材料力学第一章
材料力学第一章材料力学的基本概念
刚度:构件抵抗弹性变形的能力
不因发生过大的弹性变形而失效
稳定性:构件保持原有平衡形式的能力
不因发生因平衡形式的突然转变而失效
巨型水泥罐砸扁民工棚
2月26日下午3时许,在 深圳市福田区梅林凯丰花 园的杨先生家中,其天花 板水泥板突然坍塌,坍塌 面积约2.5平方米,导致 杨先生的父亲头部被砸伤, 入院治疗。管理处方面表 示,小区房屋楼体质量没 有问题,业主可以申请相 关部门鉴定。
三、材料力学的研究对象
变形固体:在外力作用下会产生变形(形状 和位移改变)的物体。
变形
弹性变形 塑形变形
可恢复 不可恢复
四、材料力学基本假设
1. 连续性假设—材料连续无孔隙 2. 均匀性假设—材料各处性质相同 3. 各向同性假设—任意方向材料性质相同 4. 小变形假设—变形量远小于构件尺寸,可忽略变形
z
p =γz
单位 N/m2
集中荷载
F A F
单位
A
N或 kN
六、内力 截面法 应力
由外力的作用引起的内力的改变量称为称为 附加内力。 计算内力的方法:截面法
F1 F2
F3
F4
F1
F2
F3
F4
假想截面
分布内力
应力
应力: 内力在截面上的密集程度
工程构件,大多数情形下,内力并非均 匀分布,通常“ 破坏”或“失效”往往从内 力集度最大处开始,因此,有必要区别并定 义应力概念。
球墨铸铁的显微组织
五、外力及其分类
概念: 荷载:作用于构建上的外力称为荷载
体荷载:物体内所有质点都要受到力的作用
荷载
面荷载
分布荷载:沿某一面积或长度连续作用在
(材料力学)第一章轴向拉伸和压缩
24
根据Saint-Venant原理:
25
7. 应力集中(Stress Concentration):
由于截面尺寸急剧变化而引起的局部应力增大的现象。
·应力集中因数
K max m
26
不同性质的材料对应力集中的敏感程度不同
1.脆性材料
σmax 达到强度极限,此位置开裂,所 以脆性材料构件对应力集中很敏感。
轴力图如右图 N
2P + –
3P
BC
PB
PC
N3
C
PC N4
5P
+
P
D PD D PD D PD
x
11
[例2] 图示杆长为L,受轴线方向均布力 q 作用,方向如图,试画
出杆的轴力图。 q
解:x 坐标向右为正,坐标原点在 自由端。
L
取左侧x 段为对象,内力N(x)为:
O x
N – qL
N(x)maxqL
2.塑性材料
应力集中对塑性材料在静载作用下的强度影响不 大,因为σmax 达到屈服极限,应力不再增加,未达 到屈服极限区域可继续承担加大的载荷,应力分布 趋于平均。
在静载荷情况下,不需考虑应力集中的影响;但 在交变应力情况下,必须考虑应力集中对塑性材料 的影响。
况、安全重要性、计算模型等等
16
依强度准则可进行三种强度计算:
①校核强度:
m ax
②设计截面尺寸:
Amin
Nmax
[ ]
③许可载荷:
N ma xA ;
Pf(Ni)
17
[例4] 已知三铰屋架如图,承受竖向均布载荷,载荷的分布 集度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用
材料力学1-第一章
3850mm2
3)计算最大应力 σmax= FN /Amin
=(-800)×1000/3850
=-208MPa
§1-4 轴向拉伸和压缩时的变形
一、纵向变形(沿轴线方向) 基本情况下(等直杆,两端受轴向力):
(1)杆的纵向总变形量
l l' -l (反映绝对变形量)
工程中常用材料制成的拉(压)杆,当应力不超过材料的某一特征值(“比
泊松比,可由试验测定:
泊松比
- -
E
弹性模量E和泊松比μ是材料的两个弹性常数, 可由实验测定。
表1-1 弹性模量和横向变形系数的约值
材料名称 碳钢
弹性模量E ( Gpa )
196~216
横向变形系数μ 0.24~0.28
合金钢
190~220
0.24~0.33
位置,为强度计算提供依据。 FN
+ x
试作此杆的轴力图。
40KN
55KN 25KN
A 600
B
C
300
500
DE 400
20KN
等直杆的受力示意图
解:
1 F1=40KN 2 F2=55KN F3=25KN
FR
A
B
C
3
4
D
F4=20KN
E
1
2
3
4
先需求出A点的约束力。 FR=10 kN
FR
A
1 FN1
0
两个塑性指标:
断后伸长率 l1-l0 10% 0 断面收缩率 A0-A110% 0
l0
A0
5%为塑性材料 5%为脆性材料
低碳钢的 2— 03% 060% 为塑性材料
第1章材料力学概述111
以上两方面的结合使材料力学成为工程设计的重要 组成部分,即设计出杆状构件或零部件的合理形状和尺
寸,以保证它们具有足够的强度、刚度和稳定性。
1.2 杆件的受力与变形形式
实际杆件的受力可以是各式各样的,但都可以归纳
为以下4种基本受力和变形形式: 轴向拉伸(或压缩) 剪切 扭转 弯曲 以及由两种或两种以上基本受力和变形形式叠加而
假想截面
F3 1 .沿横截面截开,留 下一部分作为研究对象, 弃去另一部分——截开 FN 2.用作用于截面上的 x 内力代替弃去部分对留 下部分的作用——替代 F4 3.对留下部分建立平 衡方程并解之——平衡
材料力学概述
材料力学主要研究变形体受力后发生的变形、由于 变形而产生的附加内力以及由此而产生的失效和控制失 效的准则。在此基础上导出工程构件静力学设计的基本 方法。
材料力学与理论力学在分析方法上也不完全相同。
材料力学的分析方法是在实验基础上,对于问题作一些
科学的假定,将复杂的问题加以简化,从而得到便于工
成的组合受力与变形形式。 扭 转
M A l
M
BA
B
扭转变形
1.2 杆件的受力与变形形式
实际杆件的受力可以是各式各样的,但都可以归纳
为以下4种基本受力和变形形式: 轴向拉伸(或压缩) 剪切 P 扭转 q 弯曲 弯 曲
弯曲( bend ) ― 当外加力偶 M (图 1 一 4 ( a ”或 外力作用于杆件的 纵向平面内(图 1 一 4 ( b ) )时,杆 件将发生弯曲变形, 其轴线将变成曲线。
认为物体在其整个体积内毫无空隙地充满了物质,
其结构是密实的。
实际的变形固体,从其物质结构来说,均具有不
同程度的空隙;但这些空隙的大小与构件的尺寸相比
材料力学课件第一章绪论
§1.3 外力及其分类 3 一、外力 周围物体对构件的作用。 周围物体对构件的作用。 二、外力分类 按作用方式划分: 1.按作用方式划分: 集中力 表面力 外力 线分布力 面分布力 体积力( 重力,惯性力) 体积力(如:重力,惯性力)
2.按作用趋势划分: .按作用趋势划分: 静载荷 主动力, 主动力,又称为载荷 动载荷 外力 约束力
∑ 由:
Fy = 0, F − FN = 0
o
∑M
= 0, Fa− M = 0
FN = F 得:
M = Fa
三、应力(stress) 应力 1 . 定义 截面内某一点处分布内力的集度称为该点的应力。 定义: 截面内某一点处分布内力的集度称为该点的应力。 2 . 定义式: 定义式:
∆F 平均应力: 平均应力: pm = ∆A
§1.6 杆件变形的基本形式
一、杆件(bar)的概念 杆件 的概念 1. 构件类型: 构件类型: 杆: 板: 壳: 块:
2. 杆件的两个要素: 杆件的两个要素: 轴线 3. 杆件分类: 杆件分类: 横截面 等截面直杆,变截面直杆,等截面曲杆,变截面曲杆。 等截面直杆,变截面直杆,等截面曲杆,变截面曲杆。 吊车图
MN → 0
M ′N ′ − MN ∆s = lim MN MN → 0 ∆ x
ቤተ መጻሕፍቲ ባይዱ
γ = lim
ML →0
π − ∠L′M ′N ′ MN →0 2
三、小变形问题的计算 1. 特点: 特点: 位移、变形和应变都是微小量。 位移、变形和应变都是微小量。 2. 采用简化计算: 采用简化计算: 原始尺寸法。 如:原始尺寸法。
∆F lim lim 应力: 应力: p = ∆A→0 pm = ∆A→0 ∆A
材料力学第一章知识归纳总结
材料力学
三、材料力学的任务 材料力学的任务就是在满足强度、刚度和 稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
若:构件横截面尺寸不足或形状 不合理,或材料选用不当 ——不满足上述要求,
不能保证安全工作。
若:不恰当地加大横截面尺寸或 选用优质材料 —— 增加成本,造成浪费
δ 1 < δ 2 << l
B
1 δ
A
FN 1
δ2
θ
A F
θ
C
F F
A1
FN 2
l
求FN1、 FN1 时,仍可 按构件原始尺寸计算。
材料力学
3、小变形前提保证叠加法成立 叠加法指构件在多个载荷作用下产生的变形—— 可以看作为各个载荷单独作用产生的变形之代数和
叠加法是材料力学中常用的方法。
材料力学
a a’
0.025
材料力学
第一章 §1-6 绪论 杆件变形的基本形式
构件的分类:杆件、板壳*、块体*
杆件——纵向尺寸(长度)远比横向尺寸大得多的 构件。 直杆——轴线为直线的杆 曲杆——轴线为曲线的杆 等截面直杆——横截面的 形状和大小不变的直杆
材料力学
板和壳:构件一个方向的尺寸(厚度)远小于其 它两个方向的尺寸。 块件:三个方向(长、宽、高)的尺寸相差不多 的构件。
}
研究构件的强度、刚度和稳定性,还需要了解材料的 力学性能。因此在进行理论分析的基础上,实验研究是 完成材料力学的任务所必需的途径和手段。
均不可取
材料力学
§1-2 变形固体的基本假设
一、变形固体: 在外力作用下可发生变形的固体。 二、变形固体的基本假设: 1、连续性假设: 认为变形固体整个体积内都被物质连续 地充满,没有空隙和裂缝。
材料力学第一章
第一章绪论1. 判断改错题1-1-1 铸铁结构由于没有屈服阶段,所以在静载作用时可以不考虑其应力集中的影响。
( × )应考虑其应力集中的影响。
因铸铁属脆性材料,因此构件在静载作用时,在尺寸突变处,没有明显的塑性变形来缓和应力的增加,应力集中使该处的应力远大于其它各处的应力,构件首先从该处破坏,所以静载作用时应该考虑应力集中的影响。
1-1-2 构件内力的大小不但与外力大小有关,还与材料的截面形状有关。
( × )。
静定构件内力的大小只与外力大小有关,与材料的截面无关。
1-1-3 钢筋混凝土柱中,钢筋与混凝土柱高度相同,受压后,钢筋与混凝土柱的压缩量相同,所以二者所受的内力也相同。
( × ) 它们的内力大小不一定相同。
钢筋混凝土柱受压后,由于钢筋的弹性模量E 1不等于混凝土的弹性模量E 2,钢筋横截面积A 1 也不等于混凝土的横截面积A 2,所以有 ,221121221112122221111,,,2A E AE N N A E N A E N l l A E l N l A E l N l ==∆=∆=∆=∆故在E 1 A 1=E 2 A 2 时,才有N 1=N 2 。
否则21N N ≠。
1-1-4 杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。
( √)1-1-5 只要构件的强度得到保证,则该构件就能正常的工作。
( × )。
只有构件的强度、刚度、稳定性都得到满足,构件才能正常工作。
1-1-6 两根材料、长度l 都相同的等直柱子,一根的横截面面积为A 1,另一根为A 2,且A 2>A 1.如图所示。
两杆都受自重作用。
则两杆的最大压应力相等,最大压缩量也相等。
( √ )。
自重作用时,最大压应力在两杆底端,即l AAlA N ννσ===max max也就是说,最大应力与面积无关,只与杆长有关。
所以两者的最大压应力相等。
最大压缩量为El EA lAl l 222max νν=⋅=∆ 即最大压缩量与面积无关,只与杆长有关。
材料力学
第一讲第一章材料力学基本知识§1.1 基本概念:理论力学------研究物体(刚体)受力和机械运动一般规律的科学。
材料力学------研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
4.1 构件的承载能力为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
因此,构件应当满足以下要求:1、强度要求:即构件在外力作用下应具有足够的抵抗破坏的能力。
在规定的载荷作用下构件当然不应破坏,包括断裂和发生较大的塑性变形。
例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。
强度要求就是指构件在规定的使用条件下不发生意外断裂或显著塑性变形。
2、刚度要求:即构件在外力作用下应具有足够的抵抗变形的能力。
在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。
例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。
刚度要求就是指构件在规定的事业条件下不发生较大的变形。
3、稳定性要求:即构件在外力作用下能保持原有直线平衡状态的能力。
承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。
稳定性要求就是指构件在规定的使用条件下不产生丧失稳定性破坏。
如果构件的横截面尺寸不足或形状不合理,或材料选用不当,不能满足上述要求,将不能保证工程结构或机械的安全工作。
相反,如果不恰当的加大构件横截面尺寸或选用高强材料,这虽满足了上述要求,却使用了更多的材料和增加了成本,造成浪费。
我们可以作出以下结论:材料力学是研究各类构件(主要是杆件)的强度、刚度和稳定性的学科,它提供了有关的基本理论、计算方法和实验技术,使我们能合理地确定构件的材料和形状尺寸,以达到安全与经济的设计要求。
在工程实际问题中,一般来说,构件都应具有足够的承载能力,即足够的强度、刚度和稳定性,但对具体的构件又有所侧重。
材料力学第5版(孙训方编高等教育出版社)第一章
Ⅱ、具有足够的刚度——荷载作用下,弹性变形不 超过工程允许范围
Ⅲ、满足稳定性的要求——构件在其原有形态下的 平衡应保持为稳定的平衡
第9页 / 共79页
材料力学
第一章 绪论及基本概念
Ⅰ. 具有足够的强度——荷载作用下不断裂,荷载去 除后不产生过大的永久变形(塑性变形)
工程允许范围。
荷载未作用时 F
荷载作用下
荷载去除后
第16页 / 共79页
材料力学
刚度问题:机械加工用
的钻床的立柱,如果强度不 够,就会折断(断裂)或折弯 (塑性变形);如果刚度不够, 钻床立柱即使不发生断裂或 者折弯,也会产生过大弹性 变形(图中红线所示为夸大 的弹性变形),从而影响钻 孔的精度,甚至产生振动, 影响钻床的在役寿命。
材料力学
第一章 绪论及基本概念
杆件
主要几何因素:横截 面、轴线
按轴线分:直杆、曲杆
按横截面分:等截面 杆和变截面杆
材料力学主要研究等截面直杆
第56页 / 共79页
材料力学
第一章 绪论及基本概念
§1-5 杆件变形的基本形式
1、轴向拉伸或轴向压缩 2、剪切 3、扭转 4、弯曲
第57页 / 共79页
材料力学
通过科学实验建立理论
伽利略(G.Galileo)1638年 提出计算梁强度的公式
胡克(R.Hooke)1678年提 出胡克定律(物体弹性变 形与所受力成正比)
第43页 / 共79页
材料力学
达芬奇:最早用实验方法测定材料强度 圣维南:圣维南原理 欧 拉:压杆稳定理论(欧拉公式)
第44页 / 共79页
第53页 / 共79页
材料力学
材料力学第1章 绪论
F F Fy 0, F FN 0
MON 0, Fa M 0
பைடு நூலகம்M Fa
应力
截面上,微小面积ΔA上分布内力的合力为ΔF,则平均应力为
pm
F A
当ΔA逐渐缩小,pm的大小和方向都将逐渐变化。 当ΔA趋近于零时,pm的大小和方向都将趋近于某极限值。
lim lim p
pm
A0
A0
F A
(用截面法:一截二取三平衡)
•解(1)沿m-m假想地将钻床分成 两部分。
•研究m-m截面以上部分(如图 1.2b),并以截面的形心O为原点, 选取坐标系如图所示。
•(2)外力F将使m-m见面以上部分
沿y轴方向位移,并绕O点转动,m- (3)由平衡方程
m截面以下部分必然以内力FN及M 作用于截面上,以保持上部的平衡。
建立力学模型:
轴向拉伸
轴向拉伸
轴向压缩
轴向压缩 弯曲
认 销 C处为钉的B重、螺量C栓W理连位想接于化,构为其架光约A滑B束C销既平钉不面。像内光,滑因销此钉可可作自为由平转面动力,系也问不题像来固定端那 处 样理毫。无转动的可能,而是介于两者之间,并与螺栓的紧固程度有关。
构件的强度、刚度和稳定性( C )。
构件 结构
——组成结构物和机械的单个组成部分(建筑物的 梁和柱,机床的轴)。 ——建筑物或构筑物中承受外部作用的骨架称为结构.
构件正常工作的条件:
足够的强度 足够的刚度 足足够够的的稳稳定定性性
强度:构件抵抗破坏的能力
不因发生断裂 或塑性变形而失效
刚度:构件抵抗弹性变形的能力
不因发生过大的弹性变形而失效
稳定性:构件保持原有平衡形式的能力
不因发生因平衡形式的突然转变而失效
材料力学——第一章 轴向拉伸和压缩
形象表示轴力随截面的变化情况,发现危险面;
材料力学
例题1-1 已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。 1 B 2 C 3 D A 解:1、计算各段的轴力。
F1 F1 F1
FN kN
1 F2
2
F3 3
F4
AB段 BC段
FN1 FN2
F
F
F
F
d变) 拉伸ε'<0、 压缩ε’>0 ;
'
d
d
材料力学
2、泊松比 实验证明:
称为泊松比;
注意
(1)由于ε、ε‘总是同时发生,永远反号, 且均由
(2)
s 产生,
故有
=-
‘
0 FN 1 F1 10kN
x x
F
0 FN 2 F2 F1
FN 2 F1 F2
F2
FN3
10
CD段
F4
25
10 20 10kN Fx 0
FN 3 F4 25kN
2、绘制轴力图。
10
x
材料力学
画轴力图步骤
1、分析外力的个数及其作用点; 2、利用外力的作用点将杆件分段; 3、截面法求任意两个力的作用点之间的轴力; 4、做轴力图; 5、轴力为正的画在水平轴的上方,表示该段杆件发生 拉伸变形
材料力学
例题1-3 起吊钢索如图所示,截面积分别为 A2 4 cm2, A1 3 cm2,
l1 l 2 50 m, P 12 kN, 0.028 N/cm3,
试绘制轴力图,并求
材料力学1.
HA RA
② 局部平衡求 轴力:
q
mC 0
HC
③应力:
N 26.3kN
RC
max
N A
4P
d2
N
4 26.3103 3.14 0.0162
131MPa
④强度校核与结论: max 131 MPa 170 MPa
此杆满足强度要求,是安全的。
22
二、拉(压)杆横截面上的应力
研究方法:
实验观察
作出假设
理论分析
实验验证
1、实验观察
F
a a b b
c c
F
d d
变形前: ab // cd 变形后:ab // cd // ab // cd
2、假设: 横截面在变形前后均保持为平面——平面假设。
则:横截面上每一点的纵向纤维变形相同。 即:轴向变形相等。
VBDm in
2 PL
[ ]
例题 图示结构,钢杆1:圆形截面,直径d=16mm,许用
应力 [ ]1 150 MPa ;杆2:方形截面,边长 a=100mm, [ ]2 4.5MPa ,(1)当作用在B点的载荷 F=2 吨时,校核强
度;(2)求在B点处所
1.5m B
A 1
能承受的许用载荷。 解: 一般步骤:
4
d2
150 106 30.15KN
FN 2,max A2 [ ]2 a2 4.5 106 45KN
两杆分别达到许可内力时所对应的载荷
1杆
Fmax
4 3
FN 1,m a x
4 30.15 40.2KN 3
43
材料力学第1章材料力学基本概念
两种状态
(1) 承载力极限状态—强度、稳定性 (2) 正常使用极限状态—刚度
1.1.2.3 材料力学的任务
可靠性与经济性
可靠性要求 构件截面尺寸增大 经济性要求 构件截面尺寸减小
材料力学的任务
为解决构件设计中可靠性与经济性的 这一对矛盾提供理论依据 保证可靠的前提下,尽可能经济
F dF s lim A 0 A dA
应力s 的方向就是内力F 的方向
应力的分量
应力沿截面法线方向的分量,称为法向应力(normal stress)或正应力,用 表 示
应力平行于截面的分量,称为切向应力、切应力( shear stress)或 剪应力,用 表 示
应力的单位 基本单位:N/m2=Pa 常用单位:kN/m2=kPa 帕 千帕
杆系结构
1.1.2 材料力学的任务
结构与构件的概念
结构:能承受作用并具有适当刚度的由各连接部件有 机组合而成的系统 结构构件:结构在物理上可以区分出的部件
结构构件:屋盖、楼板、梁、柱、基础 非结构构件:门、窗、隔墙
1.1.2.1 结构的功能要求
安全性 各能 整发 偶 种够 体生 然 结构功 作 承 稳 保 事 良好的工作性能 能要求 用受 定持 件 不裂 不挠 发生火灾时,在规定时 耐久性 宽缝 大度 间内可保持足够承载力 发生撞击、爆炸时,整体稳定性 结构在规定的工作环境中、预定时期 内,材料性能的劣化不致导致结构出 现不可接受的失效概率 适用性
研究基本变形杆件之 强度条件 刚度条件 稳定性条件
1.2.1 基本假定
连续性假定
材料宏观上无间隙,连续分布于所占据的空间 物理量是空间位置的连续函数
材料力学1
第一章绪论判断题绪论1、"材料力学是研究构件承载能力的一门学科。
"答案此说法正确2、"材料力学的任务是尽可能使构件安全地工作。
"答案此说法错误答疑材料力学的任务是在保证构件既安全适用又尽可能经济合理的前提下,为构件选择适当的材料、合适的截面形状和尺寸,确定构件的许可载荷,为构件的合理设计提供必要的理论基础和计算方法。
3、"材料力学主要研究弹性范围内的小变形情况。
"答案此说法正确4、"因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
"答案此说法错误答疑材料力学研究范围是线弹性、小变形,固构件的变形和构件的原始尺寸相比非常微小,通常在研究构件的平衡时,仍按构件的原始尺寸进行计算。
5、"外力就是构件所承受的载荷。
"答案此说法错误答疑外力包括作用在构件上的载荷和支座反力。
6、"材料力学中的内力是构件各部分之间的相互作用力。
"答案此说法错误答疑在外力的作用下,构件内部各部分之间的相互作用力的变化量,既构件内部各部分之间因外力而引起的附加的相互作用力。
7、"用截面法求内力时,可以保留截开后构件的任意部分进行平衡计算。
"答案此说法正确8、"应力是横截面上的平均应力。
"答案此说法错误答疑应力是截面上某点的内力集度,不是整个横截面上的平均值。
9、"线应变是构件中单位长度的变形量。
"答案此说法错误答疑构件中单位长度的变形量是平均线应变。
而线应变是构件内某点沿某方向的变形程度的度量。
10、"材料力学只限于研究等截面直杆。
"答案此说法错误答疑材料力学主要研究等截面直杆,也适当地讨论一些变截面直杆,等截面曲杆。
11、" 切应变是变形后构件内任意两根微线段夹角角度的变化量。
"答案此说法错误答疑切应变是某点处单元体的两正交线段的夹角的变化量。
工程力学材料力学第一章
直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。
直杆轴向拉伸或压缩时斜截面上的应力 k
设有一等直杆受拉力P作用。 P 求:斜截面k-k上的应力。 解:采用截面法 由平衡方程:Pα=P P P k P
α α
k Pα k
Pα 则: pα = Aα
Aα:斜截面面积;Pα:斜截面上内力。
A 由几何关系: α = cos Aα
σ 0 ( 45°斜截面上剪应力达到最大 ) |τ 当α = ± 45°时, α |max =
目 录
公式的应用条件: 公式的应用条件: 直杆、杆的截面无突变、 的距离。 直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。 圣维南( 原理: 圣维南 Saint-Venant)原理: 原理 离开载荷作用处一定距离, 离开载荷作用处一定距离,应力分布与大小不受外载荷作 用方式的影响。 用方式的影响。 应力集中( 应力集中(Stress Concentration): ): 在截面尺寸突变处,应力急剧变大。 在截面尺寸突变处,应力急剧变大。
工程构件,大多数情形下,内力并非均匀分布,集度的定 义不仅准确而且重要,因为“破坏”或“失效”往往从内力集 度最大处开始。 2. 应力的表示: 应力的表示: ① 平均应力: 平均应力: ∆P M ∆A
ΔP pM = ΔA
全应力(总应力): ② 全应力(总应力):
p = lim
∆A → 0
∆P dP = ∆ A dA
目 录
目 录
目 录
例题
图示结构,已知斜杆AB长2m,横截面面积为 图示结构,已知斜杆AB长2m,横截面面积为 AB 水平杆AC的横截面面积为250mm AC的横截面面积为 200mm2。水平杆AC的横截面面积为250mm2。材料的 弹性摸量E=200GPa 载荷F=10kN 试求节点A E=200GPa。 F=10kN。 弹性摸量E=200GPa。载荷F=10kN。试求节点A的位 移。 计算各杆件的轴力。(设斜杆为1 。(设斜杆为 解:1、计算各杆件的轴力。(设斜杆为1杆,水 平杆为2 用截面法取节点A 平杆为2杆)用截面法取节点A为研究对象
材料力学(1)
1-1 工程实际中的轴向拉伸和 压缩问题
F F
工程实际中,有很多发生轴向 拉伸和压缩变形的构件。 如联接钢板的螺栓(图 a ), 在钢板反力作用下,沿其轴 向发生伸长(图c),称为轴 向拉伸; 托架的撑杆CD(图a),在 外力的作用下,沿其轴向发 生缩短(图b),称为轴向压 缩。 产生轴向拉伸(或压缩)变 形的杆件, 简称为拉(压) 杆。
I
50kN 150kN
II
100kN
I 50kN I II FN2 100kN II FN2= −100kN FN1 FN1=50kN
I 50kN FN
II
+ −
100kN
| FN |max=100kN
1-3 轴向拉伸和压缩时的应力
应力的概念
确定了杆的内力后,还不能解决杆件的强度问题。 经验告诉我们,材料相同,直径不等的两根直杆, 在相 同的拉力F作用下, 内力相等。当力F增大时,直径小的杆 必先断,这是由于内力仅代表内力系的总和,而不能表明截 面上各点受力的强弱程度, 直径小的杆因截面积小,截面上 各点受力大,因此先断。 所以, 需引入表示截面上某点受力强弱程度的量——应 表示截面上某点受力强弱程度的量—— 表示截面上某点受力强弱程度的量——应 力,作为判断杆件强度是否足够的量。 (内力集度) 内力集度)
2 截面法
轴力
截面法: 用假想的截面将杆件截为两部分,任取杆 截面法 :
件的一部分为研究对象,利用静力平衡方程求内力 的方法称为截面法。
m F1 F2 m (a) F1 F2
m m m
F3
FN
∑Fx=0 FN-F1+F2=0
F3
FN = F1 − F2
材料力学第一章
解: 1.建立如图坐标系
2.计算1-1截面的内力
1
F 0
x
2
F 2F FN 2 0 FN 2 F 10kN
3F 2F
4.计算3-3截面的内力
3
FN1
F=10kN
x
FN3
3
F=10kN
x
F 0
x
1
F FN1 0
FN1 F 10kN
F 0
x
F 2F 3F FN 3 0 FN 3 2F 20kN
注意!
b
d
c
e
1. 服从胡克定律:oa段
f
b
e P
a
s
E E tan
2. 两个强度指标
o
d g
f h
s — 屈服极限 b — 强度极限
A0 A1 100% 断面收缩率 A0
3. 两个塑性指标
断后伸长率
l1 l0 100% l0
bt
o
σbt—拉伸强度极限(约为140MPa)。它是
衡量脆性材料(铸铁)拉伸的唯一强度指标。
四、材料在压缩时的力学性能
1.低碳钢的压缩
p — 比例极限 e — 弹性极限 S — 屈服极限 E --- 弹性摸量
拉伸与压缩在屈服 阶段以前完全相同。
2. 脆性材料的压缩
1)铸铁 脆性材料的抗拉与抗压 性质不完全相同 压缩时的强度极限远大 于拉伸时的强度极限
计算步骤:
1、截开 2、代替 3、平衡
轴向拉伸或压缩变形
§1-2 变形固体力学的基本概念
一、应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. Fundamental Assumptions
1. Continuity The material is continuously distributed over its volume .
p=lim F/A
is shearing stress at K
A 0
Relationship: p2 = 2 + 2
SI unit of stress: 1 Pa =1 N/m2 , 1 MPa =106 Pa
5. Deformation and Strain
1. Normal strain
Method of F1
m
Fn
sections
F1 F2
F2 m y FR
m
F1 M
C m z
x
F2
y
m My Fy Mx
C
zMz Fmz
Fx
x
Fx = 0, Fy = 0, Fz = 0
Mx= 0, My= 0, Mz= 0
F1 F2
y
m My
Fy Mx
C
zMz Fmz
Fx
x
Fx : axial force
q
F
D ABC
aaa
Solution: BCD: MB= Βιβλιοθήκη , FD = qa/2 ABCD:
FBx
F
D
FBy B C
FD
MA= 0, MA = qa2
q MA
F
Fx = 0, FAx = 0 FAx A B C
D
Fy = 0, FAy = 3qa/2 FAy a
a
a FD
Problem 1.2
We can find : = E
E : modulus of elasticity
Unit of E :
1 GPa = 109 Pa = 103 MPa
Modulus of steel :
E = 200 ~ 220 GPa
Modulus of aluminum : E = 70 ~ 72 GPa
Find reactions of A and D, internal forces in left and right sections of C.(F=qa)
q
F
D ABC
aaa
Solution: ( FD = qa/2 ) C1D: Fy = 0, FS1 = qa/2
MC1= 0, M1 = - qa2/2
3. External Forces and Classification
According to the ways of their action 1. Surface force 2. Body force According to the cases of their distribution 1. Concentrated force 2. Distributed force: uniform or nonuniform According to their changes with time 1. Static load 2. Dynamic load: inertia, impact, repeated
C2D: Fy = 0, FS2 = - qa/2 MC2= 0, M2 = - qa2/2
F
M1 C1
FS1
D
FD
C2 M2
D
FS2 FD
Problem 1.3
World Financial Center building , 9. 11 of 2001
In New York of USA
Questions:
4. Internal Force and Stress
(1) Internal force
F1
m
Fn
F2
m
F1
m
F2
m
Internal force is a force set up within a body to balance the effect of the externally applied forces.
FN
Fy , Fz : shearing force FSy , FSz
Mx : torque moment T
My , Mz : bending moment My , Mz
(2) Stress
F1
m
F1
A F
K
F2
m
F2
m
p
K
m
Stress at K of the section: is normal stress at K
7 Analysis of Stress & Strain (8) 8 Strength of Combined Deformations (8) 9 Stability of Columns (4) ( Exam. B ) 10 Dynamic Load and Fatigue Strength (6) 11 Energy Methods (8) 12 Statically Indeterminate Members (6) 13 Experimental Stress Analysis (4)
Mechanics of Materials
Edited by Guo Ying-Zheng in 2013
CONTENTS
1 Introduction (2) 2 Tension & Compression (10) 3 Torsion (6) 4 Internal Forces in Bending (6) 5 Stresses in Bending (10) ( Exam. A) 6 Deformation in Bending (8)
Example 1.1
Find the internal forces at fixed end D of the bar
D
a
a
C
B
as shown in the right Fig.
Aa
Solution:
F
x
Translate F from A to C
Bar CD: Fx = 0, FN = F
Structure Laboratory
Load Test of Airplane
Chapter 1 Introduction
1. The Task of Mechanics of Materials
Strength: Capacity to resist break or yield. Rigidity: Capacity to resist over deformation. Stability: Capacity to keep in original equilibrium.
Large-scale Bridge
Column
Cable
Structure of Bridge Floor
Macao Bridge
Space Shuttle “Discovery”
Space Station “Peace”
High-speed Train
Nuclear Reactor
Mz= 0, M = Fa
F
m
n
a 90
a m
a
a
n
z ya F
M
m - m : Fy = 0, FS = F
x FS
My
Mz= 0, M = Fa x
F
z
Mx= 0, T = 2Fa
T FS
Problem 1.2
Find reactions of A and D, internal forces in left and right sections of C.(F=qa)
2. Homogeneity The material is homogeneously distributed over its volume .
3. Isotropy
The mechanical properties are the same in all directions at a point .
b
=
lim
x 0
u x
=
du dx
K x a u Normal strain at K along Ka
2. Shearing strain
b
is the change of a right angle
K x a
Unit of is radian ( rad )
6. Hookes law
It shows that :
FN
Mz
D
My
z
y
My= 0, My = Fa Fa
Fa
C
Mz= 0, Mz = - Fa F
6. Types of deformations
Fundamental deformations: 1. Tension or compression 2. Shearing 3. Torsion 4. Bending
Combined deformations 1. Tension (compression) and Bending 2. Bending and Torsion 3. Tension (compression) , Bending and Torsion