曲线与方程

合集下载

曲线与方程的关系

曲线与方程的关系

曲线与方程的关系
曲线与方程之间存在着密切的联系,它们不仅相互依存,而且彼
此又具有重要的数学意义。

首先,曲线是由一个函数表示的,而这个函数就是方程。

因此,
曲线和方程之间存在着直接的联系。

其次,通过求解该方程,可以得
到曲线的性质。

例如,如果曲线是抛物线,则可以根据抛物线的方程
来计算出它的顶点;如果曲线是椭圆,则可以通过椭圆方程来计算出
它的长轴和短轴等。

此外,曲线与方程还具有更为深刻的数学意义。

曲线和方程能够
反映物理和化学现象的发展趋势,并且可以使用数学工具对其进行解
析和研究。

更重要的是,曲线和方程也可以用于描述某些重要的场景,如关于经济学、生态学等的分析。

因此,曲线与方程之间有着密不可分的关系,而这种关系有着重
要的数学意义。

正是由于曲线和方程能够将复杂的物理世界变为易于
理解和推导的数学现象,它们才能够为人们在研究自然界现象中提供
强大的帮助。

§9.8 曲线与方程

§9.8 曲线与方程

方程的曲线 _______________.
主页
要点梳理
忆一忆知识要点
2.求动点的轨迹方程的一般步骤
(1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P(x, y).
(3)列式——列出动点P所满足的关系式.
(4)代换——依条件式的特点,选用距离公式、
斜率公式等将其转化为x, y的方程式,并化简.
(5)证明——证明所求方程即为符合条件的动点
轨迹方程.
主页
要点梳理
忆一忆知识要点
3. 两曲线的交点
(1)由曲线方程的定义可知,两条曲线交点的 坐标应该是两个曲线方程的 _________ ,即两个 公共解 曲线方程组成的方程组的实数解;反过来,方程 组有几组解,两条曲线就有几个交点;方程组 _______ 无 解 ,两条曲线就没有交点. 充 要 条件是它们的方 (2)两条曲线有交点的 _______ 程所组成的方程组有实数解.可见,求曲线的交点 问题,就是求由它们的方程所组成的方程组的实 数解问题.
即 ((x 即((- -x x,,- -4 4- -2 2y y)· )· x,,- -2) 2)= =0. 0. 12 1 2 所以曲线 所以曲线 C C 的方程为 的方程为 y y= =x x2- -2. 2. 4 4
主页
x
1 22 1 2 2 1 1 1 (2) 设 P ( x , y ) 为曲线 C : y = x - 2上一点. 上一点. (2) 设 P ((x , y ))为曲线 C : y = - 2 2 0 0 2x 0 0 0 0 (2) 设 P x , y 为曲线 C : y = x - 2 上一点. 0 0 4 (2)设 P (x0y , y0)为曲线 Cy : y= x2 - 2 上一点. (2)设 P(x C: = x4 - 上一点. 0, 0)为曲线 4 4 4 y 1 1 1 1 1 1 1 1x 因为 y y′′ ′1 =1x x,所以 ,所以 ll l 的斜率为 的斜率为 x00 . 因为 = .. 0 0 因为 y = x ,所以 的斜率为 x 2 2 因为 y ′ = x ,所以 l 的斜率为 x . 2 2 因为 y′= x,所以 l 的斜率为 x02 . 2 2 2 2 2 0 1 1 1 1 1 因此直线 ll l 的方程为 的方程为 y y- -y y00 =2 x00 (x x- -x x00 ), , 因此直线 = x (( )) 0 0 0 0 0 0 因此直线 的方程为 y - y = x x - x , 因此直线 l 的方程为 yy - y0= - x0), 因此直线 l 的方程为 y- x2 (x- x 0(x 0= 0), 2 2 02 2 2 2 O 2 即 x x - 2 y + 2 y - x = 0. 即 x x - 2 y + 2 y - x = 0. 2 0 0 0 2 x 0x-2y+2y 0- 0=0. 0 0 0 0 即 x - 2y2 + y00 - x =0. 即即 x0xx - 2 y+ y02 - x = 0. 0x 0 0 2 0 2 2 2 |2y y00 - x00 | |2 - || 2 1 22 1 0 0 2x 0 0 2 2 |2 y - x 1 |2 y - x | 1 |2 y - x | 0 0 1 2 所以 O 点到 l 的距离 d = . 又 y = x - 2 , 所以 O 点到 ll 的距离 d = . 又 y = - 2 , 0 0 0 0 2x 0 0 0 0 2 2 所以 O 点到 的距离 d = . 又 y = x - 2 , 2 0 0 4 所以 O 点到 l 的距离 d= 2 x .又 y0= x02 - 2, 4 所以 O 点到 l 的距离 d= .又 y0= x0 - , 2 x02 + 4 + 4 4 0 0 4 x + 4 4 x0 +4 x0+ 4 0 1 22 1 2 2 1 1 21x x +4 4 + 2 0 0 0 x + 4 0 4 4 2 x + 4 2 2 1 2 2 1 x02 + 4 0 4 2 1 4 4 x + 4 + 2 x + 4 + 2 1 2 0 2 1 0+4+ 0 x 2 所以 d d= = 22 = ≥2. 2. 所以 = ≥ 2 2 2 0 2 2 2 所以 d = = ≥ 2. x + 4 + x + 4 + 0 2 所以 d = = ≥ 2. x + 4 0 2 + 4 所以 d= 2 x = 2 ≥ 0 2x 2. 0 0 x + 4 x00 + 4 + 4 2 0 0 0 2 x + 4 x + 4 2 x + 4 0 x04 +4 0 x0+ 当x x00 =0 0 时取等号,所以 时取等号,所以 O O 点到 点到 ll l 距离的最小值为 距离的最小值为 2. 2. 当 = 0 0 当 x = 0 时取等号,所以 O 点到 距离的最小值为 2. x0 = 0 时取等号,所以 O 点到 l 距离的最小值为 当当 x0= 0 时取等号,所以 O 点到 l 距离的最小值为 2. 2.

曲线与方程

曲线与方程

曲线与方程一、曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之间, 如果具有以下两个关系:1.曲线C 上的点的坐标,都是 的解;2.以方程(,)0F x y =的解为坐标的点,都是 的点,那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做这个方程(,)0F x y =的曲线.二、求轨迹方程的常用方法有:直接法,定义法,待定系数法,参数法,相关点法(代入法),交轨法等.三、求曲线的方程的步骤:①建立适当的坐标系,用(,)M x y 表示曲线上的任意一点的坐标;②写出适合条件P 的点M 的集合{|()}P M p M =;③用坐标表示条件P ,列出方程(,)0f x y =;④将方程(,)0f x y =化为最简形式;⑤说明以化简后的方程的解为坐标的点都在曲线上.四、直线系 具有某种共同属性的一类直线的集合,称为直线系.它的方程称直线系方程.(1)共点直线系:过已知点 P (x 0 , y 0 ) 的直线系方程 y − y 0 = k (x − x 0 ) (k 为参数) (2)平行直线系:斜率为 k 的直线系方程 y = kx + b (b 是参数)与已知直线 Ax + By + C = 0 平行的直线系方程 Ax + By + λ = 0 (λ 为参数)(3)垂直直线系:与已知直线 Ax + By + C = 0 垂直的直线系方程Bx − Ay + λ = 0(λ 为参数)(4)过直线 l 1 :A 1 x + B 1 y + C 1 = 0 与 l 2 :A 2 x + B 2 y + C 2 = 0 的交点的直线系方程:A 1 x + B 1 y + C 1 + λ(A 2 x + B 2 y + C 2 ) = 0(λ 为参数),此直线系不含直线 l 2例1: “ 以方程 f(x, y) = 0 的解为坐标的点都在曲线 C 上” 是 “ 曲线 C 的方程是 f(x,y) = 0 ” 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件下列方程各表示什么曲线?① 29y x -=② 0324222=++-+y x y x 0)9)(2(22=-+-+y x y x例2: 设圆 C : (x − 1)2 + y 2 = 1 ,过原点 O 作圆的任意弦,求所作弦的中点的轨迹方程.练习1:(直接法)已知线段AB 的长度为10,它的两个端点分别在x 轴,y 轴上滑动,求AB 的中点P 的轨迹方程。

高三数学复习(理):第8讲 曲线与方程

高三数学复习(理):第8讲 曲线与方程

第8讲 曲线与方程[学生用书P192]1.曲线与方程在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎨⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解,若此方程组无解,则两曲线无交点.3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程. 常用结论1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“f(x0,y0)=0”是“点P(x0,y0)在曲线f(x,y)=0上”的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y=x与x=y2表示同一曲线.()(5)y=kx与x=1k y表示同一直线.()答案:(1)√(2)×(3)×(4)×(5)×二、易错纠偏常见误区|K(1)混淆“轨迹”与“轨迹方程”出错;(2)忽视轨迹方程的“完备性”与“纯粹性”.1.(1)平面内与两定点A(2,2),B(0,0)距离的比值为2的点的轨迹是________.(2)设动圆M与y轴相切且与圆C:x2+y2-2x=0相外切,则动圆圆心M的轨迹方程为_________________________________________________.解析:(1)设动点坐标为(x,y),则(x-2)2+(y-2)2x2+y2=2,整理得3x2+3y2+4x+4y-8=0,所以满足条件的点的轨迹是圆.(2)若动圆在y轴右侧,则动圆圆心到定点C(1,0)与到定直线x=-1的距=1,所以其方程为y2=4x(x>0);若动圆在y轴离相等,其轨迹是抛物线,且p2左侧,则圆心轨迹是x轴负半轴,其方程为y=0(x<0).故动圆圆心M的轨迹方程为y2=4x(x>0)或y=0(x<0).答案:(1)圆(2)y2=4x(x>0)或y=0(x<0)2.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是________.解析:由角的平分线性质定理得|P A|=2|PB|,设P(x,y),则(x+2)2+y2=2(x-1)2+y2,整理得(x-2)2+y2=4(y≠0).答案:(x-2)2+y2=4(y≠0)3.已知⊙O的方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,则弦AB的中点P的轨迹方程为________.解析:根据垂径定理知:OP⊥PM,所以P点的轨迹是以OM为直径的圆且在⊙O内的部分.以OM为直径的圆的方程为(x-2)2+y2=4,它与⊙O的交点为(1,±3).结合图形可知所求轨迹方程为(x-2)2+y2=4(0≤x<1).答案:(x-2)2+y2=4(0≤x<1)[学生用书P192]直接法求轨迹方程(师生共研)已知△ABC的三个顶点分别为A(-1,0),B(2,3),C(1,22),定点P (1,1).(1)求△ABC 外接圆的标准方程;(2)若过定点P 的直线与△ABC 的外接圆交于E ,F 两点,求弦EF 中点的轨迹方程.【解】 (1)由题意得AC 的中点坐标为(0,2),AB 的中点坐标为⎝ ⎛⎭⎪⎫12,32,k AC =2,k AB =1,故AC 中垂线的斜率为-22,AB 中垂线的斜率为-1,则AC的中垂线的方程为y -2=-22x ,AB 的中垂线的方程为y -32=-⎝ ⎛⎭⎪⎫x -12.由⎩⎪⎨⎪⎧y -32=-⎝ ⎛⎭⎪⎫x -12,y -2=-22x , 得⎩⎪⎨⎪⎧x =2,y =0.所以△ABC 的外接圆圆心为(2,0),半径r =2+1=3,故△ABC 外接圆的标准方程为(x -2)2+y 2=9.(2)设弦EF 的中点为M (x ,y ),△ABC 外接圆的圆心为N ,则N (2,0), 由MN ⊥MP ,得NM →·PM →=0, 所以(x -2,y )·(x -1,y -1)=0, 整理得x 2+y 2-3x -y +2=0,所以弦EF 中点的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=12.(1)若曲线上的动点满足的条件是一些几何量的等量关系,则可用直接法,其一般步骤是:设点→列式→化简→检验.求动点的轨迹方程时要注意检验,即除去多余的点,补上遗漏的点.(2)若是只求轨迹方程,则把方程求出,把变量的限制条件附加上即可;若是求轨迹,则要说明轨迹是什么图形.已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,若过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解:(1)由|MP |=5|MQ |,得(x -26)2+(y -1)2=5(x -2)2+(y -1)2,化简得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25,轨迹是以(1,1)为圆心,5为半径的圆.(2)当直线l 的斜率不存在时,l :x =-2,此时所截得的线段长度为2×52-32=8,所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 圆心(1,1)到l 的距离d =|3k +2|k 2+1,由题意,得⎝ ⎛⎭⎪⎪⎫|3k +2|k 2+12+42=52,解得k =512, 所以直线l 的方程为512x -y +236=0, 即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.定义法求轨迹方程(师生共研)已知圆C 与两圆x 2+(y +4)2=1,x 2+(y -2)2=1外切,圆C 的圆心轨迹为L ,设L 上的点与点M (x ,y )的距离的最小值为m ,点F (0,1)与点M (x ,y )的距离为n .(1)求圆C 的圆心轨迹L 的方程;(2)求满足条件m =n 的点M 的轨迹Q 的方程.【解】 (1)两圆半径都为1,两圆圆心分别为C 1(0,-4),C 2(0,2),由题意得|CC 1|=|CC 2|,可知圆心C 的轨迹是线段C 1C 2的垂直平分线,C 1C 2的中点为(0,-1),直线C 1C 2的斜率不存在,所以圆C 的圆心轨迹L 的方程为y =-1.(2)因为m =n ,所以M (x ,y )到直线y =-1的距离与到点F (0,1)的距离相等,故点M 的轨迹Q 是以y =-1为准线,点F (0,1)为焦点,顶点在原点的抛物线,而p2=1,即p =2,所以,轨迹Q 的方程是x 2=4y .定义法求轨迹方程(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.1.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________________.解析:设A (x ,y ),由题意可知D ⎝ ⎛⎭⎪⎫x 2,y 2.又因为|CD |=3,所以⎝ ⎛⎭⎪⎫x 2-52+⎝ ⎛⎭⎪⎫y 22=9,即(x -10)2+y 2=36,由于A ,B ,C 三点不共线,所以点A 不能落在x 轴上,即y ≠0,所以点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)2.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫|AB |22=3,所以曲线M 的方程为x 24+y 23=1(y ≠0).相关点法(代入法)求轨迹方程(师生共研)如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.【解】 (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px (p >0),解得p =1. (2)由(1)知抛物线E :y 2=2x .设C ⎝ ⎛⎭⎪⎫y 212,y 1,D ⎝ ⎛⎭⎪⎫y 222,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝ ⎛⎭⎪⎫x -y 212,代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1, 所以l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎪⎨⎪⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎨⎧x =y 1·y 22,y =y 1+y 22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎪⎨⎪⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x 0,代入⎩⎨⎧x =y 1·y 22,y =y 1+y 22,可得M (x ,y )满足⎩⎪⎨⎪⎧x =-8x 0,y =-y 0x 0,可得⎩⎪⎨⎪⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1,考虑到x 0∈[2,22],知x ∈[-4,-22],所以动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].1.如图,已知P 是椭圆x 24+y 2=1上一点,PM ⊥x 轴于点M .若PN →=λNM →. (1)求N 点的轨迹方程;(2)当N 点的轨迹为圆时,求λ的值.解:(1)设点P ,点N 的坐标分别为P (x 1,y 1),N (x ,y ), 则M 的坐标为(x 1,0),且x =x 1, 所以PN →=(x -x 1,y -y 1)=(0,y -y 1), NM →=(x 1-x ,-y )=(0,-y ), 由PN →=λNM →得(0,y -y 1)=λ(0,-y ). 所以y -y 1=-λy ,即y 1=(1+λ)y .因为P (x 1,y 1)在椭圆x 24+y 2=1上, 则x 214+y 21=1,所以x 24+(1+λ)2y 2=1, 故x 24+(1+λ)2y 2=1为所求的N 点的轨迹方程. (2)要使点N 的轨迹为圆,则(1+λ)2=14,解得λ=-12或λ=-32.故当λ=-12或λ=-32时,N 点的轨迹是圆.2.已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝ ⎛⎭⎪⎫33,0的直线l 与曲线E 交于点A ,B ,且MB →=-2MA →.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),因为B (0,2),M ⎝ ⎛⎭⎪⎫33,0,故MB →=⎝ ⎛⎭⎪⎫-33,2,MA →=⎝ ⎛⎭⎪⎫x 0-33,y 0.由于MB →=-2MA →,所以⎝ ⎛⎭⎪⎫-33,2=-2⎝ ⎛⎭⎪⎫x 0-33,y 0.所以x 0=32,y 0=-1,即A ⎝ ⎛⎭⎪⎫32,-1.因为A ,B 都在曲线E 上,所以⎩⎨⎧a ·02+b ·22=1,a ·⎝ ⎛⎭⎪⎫322+b ·(-1)2=1,解得⎩⎨⎧a =1,b =14. 所以曲线E 的方程为x 2+y24=1.[学生用书P407(单独成册)][A 级 基础练]1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:选C.(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.2.(2020·新高考卷Ⅰ改编)已知曲线C :mx 2+ny 2=1.以下结论正确的个数是( )①若m >n >0,则C 是椭圆,其焦点在y 轴上;②若m =n >0,则C 是圆,其半径为n ;③若mn <0,则C 是双曲线,其渐近线方程为y =± -mn x ;④若m=0,n >0,则C 是两条直线.A .1B .2C .3D .4解析:选C.对于①,因为m >n >0,所以0<1m <1n ,方程mx 2+ny 2=1可变形为x 21m +y 21n =1,所以该方程表示焦点在y 轴上的椭圆,正确;对于②,因为m=n >0,所以方程mx 2+ny 2=1可变形为x 2+y 2=1n ,该方程表示半径为1n 的圆,错误;对于③,因为mn <0,所以该方程表示双曲线,令mx 2+ny 2=0⇒y =± -mn x ,正确;对于④,因为m =0,n >0,所以方程mx 2+ny 2=1变形为ny 2=1⇒y =±1n ,该方程表示两条直线,正确.3.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D.当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 项图象所示,故选D.4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x解析:选A.设P (x ,y ).因为M (-2,0),N (2,0),所以MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ),由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理得y 2=-8x .故选A.5.动点M 在圆x 2+y 2=25上移动,过点M 作x 轴的垂线段MD ,D 为垂足,则线段MD 中点的轨迹方程是( )A.4x 225+y 225=1 B .x 225+4y 225=1 C.4x 225-y 225=1D.x 225-4y 225=1解析:选B.如图,设线段MD 的中点为P (x ,y ),M (x 0,y 0),D (x 0,0),因为P 是MD 的中点,所以⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又M 在圆x 2+y 2=25上,所以x 20+y 20=25,即x 2+4y 2=25,x 225+4y 225=1,所以线段MD 的中点P 的轨迹方程是x 225+4y 225=1.故选B.6.设D 为椭圆y 25+x 2=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为________.解析:设点P 坐标为(x ,y ).因为D 为椭圆y 25+x 2=1上任意一点,且A ,B 为椭圆的焦点,所以|DA |+|DB |=2 5.又|PD |=|BD |,所以|P A |=|PD |+|DA |=|DA |+|DB |=25,所以x 2+(y +2)2=25,所以x 2+(y +2)2=20,所以点P 的轨迹方程为x 2+(y +2)2=20.答案:x 2+(y +2)2=207.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t ,得点C 的轨迹方程为y =2x -2.答案:y =2x -28.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析:如图,△ABC 与内切圆的切点分别为G ,E ,F .则|AG |=|AE |=8,|BF |=|BG |=2,|CE |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,轨迹方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)9.如图所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).解:(1)根据题意,知|PA |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点的轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r , 因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4.因此其轨迹方程为y 2=-8x .10.已知动圆P 恒过定点⎝ ⎛⎭⎪⎫14,0,且与直线x =-14相切.(1)求动圆P 圆心的轨迹M 的方程;(2)在正方形ABCD 中,AB 边在直线y =x +4上,另外C ,D 两点在轨迹M 上,求该正方形的面积.解:(1)由题意得动圆P 的圆心到点⎝ ⎛⎭⎪⎫14,0的距离与它到直线x =-14的距离相等,所以圆心P 的轨迹是以⎝ ⎛⎭⎪⎫14,0为焦点,直线x =-14为准线的抛物线,且p =12,所以动圆P 圆心的轨迹M 的方程为y 2=x . (2)由题意设CD 边所在直线方程为y =x +t . 联立⎩⎪⎨⎪⎧y =x +t ,y 2=x ,消去y ,整理得x 2+(2t -1)x +t 2=0.因为直线CD 和抛物线交于两点,所以Δ=(2t -1)2-4t 2=1-4t >0,解得t <14. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=1-2t ,x 1x 2=t 2. 所以|CD |=2[(x 1+x 2)2-4x 1x 2]=2[(1-2t )2-4t 2]=2(1-4t ).又直线AB 与直线CD 之间的距离为|AD |=|t -4|2,|AD |=|CD |,所以2(1-4t )=|t -4|2,解得t =-2或t =-6,经检验t =-2和t =-6都满足Δ>0. 所以正方形边长|AD |=32或|AD |=52, 所以正方形ABCD 的面积S =18或S =50.[B 级 综合练]11.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)解析:选A.设A (a ,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).12.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.13.(2021·四川成都石室中学模拟)已知两定点F 1(-1,0),F 2(1,0)和一动点P ,给出下列结论:①若|PF 1|+|PF 2|=2,则点P 的轨迹是椭圆; ②若|PF 1|-|PF 2|=1,则点P 的轨迹是双曲线; ③若|PF 1||PF 2|=λ(λ>0,且λ≠1),则点P 的轨迹是圆;④若|PF 1|·|PF 2|=a 2(a ≠0),则点P 的轨迹关于原点对称;⑤若直线PF 1与PF 2的斜率之积为m (m ≠0),则点P 的轨迹是椭圆(除长轴两端点).其中正确的是________.(填序号)解析:对于①,由于|PF 1|+|PF 2|=2=|F 1F 2|,所以点P 的轨迹是线段F 1F 2,故①不正确.对于②,由于|PF 1|-|PF 2|=1,故点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,故②不正确.对于③,设P (x ,y ),由题意得(x +1)2+y 2(x -1)2+y 2=λ,整理得(1-λ2)x 2+(1-λ2)y 2+(2+2λ2)x +1-λ2=0.因为λ>0,且λ≠1,所以x 2+y 2+(2+2λ2)1-λ2x +1-λ21-λ2=0,所以点P 的轨迹是圆,故③正确.对于④,设P (x ,y ),则|PF 1|·|PF 2|=(x +1)2+y 2·(x -1)2+y 2=a 2.又点P (x ,y )关于原点的对称点为P ′(-x ,-y ),因为(-x +1)2+(-y )2·(-x -1)2+(-y )2=(x +1)2+y 2·(x -1)2+y 2=a 2,所以点P ′(-x ,-y )也在曲线(x +1)2+y 2·(x -1)2+y 2=a 2上,即点P 的轨迹关于原点对称,故④正确.对于⑤,设P (x ,y ),则k PF 1=y x +1,k PF 2=y x -1,由题意得k PF 1·k PF 2=y x +1·yx -1=y 2x 2-1=m (m ≠0),整理得x 2-y 2m =1,此方程不一定表示椭圆,故⑤不正确. 综上,正确结论的序号是③④. 答案:③④14.如图,已知椭圆C :x 218+y 29=1的短轴端点分别为B 1,B 2,点M 是椭圆C 上的动点,且不与B 1,B 2重合,点N 满足NB 1⊥MB 1,NB 2⊥MB 2.(1)求动点N 的轨迹方程;(2)求四边形MB 2NB 1面积的最大值.解:(1)方法一:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② ①×②得y 2-9=x 20y 20-9x 2.又因为x 2018+y 209=1,所以y 2-9=18⎝ ⎛⎭⎪⎫1-y 209y 20-9x 2=-2x 2,整理得动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法二:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② 联立①②,解得⎩⎪⎨⎪⎧x =y 20-9x 0,y =-y 0.又x 2018+y 209=1,所以x =-x 02,故⎩⎪⎨⎪⎧x 0=-2x ,y 0=-y ,代入x 2018+y 209=1,得y 29+x 292=1. 所以动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法三:设直线MB 1:y =kx -3(k ≠0), 则直线NB 1:y =-1k x -3,①直线MB 1与椭圆C :x 218+y 29=1的交点M 的坐标为⎝ ⎛⎭⎪⎪⎫12k 2k 2+1,6k 2-32k 2+1. 则直线MB 2的斜率为k MB 2=6k 2-32k 2+1-312k 2k 2+1=-12k .所以直线NB 2:y =2kx +3.②由①②得点N 的轨迹方程为y 29+x 292=1(x ≠0).(2)由(1)方法三得直线NB 1:y =-1k x -3,① 直线NB 2:y =2kx +3,②联立①②解得x =-6k2k 2+1,即x N =-6k2k 2+1,故四边形MB 2NB 1的面积S =12|B 1B 2|(|x M |+|x N |)=3×⎝ ⎛⎭⎪⎫12|k |2k 2+1+6|k |2k 2+1=54|k |2k 2+1=542|k |+1|k |≤2722,当且仅当|k |=22时,S 取得最大值2722.[C 级 提升练]15.在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP →=λRQ →(λ>1),求证:NF →=λFQ →.解:(1)依题意知,直线A 1N 1的方程为y =m6(x +6),①直线A 2N 2的方程为y =-n6(x -6),②设M (x ,y )是直线A 1N 1与A 2N 2的交点,①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎨⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP →=λRQ →,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF →=λFQ →,即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),只需证x 1-3x 2-3=-x 1-2x 2-2,即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6tt 2+3=0成立,得证.。

曲线与方程

曲线与方程

曲线与方程
曲线与方程是数学中常见的概念,它们之间有很多共同的地方,
但也有一些不同之处。

曲线是一种描述函数行为的几何图形。

它由一个或多个参数确定,通常是空间中的一条曲线,表示为x和y的函数,或者以极坐标系的
形式表示为ρ和θ的函数。

曲线的形状受参数的取值范围、参数的
关系以及参数的交互作用的影响。

方程,又称为函数方程,以数学表达式的形式表示多个变量之间
的关系,它是一种描述系统性质运动和事物变化规律的工具。

方程通
常用一个或多个未知量来表示,通过求解方程组可找到这些未知量的值,从而得出有关个系统的描述。

虽然曲线和方程都是数学概念,但它们不是一回事。

方程是一种
广义的概念,它可用于描述任何函数,而曲线只是一种特殊的函数,
也就是说,曲线也可以用方程来表示。

通常情况下,曲线是二维空间
上的图形,而方程是一种关系表达式,可以用来解释性地描述曲线。

总之,曲线和方程之间是有联系的,但它们是两个不同的概念,
曲线是用来描述函数行为的几何图形,而方程则是用数学表达式来描
述多个变量之间的关系。

曲线与方程的概念

曲线与方程的概念

2015.12
一、曲线与方程 :
考查函数y 2x 2(1 x 2)(方程)的图像(曲线)
①曲线C上点的坐标( x0, y0 )都是方程 2 y 2 x (1 x 2)的解.
②以方程y 2 x 2(1 x 2)的解( x0, y0 )为坐标 的点都在曲线上;
如: ①方程y | x |的曲线是一、二象限的角平分线; ②以点(1, 0)、 ( 1, 0)、 (0, 1)、 (0, 1)为顶点的 四边形的边框的方程是 | x | | y | 1; ③四个象限的角平分线方程是 | x || y | .
2015.12
二、练习:(1)如果曲线C上的点满足方程 F(x,y)=0,则以下说法正确的是( D ) A.曲线C的方程是F(x,y)=0 B.方程F(x,y)=0的曲线是C C.坐标满足方程F(x,y)=0的点在曲线C上 D.坐标不满足方程F(x,y)=0的点不在曲线C上 (2)判断下列结论的正误,并说明理由。 ① 过A(3,0)且垂直于x轴的直线方程为x=3; √ ( ) ② 到x轴距离为2的点的轨迹方程为y = - 2; ( ╳ ) ③ 到两坐标轴距离积为1的点的轨迹方程为xy=1; (╳ ) ④ △ABC的顶点A(0,-3),B(1,0),C(-1,0), D为BC的中点,则中线AD的方程为x=0。 ( ╳ )
2015.12
7. “以方程F ( x , y ) 0的解为坐标的点 都在曲线C 上”是“曲线C的方程为 F ( x , y ) 0”的
必要非充分
条件。
例.证明以坐标Biblioteka 点为圆心,半径等于4的圆 的方程是x2+y2=16,并判断点M1(2,-2), M2(-3,4)是否在这个圆上。

曲线与方程

曲线与方程

曲线与方程在数学中,曲线和方程是紧密相关的概念。

曲线是定义在偏微分方程中的函数的曲繁的一个例子,而方程提供了一种用来描述曲线的有效方法。

曲线和方程之间的关系是复杂的,但它们之间的协作关系可以帮助我们了解和研究多种数学问题。

首先,我们需要了解曲线及其定义。

曲线可以定义为数学函数或图像,它可以以不同类型的函数和表示形式描述。

曲线的一般形式是一些列点,当连接起来时,就会形成曲线。

在数学中,曲线的特性受到多个函数参数的结合影响,而这些参数的变化也会影响曲线的形状。

接下来,我们讨论一下方程的概念。

方程为我们提供了一种表示数学函数的方法,它可以表示从简单的二次方程到更复杂的多项式方程。

其中,二元一次方程和二次方程是最常用的方程形式,它们在很多概念中展示出明显的特点,例如空间几何、椭圆几何等。

曲线和方程之间的关系是一个多层次的问题。

对于任意一个曲线,都可以找到一个能够反映它的数学方程,并且可以通过方程来描述曲线的特性。

与此同时,不同的曲线也可以用等效的方程表示,例如,椭圆可以用二次方程或双曲线方程表示。

此外,曲线的性质也受到变量的类型和特性的影响,特别是物理和数学上的变量。

例如,一个曲线的性质受到势函数的影响,因此,即使两个曲线有着相同的方程,在特定的情况下也会有所不同。

这就是曲线和方程之间复杂的关系,在研究时涉及到多种变量。

另外,曲线和方程之间的关系也可以应用到工程和计算机科学中。

例如,在计算机图形学中,可以用曲线和方程来描绘出不同的几何形状,并使用方程来检测视觉上有趣的特征。

在机械设计中,也可以使用曲线和方程来设计出更加完美的几何形状。

总之,曲线和方程之间的关系是复杂的,它们之间共同依赖于变量特性,并可以应用到许多不同的科学领域中。

因此,我们需要充分理解它们之间的复杂关系,从而了解和研究更多的数学问题。

曲线与方程

曲线与方程

曲线与方程知识要点一、曲线方程的定义:在直角坐标系中,如果某曲线C 上的点与一个二元方程(,)0f x y =的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫曲线方程;这条曲线叫方程的曲线。

若曲线C 的方程是(,)0f x y =,则点000(,)P x y 在曲线C 上的充要条件是:00(,)0f x y =理解:(1)“曲线上的点集”与“方程的解集”一一对应;(2)曲线可以看成一个点集C ,一个二元方程的解为坐标的点也组成一个点集F ,在定义中:条件(1)⇔C F ≤,条件(2)⇔F C ≤,综合(1)(2)即得C F =。

二、点与曲线的关系:(1点000(,)P x y 既在曲线C 1:(,)0f x y =上,又在曲线C 2:(,)0g x y =上的充要条件是点P 的坐标是方程组(,)0(,)0f x y g x y =⎧⎨=⎩的解。

(2)若点P 既在曲线C 1:(,)0f x y =上又在曲线C 2:(,)0g x y =上,则点P 与曲线3:(,)(,)0C f x y g x y λ+= (R λ∈)的关系是3P C ∈(曲线系方程)例、若曲线1C 的方程是()1,0f x y =,曲线2C 的方程是()2,0f x y =,若1C 与2C 有且仅有点12,P P 两个公共点,则曲线C :()()12,,0f x y f x y λ+=与曲线2C 的公共点( )A .只有一个点1P ;B .只有一个点2P ;C .只有1P ,2P 两个点;D .除了1P ,2P 两个点外,还有其它公共点。

三、坐标法(1)定义:借助坐标系研究几何图形的方法叫做坐标法。

(2)解析几何是用代数方法研究几何问题的一门数学学科。

平面解析几何研究的主要问题是:①根据已 知条件,求出表示平面曲线的方程;②通过方程,研究平面曲线的性质。

曲线与方程

曲线与方程

曲线与方程一、 基本知识体系:1、 曲线的方程和方程的曲线:在直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程ƒ(x,y)=0 的实数解建立了如下的关系:①曲线上的点的坐标都是这个方程的解;②以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线。

2、 求曲线的方程的一般步骤:建系,设点⇒转化条件,列出方程⇒化方程ƒ(x,y)=0为最简形式⇒证明以化简后的方程的解为坐标的点都是曲线上的点。

3、 两条曲线的交点:两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解,求曲线的交点的问题,就是求由它们的方程所组成的方程组的实数解的问题。

4、 求轨迹方程的常用方法:① 直接法:直接写出题目中的等量关系,从而化出所求的轨迹方程;这是最常用的一种求法。

② 定义法:运用解析几何中一些常用的定义(如圆、椭圆、双曲线、抛物线等),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。

③ 相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q (x ′,y ′)的运动而有规律地运动,且动点Q 的轨迹为给定或容易求出,则可先将x′,y′表示为x,y 的式子,再代入Q 的轨迹方程,然后整理得P 的轨迹方程,这种利用相关动点和所求动点的关系求出轨迹方程的方法叫做相关点法,也叫做代入法。

④ 参数法:有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y 之间建立起联系,然后从所求式子中消去参数,得出动点的轨迹方程。

⑤ 交轨法:求两动曲线的交点的轨迹方程时,可由方程直接消去参数,例如求两动直线的交点时常用此方法。

也可以引入参数来建立这些曲线的联系,然后消去参数得到轨迹方程,故交轨法也属于参数法。

二、 典例剖析: ★【题1】、如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得2.PM PN =试建立适当的坐标系,并求动点P 的轨迹方程.●[解析]:以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如图所示平面直角坐标系,则O 1(-2,0),O 2(2,0),由已知:PM=PN 2,即 PM2=2PN2,因为两圆的半径都为1,所以有:)1(212221-=-PO PO ,设P (x,y ) 则(x+2)2+y 2-1=2[(x-2)2+y 2-1], 即33)6(22=+-y x 综上所述,所求轨迹方程为:33)6(22=+-y x (或031222=+-+x y x )★【题2】、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅ =0,则动点P (x ,y )的轨迹方程为( ) (A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= ●解:设(,)P x y ,0,0x y >>,(2,0),(2,0)M N -,4MN =;则(2,),(2,)MP x y NP x y =+=-由0=⋅+⋅NP MN MP MN ,则224(2)4(2)0x y x +++-=,化简整理得x y 82-= 所以选B★【题3】、如图,直线l 1:)0(>=k kx y 与直线l 2:kx y -=之间的阴影区域(不含边界)记为W ,其左半部分记为W 1,右半部分记为W 2. (Ⅰ)分别用不等式组表示W 1和W 2;(Ⅱ)若区域W 中的动点P (x ,y )到l 1,l 2的距离之积等于d 2,求点P 的轨迹C 的方程;(Ⅲ)设不过原点O 的直线l 与(Ⅱ)中的曲线C 相交于M 1,M 2两点,且与l 1,l 2分别交于M 3,M 4两点. 求证△OM 1M 2的重心与△OM 3M 4的重心重合. ●解:(I )12{(,)|,0},{(,)|,0}.W x y kx y kx x W x y kx y kx x =<<-<=-<<>(II )直线1:0,l kx y -=直线2:0l kx y +=,由题意得:222.,11d k k =++即22222||.1k x y d k -=+由(,),P x y W ∈知2220,k x y ->所以22222,1k x y d k -=+即22222(1)0.k x y k d --+=所以动点P 的轨迹方程为22222(1)0.k x y k d --+=(III )①、当直线l 与x 轴垂直时,由对称性显然可知:1234,M M M M 的中点坐标都为(,0)a ,所以1234,OM M OM M ∆∆的重心坐标都为2(,0)3a,即它们的重心重合. ②、当直线l 与x 轴不垂直时,设直线l 的方程为(0).y mx n n =+≠由22222(1)0k x y k d y mx n⎧--+=⎨=+⎩,得222222()20.k m x mnx n k d ----=∵由直线l 与曲线C 有两个不同交点,可知220k m -≠,且2222222(2)4()()0.mn k m n k d d =+-⨯++>设12,M M 的坐标分别为1122(,),(,).x y x y 则121212222,()2.mnx x y y m x x n k m +=+=++- 设34,M M 的坐标分别为3344(,),(,).x y x y 由34,,y kx y kx n n x x y mx n y mx n k m k m ==-⎧⎧-==⎨⎨=+=+-+⎩⎩及得从而3412222.mnx x x x k m +==+-所以34341212()2()2,y y m x x n m x x n y y +=++=++=+所以343412120000,.3333x x y y x x y y ++++++++==于是12OM M ∆的重心与34OM M ∆的重心也重合.★【题4】、已知点 M (-2,0),N (2,0),动点 P 满足条件|PM |-|PN |=,记动点 P 的轨迹为 W ;(Ⅰ)求 W 的方程;(Ⅱ)若 A ,B 是W 上的不同两点,O 是坐标原点,求OA ·OB 的最小值.解:(Ⅰ)由|PM|-|PN|= P 的轨迹是以 ,M N 为焦点的双曲线的右支,实半轴长a =又半焦距 c=2,故虚半轴长b ==所以 W 的方程为22122x y -=,x ≥ (Ⅱ)设 A ,B 的坐标分别为11(,)x y , 22(,)x y ;①、当 AB ⊥x 轴时,12,x x =从而12,y y =-从而22121211 2.OA OB x x y y x y ⋅=+=-=②、当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,与W 的方程联立,消去y 得222(1)220.k x kmx m ----=故1222,1kmx x k+=- 21222,1m x x k +=-所以1212OA OB x x y y ⋅=+1212()()x x kx m kx m =+++221212(1)()k x x km x x m=++++2222222(1)(2)211k m k m m k k ++=++--22221k k +=-2421k =+-.又因为120x x >,所以210k ->,从而 2.OA OB ⋅>综上,当A B ⊥x 轴时, OA OB ⋅取得最小值2.三、巩固练习:★【题1】、直角坐标平面xoy 中,若定点)2,1(A 与动点),(y x P 满足4=•,则点P的轨迹方程是__解答:设点P 的坐标是(x,y),则由4=•OA OP 知04242=-+⇒=+y x y x ★【题2】、.以下几个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②设定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为【解答】双曲线的第一定义是:平面上的动点P 到两定点是A,B 之间的距离的差的绝对值为常数2a,且2||a AB <,那么P 点的轨迹为双曲线,故①错,由1()2OP OA OB =+,得P 为弦AB 的中点,故②错,设22520x x -+=的两根为12,x x 则12125,12x x x x +==可知两根互与为倒数,且均为正,故③对,221259x y -=的焦点坐标(34,0±),而22135x y +=的焦点坐标(34,0±),故④正确. ★【题3】设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,若1,2=且AB OQ PA BP ⋅=,则点P 的轨迹方程是(D ) A.)0,0(123322>>=+y x y x B.)0,0(123322>>=-y x y x C.)0,0(132322>>=-y x y xD.)0,0(132322>>=+y x y x ★【题4】如图, 直线L 1和L 2相交于点M ,L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.(供选择用)★【题5】、平面α的斜线 AB 交α于点 B ,过定点 A 的动直线l 与 AB 垂直,且交α于点 C ,则动 点 C 的轨迹是 ( A )(A ) 一条直线 (B )一个圆 (C )一个椭圆 (D )双曲线的一支★【题】、在平面直角坐标系xOy 中,有一个以(10,F 和(2F 为焦点、离心率为2的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A 、B ,且向量OM OA OB =+。

曲线与方程 课件(共35张PPT)

曲线与方程  课件(共35张PPT)
曲线与方程
最新考纲展示
1.了解方程的曲线与 曲线的方程的对应关系.
2.了解解析几何的基本 思想和利用坐标法研究几 何问题的基本方法.
3.能够根据所给条件选 择适当的方法求曲线的轨 迹方程.
一、曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C上的点与一个二元方
程f(x,y)=0的实数解建立如下的对应关系:
(2)证明:设 E(xE,yE),F(xF,yF),依题意,
y=k1x+3,
由y92+x2=1
⇒(k21+9)x2+6k1x=0,①
解得 x=0 或 x=-k216+k19. 所以 xE=-k216+k19,yE=k1-k216+k19+3=2k721-+39k21, ∴E-k126+k19,2k721-+39k21. ∵k1k2=-9,∴k2=-k91.用 k2=-k91替代①中的 k1, 同理可得 Fk126+k19,3kk2121- +297. 显然 E,F 关于原点对称,∴直接 EF 必过原点 O.
曲线的交点问题(师生共研)
例 2 (2015 年南京模拟)设 0<θ<π2,曲线 x2sin θ+y2cos θ=1 和 x2cos θ-y2sin θ=1 有 4 个不同的交点.
(1)求θ的取值范围; (2)证明:这4个点共圆,并求圆的半径的取值范围.
解 析 (1) 两 曲 线 的 交 点 坐 标 (x , y) 满 足 方 程 组 x2sin θ+y2cos θ=1, x2=sin θ+cos θ, x2cos θ-y2sin θ=1, 即y2=cos θ-sin θ.
D.以上答案都不对
(2)(2015年广州模拟)下列说法正确的是( )
A.△ABC中,已知A(1,1),B(4,1),C(2,3),则AB边上的高的方

高二数学曲线与方程知识点

高二数学曲线与方程知识点

高二数学曲线与方程知识点在高二数学课程中,曲线与方程是重要的知识点之一,涉及到的内容较为广泛。

本文将介绍高二数学曲线与方程的相关概念、性质以及解题技巧。

一、直线的方程直线是最简单的曲线,其方程由一次函数表示。

一次函数的一般形式为y = kx + b,其中k为直线的斜率,b为直线在y轴上的截距。

根据直线上的两点可以确定直线的斜率和截距,从而确定直线的方程。

二、二次曲线的方程1. 抛物线抛物线是二次曲线的一种特殊形式,其方程通常表示为y = ax^2 + bx + c。

其中,a决定了抛物线的开口方向和形状,正值为向上开口,负值为向下开口;b和c是常数,分别表示抛物线在x 轴和y轴上的截距。

2. 圆的方程圆是二次曲线的另一种形式,其方程通常表示为(x - h)^2 + (y - k)^2 = r^2。

其中,(h, k)表示圆心的坐标,r表示圆的半径。

通过圆心和半径的信息,我们可以确定圆的方程。

三、三角函数的图像三角函数是一类周期性的函数,包括正弦函数、余弦函数和正切函数等。

它们的图像具有一定的规律性。

以正弦函数为例,y = A·sin(Bx + C) + D,其中A、B、C、D为常数。

根据这些常数的取值,可以确定正弦函数图像上的特征,如振幅、周期、相位等。

四、指数函数与对数函数的图像指数函数和对数函数也是高二数学中重要的曲线类型。

指数函数的一般形式为y = a^x,其中a>0且a≠1,它的图像随着自变量x 的增大或减小而增大或减小。

对数函数是指数函数的反函数,其一般形式为y = log_a(x),其中a>0且a≠1,它的图像为直线y = log_a(x)。

五、曲线的平移、伸缩和翻转曲线的平移、伸缩和翻转是曲线变换的基本操作。

平移是指曲线沿x轴或y轴方向移动;伸缩是指曲线在x轴或y轴方向上的拉伸或压缩;翻转是指曲线关于x轴或y轴进行翻转。

通过对曲线进行这些变换,可以得到新的曲线方程。

第9讲曲线与方程

第9讲曲线与方程

考向一
直接法求轨迹方程
[审题视点] 由已知条件找出等量关系,直接写出P点坐标满 足的等式化简即得轨迹方程.
【反思与悟】 直接法求曲线方程的一般步骤: (1)建立恰当的坐标系,设动点坐标(x,y); (2)列出几何等量关系式; (3)用坐标条件变为方程f(x,y)=0; (4)变方程为最简方程; (5)检验,就是要检验点轨迹的纯粹性与完备性.
考向二 定义法求轨迹方程 【例2】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2 -6x-91=0内切,求动圆圆心M的轨迹方程,并说明它是 什么曲线. [审题视点] 由曲线定义出发建立关系式,从而求出轨迹方程.
解 如图所示,设动圆圆心为M(x,y),半径为R,设已知 圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2 +y2=4,(x-3)2+y2=100,
专题九 解析几何
第9讲 曲线与方程
1.考查方程的曲线与曲线的方程的对应关系. 2.利用直接法或定义法求轨迹方程. 3.结合平面向量知识能确定动点轨迹,并会研究轨迹的有 关性质. 【复习指导】 正确理解曲线与方程的概念,会用解析几何的基本思想和 坐标法研究几何问题,用方程的观点实现几何问题的代数 化解决,并能根据所给条件选择适当的方法求曲线的轨迹 方程,常用方法有:直接法、定义法、待定系数法、相关 点法、参数法等。
(3)定义法:先根据条件得出动点的轨迹是某种已知曲线, 再由曲线的定义直接写出动点的轨迹方程; (4)代入转移法:动点P(x,y)依赖于另一动点Q(x0,y0)的 变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用
x,y的代数式表示x0,y0,再将x0,y0代入已知曲线得要 求的轨迹方程; (5)参数法:当动点P(x,y)坐标之间的关系不易直接找到, 也没有相关动点可用时,可考虑将x,y均用一中间变量(参 数)表示,得参数方程,再消去参数得普通方程.

曲线与方程知识点总结

曲线与方程知识点总结

曲线与方程知识点总结一、直线的方程1. 斜截式方程直线的斜率k为非零常数,截距b为任意实数,直线方程可表示为:y = kx + b2. 截距式方程过点A(a,b)且与x轴、y轴交点分别为A,B的直线方程为:\frac{x}{a} + \frac{y}{b} = 13. 两点式方程经过两点A(x1,y1)和B(x2,y2)的直线方程为:\frac{y-y1}{y2-y1} = \frac{x-x1}{x2-x1}4. 四个参数式方程经过点A(x1,y1)且斜率为k的直线方程为:(y-y1) = k(x-x1)5. 我国教科书通常在中学阶段只讲解前三种方程的形式,但四个参数式方程在高等数学的微积分、解析几何等课程中非常常见。

6. 平面直角直线方程通常可写为y = kx + b,其中k为直线的斜率,b为截距。

二、曲线的方程1. 平面曲线方程:对于任一平面曲线,通常可以写成y=f(x)的形式。

其中,f(x)是x的函数,描述了y与x 的关系。

2. 参数式方程:有时,平面曲线不方便用y=f(x)的形式描述,而可以使用参数式方程。

参数式方程是一对函数x(t),y(t)关于参数t的表达式。

3. 极坐标方程:在极坐标系中,平面曲线可以写成r=f(θ)的形式。

其中,r是极径,θ是极角。

三、曲线的性质1. 曲线的对称性:关于x轴对称、y轴对称、原点对称、关于直线y=x对称等。

2. 曲线的周期性:函数f(x)具有周期T的性质,如果满足f(x+T) = f(x)。

曲线在点(x,f(x))和点(x+T,f(x))上有相同的函数值。

3. 曲线的单调性:函数f(x)在区间I上单调递增或单调递减。

4. 曲线的凹凸性:函数f(x)在区间I上凹函数或凸函数。

5. 曲线的渐近线:直线y=kx+b与曲线f(x)有以下情形:a) f(x)在正无穷大的地方与y=kx+b趋近同一数值。

b) f(x)在正无穷大的地方与y=kx+b趋近无穷大。

c) f(x)在正无穷大的地方与y=kx+b有交点但同时趋于正无穷大和负无穷大。

曲线和方程-曲线与方程有什么关系

曲线和方程-曲线与方程有什么关系

曲线和方程|曲线与方程有什么关系教学目标(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.(5)进一步理解数形结合的思想方法.教学建议教材分析(1)知识结构曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.(2)重点、难点分析①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.②本节的难点是曲线方程的概念和求曲线方程的方法.教法建议(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.(4)从集合与对应的观点可以看得更清楚:设表示曲线上适合某种条件的点的集合;表示二元方程的解对应的点的坐标的集合.可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的,的代数方程由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.教学设计示例课题:求曲线的方程(第一课时)教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培养学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程():【引入】1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.教师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.【问题】如何根据已知条件,求出曲线的方程.【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.【概括总结】通过学生讨论,师生共同总结:分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.根据条件,代入坐标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为【小结】师生共同总结:(1)解析几何研究研究问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?【作业】课本第72页练习1,2,3;【板书设计】§7.6 求曲线的方程坐标法:解析几何:基本问题:(1)(2)例1:例2:求曲线方程的步骤:例3练习:小结:作业:。

2.1.1曲线与方程

2.1.1曲线与方程
(3)第二、四象限两轴夹角平分线上的点的坐标都满足 x+y =0,反之,以方程 x+y=0 的解为坐标的点都在第二、四 象限两轴夹角的平分线上,因此第二、 四象限两轴夹角平分 线上的点的轨迹方程是 x+y=0.
研一研· 问题探究、课堂更高效
2.1.1
探究点二 由方程判断曲线 例 2 下列方程表示如图所示的直线,对吗? 为什么?不对请改正. (1) x- y=0;(2)x2-y2=0; (3)|x|-y=0.
2.1.1
曲线与方程
1.对于曲线和方程的概念要了解. 2.理解曲线上的点与方程的解之间的一一对应关系,领会 “曲线的方程”与“方程的曲线”的涵义.
通过直线与方程、 圆与方程理解曲线与方程的关系; 利用数形结合,直观体会曲线上点的坐标与方程解的关 系.
研一研· 问题探究、课堂更高效
2.1.1
探究点一 曲线与方程的概念 引言:在必修 2 的直线与方程、圆与方程中,讨论了曲线 与方程的关系,同学们有了一定的感性认识.这一节的主 要目的是对曲线与方程的关系有一个更加系统、完整的认 识. 问题 1 直线 y= x 上任一点 M 到两坐标轴距离相等吗?
解 (1)中曲线上的点不全是方程 x- y=0 的解, 如点 (-1,-1)等,即不符合“曲线上的点的坐标都是方程 的解”这一结论; (2)中,尽管“曲线上的坐标都是方程的解”,但以方程 x2-y2=0 的解为坐标的点不全在曲线上,如点(2,-2) 等,即不符合“以方程的解为坐标的点都在曲线上”这 一结论;
研一研· 问题探究、课堂更高效
2.1.1
跟踪训练 2 方程 x2+xy=x 的曲线是 A.一个点 C.一条直线 B.一个点和一条直线 D.两条直线
( D )
解析 ∵方程可化为 x(x+y)=x,即 x(x+y-1)=0, ∴x=0 或 x+y-1=0,因此方程的曲线是两条直线

曲线与方程

曲线与方程

曲线与方程【要点梳理】要点一:圆锥曲线的统一定义当点P 到定点(,0)F c 的距离和它到定直线2:a l x c =的距离的比是常数(0)cc a a >>时,这个点的轨迹是双曲线,方程为22221x y a b-=(其中222b c a =-),这个常数就是双曲线的离心率.这样,圆锥曲线可以统一定义为:平面内到一个定点F 和到一条定直线l (F 不在l 上) 的距离的比等于常数e 的点的轨迹.当01e <<时,它表示椭圆; 当1e >时,它表示双曲线; 当1e =时,它表示抛物线. 其中e 是圆锥曲线的离心率,定点F 是圆锥曲线的焦点,定直线l 是圆锥曲线的准线.根据图形的对称性可知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或双曲线,与焦点12(,0),(,0)F c F c -对应的准线方分别为22,a a x x c c=-=. 要点二:曲线与方程概念的理解一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程,0f x y =()的实数解建立了如下的关系:(1)曲线C 上所有点的坐标都是方程,0f x y =()的解; (2)以方程,0f x y =()的解为坐标的点都在曲线C 上.那么,方程,0f x y =()叫做曲线C 的方程;曲线C 叫做方程,0f x y =()的曲线. 要点诠释:(1)如果曲线C 的方程为,0f x y =(),那么点00(,)P x y 在曲线C 上的充要条件为00,0f x y =(); (2)曲线C 可看成是平面上满足一定条件的点的集合,而,0f x y =()正是这一定条件的解析表示.因此我们可以用集合的符号表示曲线C :{(,)|,0}C x y f x y ==(). (3)曲线C 也称为满足条件,0f x y =()的点的轨迹.定义中的条件(1)叫轨迹纯粹性,即不满足方程,0f x y =()的解的点不在曲线C 上;条件(2)叫做轨迹的完备性,即符合条件的所有点都在曲线上.“纯粹性”和“完备性”是针对曲线C 是否为满足方程,0f x y =()的点的轨迹而言. (4)区别轨迹和轨迹方程两个不同的概念,轨迹是“形”,轨迹方程是“数”.要点三:关于坐标法与解析几何1.解析几何是在坐标系的基础上,用代数的方法研究几何问题的一门数学学科.2.解析几何的两个基本问题:①根据已知条件,求出表示平面曲线的方程; ②通过方程,研究平面曲线的性质.3.根据曲线与方程的关系可知,曲线与方程是同一关系下的两种不同的表现形式.曲线的性质完全反映在它的方程上,而方程的的性质也完全反映在它的曲线上,这正好说明了几何问题与代数问题可以互相转化,这就是解析几何的基本思想方法,也就是数形结合,形与数达到了完美的统一.我们把这种借助坐标系研究几何图形的方法叫做坐标法,又称解析法. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x ,y )所满足的方程(,)0f x y =表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.要点四:求曲线方程①建系:建立适当的直角坐标系; ②设点:设动点坐标P(x,y);③列式:写出动点P 满足的几何条件,把条件坐标化,得方程F(x, y)=0;④化简:化方程F(x, y)=0为最简形式,特殊情况,予以补充说明,删去增加的或者补上丢失的解; ⑤证明:证明以化简后的方程的解为坐标的点都在曲线是。

2.6.1曲线与方程

2.6.1曲线与方程
2 2
所以该点在这个圆上 。
例2: 已知一座圆拱桥的跨度是36m,圆拱高为6m, 以圆拱所对的弦AB所在的直线为x轴,AB的垂直 平分线为y轴,建立平面直角坐标系xOy,求圆拱的方程.
分层训练:
必做题:P55 练习3,4,5. P56 习题 1、2 选做题: 线的性质,我们建立了 直线的方程,圆的方程及圆锥曲线的方程, 那么,对于一般的曲线 曲线的含义是什么?如何建立曲线的方程?
§ . 6 曲线与方程 2
§ . 6. 1 曲线与方程 2
学习目标:
(1)了解曲线方程的概念. (2)能根据曲线方程的概念解决一些简单问题。
自学指导:
两层含义:
1曲线上点的坐标都是这 个方程的解;
2以这个方程的解为坐标的点都在曲线上.
曲线方程是 f x, y 0也可以说成曲线f x, y 0 .
例1 : 判断点(2, 3 ),3,)是否 2 ( 1 在圆x y 16上.
2 2
解 : 因为2 2 (2 3 ) 2 4 12 16, 即点(2,2 3 )的坐标 是圆的方程x y 16的解,
1.命题“以C(a,b)为圆心,r为半径的圆
的方程是 ( x a)2 ( y b)2 r 2 ” ,包含了哪两 层含义? 2.曲线方程的概念中包含哪两层含义? 3.如何判定点是否在曲线上?
自学检测:P55 练习 1,2
“以C(a,b)为圆心,r为半径的圆 的方程 是 ( x a)2 ( y b)2 r 2 ” , 这句话的含义是:
1、圆C上的点的坐标(x,y)都是方程 ( x a)2 ( y b)2 r 2 的解,
( x a)2 ( y b)2 r 2 的解为坐标 2、且以方程

曲线与方程

曲线与方程
2
课堂小结
求曲线的方程的一般步骤: 1.建立适当的坐标系,用有序实数对(x,y)表示 曲线上任意一点M的坐标;(建系设点)
2.写出适合条件p的点M的集合;(找等量关系)
3.用坐标表示条件p(M),列出方程f(x,y)=0; (列方程) 4.化简方程f(x,y)=0;
5.证明以化简后的方程的解为坐标的点都是曲线上的点。
课堂新授
1.曲线的方程和方程的曲线的概念
y
X-y=0
M(x ,y )
0 0
y
y ax 2 (a 0)
M(x ,y )
0 0
o
x
o
x
课堂新授
曲线的方程与方程的曲线: 1.曲线上的点的坐标都是这个方程的解(在合) 2.以这个方程的解为坐标的点都是曲线
上的点。(合在) 这个方程叫做这个曲线的方程
这个曲线叫做这个方程的曲线
课堂新授 例1.设A、B两点的坐标是A(-1,-1)、 B (3,ຫໍສະໝຸດ ),求线段AB的垂直平分线的方程。
y
解:设M(x,y)是线段AB的垂直平分线 上任意一点,也就是点M属于集合 P={M||MA|=|MB|},
M
o
A (-1,-1)
B(3,7)
x
即: (x 1) 2 ( y 1) 2 ( x 3) 2 ( y 7) 2
将上式两边平方,整理得 x+2y-7=0 (证明略)
课堂练习1
1.到F(2,0)和Y轴的距离相等的动点的
轨迹方程是:__________________ 平方,化简得: 简解:设动点为(x,y),则由
x 2
2
y 2 | x |
平方,化简得: y2=4(x-1)

2.1.1曲线与方程(张用)

2.1.1曲线与方程(张用)

因而满足方程
x0 2 y0 2 r
,即x2+y2=r2.
这就是说(x0, y0)是此方程的一个解;
如果点(x0, y0)不在⊙(O, r)上,则必有,
x0 y0 r
2 2
即有x2+y2≠r2. (x0, y0)就不会是方程 x2+y2=r2的解。
(2)如果(x0, y0)是方程x2+y2=r2的一个解, 则可以推得, x0 2 y0 2 r
不是 (2)曲线C是顶点在原点的抛物线其方程为x+ y =0;
(3)曲线C是Ⅰ, Ⅱ象限内到x轴,y轴的距离乘积为1 的点集其方程为y= 是
y
1
y
1
y
1
-1
0
x 1
-2 -1 0 1 2
x
-2 -1 0 1 2
x



提问:说明过A(2,0)平行于y轴的直线与方程︱x︱=2的关系
①、直线上的点的坐标都满足方程︱x︱=2
的距离的积为常数k(k>0)的点的轨迹方程.
课堂小结
“曲线方程”的概念 :
(1)曲线上的点的坐标都是这个方程的解 (2)以这个方程的解为坐标的点都是曲线 上的点 那么,这个方程叫做曲线方程;
课堂练习
1.下面各对方程中表示的曲线相同的 一对是( C ). (A) y2=x与y=x
(B)y=x与 y / x=1
果点 M(x0,y0)是这条直线上的任一点,它
到坐标轴的距离相等,
即 x0 = y0,那么,
点 M( x0,y0 )
M(x0,y0)
是方程 x - y=0的解.
(纯粹性)
M(x0,y0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)证明
依题意,直线 m 为线段 AM 的垂直平分线,
∴NA=NM. ∴NC+NA=NC+NM=CM=2a>2,
∴N 的轨迹是以 C、A 为焦点,长轴长为 2a,焦距为 2 的 椭圆.
当 a=2 时,长轴长为 2a=4,焦距为 2c=2, ∴b2=a2-c2=3. x2 y2 ∴椭圆的标准方程为 + =1. 4 3 x2 y2 (2)解 设椭圆的标准方程为 2+ 2=1 (a>b>0). a b
∴点 Q 的纵坐标的取值范围是[ 3,2].
思考
如图,点 A 为圆形纸片内不同于圆心 C 的 定点,动点 M 在圆周上,将纸片折起,使 点 M 与点 A 重合,设折痕 m 交线段 CM 于 点 N.现将圆形纸片放在平面直角坐标系 xOy 中,设圆 C:(x+1)2+y2=4a2 (a>1),A(1,0), 记点 N 的轨迹为曲线 E. 若将题中“a> 即 ≤ 2≤ .∴ ≤a2≤4. 4 a 4 3 4 3 2 ∴ ≤b +1≤4,即 ≤b≤ 3, 3 3 4b 4 ∵y= 2 = ≤2,当且仅当 b=1 时取等号. 1 b +1 b+b
1 e∈ 2,
1 2 3 3 ,∴ ≤e ≤ , 4 4 2
3 又当 b= 3时,y= 3;当 b= 时,y= 3, 3 ∴ 3≤y≤2.
第八节
曲线与方程
目标引领
(1)理解坐标法研究解析几何问题的基本思想,会根据条件求曲 线的轨迹方程; (2)掌握常用的几种求轨迹方程的方法.
独立自学
1.曲线与方程 一般地,在平面直角坐标系中,如果某曲线 C 上的点与一个 二元方程 F(x,y)=0 的实数解建立了如下关系: 1 ________________. (1)曲线上点的坐标都是□
题型4:参数法求轨迹方程
(14 分)已知抛物线 y2=4px (p>0),O 为顶点,A、B 为抛物线 上的两动点,且满足 OA⊥OB,如果 OM⊥AB 于 M 点,求 点 M 的轨迹方程.
审题视角
(1)点 M 的运动是由 A 点的运动引起的, 而 A 的变动又和 OA 的斜率有关.(2)若 OA 的斜率确定,A 的坐标确定,M 的坐 标也确定,所以可选 OA 的斜率为参数.
可知 M 点的坐标同时满足①②, 由①及②消去 k 得 4px=x2+y2, 即(x-2p)2+y2=4p2 (x≠0), [12 分]
当 k=± 1 时,容易验证 M 点的坐标仍适合上述方程. 故点 M 的轨迹方程为(x-2p)2+y2=4p2(x≠0),它表示以点 (2p,0)为圆心,以 2p 为半径的圆. [14 分]
变式训练 1
(2011· 课标全国)在平面直角坐标系 xOy 中,已知点 A(0, → → → -1),B 点在直线 y=-3 上,M 点满足MB∥OA,MA· → → → AB=MB· BA,M 点的轨迹为曲线 C. (1)求 C 的方程; (2)P 为 C 上的动点,l 为 C 在 P 点处的切线,求 O 点到 l 距 离的最小值. 解 (1)设 M(x,y),由已知得 B(x,-3).又 A(0,-1), → → → 所以MA=(-x,-1-y),MB=(0,-3-y),AB=(x,-2). → → → 再由题意可知(MA+MB)· AB=0,
即 x0x-2y+2y0-x2 0=0.
|2y0-x2 1 2 0| 所以 O 点到 l 的距离 d= 2 .又 y0= x0-2, 4 x0+4 1 2 x +4 4 2 0 1 2 所以 d= 2 = x0+4+ 2 ≥2. 2 x + 4 x0+4 0
当 x0=0 时取等号,所以 O 点到 l 距离的最小值为 2.
2→ → 别在x轴、y轴上滑动,P是AB上一点,且 AP = 2 PB ,求点P的轨 迹C的方程. 2→ → 解析:设A(x0,0),B(0,y0),P(x,y),AP= 2 PB, → → 又AP=(x-x0,y),PB=(-x,y0-y), 2 2 所以x-x0=- 2 x,y= 2 (y0-y),
点评:“相关点法”的基本步骤: (1)设点:设被动点坐标为(x,y),主动点坐标为(x1,y1); (2)求关系式:求出两个动点坐标之间的关系式
x1=fx,y, y1=gx,y;
(3)代换:将上述关系式代入已知曲线方程,便可得到所求动 点的轨迹方程.
通关训练3
已知长为1+ 2 的线段AB的两个端点A、B分
规范解答 解 设点 M 的坐标为(x,y),直线 OA 的 [1 分] 方程为 y=kx,
1 显然 k≠0,则直线 OB 的方程为 y=-kx.[2 分] y=kx, 由 2 y =4px, 4p 4p 解得 A 点的坐标为 k2 , k ,
类似地可得 B 点的坐标为(4pk2,-4pk), [6 分]
题型3:相关点法求轨迹方程
【例3】 设F(1,0),M点在x轴上,P点在y轴上,且 → MN =
→ → → 2MP,PM⊥PF,当点P在y轴上运动时,求点N的轨迹方程. 思维启迪:点N的运动依赖于点P,可以通过P、M、N三点坐 标关系探求点N的轨迹方程.
解析:设M(x0,0),P(0,y0),N(x,y), → → → → ∵PM⊥PF,PM=(x0,-y0),PF=(1,-y0),
题型2:定义法求轨迹方程
如图,点 A 为圆形纸片内不同于圆心 C 的 定点,动点 M 在圆周上,将纸片折起,使 点 M 与点 A 重合,设折痕 m 交线段 CM 于 点 N.现将圆形纸片放在平面直角坐标系 xOy 中,设圆 C:(x+1)2+y2=4a2 (a>1),A(1,0), 记点 N 的轨迹为曲线 E. (1)证明曲线 E 是椭圆,并写出当 a=2 时该椭圆的标准方程; (2)设直线 l 过点 C 和椭圆 E 的上顶点 B,点 A 关于直线 l 的 1 3 对称点为点 Q,若椭圆 E 的离心率 e∈ , ,求点 Q 的纵 2 2 坐标的取值范围.
3.两曲线的交点 (1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个 5 ________ ,即两个曲线方程组成的方程组的实数 曲线方程的 □ 6 解; 反过来, 方程组有几组解, 两条曲线就有几个交点, 方程组□ ______,两条曲线就没有交点.
7 ______条件是它们的方程所组成的 (2)两条曲线有交点的 □ 方程组有实数解.可见,求曲线的交点问题,就是求由它们的方 程所组成的方程组的实数解问题.
由(1)知:a2-b2=1.又 C(-1,0),B(0,b), x y ∴直线 l 的方程为 +b=1. -1
即 bx-y+b=0. 设 Q(x,y),因为点 Q 与点 A(1,0)关于直线 l 对称, y · b=-1, x - 1 ∴ x+1 y b· - +b=0. 2 2 4b 消去 x 得 y= 2 . b +1
得x0= 1+
2 x,y0=(1+ 2)y. 2
2 2 因为|AB|=1+ 2,即x2 0+y0=(1+ 2) ,
所以 1+
2 2 2 2 x + [(1 + 2) y ] = (1 + 2) , 2
x2 2 化简得 +y =1. 2 x2 2 ∴点P的轨迹方程为 +y =1. 2
引导探究
直接法求轨迹方程
→ → → 例 1 已知 M(4,0),N(1,0),若动点 P 满足MN· MP=6|NP|. (1)求动点 P 的轨迹 C 的方程; (2)设 Q 是曲线 C 上任意一点,求 Q 到直线 l:x+2y- 12=0 距离的最小值.
设动点坐标,列式化简即可.
解 (1)设动点 P(x,y), → → → 则MP=(x-4,y),MN=(-3,0),PN=(1-x,-y),
2 ∴(x0,-y0)· (1,-y0)=0,∴x0+y0 =0.
→ → 由MN=2MP得(x-x0,y)=2(-x0,y0),
x-x0=-2x0, ∴ y=2y0,
x =-x, 0 即 1 y = y. 0 2
y2 ∴-x+ =0,即y2=4x. 4 故所求的点N的轨迹方程是y2=4x.
即(-x,-4-2y)· (x,-2)=0. 1 2 所以曲线 C 的方程为 y= x -2. 4
1 2 (2)设 P(x0,y0)为曲线 C:y= x -2 上一点. 4 1 1 因为 y′= x,所以 l 的斜率为 x0. 2 2 1 因此直线 l 的方程为 y-y0= x0(x-x0), 2
2 __________.那么这个 (2)以这个方程的解为坐标的点都是 □
曲线的方程 3 ____________ 4 ______________. 方程叫做□ ,这条曲线叫做□
2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P(x,y). (3)列式——列出动点P所满足的关系式. (4)代换——依条件式的特点,选用距离公式、斜率公式等将 其转化为x,y的方程式,并化简. (5)证明——证明所求方程即为符合条件的动点轨迹方程.
从而知当 k≠± 1
1 4pk+k 1 时,kAB= . = 1 1 4pk2-k2 k-k
故得直线 AB 的方程为 y+4pk= (x-4pk2), 1 k-k
1 即k-ky+4p=x,
1


[9 分]
[10 分]
直线 OM 的方程为
1 y=-k-kx.
由已知得-3(x-4)=6 1-x2+-y2, 2 2 x y 化简得 3x2+4y2=12,即 + =1. 4 3 x2 y2 ∴点 P 的轨迹方程是椭圆 C: + =1. 4 3 (2)由几何性质意义知,椭圆 C 与平行于 l 的切线 l′的距离
等于 Q 与 l 的距离的最小值.设 l′:x+2y+D=0.将其代入 椭圆方程消去 x,化简得:16y2+12Dy+3(D2-4)=0. ∴Δ=144D2-192(D2-4)=0⇒D=± 4, |12± 4| l′和 l 的距离的最小值为 . 5 8 5 ∴点 Q 与 l 距离的最小值为 . 5
相关文档
最新文档