《材料力学》第一章 课后习题参考答案
材料力学性能-第2版课后习题答案
第一章 单向静拉伸力学性能1、 解释下列名词。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。
【P4】4、 现有45、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么?选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可降低成本,提高生产效率。
5、 试述韧性断裂与脆性断裂的区别。
为什么脆性断裂最危险?【P21】答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
完整版材料力学性能课后习题答案整理
完整版材料力学性能课后习题答案整理材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E弹性模量G切变模量r规定残余伸长应力0.2屈服强度gt金属材料拉伸时最大应力下的总伸长率n应变硬化指数P153、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
材料力学第3版习题答案
材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。
若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。
请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。
在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。
因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。
在本例中,材料的屈服强度是200 MPa。
第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。
若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。
要计算应变,我们可以使用公式ε =σ/E。
将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。
第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。
如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。
请解释塑性变形与弹性变形的区别。
答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。
弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。
而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。
第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。
如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。
请计算在单轴拉伸下,材料达到断裂的临界应力。
材料力学第四版课后习题答案
材料力学第四版课后习题答案1. 引言。
材料力学是材料科学与工程中的重要基础课程,通过学习材料力学,可以帮助我们更好地理解材料的性能和行为。
本文档将针对材料力学第四版的课后习题进行答案解析,帮助学习者更好地掌握课程内容。
2. 第一章。
2.1 课后习题1。
答,根据受力分析,可以得到杆件的受力情况。
然后利用杆件的受力平衡条件,可以得到杆件的应力状态。
最后,根据应力状态计算应变和变形。
2.2 课后习题2。
答,利用受力分析,可以得到杆件的受力情况。
然后利用杆件的受力平衡条件,可以得到杆件的应力状态。
最后,根据应力状态计算应变和变形。
3. 第二章。
3.1 课后习题1。
答,利用受力分析,可以得到梁的受力情况。
然后利用梁的受力平衡条件,可以得到梁的应力状态。
最后,根据应力状态计算应变和变形。
3.2 课后习题2。
答,利用受力分析,可以得到梁的受力情况。
然后利用梁的受力平衡条件,可以得到梁的应力状态。
最后,根据应力状态计算应变和变形。
4. 第三章。
4.1 课后习题1。
答,利用受力分析,可以得到薄壁压力容器的受力情况。
然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。
最后,根据应力状态计算应变和变形。
4.2 课后习题2。
答,利用受力分析,可以得到薄壁压力容器的受力情况。
然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。
最后,根据应力状态计算应变和变形。
5. 结论。
通过对材料力学第四版课后习题的答案解析,我们可以更好地掌握材料力学的基本原理和方法。
希望本文档能够对学习者有所帮助,促进大家对材料力学的深入理解和应用。
《材料力学》第1章知识点+课后思考题
第一章绪论第一节材料力学的任务与研究对象一、材料力学的任务1.研究构件的强度、刚度和稳定度载荷:物体所受的主动外力约束力:物体所受的被动外力强度:指构件抵抗破坏的能力刚度:指构件抵抗变形的能力稳定性:指构件保持其原有平衡状态的能力2.研究材料的力学性能二、材料力学的研究对象根据几何形状以及各个方向上尺寸的差异,弹性体大致可以分为杆、板、壳、体四大类。
1.杆:一个方向的尺寸远大于其他两个方向的尺寸的弹性体。
轴线:杆的各截面形心的连线称为杆的轴线;轴线为直线的杆称为直杆;轴线为曲线的杆称为曲杆。
按各截面面积相等与否,杆又分为等截面杆和变截面杆。
2.板:一个方向的尺寸远小于其他两个方向的尺寸,且各处曲率均为零,这种弹性体称为板3.壳:一个方向的尺寸远小于其他两个方向的尺寸,且至少有一个方向的曲率不为零,这种弹性体称为板4.体:三个方向上具有相同量级的尺寸,这种弹性体称为体。
第二节变形固体的基本假设一、变形固体的变形1.变形固体:材料力学研究的构件在外力作用下会产生变形,制造构件的材料称为变形固体。
(所谓变形,是指在外力作用下构建几何形状和尺寸的改变。
)2.变形弹性变形:作用在变形固体上的外力去掉后可以消失的变形。
塑性变形:作用在变形固体上的外力去掉后不可以消失的变形。
又称残余变形。
二、基本假设材料力学在研究变形固体时,为了建立简化模型,忽略了对研究主体影响不大的次要原因,保留了主体的基本性质,对变形固体做出几个假设:连续均匀性假设认为物体在其整个体积内毫无间隙地充满物质,各点处的力学性质是完全相同的。
各向同性假设任何物体沿各个方向的力学性质是相同的小变形假设认为研究的构件几何形状和尺寸的该变量与原始尺寸相比是非常小的。
第三节 构件的外力与杆件变形的基本形式一、构件的外力及其分类1.按照外力在构件表面的分布情况:度,可将其简化为一点分布范围远小于杆的长集中力:一范围的力连续分布在构件表面某分布力: 二、杆件变形的基本形式杆件在各种不同的外力作用方式下将发生各种各样的变形,但基本变形有四种:轴向拉伸或压缩、剪切、扭转和弯曲。
北航材料力学课后习题答案
σ max = 117MPa (在圆孔边缘处)
2-15 图示桁架,承受载荷 F 作用,已知杆的许用应力为[σ ]。若在节点 B 和 C 的
位置保持不变的条件下,试确定使结构重量最轻的α 值(即确定节点 A 的最佳位置)。
解:1.求各杆轴力
题 2-15 图
设杆 AB 和 BC 的轴力分别为 FN1 和 FN2 ,由节点 B 的平衡条件求得
分别为
FN
=
1 2
σmax A
=
1 2
× (100 ×106 Pa) × (0.100m × 0.040m)
=
2.00 ×105 N
=
200kN
Mz
=
FN
(
h 2
−
h )
3
=பைடு நூலகம்
1 6
FN h
=
1 × (200 ×103 N) × (0.100m) 6
= 3.33×103 N ⋅ m
=
3.33kN ⋅ m
2-5 .........................................................................................................................................................2
= 0.2 ×10−3 m 0.100m
= 2.00 ×10−3
rad
α AB
= 0.1×10−3 m = 1.00 ×10−3 0.100m
rad
得 A 点处直角 BAD 的切应变为
γ A = γ BAD = α AD − α AB = 1.00 ×10−3 rad
材料力学课后答案第1、2章 习题解答
解:1.问题分析
由于横截面上仅存在沿截面高度线
性分布的正应力,因此,在横截面上
不可能存在剪力与扭矩,且不可能存 在矢量沿坐标轴 y 的弯矩 My, 只存在轴 力FN和弯矩Mz。
2018/11/12
3
2.内力计算
方法一:以C点为原点建立坐标系 根据题意,设 ky a 代入数据得:
b
k 109 Pa / m
=26.4%5%
故属于塑性材料。
13
解:求外径D
面积A
应力σ
[σ]
材料能安全使用则
材料的许用应力为 杆件上的正应力为
p cos 120 cos10 118.2MPa
p sin 120 sin10 20.8MPa
2018/11/12
2
1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布, 截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正 应力均为零。试问杆件横截面上存在何种内力分量,并确定其 大小。图中之C点为截面形心。
A
h 2 h 2
y
2018/11/12
4
• 方法二
先计算分布力的合力,然后向形心平移,求出轴力 和弯矩
1 1 1 FN max bh bh max 40 103 100 103 100 106 N 200 KN 2 2 2
h h 而其作用点到坐标轴z轴的距离d 2 3
A
B
C
D
(压缩) (拉伸) (拉伸)
规定x方向为正,分别在1、2、3处切开杆得:
AB段 BC段 CD段 最大拉应力 最大压应力
2018/11/12
▕
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学课后习题答案
材料力学课后习题答案1. 弹性力学。
1.1 问题描述,一根钢丝的弹性模量为200GPa,其截面积为0.01m²。
现在对这根钢丝施加一个拉力,使其产生弹性变形。
如果拉力为2000N,求钢丝的弹性变形量。
解答:根据胡克定律,弹性变形量与拉力成正比,与材料的弹性模量和截面积成反比。
弹性变形量可以用以下公式计算:$$。
\delta = \frac{F}{AE}。
$$。
其中,$\delta$表示弹性变形量,F表示拉力,A表示截面积,E表示弹性模量。
代入已知数据,可得:$$。
\delta = \frac{2000N}{0.01m² \times 200GPa} = 0.001m。
$$。
所以,钢丝的弹性变形量为0.001m。
1.2 问题描述,一根长为1m,截面积为$10mm^2$的钢棒,两端受到拉力为1000N的作用。
求钢棒的伸长量。
解答:根据胡克定律,钢棒的伸长量可以用以下公式计算:$$。
\delta = \frac{F \cdot L}{AE}。
$$。
其中,$\delta$表示伸长量,F表示拉力,L表示长度,A表示截面积,E表示弹性模量。
代入已知数据,可得:$$。
\delta = \frac{1000N \times 1m}{10mm² \times 200GPa} = 0.005m。
$$。
所以,钢棒的伸长量为0.005m。
2. 塑性力学。
2.1 问题描述,一块金属材料的屈服强度为300MPa,现在对其施加一个拉力,使其产生塑性变形。
如果拉力为500MPa,求金属材料的塑性变形量。
解答:塑性变形量与拉力成正比,与材料的屈服强度无关。
塑性变形量可以用以下公式计算:$$。
\delta = \frac{F}{A}。
$$。
其中,$\delta$表示塑性变形量,F表示拉力,A表示截面积。
代入已知数据,可得:$$。
\delta = \frac{500MPa}{300MPa} = 1.67。
01第一章 材料力学习题解答(绪论)
(4) 求 3-3 截面内力:将杆 AB 沿截面 3-3 截开, 取左半部分
XA YA A
∑X =0 ∑Y = 0
∑M
X A + N3 = 0 P ctgα 2
N3 = − X A = −
YA − P − Q3 = 0 P 2
Q3 = YA − P = −
D
l + M3 = 0 2 l Pl M 3 = YA × = 2 4 =0 − YA ×
XA YA A
2 2
M2 N2 Q2
∑X =0 ∑Y = 0
∑M
X A + N2 = 0 P ctgα 2
N2 = −X A = −
YA − Q2 = 0 P 2
Q2 = YA =
D
l + M2 = 0 2 l Pl M 2 = YA × = 2 4 =0 − YA ×
P 3 M 3 N3
3 Q3
1.2.简易吊车如图所示。试求截面 1-1、2-2 和 3-3 上的内力。
C
1 1
A
l/2
P
2 3 3 l 2
α
B
解:(1) 求约束反力:取整体为研究对象
SC C
1 1
XA YAAຫໍສະໝຸດ l/2P2 3 3 l 2
α
B
∑M
A
=0
SC cos α × l × tgα − P × l / 2 = 0 SC = P 2sin α
注:截面 2-2 与截面 3-3 上的剪力发生变化,变化的大小等于集中力 P。 1.3.拉伸试件A、B两点的距离l称为标距,如图所示。受拉力作用后,用引伸仪量出l的增量 为Δl=5×10-2mm。若l的原长为l=100 mm。试求A、B两点间的平均应变。
《材料力学》第一章 课后习题参考答案
(2)没画图 (3)符号写法:γ (4)个别不会
γ ≈ tan γ =
BB ′ OB ′
π OA γ = 2− ar tan 、下标准确 、ε、 OB ′ 4
解由线应变的定义可知沿ob的平均应变为由角应变的定义可知在b点的角应变为?????????????booaarctg42bobbtan9944booacboarctancbotan042?????????????booaarctan?????????????booatanar421计算错误2没画图3符号写法
出现的问题: 出现的问题: (1)计算错误
π OA γ = 2 − arctg OB ′ 4
π OA γ = 2 − arctan ≈ 0 OB ′ 4
tan ∠OB ′C = arctan(∠OB ′C ) =
OA = 44.99 OB ′
第一章
1.2 试求结构m-m和n-n两截面上的内力,并 指出AB和BC两杆的变形属于何类基本变形。 解 应用截面法,对图(a)取截面n-n以下 部分为研究对象由平衡条件 BC杆的变形属于拉伸变形。 应用截面法,取题图(a)所示截面m-m以右 及n-n以下部分作为研究对象,由平衡条件有
AB杆属于弯曲变形 出现的问题: (1)思路不清:求外力表达不准确、研究对象 不明确、图; (2)假设力的方向不明确。 (3)对A?
1.4 如题1.4图所示,拉伸试样上A、B两点距离l称为标距。受 拉力作用后,用变形仪量出AB点距离增量Δ l =5×10-2mm。若l 的原长l=100mm,试求A、B两点的平均应变εm。 解 由线应变的定义可知AB的平均应变为
1.5 题1.5图所示的三角形薄板因受外力作用而变形,角点B 垂直向上的位移为0.03mm,但AB和BC仍保持为直线。试求沿OB 的平均应变,并求AB、BC两边在B点的角度改变。 解 由线应变的定义可知,沿OB的平均应变为 由角应变的定义可知,在B点的角应变为
《材料力学》课后题答案(第1-3章)
(2)CD和AB一样长时,计算总的伸长量(复合杆)
PL /(E1A1 E2 A2 )
4PL
/[E1πd12
E2π(d
2 2
d12
)]
1.7mm
(3)没有套管时,计算总的伸长量
' PL / E1A1 4PL / E1πd12
3.42mm
比较3种情况下的 变形,能得到什
么结论?
解:(1)由已知条件得,
应变 0.001
由胡克定律,得
铜 E铜 100GPa 0.001 100MPa 铝 E铝 72GPa 0.001 72MPa
计算轴力
FN,铝 铝 A铝
FN,铜 铜 A铜
72MPa 100MPa
π 4π 4
[(40mm)2 (25mm)2 (25mm)2 49.1kN
0
则可得: 29.1
如图所示总长L0=1.25m的柔性弦线栓在A、B两个支座上,A、 B高度不同,A比B高。弦线上放置无摩擦滚轮,滚轮上承受 力P。图中C点为平衡后滚轮停留的位置。设A、B间水平距离 L=1.0m,弦线拉断力为200N,设计安全因数为3.0,试确定许
用载荷P。
解:对C处进行受力分析, 列出平衡方程:
ε l / l (1mm)/(5103 mm) 2 104
(2)计算横截面上的正应力
c FN / A 6 106 N / m2 6MPa
(3)计算混凝土的弹性模量
E c / 6MPa / 2 104 30GPa
如图所示构件上一点 A处的两个线段AB和 AC,变形前夹角为 60°,变形后夹角为 59°。试计算A点处的 切应变。
解:(1)计算AC段与BC段的伸长量
AC BD Pb / E1A1 4Pb / E1πd12 0.685mm
材料力学习题大全及答案
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
材料力学第1章_620406738.答案
方案设计 静力设计 设计定型
工程设计程序
静力设计
失效分析
受力分析 内力分析 应力分析
强度设计 刚度设计 稳定设计
通过强度设计、刚度设计、稳定性设计实现杆件安全性的 要求
如何满足结构安全性设计要求?
横梁 立柱 立柱
如何满足结构安全性设计要求?
需要综合考虑。
工程设计中解决安全性和经济性的矛盾
弹性体受力变形的特征----变形协调性 •在外力作用下,弹性体的变形应使弹性体 各相邻部分,协调一致,既不断开也不重叠
弹性体受力与变形特点
变形协调性
D C
第二特征
B
A
变 形 前
变形不协调 C´ A´
变形不协调
变形协调一致
•特征: 变形前在同一条线上点, 变形后他们依然同一条线上
第二特征
关于力的传递性研究?
(思考题1)请判断 下列简化在什么情形 下是正确的,什么 情形下是不正确的:
(1)如研究A处的约束力 (2)如研究变形和内力
弹性杆件
•作用于在B点的集中力沿作用线平移至C点?
结论与讨论
力的平移定理?
(思考题2) 请判断 下列简化在什么情形 下是正确的,什么 情形下是不正确的:
•可认为物体上作用的外力和内力的相对位置在 变形前后不变. 在分析平衡问题时,可以略去变形的影响. •具体分析受力平衡:方便,可以用变形前状态 分析平衡。
三个基本假定(归纳):
(1)各向同性 (2)均匀连续性 (3)小变形
第5 章
引
论
弹性体受力与 变形特点
物体不受外力时,内部没有相互作用力?
均匀、连续性在宏观尺度的假定: 从宏观来看、从统计学的角度看 •组成材料微结构或微空隙与物体尺寸 相比是极其微小的,可以忽略不计。 •材料力学认为材料在全部的体积内: 均匀、连续的。
材料力学第一章1答案
第一章答案一、选择题1 B2 D3 C4 C5 A6 D7 C8 D 9D 10D 11D 12 A 13 D 14 C 15B 16C 17B 18B 19A 20B 21D 22D 23C 24C 二、填空题1. σmax = 40 Mpa2、连续性假设 均匀性假设 各向同性假设3、 γ (l-x) γ (l-x) 4. 屈服极限、强度极限 5. o o b6、.235 400 117.57、 抗拉强度8 ji 9、0.2% 10、铸铁 钢11. 弹性阶段、 屈服阶段、 强化阶段、局部变形阶段12. E-AA P σεε=13nomσσmax三、判断题1、×2、×3、×4、√5、√四、作图题1、N图2、N图(kN)3、F=-2kN(0.5)分F BC=1kN(0.5分)F CD=3kN AB4.N图(kN)5、N图6、N 图7 N 图五、分析题1.、低碳钢强度指标:强度极限σb ,屈服极限σs 铸铁强度指标:拉伸强度极限σb + 铸铁是脆性材料,低碳钢是塑性材料 2 1)、平衡不变2)、变形发生变化。
总的变形量减小。
3)、内力发生变化,原来整个杆横截面上的内力均为P,变化为AC 段横截面上内力为P ,CB 段上没有内力。
3、答:弹性模量的物理意义为产生单位应变所需的单位应力 (2分) (1)21028==s c c s c s E E σσεε=1:7.5(2分) (2)28210==c c s s c s E E εεσσ=7.5:1(2分) (2)69105.311021000015.0⨯=⨯⨯==s s s E εσPa=31.5MPa69102.4102800015.0⨯=⨯⨯==c c c E εσPa=4.2MPa(2分)六、计算题1、两钢杆轴力:N 1=8KN(拉),N 2=12KN(拉) 杆1:σ1=80MPa , △l 1=0.8mm 杆2:σ2=120MPa , △l 2=1.2mm P 力作用点位移:δF =23512∆∆l l +=1.04mm 2.解:(1)研究AB 杆,由对称性可知:12N N =1230yFN N N P=→++=∑(2)列变形协调方程:分析系统,由对称性可知,AB 杆向下平行移动,其移动的距离即为各杆的变形,即123l l l ∆=∆=∆。
材料力学习题册_参考答案(1-9章)
(图 1)
(图 2)
3.有 A、B、C 三种材料,其拉伸应力—应变实验曲线如图 3 所示,曲线( B )材料
的弹性模量 E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。
4.材料经过冷作硬化后,其( D )。
A.弹性模量提高,塑性降低
B. 弹性模量降低,塑性提高
C.比例极限提AB 梁的中点
D 任意点
14. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 ( A )
A 分别是横截面、450 斜截面
B 都是横截面
C 分别是 450 斜截面、横截面
D 都是 450 斜截面
15. 设轴向拉伸杆横截面上的正应力为σ,则 450 斜截面上的正应力和剪应力( D )。
A σ=Eε=300MPa
B σ>300MPa
C 200MPa<σ<300Mpa
D σ<200MPa
21.图 9 分别为同一木榫接头从两个不同角度视图,则( B )。
A. 剪切面面积为 ab,挤压面面积为 ch; B. 剪切面面积为 bh,挤压面面积为 bc;
C. 剪切面面积为 ch,挤压面面积为 bc; D. 剪切面面积为 bh,挤压面面积为 ch。
F
p
.D
.
.
.
.
...
解:设每个螺栓受力为 F,由平衡方程得
根据强度条件,有 [σ]≥
故螺栓的内径取为 24mm。 4.图示一个三角架,在节点 B 受铅垂荷载 F 作用,其中钢拉杆 AB 长 l1=2m,截面面
积 A1=600mm2,许用应力 [ ]1 160MPa ,木压杆 BC 的截面面积 A2=1000mm2,许 用应力 [ ]2 7MPa 。试确定许用荷载[F]。
材料力学性能-第2版课后习题答案
第一章 单向静拉伸力学性能1、 解释下列名词。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。
【P4】4、 现有45、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么?选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可降低成本,提高生产效率。
5、 试述韧性断裂与脆性断裂的区别。
为什么脆性断裂最危险?【P21】答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)没画图 (3)符号写法:γ (4)个别不会
γ ≈ tan γ =
BB ′ OB ′
π OA γ = 2 − ar tan 、下标准确 、ε、 OB ′ 4
出现的问题: 出现的问题: (1)计算错误
π OA γ = 2 − arctg OB ′ 4
π OA γ = 2 − arctan ≈ 0 OB ′ 4
tan ∠OB ′C = arctan(∠OB ′C ) =
OA = 44.99 OB ′
第一章
1.2 试求结构m-m和n-n两截面上的内力,并 指出AB和BC两杆的变形属于何类基本变形。 解 应用截面法,对图(a)取截面n-n以下 部分为研究对象由平衡条件 BC杆的变形属于拉伸变形。 应用截面法,取题图(a)所示截面m-m以右 及n-n以下部分作为研究: (1)思路不清:求外力表达不准确、研究对象 不明确、图; (2)假设力的方向不明确。 (3)对A?
1.4 如题1.4图所示,拉伸试样上A、B两点距离l称为标距。受 拉力作用后,用变形仪量出AB点距离增量Δ l =5×10-2mm。若l 的原长l=100mm,试求A、B两点的平均应变εm。 解 由线应变的定义可知AB的平均应变为
1.5 题1.5图所示的三角形薄板因受外力作用而变形,角点B 垂直向上的位移为0.03mm,但AB和BC仍保持为直线。试求沿OB 的平均应变,并求AB、BC两边在B点的角度改变。 解 由线应变的定义可知,沿OB的平均应变为 由角应变的定义可知,在B点的角应变为