中职数学第一学期期期末考试试卷及答案

合集下载

职校第一学期期末数学试卷

职校第一学期期末数学试卷

一、选择题(每题5分,共25分)1. 下列数中,有理数是()。

A. √16B. √-9C. πD. 2/32. 下列图形中,中心对称图形是()。

A. 正方形B. 等边三角形C. 长方形D. 等腰三角形3. 下列函数中,一次函数是()。

A. y = 2x + 5B. y = x^2 + 3C. y = 3/xD. y = 54. 已知等腰三角形底边长为6,腰长为8,则其面积为()。

A. 24B. 28C. 32D. 365. 若sinα = 1/2,且α为锐角,则cosα的值为()。

A. √3/2B. 1/2C. √2/2D. -1/2二、填空题(每题5分,共25分)6. √25的值为______。

7. 下列函数中,y = 3x - 2是一次函数,其斜率k为______。

8. 一个圆的半径为5cm,其周长为______cm。

9. 已知等腰直角三角形的直角边长为6cm,则其斜边长为______cm。

10. 若sinα = 3/5,且α为第二象限角,则cosα的值为______。

三、解答题(每题20分,共80分)11. (10分)解下列方程:2x - 3 = 7。

12. (10分)计算下列三角函数值:sin60°。

13. (10分)已知一个等边三角形的边长为10cm,求其面积。

14. (10分)已知等腰三角形的底边长为8cm,腰长为10cm,求其周长。

15. (20分)请绘制一个直角坐标系,并在其中画出函数y = 2x - 5的图像。

四、附加题(20分)16. (10分)已知等腰三角形的底边长为12cm,腰长为15cm,求其高。

17. (10分)已知一个圆的半径为7cm,求其面积和周长。

请将答案填写在答题卡上,考试时间120分钟,禁止抄袭。

祝各位同学考试顺利!。

中职数学试卷期末测试答案

中职数学试卷期末测试答案

一、选择题(每题2分,共20分)1. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 2 < b + 2D. a - 2 > b - 2答案:A2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 4答案:A3. 若|a| = 3,则a的值为()A. ±3B. 0C. ±1D. ±2答案:A4. 下列函数中,在定义域内是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x^4答案:B5. 若sinθ = 1/2,则θ的值为()A. 30°B. 45°C. 60°D. 90°答案:A6. 已知圆的方程为x^2 + y^2 = 16,则该圆的半径是()A. 2B. 4C. 8D. 16答案:B7. 若a、b是方程x^2 - 5x + 6 = 0的两根,则a + b的值为()A. 5B. -5C. 6D. -6答案:A8. 下列不等式中,恒成立的是()A. x^2 > xB. x^2 ≥ xC. x^2 < xD. x^2 ≤ x答案:B9. 若log2(x - 1) = 3,则x的值为()A. 2B. 3C. 4D. 5答案:C10. 下列命题中,正确的是()A. 对于任意实数x,x^2 ≥ 0B. 对于任意实数x,x^3 ≥ 0C. 对于任意实数x,x^4 ≥ 0D. 对于任意实数x,x^5 ≥ 0答案:A二、填空题(每题2分,共20分)11. 若sinα = 1/2,且α在第二象限,则cosα的值为______。

答案:-√3/212. 若等差数列的第一项为3,公差为2,则第10项为______。

答案:2113. 已知等比数列的前三项分别为1,3,9,则该数列的公比为______。

中职数学第一学期期期末考试试卷B卷及答案

中职数学第一学期期期末考试试卷B卷及答案

XX 专业数学第一学期期末考试试卷B 卷姓名 班级 成绩 一、选择题(每题3分,合计30分) 1、下列命题:①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集;④若∅A ,则A ≠∅.其中正确的个数是( )A .0B .1C .2D .32、用列举法表示集合{x |x 2-2x +1=0}为( )A .{1,1}B .{1}C .{x =1}D .{x 2-2x +1=0}3、设全集U ={1,2,3,4,5},A ={1,3,5},B ={2,5},则A ∩(∁U B )等于( ) A .{2} B .{2,3} C .{3} D .{1,3}4.如果f (1x )=x1-x ,则当x ≠0时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1 5、函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .先递增再递减6、一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x (x >0)B .y =100x (x >0)C .y =50x (x >0)D .y =100x(x >0)7设a >b >0,则下列不等式中一定成立的是( )A .a -b <0B .0<a b <1 C.ab <a +b2D .ab >a +b8、.不等式x -1x≥2的解为( )A .[-1,0)B .[-1,+∞)C .(-∞,-1]D .(-∞,-1]∪(0,+∞)9、cos 330°等于( ) A.12 B .-12 C.32 D .-3210、已知tan α=34,α∈⎝⎛⎭⎪⎫π,32π,则cos α的值是( )A .±45 B.45 C .-45 D.35二、填空题(每题3分,共计15分)1、设全集U ={x |x <9且x ∈N },A ={2,4,6},B ={0,1,2,3,4,5,6},则∁U A = ____________________,∁U B =________________,∁B A =____________.2、已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________.3、已知一扇形的弧所对的圆心角为54°,半径r =20 cm ,则扇形的周长为________.4、已知x ∈R ,且|x |≠1,则x 6+1与x 4+x 2的大小关系是________.5、.已知sin α=55,则sin 4α-cos 4α的值为________.三、判断题(每题2分,共计6分)1、所有小河流能构成一个集合()2、所有的函数都具有奇偶性()3、空集只有一个子集即它本身()四、解答题(共计49分)1、用适当的方法表示下列集合(10分)(1)在自然数集内,小于1 0的奇数构成的集合;(2)不等式x-2>6的解的集合;2、已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.(9分)3、当x>3时,求函数y=2x2x-3的值域.(8分)4、(10分)求函数y=3-4sin x-4cos2x的最大值和最小值,并写出函数取最值时对应的x的值.5、计算下列各式(12分)已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin2α+13sin αcos α+12cos2α.参考答案 一、选择题1--5 BBDBC 6--10 CCACC 二、填空题1,{0,1,3,5,7,8} {7,8} {0,1,3,5} 2, f (x )=2x +83或f (x )=-2x -83, (6π+40) cm 4, x 6+1>x 4+x 2 5,-35三、判断题1--3✖✖✔四、解答题 1.(1){1,3,5,7,9} (2){x |x >8};2.证明 设a <x 1<x 2<b ,∵g (x )在(a ,b )上是增函数,∴g (x 1)<g (x 2),且a <g (x 1)<g (x 2)<b ,又∵f (x )在(a ,b )上是增函数, ∴f (g (x 1))<f (g (x 2)),∴f (g (x ))在(a ,b )上是增函数. 3.解 ∵x >3,∴x -3>0.∴y =2x 2x -3=2x -32+12x -3+18x -3=2(x -3)+18x -3+12≥22x -3·18x -3+12=24.当且仅当2(x -3)=18x -3,即x =6时,上式等号成立,∴函数y =2x 2x -3的值域为[24,+∞).4.解 y =3-4sin x -4cos 2x =4sin 2x -4sin x -1 =4⎝ ⎛⎭⎪⎫sin x -122-2,令t =sin x ,则-1≤t ≤1,∴y =4⎝ ⎛⎭⎪⎫t -122-2 (-1≤t ≤1).∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π (k ∈Z )时,y max =7.计算题解 (1)原式=4tan α-23tan α+5=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330。

中职数学第一学期期期末考试试卷及答案

中职数学第一学期期期末考试试卷及答案

职业技术学院第一学期期末考试试卷A 卷姓名 班级 成绩 一、选择题(每题3分,合计30分)1、设集合M ={1,2,4,8},N ={x |x 是2的倍数},则M ∩N 等于( ) A .{2,4} B .{1,2,4} C .{2,4,8} D .{1,2,8}2、设f (x )=⎩⎪⎨⎪⎧x +3x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .163、若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( ) A .增函数且f(x)>0 B .增函数且f(x)<0 C .减函数且f(x)>0 D .减函数且f(x)<04、f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( ) A .增函数 B .减函数 C .有增有减 D .增减性不确定5、设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N ∩(∁U M )等于( ) A .{1,3} B .{1,5} C .{3,5} D .{4,5}6、sin 600°+tan 240°的值是( )A .-32 B.32C .-12+ 3 D.12+ 37、已知点P ⎝⎛⎭⎪⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π48、已知tan α=34,α∈⎝⎛⎭⎪⎫π,32π,则cos α的值是( )A .±45 B.45 C .-45 D.359、不等式1x <12的解集是( )A .(-∞,2)B .(2,+∞)C .(0,2)D .(-∞,0)∪(2,+∞)10已知a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .c (b -a )>0 C .ab 2>cb 2 D .ac (a -c )<0 二、填空题(每题3分,共计15分)1、若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围为________.2、经过10分钟,分针转了________度.3、若log 2(log x 9)=1,则x =________.4、已知集合A ={x |x ≤2},B ={x |x >a },如果A ∪B =R ,那么a 的取值范围是5、函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为________. 三、判断题(每题2分,共计6分)1、所有个子高的同学能构成一个集合 ( )2、所有的函数都具有奇偶性 ( )3、空集只有一个真子集即它本身 ( ) 四、解答题(共计49分)1、求不等式-6x 2-x +2≤0的解集(6分)2、已知函数f (x )=x +2x -6,(1)点(3,14)在f (x )的图象上吗? (2)当x =4时,求f (x )的值;(3)当f (x )=2时,求x 的值.(12分)3、已知函数⎩⎨⎧--=112x x y 11x x ≥< (12分)(1)求()f x 的定义域。

数学试卷及参考答案(中职)

数学试卷及参考答案(中职)

2019~2020 学年度第一学期《数学》期末考试试卷(A)姓名: 专业班级: 学号:(注意事项:本试卷总共 3 大题,满分 100 分,请考生在答题纸上作答)一、选择题(每题 3 分,共 45 分)下列选项中只有 1 个正确答案,请将正确答案的选项写在答题纸上。

1. A= { 1, 2, 3, 4, 5}, B= {2, 4, 6}求 A∩B= ( )A {2}B {4}C {1,2,3,4,5,6}D {2,4}2. 不等式 x +3>5 的解集为( )A (1, +∞)B (2, +∞)C (3, +∞)D (4, +∞)3.不等式 x 2 ≤0 的解集是( )A ФB RC { x ︱ x≤0}D { x ︱ x =0}4.下列函数中与 Y =3X 表示同意函数的是( )A y=3 ︱ x ︱ By= (3x) 2 C y= 3x 2x D S=3t5.在指数函数 y=ɑx 中,ɑ的取值范围是( A ɑ>1 B ɑ>0 C ɑ>0 且ɑ≠16.在函数 y=-2X+3 图像上的点是( ) ) D 0<ɑ<1A (1, -1)B (1, 1)C (0, -3)D ( -1, 1 )7.若点 (2,3) 在函数 y=ɑx 图像上, 则下列四点中一定在函数 y=log 的图像上的点是 ( )A (3, 2)B (2, 3)C (2, 2)D (3, 3 )8.若log 0.6<0,则ɑ的取值范围是( )A ɑ>0 且ɑ≠1B ɑ>1C 0<ɑ<1D ɑ>09.y= 必过点是( )A (1, 0)B (0, 1)C (0, 0)D (1, 1)11. 时钟从 2 时走到 3 时 30 分,分针旋转了( )A 450B -450C 5400D -540012. 已知ɑ是锐角,则 2ɑ是( )A 第一象限的角C 小于 1800 的正角13. 19π6角是( )A 第一象限的角C 第三象限的角B 第二象限的角D 不小于直角的正角B 第二象限的角D 第四象限的角14.y= 正弦函数的定义域为( )sinA (0, 2 π)B (00, 3600 )C RD Ф15.奇函数关于( )对称A y 轴B x 轴C 原点D 中心二、填空题(每题 2 分,共 20 分)请将正确的答案写在答题纸上。

中职数学 2023-2024学年河南省中等职业学校职教高教联合体高一(上)期末数学试卷

中职数学 2023-2024学年河南省中等职业学校职教高教联合体高一(上)期末数学试卷

2023-2024学年河南省中等职业学校职教高教联合体高一(上)期末数学试卷一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分)A .{-2,-1,0,1,2}B .{0,1,2}C .{-1,0,1,2}D .{0,1}1.(2分)已知集合A ={-1,0,1},B ={x |-3<x <3,x ∈N },则A ∪B =( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2分)“a 2=a ”是“a >0”的( )√A .[0,2]B .(0,2)C .(-∞,0)∪(2,+∞)D .(-∞,0]∪[2,+∞)3.(2分)不等式x 2-2x ≥0的解集为( )A .(-∞,-1)B .(-1,+∞)C .(-∞,0)D .(0,+∞)4.(2分)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x ),则实数x 的取值范围为( )A .(0,1)B .(-1,1)C .(-1,0)D .(-1,1]5.(2分)函数f (x )=1−x 21+x+(x -1)0的定义域为( )√A .第一象限B .第二象限C .第三象限D .第四象限6.(2分)2022°角的终边在( )A .15B .16C .20D .247.(3分)若数列1,a ,b ,10为等差数列,则2a +b 的值为( )8.(2分)直线3x -y +1=0的倾斜角为( )√A .30°B .150°C .60°D .120°A .10B .24C .60D .1209.(2分)本届冬奥会短道速滑2000米混合接力由武大靖、任子威等五名运动员参赛,若武大靖滑最后一棒(第四棒),则不同出赛方案总数为( )A .2B .2C .1D .3210.(2分)如图所示,O 为边长为1的正六边形ABCDEF 的中心,则|OA +OC |=( )→→√√A .223B .-223C .-223或223D .-23或2311.(3分)已知sinα=13,α∈(π2,π),则cos (π-α)的值为( )√√√√A .若a >b ,则ac 2>bc 2B .若a >b >0,则1a >1b C .若a <b <0,则ba>a bD .若a >b ,1a>1b,则a >0,b <012.(3分)对于实数a ,b ,c ,下列各选项正确的是( )A .π2B .πC .2πD .4π13.(3分)函数y =sinxcosx +1的最小正周期是( )A .B .C .D .14.(3分)一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出这列火车的速度变化情况的是( )15.(3分)从甲、乙、丙、丁四人中任选两人参加问卷调查,则甲被选中的概率是( )二、填空题(本大题共7小题,每小题4分,共28分)A .13B .12C .23D .34A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面16.(3分)设α,β为两个平面,则下列各选项可以推出α∥β的是( )A .1B .3C .83D .3217.(3分)椭圆x 22+y 2m=1的焦点在y 轴上,离心率为12,则m 的取值为( )√A .y 2=8x B .y 2=4x C .y 2=±8x D .y 2=±4x18.(3分)已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24−y 22=1上,则抛物线的方程为( )A .[3,+∞)B .(-∞,-3]C .[-3,3]D .(-∞,-3]∪[3,+∞)19.(3分)点M (x ,y )在圆x 2+(y -2)2=1 上运动,则yx的取值范围是( )√√√√√√A .12B .81C .27D .12020.(3分)已知衡量病毒传播能力的最重要指标叫做传播指数RO ,它指的是在自然情况下(没有外力介入,同时所有人都没有免疫力),一个感染到某种传染病的人,会把疾病传染给多少人的平均数。

中职数学(上)期末考试试题

中职数学(上)期末考试试题

.中职数学(上)期末考试试题(100分)一.选择题(每小题3分,共30分)1.下列说法中,正确的是( )A.第一象限的角一定是锐角B.锐角一定是第一象限的角C.小于︒90的角一定是锐角D.第一象限的角一定是正教2.函数x x f 3)(=,则=)2(f ( )A. 6B. 2C. 3D. -63.设集合{}41|<<=x x M ,{}52|<<=x x N 则=N M I ( )A.{}|15x x <<B.{}|24x x ≤≤C.{}|24x x <<D.{}2,3,44.︒-60角终边在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.下列对象不能组成集合的是( )A. 不大于8的自然数B. 很接近于1的数C. 班上身高超过1.8米的同学D. 班上数学小测试得分在85分以上的同学6.下列关系正确的是( )A. 0∈∅B. 0=∅C. 0∉∅D. {}0=∅7.一元二次不等式260x x -->的解集是( )A.()2,3-B.()(),23,-∞-+∞UC.[]2,3-D.(][),23,-∞-+∞U. 8.下列函数中,定义域为R 的函数是( )A.y =B.13y x =- C.21y x =+ D.21y x =9.在函数21y x =-的图像上的点是( ) A.()0,1- B. ()1,3- C. ()2,0- D. ()1,210.如果ac bc >,那么( )A. ab > B. a b < C. a b ≥ D. a 与b 的大小取决于c 的符号二.填空题(第1-7题,每空3分;第8题,每空2分,共46分)1.写出与︒30终边相等的角的集合|{β=S },Z k ∈.2.用集合的形式写出中国古代的四大发明 .3.集合{}31|≤≤-x x 用区间表示为 .4.设集合{}1,2,3,4A =,集合{}3,4,5,6B =,则A B =I ; A B =U .5.用符号“>”或“<”填空: (1)34 56; (2)34- 56-. 6.用符号“∈”、“∉”、“ Ü ”或“ Ý ”填空:(1)a{}a ; (2){},,a b c {},,,a b c d . 7.函数11y x =+的定义域为(用区间表示) . 8.在空格内填上适当的角度或弧度:. 三.简答题(共24分)1.解一元二次方程:2430x x -+=.(4分)(提示:要写出解题过程)2.已知一段公路的弯道半径为30m ,转过的圆心角为60°,求该弯道的长度l . (提示:弧长公式为lr α=⋅,π取3.14,结果精确到0.1m )(7分)3.已知函数 ()221,3,x f x x +⎧=⎨-⎩0,0 3.x x ≤<≤ (1)求()f x 的定义域;(4分) (2)求()()()2,0,3f f f -的值.(9分)参考答案:一.选择题1.B2.A3.C4.D5.B6.C7.B8.C9.A 10.D二.填空题1.30360k β=︒+⋅2.{印刷术,造纸术,指南针,火药}3.[]1,3-4.{}3,4;{}1,2,3,4,5,65.(1)< (2)>6.(1)∈ (2) Ü7.()(),11,-∞--+∞U8.1.解法一:(公式法) ()22444134b ac ∆=-=--⨯⨯=.()4242212x --±±===⨯, 即14232x +==,24212x -==解法二:(因式分解)()()130x x --= 令1030x x -=⎧⎨-=⎩,得1213x x =⎧⎨=⎩ 2.解:603π︒=, 301010 3.1431.43l r m παπ==⨯==⨯=g答:该弯道的长度为31.4m 3.解:(1)()f x 的定义域为(](](],00,3,3-∞=-∞U(2)()()22213f -=⨯-+=-;()02011f =⨯+=;()23336f =-=-。

(完整)中职高一(上)期末数学试卷A3.docx

(完整)中职高一(上)期末数学试卷A3.docx

职业中专期末试卷(一到四章 )一、选择题( 2 分× 18=36 分,选择题答案请写上面表格中,谢谢配合!)1. 若 A∪B=A, 则 A∩ B 为()A. AB. BC.?D. A或 B2. 不等式 |3x-12|≤9 的整数解的个数是()A. 7B. 6C. 5D. 43.(-a 2) 3的运算结果是()A. a 5B.-a5C.a6D.-a6)4. 如果全集 U=R,A={x|2 < x≤ 4},B={3,4},则 A∩ ( CB)等于(UA.(2,3)∪(3,4 )B.(2,4)C.(2,3)∪(3,4]D. ( 2,4]5.已知集合 A={x|x >2} ,B={x|x > a}, 若 A B ,则 a 的范围为()A.a =2B.a≤2C.a≥ 2D.a≠26.函数 y=2x2-8x+9的最小值是()A. 0B. 1C. 7D. 97.若 x∈[3,5 ),那么式子 3-x 的值一定是()A. 正数B.负数C.非负数D.非正数8.某商品零售价 2006 年比 2005 年上涨 25%,欲控制 2007 年比 2005年只上涨10%,则 2007 年应比 2006 年降价()A.15%B.12%C.10%D.50%9. 已知 a< b<0, 那么一定有()b a b112A.a >b B.0<a<1 C.a<b D.ab< b110. 函数 y=x+x-2 (x >2) 的最小值为()A.4B.3C.2D.12-x11.函数 y= lgx的定义域是()A.[-2,2]B.(0,2)C.(0,2]D.(0,1)∪ (0,2]12.函数 y=lg(x 2-2x-3)的单调递增区间为()A.(3,+∞ )B.(-∞,-1)C.(1,+∞)D.(-∞,1)13.集合 A B 是 A B=A的( )A. 充分但非必要条件B.必要但非充分条件C. 充分必要条件D.既非充分又非必要条件14.已知关于 x 的方程 x2+ ax-a=0 有两个不等的实数根,则()A.a < -4 或 a>0B.a ≥ 0C.-4<a<0D. a>-415.若f2则 f ()的值为()(x+1)=x+3x+5,0A. 3B. 5C.2D.-116.已知 f (x)=x2+ bx+ c 的对称轴为直线 x= 2,则 f(1),f(2),f(4)的大小关系是()A. f(2)< f(1)< f(4)B. f(1)< f(2)< f(4)C. f(2)< f(4)< f(1)D. f(4)< f(2)< f(1)17.下列具有特征 f(x 1· x2)=f(x 1) +f(x 2) 的函数是()A.f(x)=2xB.f(x)=2xC.f(x)=2+xD.f(x)=log x218.设 f(x) 是( - ∞, +∞)上的奇函数, f(x+2)=-f(x),当 0≤x≤1 时,f(x)=x, 则 f(7.5)=()A. -1.5B. -0.5C.0.5D.1.5二、填空题( 3 分× 8=24 分)19.满足条件 {1,2,3}M {1,2,3,4,5,6}的集合的个数是20. 比较大小: 2x 2+5x-3_______ x 2+5x-4. 21. 已知 f (1)=3, f (n+1)=2 f (n)+n, nN +,则 f (4)=_______.22. 函数 f (x)=lg(x 2-kx+k) 无论 x 取何值均有意义,则 k 的取值范围为 _______________.23. 已知 f(x) 是奇函数,且 f(2)=3, 则 f(-2)=________.24. 二次函数 y=ax2+ bx +c (a <0) 与 x 轴的两个交点为( -2,0 ),( 2,0 ) , 则 不 等 式 ax 2 + bx + c > 0 的 解 集 是_____________________. 25. 已知 f (x +1)=x2+ 1,则 f (x )=_____________________.xx 226.求值log 2 1 ( 2 1 ) =_________________. 三、解答题(本题共 8 小题,共 60 分)27. ( 6 分)写出集合 P={1,2,3} 的所有子集。

中职一年级中职数学期末试题与答案

中职一年级中职数学期末试题与答案

一年级数学期末试题一、选择题(本大题共12小题,每题5分,共60分)1、 数列1111,,,...,...345n中第10项是( )A. 110B. 18C. 111D. 1122、等比数列中,a 1=1, q=2, 则S 10=( ) A.1024 B.625 C.1023 D.1003、已知数列{}n a 满足01=a ,nn n a a a ++=+3121,则=4a ( )A. 31B. 1C. 2710D. 34、AB -AC -BC =( )A.2BCB.2 CBC.0D.05、已知向量(3,7)a b →→=-=(-2,4)、,则a b →→•的值 ( ) A.-26 B. 26 C.-34 D. 356、已知→a =(1,2),→b =(-2,3),且k →a 与-k →b 平行,则k =( ) A 0 B 1 C -1 D 23±7、直线43y x =-+的斜率、一个方向向量、一个法向量分别为() A .()()31331k a n =-=-=-,,,, B .()()41441k a n =-=--=-,,,,C .()()31331k a n =-=-=-,,,,D .()()41441k a n =-=-=,,,,8、已知直线l 过点)(1,2与点7,2-(),则直线l 的方程为( )A. 3510x y ++=B. 35110x y +-=C. 53110y x --=D. 5310y x -+=9、已知向量(1,3)a =-,(4,2)b =,17,9c =-(),则c 用a b 、线性表示为( )A. 53c a b =+B. 54c a b =-C. 54c a b =+D. 53c a b =-10、若,4222a b a b a b •=- = =,,,则是( )A .︒0B .︒90C .︒180D .︒27011.直线01=+--k y kx 与圆044222=+--+y x y x 的位置关系是 ( ) A.相交 B.相离 C.相切 D.相交或相切 12、下列各组向量共线的是( )A 1,1a =-()2,2b =--()B 2,1a =()1,2b =-()C 1,2a =-() 2,4b =-()D a 34= -(,) 4,3b =-()二、填空题(本大题共8小题,每题4分,共32分)13、数列-1,2,5,8.....的通项公式是 14、已知数列的前n 项和2n S =n 2n+1+,则9a = 15. 在等比数列{}n a 中,174a a =,则345a a a = .16.x 2+y 2+2ax-by+c=0表示圆心为(2,2),半径为2 的圆,则a= ,b= c= . 17. 点),(11-A 关于点)(2,3M 的对称点是B ,则B 的坐标为 . 18. 已知直线l :0537=-+-y x ,直线l 的横截距为 . 19. AB ED CD EF CB -++-= .20. 已知a b 和均为单位向量,a b 、的夹角为 120,|+2|=a b . 三、解答题(共有6小题,共58分)21. 等比数列{}n a 中,29a =,5243a =,求通项公式及前6项的和.(8分)22. 如图,D 、E 分别为AB,CD 中点,AB a = ,AC b =, 用,a b 表示BE 。

最新中职学校数学期末考试试题数学

最新中职学校数学期末考试试题数学

第一学期期末考试
数学试题
第Ⅰ卷(选择题,共90分)
一、选择题(本大题共30个小题,每小题3分,共90分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)
1.下列命题为真命题的是()
10.如果两条直线没有公共点,则这两条直线的位置关系是()
(A)平行(B)共面(C)异面(D)平行或异面
11.某年级有10个班,每个班按1-50编号,为了了解班上学习情况,要求每班编号为10的同学去开一个座谈会,这里应用的抽样方法是()
(A)分层抽样(B)系统抽样(C)简单随机抽样(D)抽签法12.将4封信投入3个邮箱,不同的投法共有()种
25.下列命题中不正确的是()
(A)棱长都相等的长方体是正方体(B)有两个相邻侧面为矩形的棱柱为直棱柱(C)有两个侧面与底面垂直的棱柱为直棱柱(D)底面为平行四边形的四棱柱为平行六面体。

中职中专职一年级数学期末考卷

中职中专职一年级数学期末考卷

中职中专职一年级数学期末考卷一、选择题(每题5分,共25分)1. 下列哪个数是实数?A. √1B. 3.14C. log2(3)D. 4/02. 已知集合A={1, 2, 3, 4, 5},集合B={2, 4, 6, 8},则A∩B 的结果是?A. {1, 3, 5}B. {2, 4}C. {1, 2, 3, 4, 5, 6, 8}D. 空集3. 若a=3,b=2,则a+b的值是?A. 5B. 5C. 6D. 64. 已知函数f(x)=2x+1,则f(3)的值是?A. 6B. 7C. 8D. 95. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 圆二、填空题(每题5分,共25分)1. 已知等差数列{an}的公差为2,首项为1,则第10项的值为______。

2. 若两个角的和为90°,其中一个角为30°,则另一个角的度数为______。

3. 已知三角形ABC,AB=5,BC=8,AC=10,则三角形ABC的周长为______。

4. 一辆汽车以60km/h的速度行驶,行驶了3小时,则汽车行驶的路程为______。

5. 在平面直角坐标系中,点A(2, 3)关于原点的对称点坐标为______。

三、解答题(每题10分,共50分)1. 解方程:2x 5 = 32. 已知函数f(x) = x² 2x + 1,求f(x)在x=2时的函数值。

3. 计算下列各式的值:(1)(3²)³(2)4² × 2³(3)9 ÷ 3 + 2²4. 在直角三角形ABC中,∠C=90°,AB=10,BC=6,求AC的长度。

5. 已知数列{an}的通项公式为an = 2n + 1,求前5项的和。

四、应用题(每题20分,共40分)1. 某商店举行打折活动,原价为200元的商品,打8折后售价为多少元?2. 一辆汽车行驶了200公里,前一半路程的平均速度为60km/h,后一半路程的平均速度为80km/h,求全程的平均速度。

中职数学上册期末试卷

中职数学上册期末试卷

中职数学上册期末试卷一、选择题(每题2分,共20分)1、下列哪个选项不是数学中的基本运算?A.加法B.减法C.除法D.乘法2、下列哪个图形不是对称图形?A.矩形B.圆形C.三角形D.五角形3、下列哪个函数不是连续函数?A. y = x^2B. y = sin xC. y = e^xD. y = |x|4、下列哪个命题是正确的?A.若a > b,则ac > bcB.若a = b,则ac = bcC.若ac > bc,则a > bD.若ac < bc,则a < b5、下列哪个级数是收敛的?A. 1 + 2 + 3 +...B. 1 - 2 + 3 - 4 +...C. 1 + 2 + 2 + 3 + 3 +...D. 1 - 2 + 3 - 4 +... + n - (n+1)二、填空题(每题3分,共30分)6、一个三角形的三个内角分别为A、B、C,若A + B + C = 180度,则A = ______。

61、若函数f(x)在x = a处可导,则lim(x→a) f'(x)存在等于______。

611、下列哪个矩阵是正定的?A. [1, 2; 2, 4]B. [1, -2; -2, 4]C. [1, -2; -2, 1]D. [1, -2; -2, -1]6111、对于任意实数x和y,都有______。

若函数f(x)在区间[a, b]上连续,且f(a)f(b)<0,则函数f(x)在此区间上至少有一个零点。

中职数学期末试卷一、选择题(每题2分,共20分)1、在下列数列中,哪个是等差数列?()A. 1,3,5,7,9B. 1,2,3,4,5C. 0,2,4,6,8D. 1,4,9,16,252、下列哪个函数是线性函数?()A. y=2xB. y=3x+5C. y=x^2D. y=2x^33、在下列四个几何图形中,哪个是轴对称图形?()A.平行四边形B.三角形C.圆形D.正方形4、下列哪个方程是一元二次方程?()A. 3x-5=10B. 2x^2+3x-5=0C. 4y-8=0D. x+y=105、在下列三个数中,哪个数是无理数?()A. π/3B. 0C. -2023D. √9二、填空题(每题3分,共30分)6、一个等边三角形的边长为6厘米,它的周长是____厘米。

2023年《中职数学》期末考试试卷及参考答案(卷)

2023年《中职数学》期末考试试卷及参考答案(卷)

2023年《中职数学》期末考试试卷及参考答案(卷)注意事项- 考试时间:2小时- 试卷满分:100分- 答案应在答题卡上完成,答题纸不计分- 答案应写清楚题号和选项,如有涂改需及时擦去并重新填写选择题从每小题的四个选项中,选出正确的答案,并将其填写到答题卡上。

1. 下列四个数中,最大的是()A. 2/3B. 0.7C. 0.875D. 9/102. 一张圆桌的直径是80 cm,现在要把它分成一半,每个半圆的面积是多少?A. 400π cm²B. 200π cm²C. 160π cm²D. 80π cm²3. 如果一根长方体的棍子高12 cm,下底边宽4 cm,上底边宽8 cm,试问这个棍子的体积是多少 cm³?A. 240 cm³B. 256 cm³C. 192 cm³D. 384 cm³4. 下列二次方程的解中,-2不是其解的是()A. 3x² - 5x + 2 = 0B. x² + 4x - 4 = 0C. 2x² + 4x - 2 = 0D. 5x² - 4x - 2 = 05. 如果一条长方形铁丝,长30 cm,宽12 cm,我们沿着长度为30 cm的方向剪下一段,请问这段铁丝的长度是多少 cm?A. 24 cmB. 30 cmC. 12 cmD. 18 cm解答题将下列问题的解答写在答题纸上。

1. 某商店打折出售某款T恤,原价为480元,现在打8折,折后价格是多少元?2. 已知正方形ABCD的边长为6 cm,那么它的面积是多少平方厘米?3. 某校图书馆共有10本书,现在进了5本新书,这个图书馆现在有多少本书?4. 一个正方体的体积是64 cm³,边长是多少厘米?5. 某班级有30名同学,其中女生占总人数的3/10,男生有多少人?以上就是2023年《中职数学》期末考试试卷及参考答案,祝各位同学取得优异的成绩!。

数学职高期末试题及答案

数学职高期末试题及答案

数学职高期末试题及答案1. 单选题(每题2分,共20分)1. 若 a 和 b 是正整数,且 a 能整除 b,那么 b 的因数 a 的倍数的个数是:A. aB. a + 1C. a - 1D. 无法确定正确答案:B2. 若方程 x² - px + q = 0 的两个根分别是α 和β,那么α + β 的值等于:A. pB. -pC. qD. -q正确答案:A3. 已知函数 f(x) = x³ + ax² - 2x + 5,若 f(2) = 0,那么 a 的值为:A. -7B. -5D. 7正确答案:B4. 三角形 ABC 的三个内角 A、B、C 分别为 3x°、(2x + 10)°和 (x -20)°,那么角 A 的度数为:A. 25°B. 35°C. 45°D. 55°正确答案:A5. 若集合 A 中有 n 个元素,集合 B 中有 m 个元素,且 A ∪ B 中共有 k 个元素,那么满足等式 n + m - k = ______。

A. 1B. nC. kD. m正确答案:A6. 若函数 y = f(x) 的图像关于 x 轴对称,那么对于任意 x 属于定义域,有 f(x) = ______。

B. 1C. -1D. 无法确定正确答案:A7. 若正方形的边长为 a cm,正方形面积的平方是 16,则 a 的值等于:A. 16B. 4C. 2D. 1正确答案:C8. 如果直线 kx - y + 4 = 0 与 x 轴和 y 轴分别交于点 A 和 B,那么AB 的斜率的值等于:A. 4B. -4C. -1/4D. 1/4正确答案:D9. 将一个两位数的个位数字与十位数字交换位置所得的数比原数大36,且个位数字比十位数字小 4。

原数是:A. 48B. 65C. 83D. 94正确答案:D10. 若两个集合 A 和 B 的交集有 5 个元素,且集合 A 的元素个数是集合 B 元素个数的 3 倍,那么集合 B 的元素个数为:A. 15B. 12C. 8D. 5正确答案:C2. 多选题(每题2分,共10分)1. 若 2x - 1 < 7,并且 3x + 4 > 10,则 x 的取值范围是:A. -1 < x < 3B. x > 3C. x < -1D. x > -1正确答案:A2. 若函数 y = f(x) 在区间 [-2, 4] 上单调递增,并且 f(1) = 3,那么函数 f(x) 在区间 [-2, 4] 上连续递增的是:A. f(x) = xB. f(x) = x²C. f(x) = x³D. f(x) = √x正确答案:A、B、D3. 在阴影部分选择所有与集合 {1, 3, 5} 互斥的集合:A. {2, 4, 6}B. {1, 2, 3}C. {3, 5, 7}D. {6, 8, 10}正确答案:A、D4. 若集合 A = {a, b, c},集合 B = {1, 2, 3},则 A × B (A 与 B 的直积)的结果是:A. {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}B. {(1, a), (2, b), (3, c)}C. {(a, a), (b, b), (c, c)}D. {(a, c), (b, a), (c, b)}正确答案:A5. 将一个正整数的个位数加 5,再乘以 2,再加上 1,再将所得结果除以 10,再将商和余数加起来等于:A. 15B. 16C. 17D. 18正确答案:C3. 解答题(每题10分,共20分)1. 计算方程组:2x - 3y = 53x + 2y = 16解答过程:通过消元法或代入法可得:x = 3y = 22. 计算下列不等式的解集:2x - 5 < 3x + 4解答过程:转化为一元一次方程:2x - 3x < 4 + 5-x < 9x > -9因此,不等式的解集为 x > -9。

中职期末数学试卷及答案

中职期末数学试卷及答案

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()。

A. √9B. √16C. √-16D. √252. 已知方程 2x - 5 = 3,解得 x =()。

A. 2B. 3C. 4D. 53. 若 a = -2,则 |a| 的值为()。

A. 2B. -2C. 0D. 无法确定4. 下列各数中,无理数是()。

A. √4B. √9C. √16D. √25. 已知 a + b = 5,a - b = 1,则 a 的值为()。

A. 3B. 4C. 5D. 66. 下列函数中,一次函数是()。

A. y = x^2 + 2x + 1B. y = 2x + 3C. y = 3x - 4D. y = x^3 + 2x7. 已知等差数列的前三项分别为 1,3,5,则第四项为()。

A. 7B. 8C. 9D. 108. 若等比数列的第一项为 2,公比为 3,则第五项为()。

A. 18B. 27C. 36D. 459. 已知圆的半径为 5,则其周长为()。

A. 15πB. 25πC. 30πD. 35π10. 若直角三角形的两个直角边分别为 3 和 4,则斜边长为()。

A. 5B. 6C. 7D. 8二、填空题(每题5分,共50分)1. 若 a > b,则 |a| _______ |b|。

2. 5x - 3 = 20 的解为 x = _______。

3. 二元一次方程组 2x + 3y = 6,x - y = 1 的解为 x = _______,y = _______。

4. 若等差数列的第一项为 2,公差为 3,则第10项为 _______。

5. 等比数列 3,9,27,…… 的公比为 _______。

6. 圆的直径为 10,则其面积为 _______。

7. 直角三角形的两个直角边分别为 6 和 8,则斜边长为 _______。

8. 若 a = -2,b = 3,则 a^2 + b^2 的值为 _______。

中职高一数学期末试卷及答案

中职高一数学期末试卷及答案

中职高一数学期末试卷及答案一、选择题(本大题共12小题,每小题5分,共60分)1. 下面哪些是平面三角形中的充要条件?A.两个内角相加等于180° B.三条边的长度均相等C.任意两边之和大于第三边 D.三条边都大于零答案:D2. 已知二次函数y=αx2+βx+γ中,α>0,当x<-2时,y取得最大值。

那么此函数抛物线的顶点是()A.M(2,α+2β+γ) B.M(-2,α+2β+γ) C.M(2,-α+2β+γ) D.M(-2,-α+2β+γ)答案:B3. 将函数y=2x2+2x-2的图象沿x轴的正方向平移1个单位后,其图象上的一点P的坐标是( )A.(0,-1) B.(0,2) C.(1,2) D.(1,-1)答案:C4. 若a,b,c,d是函数f(x)的四个不同零点,根据中心对称原理可知f(a+b+c+d)的值为()A.2(a+b+c+d) B.0 C.-2(a+b+c+d) D.不能确定答案:B5. 用概率统计法求积分∫ 10-x2 dx,积分范围为[0,2]时错误的说法是()A.分组时组数为2 B.随机选取的点的数目为3C.用反几何转换法求积分 D.可以将整个空间划分为n段答案:C二、填空题(本大题共7小题,每小题5分,共35分)6. 若y=3x2+2x的导数dy/dx=3_______2x+2 。

答案:*7. 椭圆C:x2/9+y2/4=1的长轴长等于_______6 。

答案:√8. 设函数f(x)=2x2+3x+1,f(-1)= ______3 _______ 。

答案:59. 下列说法哪一项是错误的?______方程x2/9+y2/4=1表示的椭圆的全部焦点都在椭圆上 _____。

答案:方程x2/9+y2/4=1表示的椭圆的全部焦点都在椭圆上10. 若y=f(x)是函数f(x)的图象,则把y轴向下平移2个单位得到的图象为_______f(x)-2 _________。

自贡市中职校2023-2024学年度高一上末考试数学试卷 (含答案)

自贡市中职校2023-2024学年度高一上末考试数学试卷 (含答案)

中职高一数学上期末试卷 第1页 共9页自贡市中等职业学校2023-2024学年高一年级上学期期末考试数 学本试题卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.2.第I 卷共1个大题,15个小题.每个小题4分,共60分.一、选择题(每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 设集合{}1,2,3A =,集合{}3,4,5B =,则AB =( )A. φB. {}3C. {}1,2D. {}1,2,3,4,5 2.函数()f x =)A. {}|2x R x ∈≠B. {}|<2x R x ∈C. {}|2x R x ∈≥D. {}|>2x R x ∈3. 已知函数()y f x =的对应关系如下表,函数()y g x =的图象是如图的曲线ABC ,其中(1, 3)(2, 1)(3, 2)A B C ,,,则()()2f g 的值为( )A. 3B. 2C. 1D. 0中职高一数学上期末试卷 第2页 共9页4. 若>a b ,下列说法正确的是( )A. 1>2a b +-B. >ac bcC. 22>ac bcD. 2>2b a 5. (1)(2)0x x -+≤的解集为( )A. {}|12x x -≤≤B. {}|21x x -≤≤C. {}|21x x x ≤-≥或D. {}|12x x x ≤-≥或 6. 函数1()f x x=的单调递减区间是( ) A . (, 0)(0, +)-∞∞和 B . (, 0)(0, +)-∞∞C . (, 0)-∞D . (0, +)∞7. 已知()y f x =是定义在R 上的奇函数,且(1)3f =,则(1)f -=( ) A. 1- B. 3- C. 3 D. 1 8. 下列所给图象是函数图象的个数为( )A. 1B. 2C. 3D. 4 9. “>0x ”是“>1x ”的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件 10. 下列不等式中,解集为{}11x x -<<的是( )A. 210x -≤B. 10x -≤C.()()1011x x ≤+-D. 101x x -≤+中职高一数学上期末试卷 第3页 共9页11. 已知函数1()(>1)x f x a a -=,则该函数图象必经过定点( ) A. (0, 1) B. (0, 2) C. (1, 2) D. (1, 1)12. 若函数2()21f x x mx =+-在区间(3, )-+∞上是增函数,则实数m 的取值范围是( ) A. 3m ≥ B. 3m ≤ C. 3m ≥- D. 3m ≤-13. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则随机调查的100位学生阅读过《西游记》的学生人数为( )A. 50B. 60C. 70D. 8014. 已知函数()f x 是定义在()(),00,∞-+∞上的奇函数,且()10f -=,若对于任意两个实数x 1,()20,x ∈+∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则不等式()0xf x >的解集是( )A. ()(),10,1-∞-B. ()(),11,-∞-+∞C. ()()1,01,-+∞ D. ()()1,00,1-15. 计算0122222()x x N ++++∈,令0122222x S =++++Ⅰ,将Ⅰ两边同时乘以2:123122222x S +=+++Ⅰ,用Ⅰ−Ⅰ得到:2S S -=1231(2222)x ++++_012(2222)x ++++,得到121x S +=-;观察该式子的特点,每一项都是前一项的2倍(除第一项外);运算思路是将代数式每一项乘2后再与原式相减,数学上把这种运算的方法叫做“错位相减”,那么当 0121013333S =++++时候,则1S 的值为( )A. 1131- B. 1031- C. 11312- D. 10312-中职高一数学上期末试卷 第4页 共9页第Ⅱ卷(非选择题 共90分)注意事项:1. 非选择题必须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.答在试题卷上无效.2. 本部分共2个大题,12个小题.共90分.二、填空题(本大题共5小题,每小题4分,共20分) 16. 不等式2<1x -的解集为 .(注意:用区间表示)17. 分段函数()22, 11, 2<1x x f x xx x ⎧+≥⎪=⎨⎪+-≤⎩,则分段函数的定义域为________. 18. 若()12f x x =-,则(2)f -= .19. 2023年第31届世界大学生运动会(成都大运会)是中国大陆第三次举办世界大学生夏季运动会,也是中国西部第一次举办的世界性综合运动会,有关吉祥物“蓉宝”的纪念徽章、盲盒等商品成为抢手货,市场供不应求。

中职数学第一学期期期末考试试卷及答案

中职数学第一学期期期末考试试卷及答案

2017级财务管理专业第一学期期末考试试卷A 卷姓名 班级 成绩一、选择题(每题3分,合计30分) 1、设A =}{22x x -<<,}{1B x x =≥,则AUB =( ) A .}{12x x ≤< B .{2x x <-或2x >C .}{2x x >- D .{2x x <-或}2x > 2、一元二次方程042=+-mx x 有实数解的条件是m ∈( )A.]()[∞+-∞-,44,B.()4,4-C.()()+∞-∞-,44,D.[]4,4-3、不等式31x ->的解集是 A.()2,4 B.()(),24,8-∞+ C.()4,2--D.()(),42,-∞--+∞4、设函数(),f x kx b =+若()()12,10f f =--=则 A.1,1k b ==- B.1,1k b =-=-C.1,1k b =-= D.1,1k b ==5、已知函数⎩⎨⎧--=112x x y 11x x ≥< 则()2f f =⎡⎤⎣⎦ A.0 B.1 C.2D.56、下列各函数中,既是偶函数,又是区间(0,8)+内的增函数的是A.y x = B.3y x = C.22y x x =+ D.2y x =-7、函数()f x =的定义域是A.{}22x x -<<B.{}33x x -<<C.12x x -<<D.{}13x x -<<8、下列实数比较大小,正确的是 ( )A a >-aB 0>-aC a <a+1D -61<-419、如果不等式x2-4x+m+1<0无解,则m的取值范围是 ( )A m≥4B m≤4C m≤3D m≥3 10、函数y=-x2的单调递减区间是( )A (-∞,0)B [0,+∞)C (-∞,+∞)D [-1,+∞)二、填空题(每题3分,共计15分)1、指数式3227()38-=,写成对数式为2、 对数式31log 3,27=-写出指数式3、=0600sin 的值为4、不等式x 2-2x+1>0的解集为5、设U={绝对值小于4的整数},A={0,1,2,3},则 C U A三、判断题(每题2分,共计6分)1、所有个子高的同学能构成一个集合 ( )2、所有的函数都具有奇偶性 ( )3、空集只有一个真子集即它本身 ( ) 四、解答题(共计49分)1、 解关于x 的不等式:32-<+mx ()0≠m (6分)2、设全集为R,A={}41<-x x ,B={}022≥-x x x ,求A ∩B ,A ∪B , A ∩B C U .(12分)3、已知函数⎩⎨⎧--=112x x y 11x x ≥< (12分)(1)求()f x 的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017级财务管理专业第一学期期末考试试卷A 卷
姓名 班级 成绩 一、选择题(每题3分,合计30分)
1、设A =}{22x x -<<,}{1B x x =≥,则AUB =( )
A .}{12x x ≤<
B .{2x x <-或2x >
C .}{2x x >-
D .{2x x <-或}2x > 2、一元二次方程042=+-mx x 有实数解的条件是m ∈( ) A.]()[∞+-∞-,44,Y B.()4,4- C.()()+∞-∞-,44,Y D.[]4,4- 3、不等式31x ->的解集是
A.()2,4 B.()(),24,8-∞+U C.()4,2-- D.()(),42,-∞--+∞U 4、设函数(),f x kx b =+若()()12,10f f =--=则 A.1,1k b ==- B.1,1k b =-=- C.1,1k b =-= D.1,1k b == 5、已知函数⎩⎨
⎧--=1
12x x y 1
1x x ≥< 则()2f f =⎡⎤⎣⎦ A.0 B.1 C.2 D.5
6、下列各函数中,既是偶函数,又是区间(0,8)+内的增函数的是
A.y x = B.3y x = C.22y x x =+ D.2y x =-
7
、函数()f x =
的定义域是
A.{}22x x -<< B.{}33x x -<< C.12x x -<< D.{}13x x -<<
8、下列实数比较大小,正确的是 ( ) A a >-a B 0>-a C a <a+1 D -61
<-4
1
9、如果不等式x2-4x+m+1<0无解,则m的取值范围是 ( ) A m≥4 B m≤4 C m≤3 D m≥3 10







2
的单调递减区间是
( )
A (-∞,0)
B [0,+∞)
C (-∞,+∞)
D [-1,+∞) 二、填空题(每题3分,共计15分)
1、指数式3227
()3
8-=
,写成对数式为 2、 对数式31
log 3,27
=-写出指数式
3、=0600sin 的值为
4、不等式x 2-2x+1>0的解集为
5、设U={绝对值小于4的整数},A={0,1,2,3},则 C U A 三、判断题(每题2分,共计6分)
1、所有个子高的同学能构成一个集合 ( )
2、所有的函数都具有奇偶性 ( )
3、空集只有一个真子集即它本身 ( )
四、解答题(共计49分)
1、 解关于x 的不等式:32-<+mx ()0≠m (6分)
2、设全集为R,A={}41<-x x ,B={}022≥-x x x ,求A ∩B ,A ∪B , A ∩B C U .(12分)
3、已知函数⎩⎨
⎧--=1
12x x y 1
1x x ≥< (12分) (1)求()f x 的定义域。

(2)作出函数()f x 的图像,并根据图像判断函数()f x 的奇偶性。

4、不等式|x+a |≤b 的解集是{x |-1≤x ≤5},求a ,b 的值。

(10分)
5、计算下列各式(9分) 1、已知3tan =α,求.cos ,sin αα
2、()()0000150cos 300tan 60cos 45tan -+-*+
精品文档
参考答案
解答题 1、
2、
3、
图像略 4、
5、 1、
2、。

相关文档
最新文档