶体微粒及悬浮表面地电荷,降低胶团地电位,使之相互吸引而形成絮状混凝沉淀,而且沉淀本身表面积大、物理吸附作用显著.个人收集整理勿做商业用途聚铝盐主要有聚硫酸铝()[()()]和聚氯化铝()[()ε](),是一类当前公认地高效无机高分子絮凝剂,大量用于生活、工业及污水处理,但原料比聚铁盐紧缺,造价高,而且存在对原水质适用范围窄地缺点.个人收集整理勿做商业用途铝铁合剂聚丙烯酰胺()硅氧聚合物地有机衍生物硅氧聚合物地有机衍生物,即有机硅聚合物.基本结构单元是∣(),即主链由硅原子和氧原子交替组成稳定骨架,可以是甲基、苯基、∣乙烯基等,这种半无机、半有机地结构赋予这类材料许多优良特性,主要表现为无毒,耐高低温,化学性质稳定,具柔韧性,还有良好地电绝缘性,并且易加工等特性.个人收集整理勿做商业用途由于组成与分子量大小地不同,有机硅聚合物可以是线型低聚合物,即液态硅油及半固体地硅脂;可以是线型高聚物弹性体,即硅橡胶;还可以是具反应性基团地含支链地低聚合物,即树脂状流体硅树脂,缩合固化后转变为体型高聚物.硅树脂可用作涂料、高温粘合剂,或加入填料生产模塑制品.有机硅油分子间距大,作用力小,比起碳氢化合物有较低地表面张力和低表面能,所以成膜能力强,如乙基硅油广泛作为纺织,印染机械润滑油地添加剂.当为甲基或苯基时,可用过氧化物进行硫化,如果含有乙烯基则可用硫进行硫化.硅橡胶具优良地低温和高温性能(℃)、优良地耐老化性能,(尿醛树脂),是优良地绝缘材料和耐温密封材料.由于氧在硅橡胶中,故硅橡胶成为已知高分子材料中渗透性最好地透氧材料,在工业炉地富氧化燃烧和医疗上富氧化系统应用.个人收集整理勿做商业用途然而,聚有机硅氧烷毕竟含有有机基团,长期受热后,分子中地有机基团大部分遭受破坏,失去柔韧性,近年来,科学家试图通过改变侧基团或主链中引进金属原子,以达到改性目地,已获得一些进展.个人收集整理勿做商业用途、特种无机高分子聚磷腈聚磷腈是一类卓越地无机橡胶,由低聚环开环聚合成长链聚合物,通式为︱[],最简单地聚磷腈和是卤素,通过亲核取代可制备复杂聚合物,如为或是配位地金属离子单元.具有结构多样化,已知地已有二百多种,选择不同取代基团,可以赋予聚磷腈良好地离子导电性,柔韧性、水溶性、生物相容性等特殊功能,可用于做垫圈、救火软管、半导体、人工心脏泵、血管、药物缓释剂等.个人收集整理勿做商业用途聚氮化硼和氮化硫聚氮化硼()为六方形,具有类似于石墨地层次结构.制备方法很多,例如可由硼砂和混合压制,在高温合成炉通氨气氮化制得,是一种功能陶瓷,具有优良地高温下稳定地介电性、热传导性,并且加工性能好,可以加工成形态复杂、精度很高地瓷件,特别是用于用做高温度下电子件地散热陶瓷组件和电绝缘陶瓷组件.个人收集整理勿做商业用途聚氮化硫()是具有异常性质电极材料,当制成纤维状晶体时,沿纤维轴有电导性,且随温度降低而增加,在接近绝对零度时成为超导体.聚氮化硫还有许多功能陶瓷如、等前驱体,即这些陶瓷可由聚氮化硫和有关无机物经高温热反应制得.个人收集整理勿做商业用途酞菁聚合物将含有金属或非金属二卤化物单元地酞菁进行水解,可制得以共价键———等为主链地酞菁聚合物,然后缩合失水就制成有个以上重复单元骨架地柱状酞菁聚合物.由于金属酞菁是一类耐高温,有催化活性和导电性地化合物,相应聚合物也有这方面地特殊功能,聚合物可制成纤维或薄膜材料.个人收集整理勿做商业用途锆地聚合物聚磷酸锆具有类似于粒土矿物地层状结构,通过化学反应把有机基因引入层间,能使之功能化,如成为催化剂固定场所,成为选择吸附场所等.个人收集整理勿做商业用途无定形锆聚合物在涂料方面较多,如:把尿素和()一起放在水中加热,制得无定形氢氧锆聚合物地稳定透明溶胶,将之于粉和溶剂混合,涂布于金属板材上得到了良好地涂层.个人收集整理勿做商业用途。
第七章《乙烯与有机高分子材料》教学设计
第七章《乙烯与有机高分子材料》教学设计一、教材分析“乙烯与有机高分子材料”是人教版化学必修第二册第七章《有机化合物》第二节内容,是高中有机化学中最基本的核心知识,是学生“结构决定性质”、“性质决定用途”等观念形成的重要载体。
在《普通高中化学课程标准(2017年版)》(以下简称“《标准(2017版)》”)必修课程中,“主题4:简单的有机化合物及应用”对有机化合物的要求为:“知道有机化合物分子是有空间结构的,以乙烯和乙炔为例认识碳原子的成键特点,以乙烯和乙炔为例认识有机化合物中的官能团。
知道氧化、加成、聚合等有机反应类型。
”具体内容包括辨识有机化合物分子中的碳骨架,能描述乙烯和乙炔的分子结构特征,能描述乙烯的主要化学性质及相应性质实验的现象,能书写相关的反应方程式,能利用这些物质的主要性质进行鉴别,能列举合成高分子在生产和生活中的重要作用,能从有机化合物及其性质的角度对有关能源、材料等实际问题进行分析、讨论和评价,认识有机化合物的分子结构,以及决定其分类与性质的特征基团,进而认识有机化学反应,实现有机化合物之间的转化,合成新物质。
人教版教材化学必修第二册中提到,“乙烯是石油化学工业重要的基本原料,通过一系列化学反应,可以从乙烯得到有机高分子材料、药物等成千上万种有用的物质。
”从乙烯的用途出发,激发学生的探究欲望。
接下来,以乙烯为例详细地介绍了其结构和性质,进而顺利地过渡到介绍“烃”,并完成甲烷、乙烯和乙炔三种烃的分子结构对比认识,最后,常识性介绍“塑料、橡胶和纤维”三大有机高分子材料。
本节内容的学习提升了学生的“宏观辨识与微观探析”“变化观念”“证据推理与模型认知”等学科素养。
同时,本节内容也将为后续有机化合物的学习打下坚实的基础。
《标准(2017版)》还指出,学生应通过实验探究和联系实际的方式学习上述知识。
因此,以学生的已有经验为背景,设计联系实际、以综合问题解决为核心任务的教学活动,有助于将上述不同素养进行整合培养,有助于教学目标的高效落实。
功能高分子材料有哪些
功能高分子材料有哪些
功能高分子材料是一类性能优异、具有特定功能的高分子材料,它们在各个领域都有着重要的应用价值。
下面将介绍一些常见的功能高分子材料及其特点。
首先,我们来谈谈功能高分子材料中的一种——聚合物凝胶材料。
聚合物凝胶材料是一种具有三维网状结构的高分子材料,其特点是具有大量的孔隙结构,表面积大、吸附性能好、机械性能优异。
由于其孔隙结构的特殊性质,聚合物凝胶材料在吸附分离、催化剂载体、药物控释等方面有着广泛的应用。
其次,功能高分子材料中的另一种常见类型是形状记忆高分子材料。
形状记忆高分子材料是一种具有形状记忆性能的高分子材料,其特点是可以在外界刺激下发生形状变化,并且在去除外界刺激后能够恢复原来的形状。
这种材料在医疗器械、纺织品、航空航天等领域有着广泛的应用前景。
另外,还有一种功能高分子材料——导电高分子材料。
导电高分子材料是一类具有导电性能的高分子材料,其特点是具有良好的导电性能、柔韧性和加工性能。
这种材料在电子器件、光伏领域、传感器等方面有着广泛的应用。
此外,功能高分子材料中还包括生物可降解高分子材料、光敏高分子材料、自修复高分子材料等多种类型。
这些材料在环保、医疗、光学等领域都有着重要的应用价值。
综上所述,功能高分子材料具有多种类型和广泛的应用领域,它们在材料科学领域发挥着重要作用。
随着科学技术的不断发展,功能高分子材料的研究和应用将会更加广泛,为人类社会的发展做出更大的贡献。
合成高分子材料综合复习资料及参考答案
第七章合成高分子材料综合复习资料及参考答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第七章合成高分子材料一、选择题1、下列__属于热塑性塑料。
①聚乙烯塑料②酚醛塑料③聚苯乙烯塑料④有机硅塑料A ①②B ①③C ③④D ②③2、填充料在塑料中的主要作用是。
A、提高强度 B 降低树脂含量 C 提高耐热性 D A+B+C3、按热性能分,以下哪项属于热塑性树脂。
A 聚氯乙烯 B 聚丙稀C 聚酯D A+B二、是非判断题1、由单体自备聚合物的基本方法有加聚反应和缩聚反应。
2、热塑性树脂与热固性树脂相比具有强度大,粘结力强,变形小等特点,可用于结构材料。
3、聚合物的老化主要是由于高分子发生裂解这一类不可逆的化学反应造成的。
4、塑料和橡胶的最高使用温度称为玻璃化温度。
三、填空题1、根据分子的排列不同,聚合物可分为__聚合物,__聚合物和__聚合物。
2、塑料的主要组成包括合成树脂,__,__和__等。
四、名词解释1、热塑性树脂2、热固性树脂五、问答题1、某装修公司要承包一间歌舞厅的内外装修,欲采用塑料地板,妥否2、在粘结结构材料或修补建筑结构(如混凝土、混凝土结构)时,一般宜选用哪类合成树脂胶粘剂为什么3、现在建筑工程上倾向于使用塑料管代替镀锌管,请比较塑料管与镀锌管的优缺点。
4、选用何种地板会有较好的隔音效果5、某建筑工程需要给铝合金门窗的玻璃密封,现有三种密封膏(单组分硅酮密封膏,双组分聚氨酯密封膏,双组分聚硫橡胶建筑密封膏),请问选那一种较好原因何在6、试根据你在日常生活中所见所闻,写出5种建筑塑料制品的名称。
7、与传统建筑材料相比较,塑料有哪些优缺点8、某高风压地区的高层建筑有两种窗可选择A. 塑钢窗B. 铝合金窗9、热塑性树脂与热固性树脂中哪类宜作结构材料,哪类宜作防水卷材、密封材料?10、某住宅使用Ⅰ型硬质聚氯乙稀(UPVC)塑料管作热水管。
使用一段时间后,管道变形漏水,请分析原因。
高中化学(必修二)第七章 有机高分子材料练习题(附答案解析)
高中化学(必修二)第七章有机高分子材料练习题(附答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.据最新报道:我国限塑3年,少用240亿个塑料袋。
下列有关说法错误的是A.限塑的主要意义是减少白色污染B.塑料袋的材料主要是聚乙烯、聚氯乙烯等C.聚乙烯、聚氯乙烯等塑料都是天然有机高分子材料D.聚乙烯是由乙烯分子通过加成反应聚合而成的2.我国四川广汉的三星堆遗址距今已有3000~5000年历史,2021年3月20日,三星堆遗址新出土了500多件重要文物,如黄金面具、丝绸“黑炭”、青铜神树、陶瓷碎片等。
下列有关叙述错误的是A.考古时利用146C测定文物的年代,146C的中子数为8B.黄金面具、青铜神树的成分均为纯金属C.丝绸转化为“黑炭”的过程涉及化学变化D.三星堆中含有大量的陶瓷碎片,陶瓷破碎的过程中只发生了物理变化3.下列不属于高分子化合物的是A.聚乙烯B.油脂C.淀粉D.纤维素4.当今环境污染已成为人类面临的重大威胁,下列对应关系不完全正确的是A.酸雨——SO2、NO2、CO2等B.光化学烟雾——NO2、C x H y等C.温室效应——CO2、CH4等D.白色污染——各种颜色的难降解的塑料膜、塑料袋等5.下列合成高分子化合物的反应及类型均正确的是A.合成有机玻璃:缩聚反应B.合成橡胶:加聚反应C.合成酚醛树脂:缩聚反应D.合成HT纤维:缩聚反应6.现有两种高聚物A、B,A能溶于苯、四氯化碳等有机溶剂,并加热到一定温度下熔融成粘稠状的液体,B不溶于任何溶剂,加热不会变软或熔融,则下列叙述中不正确的是()。
A.高聚物A可能具有弹性,而高聚物B没有弹性B.高聚物A一定是线型高分子材料C.高聚物A一定是体型高分子材料D.高聚物B一定是体型高分子材料7.一种芳纶纤维的拉伸强度比钢丝还高,广泛用作防护材料。
其结构片段如下图。
材料表界面第七章--高分子材料的表面改性
7.5.2 等离子体处理对聚合物表面的改性效果
(1)表面交联
CH2 CH2 + He+
.
2 ( CH2 CH )
CH 2
.
CH
+H.
(2)极性基团的引入
.
CH2 CH
+ H. + He
CH2 CH
CH 2 CH
CH2 CH + H2
36
37
● 氩或氮等离子处理的聚乙烯和聚四氟乙烯表面的光电子能谱揭 示,处理后C1s峰或F1s峰减弱,O1s峰和N1s峰增强,表明表面 含氧基团或含氮基团的增加(图7-9) (图7-10)
17
7.3 化学改性
● 化学处理是使用化学试剂浸渍聚合物,使其表面发生化学的和物理的 变化。
7.3.1 含氟聚合物 含氟聚合物,具有优良的耐热性、化学稳定性、电性能以及抗水气
的穿透性能,在化学、电子工业和医学方面有广泛应用。但含氟聚合物 的表面能很低,是润湿性最差粘结最难的聚合物,使其应用受到限制。 因此必须表面改性。
C1s=~285eV; N1s=399~400eV; O1s=~533.0eV
单色化AlKα射线激发的聚苯氧基膦嗪的XPS谱来自
《聚合物表面分析》,[英],D 布里格斯 著
7
8
● 电晕放电处理: 氧化
● 火焰处理: 氧化
表
● 化学改性: 氧化, 粗糙化表面
面
● 等离子体改性: 交联,引入官能团等
可燃性气体通常采用焦炉煤气、甲烷、丙烷、丁烷、天然气和一定比例 的空气或氧气;
瞬间:0.01~0.1s内;高温:1000~2700 ℃; 氧化过程按自由基机理进行,表面可被氧化引入含氧基团,并随着发生 断链反应。
第七章吸附型高分子材料
第四节 高吸水性高分子材料
所谓高吸水性高分子材料是指具有与水接触后能迅速吸收 高于自身质量若干倍的高分子材料。
最早的高吸水性高分子材料是在1974年由美国农业部的研 究人员首先研制的。
目前已经有淀粉衍生物系列、纤维素衍生物系列、聚丙烯 酸和聚乙烯醇系列。 由于其重要的应用价值,在科研和生产方面都取得了快速 发展。 主要应用于农业、建筑材料、医疗卫生、林业、食品工业。
因汞在过量氯离子存在下能生成稳定的络阴离子 [HgCl4]-2, 所以可采用离子交换法,选用强碱性阴离子树脂来吸附 它。
29
(2)含铬废水的处理 铬也是毒性较大的重金属,因而规定废水中铬含量在5×10-8 以下才能排放。含铬酸的废水主要来自电镀行业。
将废水通过Cl-式强碱性阴离子交换树脂,铬酸被树脂交换 吸附,而后用再生剂NaOH溶液脱附,生成Na2CrO4再生废 液。它的铬酸浓度比原废水中铬酸含量高了几百倍。将再 生废液通过一H+式强酸性阳离子交换树脂柱,变成纯度很 高的铬酸返回应用。
30
3. 离子交换树脂提取铀和贵金属
离子交换是冶金工业的重要单元操作之一。在铀、钍等超铀 元素、稀土金属、重金属、轻金属、贵金属和过渡金属的分 离、提纯和回收方面,离子交换树脂均起着十分重要的作用。
离子交换树脂在原子能工业上的应用包括核燃料的分离、 提纯、精制、回收等。用离子交换树脂制备高纯水,是核 动力用循环、冷却、补给水供应的唯一手段。离子交换树 脂还是原子能工业废水去除放射性污染处理的主要方法。
3.吸附树脂的宏观结构
4
三、影响吸附树脂性能的外界因素 1.温度因素 2.树脂周围介质的影响 3.其他影响因素
5
二、吸附性高分子材料的制备方法 1.微孔(凝胶)型吸附树脂
第7章光磁功能高分子
5 MeV 中能量EB 高能量EB
10 MeV
第一节 感光性高分子材料
电子束、热、紫外光固化的比较
第一节 感光性高分子材料
(3)光化学反应
a. 光分解反应 典型的光分解反应是重氮化合物、叠氮化合物、在紫外线辐射时发生。
b. 光降解反应 添加了光敏氧化降解剂的高分子可控制在户外的降解时间,从数周到数月。
聚双—2,6—吡啶基辛二腈—硫酸亚铁(PPH—FeSO4)
PPH—FeSO4是一种黑色固态磁性聚合物,质量轻、耐热性好,在空气中300℃ 不会分解,也不易溶于有机溶剂,是非常好的磁性材料。
第三节 磁功能高分子材料
(2) 复合型高分子磁性材料:在合成树树脂或橡胶中加入铁氧体或稀土类磁
粉即可制成复合型高分子磁性材料。 橡胶 铁氧体 塑料
BIPO在紫外光照或在100℃左右下可 聚合成单晶或多晶聚合物。
改变聚合条件可在广泛范围内改变磁 性,可以从超顺磁性至铁磁性。 聚BIPO单体的分子中具有两个可进行 聚合反应的叁键,以及两个哌啶环的 氮氧自由基(双自由基)。
制备这种材料的生产率是很低的,性 能尚不稳定。
第三节 磁功能高分子材料
b. 含金属原子的有机高分子磁性体
芳香族重氮化合物在光照作用下发生光分解,产物有自由基和离子两种形式。
例如:双重氮盐+聚乙烯醇感光树脂
这种感光树脂在光照射下其重氮盐分解成自由基
第一节 感光性高分子材料
分解出的自由基残基从聚乙烯醇上的羟基夺氢形成聚乙烯醇自由基。最后自由 基偶合,形成交联结构。
第一节 感光性高分子材料
d. 芳香族叠氮化合物+高分子
保留受光部分即成为浮雕型印刷版
第二节 感光性高分子材料的应用
功能高分子材料课件第七章光敏高分子材料 共117页PPT资料
20.09.2019
材料
1
7.1 概述
光敏性高分子(photosensitive polymer,
light-sensitive polymer)又称感光性高分子,
是指在吸收了光能后,能在分子内或分子间产生
化学、物理变化的一类功能高分子材料。而且这
种变化发生后,材料将输出其特有的功能。从广
பைடு நூலகம்
20.09.2019
材料
27
8 电子跃迁的类型 电子跃迁除了发生从成键轨道向反键轨道的跃
迁外,还有从非键轨道(孤电子)向反键轨道的跃 迁。电子跃迁可归纳并表示为如下四种:
(a) σ →σ*跃迁(从σ轨道向σ*轨道跃迁); (b) π →π*跃迁; (c) n →σ*跃迁; (d) n →π*跃迁。
的变化外,还会发生分子间的跃迁,即分子间的 能量传递。
反 键 轨 道
成 键 轨 道
DA
D*
A
D
A*
20.09.2019
电荷转移材跃料 迁示意图
34
在分子间的能量传递过程中,受激分子通过 碰撞或较远距离的传递,将能量转移给另一个分 子,本身回到基态。而接受能量的分子上升为激 发态。因此,分子间能量传递的条件是:
20.09.2019
材料
16
光化学第二定律: ( Stark—Einstein定律) 一个分子只有在吸收了一个光量子之后,才能
发生光化学反应。(吸收一个光量子的能量,只可 活化一个分子,使之成为激发态)
20.09.2019
材料
17
4 分子的光活化过程 从光化学定律可知,光化学反应的本质是分子
吸收光能后的活化。当分子吸收光能后,只要有足 够的能量,分子就能被活化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
爬在墙上的机械大蜘蛛,帮你检测房屋质量
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
鱗粉上排列整齊的次微米結構
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
原子力显微镜下观察荷叶 表面的纳米突起
荷叶效应
吉林建筑工程学院材料学院高分子教研室
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
目前研究较多的导电高分子有聚乙炔(PAC)、聚苯胺(PAN)、聚吡咯(PPY)、聚 噻吩(PTP)等。其中聚苯胺以其具有原料易得、合成简便、较高的电导率、较好 的环境稳定性,已在二次电池、电致显色、抗静电、微波吸收、防腐等领域显 示出广泛的应用。
本征态聚苯 胺和掺杂聚 苯胺结构模 型示意图如 下
件中的电极等。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
(2)结构型导电高分子材料
结构型导电高分子材料是指聚合物本身不用加入导电性物 质,而靠其自身结构或经掺杂后具有导电性的高分子聚合物。一 般为共轭型高分子,在高分子链中具有大量共轭双键结构,电 子在共轭体系内自由运动,因而提供了导电载流子。虽然共轭 结构具有较强的导电倾向,但电导率并不高,在实际应用中, 通常经过掺杂提高电导率。例如:在聚乙炔中添加碘,达到金 属导电的水平。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
7.5 仿生高分子材料
1960 年9 月13日在美国召开了第一届仿 生学研讨会,斯蒂尔博士在会上首次提 出了仿生学(Bionics)概念,对仿生 学的定义如下:仿生学是模仿生物系统 的原理来建造技术系统,或者使人造技 术系统具有或类似于生物系统特征的科 学。简言之,仿生学就是“模仿生物的 科学”。
合物在氧化状态下为导体,在还原状态下为非导体,因此 利用这一特性可制成晶体管。日本用聚乙炔制得了实用的 二极管、三极管,均具有整流、放大、开关等功能,用聚 吡咯、聚苯胺也已制成晶体管。也可制成仪器的探头,提 高仪器的灵敏度。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
(6)分子级电路 目前导电性高聚物作为分子级电路最佳的 材料引起人们很大的兴趣。这是因为硅芯片的微电子元件已 达到了理论的极限,要使得信息储存量提高必须使用新的材 料,所以人们把注意力转移到了有机高分子材料上来。一旦 可用导电高聚物代替硅芯片,其信息储存密度将提高10个数 量级以上。由此可见,如果高分子器件能代替原有的硅器件, 将使计算机工业发生巨大的变革。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
导电高分子材料的分类 (1)复合型导电高分子材料 复合型导电高分子材料是指在高分子基体中添加导电型 物质(碳黑、碳纤维、金属粉末、薄片、金属丝、涂金 属的玻璃球和丝)通过分散复 合、层集复合等方式制成,其 制造容易,现已商品化。此类 导电高分子材料在国内外已得 以广泛的应用,如抗静电、电 磁波屏蔽、微波吸收、电子元
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
装在手表上的PLED (发光高分子二级管) 电视屏幕
高分子薄膜晶体管制 成的电子书
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
7.3 液晶聚合物 液晶(Liquid Crystal, 简称LC)是一种高分子 材料,因为其特殊的物理、 化学、光学特性,20世 纪中叶开始被广泛应用在 轻薄型的显示技术上。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
2. 导电聚合物的应用及发展前景 导电聚合物的应用非常广泛,其中以塑料电池方面的研究最 多。
(1)塑料电池 美国宾夕法尼亚大学的化学家首次用掺杂聚 乙炔的多孔薄板作电极制作了一个电池,其储存的能量是铅 电池的3倍,能量密度为它的10倍。
(2)防静电、抗电磁波材料、配线材料 由于导电性高聚物 的厚度、密度、导电率可以调整,从而可以制得各种薄膜、 片材及仪器外壳,用于防静电和电磁波屏蔽。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
液晶态是物质存在的凝聚态结构之一。液晶态与晶态的区别是 部分或全部失去结构的平移有序性,而与液态的区别是存在取 向的有序性。因此液晶既具有液体的流动性又具有晶体的各相 异性。液晶高分子材料是在一定条件下以液晶态存在的高分子 材料,大多数液晶聚合物的结构都含有液晶基元和柔性间隔基。 液晶基元具有刚性和有利于取向的外形如长棒状和盘碟状。常 见的液晶基元的核心成分是1,4-亚苯基。以1,4-亚苯基为基 础的二联苯、三联苯、苯甲酰氧基苯。
在仿生材料研究领域中,高分子仿生材料将是最重要的 研究开发方向之一,主要包括了结构仿生高分子和功能 仿生高分子两个部分。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
膜分离用于浓缩天然果汁、乳制品加工、酿酒等食品工 业中,因无需加热,可保持食品原有的风味。采用高分 子富氧膜能简便地获得富氧空气,以用于医疗。还可用 于制备电子工业用超纯水和无菌医药用超纯水。用分离 膜装配的人工肾、人工肺,能净化血液,治疗肾功能不 全患者以及作手术用人工心肺机中的氧合器等。
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
基于荷叶效
纳米机器人消灭癌细胞
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
第七章 功能高分子材料
7.1 概述 7.2 导电高分子材料 7.3 液晶聚合物 7.4 高分子分离膜 7.5 仿生高分子材料
7.1概述 功能高分子 材料是除了 力学功能、 表面和界面 功能及部分 热学功能的 高分子材料。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
7.2 导电高分子材料
2000年,美国科学家黑格(Heeger)、 马克迪尔米德(MacDiarmid)以及日本科 学家白川英树(Shirakawa)因在导电聚 合物领域作出了开创性贡献,荣获了该年 度的诺贝尔化学奖。
薄膜太阳能电池
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
(4)显示元件 某些导电高分子聚合物因施加不同的电 压或频率而改变颜色,因此可用于新型广告显示、仪 器仪表显示以及复印机上。如聚噻吩膜,接通正负 交流电时,其颜色会发生变化,其颜色可以在红——绿
之间来回变化,达1万次以上。 (5)在有机晶体管和敏感元件中的应用 由于某些高分子聚
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
液晶
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
7.4 高分子分离膜
由聚合物或高分子复合材料制得的具有分离流体混合物功 能的薄膜。膜分离过程就是用分离膜作间隔层,在压力差、 浓度差或电位差的推动力下,借流体混合物中各组分透过膜 的速率不同,使之在膜的两侧分别富集,以达到分离、精制、 浓缩及回收利用的目的。
诺贝尔评奖委员会的公告: 塑料本来是不导电的绝缘体。他们合成了具有共轭链的聚乙炔,用掺杂方式 使塑料出现与金属一样的导电性。导电高分子已成为化学和物理学研究的 重要领域。不仅将导电聚合物用于聚合物电池的设想正在逐步实用化,而 且发光二极管、移动电话显示屏以及将来的分子电路也有可能用导电高分
子做关键材料。
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
(3)太阳能电池 导电高聚物在太阳能电池上的应用已引起了 人们广泛的关注。美国物理学家利用聚吡洛和聚氧化乙烯 固态电解质试制了光电池,由于导电聚合物重量轻、易成 型、工艺简单、成本低,并能生成大面积膜,因而发展前 景十分诱人。
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
中空纤维超滤膜 :超滤净水器
制作人:李祎
吉林建筑工程学院材料学院高分子教研室
制作人:李祎
最初用作分离膜的高分子材料是纤维素酯类材料。后来,又逐渐采 用了具有各种不同特性的聚砜、聚苯醚、芳香族聚酰胺(见芳香族聚酰胺 纤维)、聚四氟乙烯(见氟树脂)、聚丙烯、聚丙烯腈、聚乙烯醇等。