2017届凉山州中考适应性考试数学试卷
2017年四川省凉山州人教版初中数学中考模拟试卷(无答案)
xB CE 2017年凉山州高中阶段招生统一考试(模拟)数 学 试 卷A 卷(共120分)一、选择题(共12小题,每小题4分,共48分) 1、1.5的倒数是( )A 、23 B 、23- C 、32 D 、32- 2、下列各式计算正确的是( )A 、823-=- B 、932-=- C 、339x x x =÷ D 、3212±=3、光速为300000km/s ,太阳光从太阳照到地球约需500s ,则地球与太阳的距离用科学计数法表示正确的是( )A 、s /km .81051⨯ B 、s /km .91051⨯ C 、s /km 81015⨯ D 、s /km 91015⨯ 4、下列各图中,既是轴对称图形,又是中心对称图形的是( )A 、B 、C 、D 、 5、下列关于一元二次方程01322=+-x x 根的说法正确的是 ( )A 、有两个不等实数根B 、有两个相等实数根C 、有一个实数根D 、没有实数根 6、函数21-+=x x y 中,自变量x 的取值范围是( ) A 、1-≥x B 、2≠x C 、21≠-≥x x 且 D 、21≠-≥x x 或 7、为了了解某社区居民用电情况,随机对该社区10户居民进行了调查,并将4月份的用电量制表如下:则根据表中信息,下列说法错误的是( )A 、中位数是55B 、众数是60C 、方差是29D 、平均数是548、如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A 、3 B 、4 C 、5 D 、6(第8题图) (第9题图) (第10题图)9、如图,边长为2的正方形ABCD 的中心在直角坐标系的原点O ,AD ∥x 轴,以O 为顶点且过A 、D 两点的抛物线与以O 为顶点且经过B 、C 两点的抛物线将正方形分割成几部分,则图中阴影部份的面积是( )A 、1B 、2C 、3D 、410、如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别是AB 、CD 的中点,连接AF 并延长交BC 延长线于点G ,则下列结论中错误的是( )A 、AD ∥EF ∥BCB 、AD+BC =2EFC 、△AD F ≌△GCF D 、21:S :S ABG AEF =∆∆11、如图,线段OA 交⊙O 于点B ,且OB=AB ,点P 是⊙O 上的一个动点,则sin ∠P AO 的最大值为( )A 、21B 、22C 、23D 、3(第11题图) (第12题图)12、已知,抛物线c bx ax y ++=2的图象如图所示,则下列结论错误的是( )A 、0>aB 、04=+b aC 、042>-ac b D 、024<+-c b a二、填空题(共5小题,每小题4分,共20分) 13、分解因式:3222y xy y x +-= .14、已知,如图,在四边形ABCD 中, E 、F 、G 、H 分别是四边中点,若要使四边形E 、F 、G 、H 为菱形,则对角线AC 、BD 需满足条件 .(第14题图) (第15题图) 15、如图,点P 是反比例函数x k y =图象上的一点,且PQ ⊥x 轴于点Q ,29=OPQ S ∆,则k 的值为 .16、将一个半径为5,圆心角为120°的扇形不重合、无缝隙地围成一个圆锥侧面,则此圆锥的底面半径是 . 17、规定一种新运算:bc ad dc b a -=,例如232414321-=⨯-⨯=,则方程03121=-+xx x x 的解是 .三、解答题(共2小题,每小题6分,共12分)18、计算:()()201523121383033-+⎪⎭⎫⎝⎛-+---︒+--πtan19、先化简,再求值:222211yxy x x y x y x +-÷⎪⎪⎭⎫⎝⎛-++,其中12+=x ,12-=y .四、解答题(共3小题,每小题8分,共24分)20、在平面直角坐标系中,△ABC 的位置如图所示,请解答下列问题:(1)将△ABC 向右平移4个单位长度,得到△A 1B 1C 1,画出平移后的△A 1B 1C 1; (2)将△A 1B 1C 1绕点O 顺时针方向旋转90°,得到△A 2B 2C 2,画出旋转后的△A 2B 2C 2; (3)在△ABC 经上述的(1)、 (2)的变换过程中,点A 经过的路径总长为 .(第23题图)21、如图,在□ABCD中,E、F分别为BC、AB中点,连接FC、AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若GE=2,试求AN的长.(第21题图)22、为了响应我州“感恩社会”主题教育活动,某中学在全校学生中开展了以“感恩社会”为主题的征文比赛,评选出一、二、三等奖和优秀奖,小红同学根据获奖结果,绘制成如图请你根据以上图表提供的信息,解答下列问题:(1)填空:a= ,b= ,c= ,n= ;(2)学校准备在获得一等奖的作者中随机推荐两名代表学校参加州级比赛,已知李艳和王明都获得了一等奖,请用树状图或列表的方法,求恰好选中这二人的概率.五、解答题(共2小题,每小题8分,共16分) 23、关于三角函数有如下的公式:βαβαβαsin cos cos sin )sin(+=+ ① βαβαβαsin sin cos cos )cos(-=+ ② )tan tan (tan tan tan tn )tan(011≠⋅-⋅-+=+βαβαβαβα ③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如.42622212223456045604560105+=⨯+⨯=︒︒+︒︒=︒+︒=︒sin cos cos sin )(sin sin请你根据上述知识解决以下问题: (1)求︒75tan 的值;(2)如图,直升飞机在一建筑物CD 上方A 点处侧得建筑物顶端D 点的俯角α为60°,低端C 点的俯角β为75°,此时直升飞机与建筑物CD 的水平距离BC 为42m .试求建筑物CD 的高.(第23题图)24、某商场按标价销售某种商品时,每件获利45元,按标价的8. 5折销售该商品8件与将标价降低35元销售12件所获利润相同.若按标价销售,每天可售出该商品100件,若每件降价1元,则每天可多售出该商品4件.(1)该商品每件进价、标价分别是多少?(2)每件商品降价多少元销售,每天获利最大?最大利润是多少?B 卷(共30分)六、填空题(共2小题,每小题5分,共10分)25、若关于x 的方程0112=---x xx m 有增根, 则m 的值是 .26、已知,如图,点P 位于等边△ABC 内,且P A =2,PB =3,PC =1,若将△PBC 绕点 B 逆时针旋转60°得△P ’BA ,连接PP ’,则可求得AB 的长为 . (第26题图) 七、解答题(第27题8分,第28题12分,共20分)27、已知,如图,AB 是⊙O 的直径,BC 与⊙O 相交于点D ,且点D 为BC 的中点,DE ⊥AC 于点E .(1)求证:DE 是⊙O 的切线; (2)若OA =3,AE =2,求DE 的长.(第27题图)28、已知,如图,在平面直角坐标系中,以BC 为直径的⊙M 与x 轴相交于A (1,0)、B (3,0)两点,与y 轴相交于D 、E 两点(点E 在点D 下方),以点C 为顶点的抛物线c bx x y ++-=2经过B 、D 两点.(1)求该抛物线的函数解析式; (2)求四边形OBCD 的面积;(3)在抛物线上(x 轴上方的部分)是否存在点P ,使OBCD PAB S S 四边形31=∆,若存在,请求出点Q 的坐标;若不存在,请说明理由.(第28题图)28、已知,如图,在平面直角坐标系中,以BC 为直径的⊙M 与x 轴相交于A (1,0)、B (3,0)两点,与y 轴相交于D 、E 两点(点E 在点D 下方),以点C 为顶点的抛物线c bx x y ++-=2经过B 、D 两点,连接BE 且延长交抛物线于点P ,连接P A .(1)求该抛物线的函数解析式; (2)求△P AB 的面积;(3)在抛物线上(x 轴上方的部分)是否存在点Q ,使PAB QAB S S ∆∆2=,若存在,请求出点Q 的坐标;若不存在,请说明理由.(第28题图)。
2017中考数学模拟试题含答案(精选5套)
2017年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B 。
23C 。
2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个 C 。
3个 D. 2个3。
据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A 。
1。
8×10B 。
1.8×108C 。
1.8×109 D. 1。
8×10104. 估计8-1的值在( )A. 0到1之间 B 。
1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A 。
平行四边形B. 矩形C. 正方形D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C 。
400名 D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A 。
(x + 2)2= 9 B 。
(x — 2)2= 9C 。
(x + 2)2 = 1D. (x - 2)2=19。
如图,在△ABC 中,AD,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B 。
1∶4C 。
1∶3D 。
2∶310。
下列各因式分解正确的是( )A 。
x 2+ 2x-1=(x — 1)2B. - x 2+(—2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x — 2)D 。
2017凉山州数学中考模拟真题(2)
2017凉山州数学中考模拟真题(2)2017凉山州数学中考模拟试题答案一、选择题(本题共20个小题,每小题3分,共60分)1.计算(﹣π)0÷(﹣ )﹣2的结果是( )A.﹣B.0C.6D.【考点】负整数指数幂;零指数幂.【分析】根据零指数幂、负整数指数幂,可得答案.【解答】解:原式=1÷9= ,故选:C.2.下列计算正确的是( )A.2+a=2aB.2a﹣3a=﹣1C.(﹣a)2•a3=a5D.8ab÷4ab=2ab【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别利用合并同类项法则以及同底数幂的乘法运算法则以及单项式除以单项式法则进而判断即可.【解答】解:A、2+a无法计算,故此选项错误,不合题意;B、2a﹣3a=﹣a,故此选项错误,不合题意;C、(﹣a)2•a3=a5,正确,符合题意;D、8ab÷4ab=2,故此选项错误,不合题意;故选:C.3.下列图形:任取一个既是轴对称图形又是中心对称图形的概率是( )A. B. C. D.1【考点】概率公式;轴对称图形;中心对称图形.【分析】用既是中心对称图形又是轴对称图形的个数除以图形的总个数即可求得概率;【解答】解:∵四个图形中既是中心对称图形又是轴对称图形的是第二个和第四个,∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为= ,故选B.4.化简x÷ • 的结果为( )A. B. C.xy D.1【考点】分式的乘除法.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=x• • = ,故选B5.某种细菌直径约为0.00000067mm,若将0.000 000 67mm用科学记数法表示为6.7×10nmm(n为负整数),则n的值为( )A.﹣5B.﹣6C.﹣7D.﹣8【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵0.000 000 67mm=6.7×10﹣7m m=6.7×10nmm,∴n=﹣7.故选:C.6.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则( )A.圆锥的底面半径为3B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8【考点】圆锥的计算.【分析】根据圆锥的侧面展开图的弧长=2πr= ,求出r以及圆锥的高h即可解决问题.【解答】解:设圆锥的底面半径为r,高为h.由题意:2πr= ,解得r=2,h= =4 ,所以tanα= = ,圆锥的主视图的面积= ×4×4 =8 ,表面积=4π+π×2×6=16π.∴选项A、B、C错误,D正确.故选D.7.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD 的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:4B.1:3C.1:2D.1:1【考点】平行线分线段成比例;平行四边形的性质.【分析】首先证明△DFE∽△BAE,然后利用对应边成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.【解答】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE= DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2;故选:C.8.如图,数轴上的A,B,C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点B与点C之间(靠近点C)或点C的右边【考点】数轴.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|b|>|c|,∴点A到原点的距离最大,点B其次,点C最小,又∵AB=BC,∴在点B与点C之间,且靠近点C的地方.故选:D.9.若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【考点】根的判别式.【分析】根据已知不等式求出k的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况.【解答】解:∵5k+20<0,即k<﹣4,∴△=16+4k<0,则方程没有实数根.故选:A.10.在我县中学生春季田径运动会上,参加男子跳高的16名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 3 3 4 3 2这些运动员跳高成绩的中位数和众数分别是( )A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,3【考点】众数;中位数.【分析】根据众数及中位数的定义,结合表格数据进行判断即可.【解答】解:第8和第9位同学的成绩是1.70,1.70,故中位数是1.70;数据1.70出现的次数最多,故众数是1.70.故选B.11.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )A. cmB. cmC. cmD.4cm【考点】圆心角、弧、弦的关系;全等三角形的判定与性质;勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴ = ,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF= AC=3(cm),在Rt△DOE中,DE= =4(cm),在Rt△ADE中,AD= =4 (cm).故选:A.12.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y= (k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是( )A.b=2a+kB.a=b+kC.a>b>0D.a>k>0【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】根据函数图象知,由一次函数图象所在的象限可以确定a、b的符号,且直线与抛物线均经过点A,所以把点A的坐标代入一次函数或二次函数可以求得b=2a,k的符号可以根据双曲线所在的象限进行判定.【解答】解:∵根据图示知,一次函数与二次函数的交点A的坐标为(﹣2,0),∴﹣2a+b=0,∴b=2a.∵由图示知,抛物线开口向上,则a>0,∴b>0.∵反比例函数图象经过第一、三象限,∴k>0.A、由图示知,双曲线位于第一、三象限,则k>0,∴2a+k>2a,即b<2a+k.故A选项错误;B、∵k>0,b=2a,∴b+k>b,即b+k>2a,∴a=b+k不成立.故B选项错误;C、∵a>0,b=2a,∴b>a>0.故C选项错误;D、观察二次函数y=ax2+bx和反比例函数y= (k≠0)图象知,当x=﹣ =﹣ =﹣1时,y=﹣k>﹣ =﹣ =﹣a,即k∵a>0,k>0,∴a>k>0.故D选项正确;故选:D.13.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是( )A.8B.7C.6D.5【考点】一元一次方程的应用.【分析】设甲计划完成此项工作的天数为x,根据甲先干一天后甲乙合作完成比甲单独完成提前3天即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设甲计划完成此项工作的天数为x,根据题意得:x﹣(1+ )=3,解得:x=7.故选B.14.不等式组的最小整数解为( )A.﹣1B.0C.1D.2【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】解:不等式组解集为﹣1其中整数解为0,1,2.故最小整数解是0.故选B.15.在﹣1,0,1,2,3这五个数中任取两数m,n,则二次函数y=﹣(x+m)2﹣n的顶点在x轴上的概率为( )A. B. C. D.【考点】列表法与树状图法;二次函数的性质.【分析】画树状图展示所有20种等可能的结果数,利用二次函数的性质找出二次函数y=﹣(x+m)2﹣n的顶点在x轴上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有20种等可能的结果数,其中二次函数y=﹣(x+m)2﹣n的顶点在x轴上的结果数为4,所以二次函数y=﹣(x+m)2﹣n的顶点在x轴上的概率= = .故选A.16.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为( )A.12米B.4 米C.5 米D.6 米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,然后根据勾股定理求得AB的长度.【解答】解:Rt△ABC中,BC=6米, =1:,∴AC=BC× =6 ,∴AB= = =12.故选A.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O 于点E,连结EC.若AB=8,CD=2,则EC的长为( )A.2B.8C.2D.2【考点】垂径定理;勾股定理;圆周角定理.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.【解答】解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC= AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE= = =6,在Rt△BCE中,∵BE=6,BC=4,∴CE= = =2 .故选:D.18.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠CDB′等于( )A.40°B.60°C.70°D.80°【考点】翻折变换(折叠问题).【分析】先根据三角形内角和定理求出∠ABC的度数,再由翻折变换的性质得出△BCD≌△B′CD,据此可得出结论.【解答】解:∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠ABC=90°﹣25°=65°.∵△B′CD由△BCD翻折而成,∴∠BCD=∠B′CD= ×90°=45°,∠CB′D=∠CBD=65°,∴∠CDB′=180°﹣45°﹣65°=70°.故选C.19.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足( )A.n≤mB.n≤C.n≤D.n≤【考点】一元一次不等式的应用.【分析】根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【解答】解:设成本为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)﹣1≥0,去括号得:1﹣n%+m%﹣﹣1≥0,整理得:100n+mn≤100m,故n≤ .故选:B.20.如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为( )A. B. C. D.【考点】动点问题的函数图象.【分析】由菱形的性质得出AB=BC=CD=DA,OA= AC=3,OB= BD=4,AC⊥BD,分两种情况:①当BM≤4时,先证明△P′BP∽△CBA,得出比例式,求出PP′,得出△OPP′的面积y是关于x的二次函数,即可得出图象的情形;②当BM≥4时,y与x之间的函数图象的形状与①中的相同;即可得出结论.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,OA= AC=3,OB= BD=4,AC⊥BD,①当BM≤4时,∵点P′与点P关于BD对称,∴P′P⊥BD,∴P′P∥AC,∴△P′BP∽△CBA,∴ ,即,∴PP′= x,∵OM=4﹣x,∴△OPP′的面积y= PP′•OM= × x(4﹣x)=﹣ x2+3x;∴y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,0);②当BM≥4时,y与x之间的函数图象的形状与①中的相同,过(4,0)和(8,0);综上所述:y与x之间的函数图象大致为 .故选:D.二、填空题(本大题共4小题,每小题3分,共12分)21.抛物线y=x2+mx+n可以由抛物线y=x2向下平移2个单位,再向右平移3个单位得到,则mn值为66 .【考点】二次函数图象与几何变换.【分析】求得抛物线y=x2向上平移2个单位,再向左平移3个单位后函数的解析式,化成一般形式求得m和n的值,进而求得代数式的值.【解答】解:抛物线y=x2向上平移2个单位,再向左平移3个单位后函数的解析式是:y=(x+3)2+2.即y=x2+6x+11,则m=6,n=11,则mn=66.故答案是:66.22.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为.【考点】切线的性质;解直角三角形.【分析】连接OD,作E H⊥BC,如图,先利用圆周角定理得到∠A=90°,再利用等角的余角相等得到∠BEH=∠C,接着根据切线的性质得到OD⊥BC,易得四边形EHOD为正方形,则EH=OD=OE=HD=5,所以BH=7,然后根据正切的定义得到tan∠BEH= ,从而得到tan∠ACB的值.【解答】解:连接OD,作EH⊥BC,如图,∵EF为直径,∴∠A=90°,∵∠B+∠C=90°,∠B+∠BEH=90°,∴∠BEH=∠C,∵直线l与⊙相切于点D,∴OD⊥BC,而EH⊥BC,EF∥BC,∴四边形EHOD为正方形,∴EH=OD=OE=HD=5,∴BH=BD﹣HD=7,在Rt△BEH中,tan∠BEH= = ,∴tan∠ACB= .故答案为 .23.如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度为 4 .【考点】菱形的性质.【分析】由△MAE∽△NAF,推出 = ,可得 = ,解方程即可解决问题.【解答】解:设AN=x,∵四边形ABCD是菱形,∴∠MAE=∠NAF,∵∠AEM=∠AFN=90°,∴△MAE∽△NAF,∴ = ,∴ = ,∴x=4,∴AN=4,故答案为4.24.如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则A2017的坐标是(﹣673,﹣673) .【考点】规律型:点的坐标.【分析】先根据每一个三角形有三个顶点确定出A2017所在的三角形,再求出相应的三角形的边长以及A2017的纵坐标的长度,即可得解.【解答】解:∵2017÷3=672…1,∴A2017是第673个等边三角形的第1个顶点,第673个等边三角形边长为2×673=1346,∴点A2017的横坐标为×(﹣1346)=﹣673,∵边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,∴点A2017的纵坐标为﹣673,∴点A2014的坐标为(﹣673,﹣673),故答案为:(﹣673,﹣673).三、解答题(本大题共5小题,共48分)25.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.2-1-c-n-j-y【考点】反比例函数综合题.【分析】(1)设反比例函数的解析式为y= (k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式;(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且CB= ,判断出四边形OABC是平行四边形,再证明OA=OC即可判定出四边形OABC的形状.【解答】解:(1)设反比例函数的解析式为y= (k>0),∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴m=﹣1,∴A(﹣1,﹣2),又∵点A在y= 上,∴k=2,∴反比例函数的解析式为y= ;(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣11;(3)四边形OABC是菱形.证明:∵A(﹣1,﹣2),∴OA= = ,由题意知:CB∥OA且CB= ,∴CB=OA,∴四边形OABC是平行四边形,∵C(2,n)在y= 上,∴n=1,∴C(2,1),OC= = ,∴OC=OA,∴四边形OABC是菱形.26.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【考点】一元二次方程的应用.【分析】(1)设每千克核桃降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.【解答】(1)解:设每千克核桃应降价x元. …1分根据题意,得 (60﹣x﹣40)=2240. …4分化简,得 x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元. …7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),. …9分答:该店应按原售价的九折出售. …10分27.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.【考点】相似三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理.【分析】(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△AQP∽△ABC;(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.(I)当点P在线段AB上时,如题图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.【解答】(1)证明:∵PQ⊥AQ,∴∠AQP=90°=∠ABC,在△APQ与△ABC中,∵∠AQP=90°=∠ABC,∠A=∠A,∴△AQP∽△ABC.(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB为钝角,∴当△PQB为等腰三角形时,(I)当点P在线段AB上时,如题图1所示.∵∠QPB为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ,由(1)可知,△AQP∽△ABC,∴ ,即,解得:PB= ,∴AP=AB﹣PB=3﹣ = ;(II)当点P在线段AB的延长线上时,如题图2所示.∵∠QBP为钝角,∴当△PQB为等腰三角形时,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AP中点,∴AP=2AB=2×3=6.综上所述,当△PQB为等腰三角形时,AP的长为或6.28.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)由于∠AEF是直角,则∠BAE和∠FEC同为∠AEB的余角,由此得证;(2)根据正方形的性质,易证得AG=EC,∠AGE=∠ECF=135°;再加上(1)得出的相等角,可由ASA判定两个三角形全等;(3)在Rt△ABE中,根据勾股定理易求得AE2;由(2)的全等三角形知:AE=EF,即△AEF是等腰Rt△,因此其面积为AE2的一半,由此得解.【解答】(1)证明:∵∠AEF=90°,∴∠FEC+∠AEB=90°;在Rt△ABE中,∠AEB+∠BAE=90°,∴∠BAE=∠FEC;(2)证明:∵G,E分别是正方形ABCD的边AB,BC的中点,∴AG=GB=BE=EC,且∠AGE=180°﹣45°=135°;又∵CF是∠DCH的平分线,∴∠DCF=∠FCH=45°,∠ECF=90°+45°=135°;在△AGE和△ECF中, ;∴△AGE≌△ECF;(3)解:由△AGE≌△ECF,得AE=EF;又∵∠AEF=90°,∴△AEF是等腰直角三角形;∵AB=a,E为BC中点,∴BE= BC= AB= a,根据勾股定理得:AE= = a,∴S△AEF= a2.29.已知:如图一次函数y= x+1的图象与x轴交于点A,与y轴交于点B;二次函数y= x2+bx+c的图象与一次函数y= x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).2•1•c•n•j•y(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.www-2-1-cnjy-com【考点】二次函数综合题.【分析】(1)根据直线BC的解析式,可求得点B的坐标,由于B、D都在抛物线的图象上,那么它们都满足该抛物线的解析式,通过联立方程组即可求得待定系数的值.(2)根据抛物线的解析式,可求得E点的坐标,联立直线BC的解析式,可求得C点坐标;那么四边形BDEC的面积即可由△AEC、△ABD 的面积差求得.(3)假设存在符合条件的P点,连接BP、CP,过C作CF⊥x轴于F,若∠BPC=90°,则△BPO∽△CPF,可设出点P的坐标,分别表示出OP、PF的长,根据相似三角形所得比例线段即可求得点P的坐标.【解答】解:(1)将B(0,1),D(1,0)的坐标代入y= x2+bx+c,得:,得解析式y= x2﹣ x+1.(2)设C(x0,y0)(x0≠0,y0≠0),则有解得,∴C(4,3)由图可知:S四边形BDEC=S△ACE﹣S△ABD,又由对称轴为x= 可知E(2,0),∴S= AE•y0﹣AD×OB= ×4×3﹣×3×1= .(3)设符合条件的点P存在,令P(a,0):当P为直角顶点时,如图:过C作CF⊥x轴于F;∵∠BPO+∠OBP=90°,∠BPO+∠CPF=90°,∴∠OBP=∠FPC,∴Rt△BOP∽Rt△PFC,∴ ,即,整理得a2﹣4a+3=0,解得a=1或a=3;∴所求的点P的坐标为(1,0)或(3,0),综上所述:满足条件的点P共有2个.。
四川省凉山州中考适应性数学试卷含答案解析
四川省凉山州中考适应性数学试卷一、选择题(共12小题,每小题4分,满分48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③ +3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.43.下列事件中不是随机事件的是()A.打开电视机正好在播放广告B.从有黑球和白球的盒子里任意拿出一个正好是白球C.从课本中任意拿一本书正好拿到数学书D.明天太阳会从西方升起4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆5.已知二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,则a取值范围是()A.a≥0 B.a≤0 C.a>0 D.a<06.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A. =20 B.n(n﹣1)=20 C. =20 D.n(n+1)=207.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心2cm长为半径的圆与AB的位置关系是()A.相交B.相切C.相离D.不能确定8.掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A.B.C.D.9.将半径为6,圆心角为120°的一个扇形围成一个圆锥(不考虑接缝),则圆锥的底面直径是()A.2 B.4 C.6 D.810.已知抛物线y=x2+bx+c的顶点在第三象限,则关于x的一元二次方程x2+bx+c=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定11.已知点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y112.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c>0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(共5小题,每小题4分,满分20分)13.点A(a﹣1,4)关于原点的对称点是点B(3,﹣2b﹣2),则a=,b=.14.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=.15.将抛物线向右平移3个单位长度,再向下平移2个单位长度,得到的抛物线为y=x2﹣4x,那么原来抛物线的解析式是.16.有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.17.在Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,⊙O是Rt△ABC的内切圆,则⊙O的面积是(用含π的式子表示).三、解答题(共2小题,满分12分)18.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.19.如图,方格纸中每个小正方形的边长都是1,点A、B、C、D都在格点上,在△ABC中,∠ACB=90°,AC=BC.(1)将△CBD绕点C逆时针方向旋转,使点B旋转到点A的位置,画出旋转后的△CAD′;(2)求点D旋转到D′时线段CD扫过的图形的面积.四、解答题(共3小题,满分24分)20.有两个不透明的袋子中分别装有3个大小、形状完全一样的小球,第一个袋子中的三个小球上分别标有数字﹣3,﹣2,﹣1,第二个袋子上的三个小球上分别标有数字1,﹣1,﹣2,从两个袋子中各摸出一个小球,第一个袋子中摸出的小球记为m,第二个袋子中摸出的小球记为n,若m、n分别是点A的横坐标.(1)用列表法或树状图法表示所有可能的点A的坐标;(2)求点A(m,n)在抛物线y=x2+3x上的概率.21.已知关于x的一元二次方程x2﹣2x+k=0.(1)若方程有实数根,求k的取值范围;(2)如果k是满足条件的最大的整数,且方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,求m的值及这个方程的另一根.22.某县公共事业投入经费40000万元,其中教育经费占15%,教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么教育经费会达到8000万元吗?五、解答题(共2小题,满分16分)23.如图,一次函数y1=kx+1与二次函数y2=ax2+bx﹣2交于A,B两点,且A(1,0)抛物线的对称轴是x=﹣.(1)求k和a、b的值;(2)求不等式kx+1>ax2+bx﹣2的解集.24.如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.(1)求∠OBA的度数;(2)求∠D的度数.六、填空题(共2小题,每小题5分,满分10分)25.若a是方程x2﹣2x﹣=0的根,则a3﹣3a2﹣a+1=.26.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为元.七、解答题(共2小题,满分20分)27.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.28.如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,E点是BC的中点,F是AB延长线上一点且FB=1.(1)求经过点O、A、E三点的抛物线解析式;(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.四川省凉山州中考适应性数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③ +3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.4【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【解答】解:①x2﹣2x﹣1=0,符合一元二次方程的定义;②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;④﹣x2=0,符合一元二次方程的定义;⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.一元二次方程共有2个.故选:B.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.下列事件中不是随机事件的是()A.打开电视机正好在播放广告B.从有黑球和白球的盒子里任意拿出一个正好是白球C.从课本中任意拿一本书正好拿到数学书D.明天太阳会从西方升起【考点】随机事件.【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可作出判断.【解答】解:A、打开电视机正好在播放广告是随机事件,选项错误;B、从有黑球和白球的盒子里任意拿出一个正好是白球,是随机事件,选项错误;C、从课本中任意拿一本书正好拿到数学书,是随机事件,选项错误;D、明天太阳会从西方升起是不可能事件,不是随机事件,选项正确.故选D.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆【考点】圆的认识;垂径定理;确定圆的条件;三角形的外接圆与外心.【专题】计算题.【分析】根据等弧的定义对A进行判断;根据垂径定理对B进行判断;根据三角形外心的定义对C进行判断;根据确定圆的条件对D进行判断.【解答】解:A、能够完全重合的弧叫等弧,所以A选项错误;B、平分弦(非直径)的直径一定垂直于该弦,所以B选项错误;C、三角形的外心是三边垂直平分线的交点,所以C选项错误;D、不在同一直线上的三个点确定一个圆,所以D选项正确.故选D.【点评】本题考查了圆的认识:圆可以看做是所有到定点O的距离等于定长r的点的集合,掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了垂径定理和确定圆的条件.5.已知二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,则a取值范围是()A.a≥0 B.a≤0 C.a>0 D.a<0【考点】二次函数的性质.【专题】探究型.【分析】根据二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,可以得到该二次函数的对称轴,和相应的a的值,从而可以解答本题.【解答】解:∵二次函数y=a(x﹣1)2+3,∴该二次函数的对称轴为直线x=1,又∵当x<1时,y随x的增大而增大,∴a<0,故选D.【点评】本题考查二次函数的性质,解题的关键是明确在二次函数中,当a>0时,在对称轴左侧y 随x的增大而减小,在对称轴右侧y随x的增大而增大;当a<0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小.6.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A. =20 B.n(n﹣1)=20 C. =20 D.n(n+1)=20【考点】由实际问题抽象出一元二次方程.【分析】设有n人参加聚会,则每人送出(n﹣1)件礼物,根据共送礼物20件,列出方程.【解答】解:设有n人参加聚会,则每人送出(n﹣1)件礼物,由题意得,n(n﹣1)=20.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心2cm长为半径的圆与AB的位置关系是()A.相交B.相切C.相离D.不能确定【考点】直线与圆的位置关系.【分析】过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形面积公式求出CD,再和⊙C 的半径比较即可得出结果.【解答】解:过C作CD⊥AB于D,如图所示:在Rt△ACB中,由勾股定理得:AB==5(cm),由三角形面积公式得:×3×4=×5×CD,解得:CD=2.4cm,即C到AB的距离大于⊙C的半径长,∴⊙C和AB的位置关系是相离,故选:C.【点评】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A.B.C.D.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:向上一面的数不大于4的概率==.故选C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.将半径为6,圆心角为120°的一个扇形围成一个圆锥(不考虑接缝),则圆锥的底面直径是()A.2 B.4 C.6 D.8【考点】圆锥的计算.【专题】计算题.【分析】圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2π•r=,解得r=2,从而得到圆锥的底面直径.【解答】解:设圆锥的底面半径为r,根据题意得2π•r=,解得r=2,所以圆锥的底面直径是4.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.已知抛物线y=x2+bx+c的顶点在第三象限,则关于x的一元二次方程x2+bx+c=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】抛物线与x轴的交点.【专题】探究型.【分析】根据抛物线y=x2+bx+c的顶点在第三象限,可以判断出b2﹣4ac的正负,从而可以得到一元二次方程x2+bx+c=0中△的正负,从而可以判断一元二次方程x2+bx+c=0的根的情况.【解答】解:∵抛物线y=x2+bx+c的顶点在第三象限,∴﹣,,∴b>0,4c﹣b2<0,∴在一元二次方程x2+bx+c=0中,△=b2﹣4×1×c=b2﹣4c>0,∴关于x的一元二次方程x2+bx+c=0有两个不相等的实数根,故选A.【点评】本题考查抛物线与x轴的交点,解题的关键是明确二次函数与一元二次方程之间的关系,判断根的情况就要求△得值.11.已知点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y1【考点】二次函数图象上点的坐标特征.【分析】先配方得到抛物线的对称轴为直线x=1,根据二次函数的性质,通过三点与对称轴距离的远近来比较函数值的大小.【解答】解:y=2x2﹣4x+c=2(x﹣1)2+c﹣2,则抛物线的对称轴为直线x=1,∵抛物线开口向上,而点B(2,y2)在对称轴上,点A(﹣3,y1)到对称轴的距离比C(3,y3)远,∴y1>y3>y2.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c>0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】①由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y轴右侧,确定出a,b及c的正负,即可对于abc的正负作出判断;②函数图象的对称轴为:x=﹣=1,所以b=﹣2a,即2a+b=0;③根据抛物线与x轴的交点即可求得抛物线的对称轴,然后把x=3代入方程即可求得相应的y的符号;④由图象得到函数值小于0时,x的范围即可作出判断;⑤由图象得到当x<0时,y随x的变化而变化的趋势.【解答】解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a>0,c<0,b<0,所以abc>0.故①错误;根据图象得对称轴x=1,即﹣=1,所以b=﹣2a,即2a+b=0,故②正确;当x=3时,y=0,即9a+3b+c=0.故③错误;根据图示知,当﹣1<x<3时,y<,故④正确;根据图示知,当x<0时,y随x的增大而减小,故⑤正确;故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(共5小题,每小题4分,满分20分)13.点A(a﹣1,4)关于原点的对称点是点B(3,﹣2b﹣2),则a=﹣2,b=1.【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则b+3=0,4+a ﹣1=0,从而得出a,b,推理得出结论.【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a﹣1+3=0,4﹣2b﹣2=0,即:a=﹣2且b=1,故答案为:﹣2,1.【点评】本题考查了平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.14.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=﹣1.【考点】一元二次方程的定义.【分析】直接利用一元二次方程的定义得出|m|=1,m﹣1≠0,进而得出答案.【解答】解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.【点评】此题主要考查了一元二次方程的定义,正确把握未知数的次数与系数是解题关键.15.将抛物线向右平移3个单位长度,再向下平移2个单位长度,得到的抛物线为y=x2﹣4x,那么原来抛物线的解析式是y=x2+2x﹣1..【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式.【解答】解:由y=x2﹣4x=(x﹣2)2﹣4,得新抛物线的顶点为(2,﹣4),∴原抛物线的顶点为(﹣1,﹣2),设原抛物线的解析式为y=(x﹣h)2+k代入得:y=(x+1)2﹣2=x2+2x﹣1,故答案为y=x2+2x﹣1.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.16.有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.【考点】概率公式;中心对称图形.【专题】计算题.【分析】先根据中心对称图形的定义判断圆、正方形、线段为中心对称图形,然后根据概率公式求解.【解答】解:共有5种可能的结果数,其中圆、正方形、线段为中心对称图形,所以取到卡片对应图形是中心对称图形的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了中心对称图形.17.在Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,⊙O是Rt△ABC的内切圆,则⊙O的面积是4πcm2(用含π的式子表示).【考点】三角形的内切圆与内心.【分析】首先求出AB的长,再连圆心和各切点,利用切线长定理用半径表示AF和BF,而它们的和等于AB,得到关于r的方程,解方程求出半径,再求出圆的面积即可.【解答】解:连OD,OE,OF,如图所示,设半径为r.则OE⊥BC,OF⊥AB,OD⊥AC,CD=r.∵∠C=90°,BC=5cm,AC=12cm,∴AB==13cm,∴BE=BF=(5﹣r)cm,AF=AD=(12﹣r)cm,∴5﹣r+12﹣r=13,∴r=2.即Rt△ABC的内切圆半径为2cm∴△ABC的内切圆⊙O的面积=π×22=4π(cm2),故答案为:4πcm2.【点评】此题主要考查了勾股定理以及直角三角形内切圆半径求法等知识,熟练掌握切线长定理和勾股定理.此题让我们记住一个结论:直角三角形内切圆的半径等于两直角边的和与斜边的差的一半.三、解答题(共2小题,满分12分)18.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先变形得到x(2x+3)﹣(2x+3)=0,然后利用因式分解法解方程.【解答】解:(1)(2x+1)(x﹣2)=0,2x+1=0或x﹣2=0,所以x1=﹣,x2=2;(2)x(2x+3)﹣(2x+3)=0,(2x+3)(x﹣1)=0,2x+3=0或x﹣1=0,所以x1=﹣,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)19.如图,方格纸中每个小正方形的边长都是1,点A、B、C、D都在格点上,在△ABC中,∠ACB=90°,AC=BC.(1)将△CBD绕点C逆时针方向旋转,使点B旋转到点A的位置,画出旋转后的△CAD′;(2)求点D旋转到D′时线段CD扫过的图形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】计算题;作图题.【分析】(1)由于∠ACB=90°,AC=BC,所以△CBD绕点C逆时旋转90°可得到△CAD′,于是利用网格特点和性质的性质画出点D的对应点D′即可;(2)由于线段CD扫过的图形为扇形,此扇形是以C点为圆心,CD为半径,圆心角为90°的扇形,所以利用扇形面积公式计算即可.【解答】解:(1)如图,△CAD′为所作;(2)CD==,线段CD扫过的图形的面积==π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积公式.四、解答题(共3小题,满分24分)20.有两个不透明的袋子中分别装有3个大小、形状完全一样的小球,第一个袋子中的三个小球上分别标有数字﹣3,﹣2,﹣1,第二个袋子上的三个小球上分别标有数字1,﹣1,﹣2,从两个袋子中各摸出一个小球,第一个袋子中摸出的小球记为m,第二个袋子中摸出的小球记为n,若m、n分别是点A的横坐标.(1)用列表法或树状图法表示所有可能的点A的坐标;(2)求点A(m,n)在抛物线y=x2+3x上的概率.【考点】列表法与树状图法;二次函数图象上点的坐标特征.【专题】计算题.【分析】(1)利用树状图可展示所有9种等可能的结果数;(2)根据二次函数图象上点的坐标特征可判断点(﹣2,﹣2),(﹣1,﹣2)在抛物线y=x2+3x 上,然后利用概率公式求解.【解答】解:(1)画树状图为:,共有9种等可能的结果数,它们为(﹣3,1),(﹣3,﹣1),(﹣3,﹣2),(﹣2,1),(﹣2,﹣1),(﹣2,﹣2),(﹣1,1),(﹣1,﹣1),(﹣1,﹣2);(2)点(﹣2,﹣2),(﹣1,﹣2)在抛物线y=x2+3x上,所以点A(m,n)在抛物线y=x2+3x上的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.21.已知关于x的一元二次方程x2﹣2x+k=0.(1)若方程有实数根,求k的取值范围;(2)如果k是满足条件的最大的整数,且方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,求m的值及这个方程的另一根.【考点】根的判别式;一元二次方程的解.【分析】(1)根据关于x的一元二次方程x2﹣2x+k=0有两个不等的实数根,得出4﹣4k≥0,即可求出k的取值范围;(2)先求出k的值,再代入方程x2﹣2x+k=0,求出x的值,再把x的值的相反数代入(m﹣1)x2﹣3mx﹣7=0,即可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣2x+k=0有两个不等的实数根,∴△=b2﹣4ac=4﹣4k≥0,解得:k≤1.∴k的取值范围是k≤1;(2)当k≤1时的最大整数值是1,则关于x的方程x2﹣2x+k=0是x2﹣2x+1=0,解得:x1=x2=1,∵方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,∴当x=1时,(m﹣1)﹣3m﹣7=0,解得:m=﹣4.答:m的值是﹣4.【点评】此题主要考查一元二次方程根的判别式,解题的关键是根据方程有实数根,求出k的值;一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.某县公共事业投入经费40000万元,其中教育经费占15%,教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么教育经费会达到8000万元吗?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)等量关系为:教育经费的投入×(1+增长率)2=教育经费的投入,把相关数值代入求解即可;(2)该区教育经费=教育经费的投入×(1+增长率).【解答】解:(1)教育经费:40000×15%=6000(万元)设每年平均增长的百分率为x,根据题意得:6000(1+x)2=7260,(1+x)2=1.21,∵1+x>0,∴1+x=1.1,x=10%.答:该县这两年教育经费平均增长率为10%;(2)该县教育经费为:7260×(1+10%)=7986(万元),∵7986>8000,∴教育经费不会达到8000万元.【点评】此题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.五、解答题(共2小题,满分16分)23.如图,一次函数y1=kx+1与二次函数y2=ax2+bx﹣2交于A,B两点,且A(1,0)抛物线的对称轴是x=﹣.(1)求k和a、b的值;(2)求不等式kx+1>ax2+bx﹣2的解集.【考点】二次函数与不等式(组);二次函数的性质.【分析】(1)首先把A的坐标代入一次函数解析式即可求得k的值,根据对称轴即可得到一个关于a和b的式子,然后把A代入二次函数解析式,解所得到的两个式子组成的方程组即可求得a和b的值;(2)解一次函数解析式和二次函数解析式组成的方程组,求得B的坐标,然后根据图象求解.【解答】解:(1)把A(1,0)代入一次函数解析式得:k+1=0,解得:k=﹣1,根据题意得:,解得:;(2)解方程组,解得:或.则B的坐标是(﹣6,7).根据图象可得不等式kx+1>ax2+bx﹣2的解集是:x<﹣6或x>1.【点评】本题考查了二次函数与不等式的关系,理解二次函数的对称轴的解析式,正确求得B的坐标是关键.24.如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.(1)求∠OBA的度数;(2)求∠D的度数.【考点】切线的性质.【分析】(1)连接OA,由切线的性质可得∠OAC=90°,再由已知条件可求出∠OAB的度数,由圆的性质可得△OAB是等腰三角形,根据等边对等角即可求出∠OBA的度数;(2)由(1)可知△OAB是等腰三角形,所以∠AOB的度数可求,再由圆周角定理即可求出∠D 度数.【解答】解:(1)连接OA,∵AC与⊙O相切于点A,∴OA⊥AC,∴∠OAC=90°,∵∠BAC=52°,∴∠OAB=38°,∵OA=OB,∴∠OBA=∠OAB=38°;(2)∵∠OBA=∠OAB=38°,∴∠AOB=180°﹣2×38°=104°,∴∠D=∠AOB=52°.【点评】此题考查了切线的性质,圆周角定理以及等腰三角形的判定和性质,熟练掌握切线的性质是解本题的关键.六、填空题(共2小题,每小题5分,满分10分)25.若a是方程x2﹣2x﹣=0的根,则a3﹣3a2﹣a+1=﹣.【考点】一元二次方程的解.【分析】把x=a代入程x2﹣2x﹣=0得到a2﹣2a=,a2=+2a,然后将其代入整理后的所求代数式进行求值即可.【解答】解:∵a是方程x2﹣2x﹣=0的根,∴a2﹣2a﹣=0,∴a2﹣2a=,a2=+2a,∴a3﹣3a2﹣a+1,=a(a2﹣)﹣3a2+1,=a(2a+﹣)﹣3a2+1,=2a2+2a﹣3a2+1,=﹣(a2﹣2a)+1,=﹣+1,=﹣.故答案是:﹣.【点评】本题考查了一元二次方程的解的定义.根据题意将所求的代数式变形是解题的难点.26.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为40元.【考点】二次函数的应用.【专题】销售问题.【分析】根据题意分别表示出每件玩具的利润以及销量,进而结合超市要完成不少于300件的销售任务,进而求出x的值.【解答】解:设销售单价应定为x元,根据题意可得:利润=(x﹣20)[400﹣10(x﹣30)]=(x﹣20)(700﹣10x)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250,∵超市要完成不少于300件的销售任务,∴400﹣10(x﹣30)≥300,解得:x≤40,即x=40时,销量为300件,此时利润最大为:﹣10(40﹣45)2+6250=6000(元),故销售单价应定为40元.故答案为:40.【点评】此题主要考查了二次函数的应用,根据题意结合二次函数的性质得出商品定价是解题关键.七、解答题(共2小题,满分20分)27.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.。
2017中考数学模拟试题含答案(精选5套)
2017年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分。
) 1。
2 sin 60°的值等于( ) A. 1B 。
23C 。
2D 。
32. 下列的几何图形中,一定是轴对称图形的有( )A 。
5个B 。
4个 C. 3个 D 。
2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A 。
1。
8×10 B. 1。
8×108 C. 1。
8×109 D 。
1。
8×10104。
估计8—1的值在( )A. 0到1之间 B 。
1到2之间 C 。
2到3之间 D. 3至4之间 5。
将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B 。
矩形 C. 正方形 D 。
菱形 6。
如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7。
为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图。
根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C 。
400名D 。
300名8。
用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A 。
(x + 2)2= 9 B 。
(x - 2)2= 9C 。
(x + 2)2 = 1D 。
(x — 2)2=19。
如图,在△ABC 中,AD,BE 是两条中线,则S △EDC ∶S △ABC =( ) A 。
1∶2B. 1∶4C 。
1∶3D. 2∶310. 下列各因式分解正确的是( )A 。
x 2+ 2x-1=(x — 1)2B. — x 2+(—2)2=(x — 2)(x + 2)C. x 3— 4x = x (x + 2)(x — 2)D 。
2017中考数学模拟试题含答案(精选5套).pdf
际工作效率比原计划提高了 20%,结果提前 8 天完成任务,求原计划每天修路的长度. 若设原计划每
天修路 x m,则根据题意可得方程
.
17. 在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折,再向右平移 2 个单
位称为 1 次变换. 如图,已知等边三角形 ABC 的顶点 B,C 的坐标分别是
(-1,-1),(-3,-1),把△ABC 经过连续 9 次这样的变换得到△A′B′C′,
5
10
x (1 + 20%)x
17. (16,1+ 3 ); 18. 15.5(或 31 ). 2
三、解答题
19. (1)解:原式 = 4× 2 -2 2 +1-1……2 分(每错 1 个扣 1 分,错 2 个以上不给分) 2
=0
…………………………………4 分
(2)解:原式 =( m + n - n )· m2 − n2
∠BCD = 30°, ∴DC = BC·cos30°
……………………1 分
= 6 3 × 3 = 9, ……………………2 分 2
∴DF = DC + CF = 9 + 1 = 10,…………………3 分
∴GE = DF = 10.
…………………4 分
在 Rt△BGE 中,∠BEG = 20°,
∴BG = CG·tan20°
点 Q 从点 C 出发,沿 CB 方向匀速运动到终点 B. 已知 P,Q 两点同时出发,并同时到达终点,连接 MP,
MQ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是( )
A. 一直增大
B. 一直减小
C. 先减小后增大
D. 先增大后减小
中考模拟试题数学
数学参考答案
注意事项:
1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.
2.答题前,考生先将自己的学校、姓名、考号填写在答题卡指定的位置,并认真核对、水平粘贴好条形码.
3.考生必须保持答题卡的整洁和平整(不得折叠),考试结束后,请将本试卷和答题卡一并上交.
13.在矩形ABCD中,AD=5,AB=4,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为★★★★.
14.如图,⊙O的半径是8,AB是⊙O的直径,M为AB上一动点, = = ,则CM+DM的最小值为★★★★.
15.若一次函数y=﹣2x+b的图象与直线y=2x﹣1的交点在第四象限,则b的取值范围是★★★★.
A.20B.22C.24D.26
二、填空题:(将每小题的最后正确答案填在答题卡中对应题号的横线上.每小题3分,本大题满分18分.)
11.某小区改进了用水设施,在5年内小区的居民累计节水39400吨,将39400用科学计数法表示应为★★★★.
12.某小区2015年屋顶绿化面积为2000平方米,计划2017年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是★★★★.
= +1+4- ………5分
=5………6分
18.(本题满分6分)化简: ,再选取一个适当的a的值代入求值.
解:原式= ÷ -1………1分
× -1………2分
- ………3分
………4分
当a=……..时(a取除-2;0;1以外的任何数)………5分
原式 =
=………6分
19.(本题满分6分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的.其中测得坡长AB=600米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(结果保留根号)
2017年凉山州中考数学模拟真题及答案
2017年凉山州中考数学模拟试题一.选择题(共15小题)1.计算:(﹣3)+4的结果是( )A.﹣7B.﹣1C.1D.72.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了所示的频数分布直方图,则参加书法兴趣小组的频率是( )A.0.1B.0.15C.0.2D.0.33.是由5个大小相同的正方体摆成的立方体图形,它的左视图是( )A. B. C. D.4.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A. B.C. D.5.若分式无意义,则( )A.x=2B.x=﹣1C.x=1D.x≠﹣16.在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( )A.2B.3C.4D.67.若四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=1:3:8,则∠D的度数是( )A.10°B.30°C.80°D.120°8.下列选项中的图形,不属于中心对称图形的是( )A.等边三角形B.正方形C.正六边形D.圆9.,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是( )A. B. C. D.10.不等式组的解是( )A.x<1B.x≥3C.1≤x<3D.111.一次函数y=2x+4的图象与y轴交点的坐标是( )A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)12.在半径为2的圆中,弦AB的长为2,则的长等于( )A. B. C. D.13.,直线y=2x+4与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移4个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )A.(5,2)B.(4,2)C.(3,2)D.(﹣1,2)14.,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是( )A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(2,1)15.,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.若P、Q两点同时出发,当点Q运动到点C时,P、Q两点同时停止运动,则在整个运动过程中PQ的长度变化情况是( )A.先变长后变短B.一直变短C.一直变长D.先变短后变长二.填空题(共7小题)16.分解因式:x3﹣4x= .17.数据1、5、6、5、6、5、6、6的众数是,方差是.18.,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.19.,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为.20.,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.21.1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BC D的周长是30,则这个风车的外围周长是.22.,若双曲线y= 与边长为5的等边△AOB的边OA、AB分别相交于C、D 两点,且OC=2BD.则实数k的值为.三.解答题(共8小题)23.(1)计算: +(﹣3)2﹣( ﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).24.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?25.在梯形ABCD中,AD∥BC,连结AC,且AC=BC,在对角线AC上取点E,使CE=AD,连接BE.(1)求证:△DAC≌△ECB;(2)若CA平分∠BCD,且AD=3,求BE的长.26.,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)27.,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD= ,AD=8,求⊙O直径AB的长.28.温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地 B地 C地合计产品件数(件) x 2x 200运费(元) 30x②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.29.,抛物线y=x2+bx经过原点O,与x轴相交于点A(1,0),(1)求该抛物线的解析式;(2)在抛物线上方构造一个平行四边形OABC,使点B在y轴上,点C在抛物线上,连结AC.①求直线AC的解析式.②在抛物线的第一象限部分取点D,连结OD,交AC于点E,若△ADE的面积是△AOE面积的2倍,这样的点D是否存在?若存在,求出点D的坐标,若不存在,请说明理由.30.,A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.2017年凉山州中考数学模拟试题答案一.选择题(共15小题)1.计算:(﹣3)+4的结果是( )A.﹣7B.﹣1C.1D.7【考点】19:有理数的加法.【分析】根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:原式=+(4﹣3)=1.故选:C.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值的运算.2.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了所示的频数分布直方图,则参加书法兴趣小组的频率是( )A.0.1B.0.15C.0.2D.0.3【考点】V8:频数(率)分布直方图.【分析】根据频率分布直方图可以知道书法兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.【解答】解:∵根据频率分布直方图知道书法兴趣小组的频数为8,∴参加书法兴趣小组的频率是8÷40=0.2.故选C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.是由5个大小相同的正方体摆成的立方体图形,它的左视图是( )A. B. C. D.【考点】U2:简单组合体的三视图.【分析】得到从左往右看组合几何体得到的平面图形中包含的2列正方形的个数即可.【解答】解:从左往右看,得到从左往右2列正方形的个数依次为2,1,故选C.【点评】考查三视图中的左视图知识:左视图是从左往右看几何体得到的平面图形;得到左视图的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.4.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A. B.C. D.【考点】99:由实际问题抽象出二元一次方程组.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意得,.故选:D.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.5.若分式无意义,则( )A.x=2B.x=﹣1C.x=1D.x≠﹣1【考点】62:分式有意义的条件.【分析】根据分式无意义,分母等于0列式计算即可得解.【解答】解:根据题意得,x+1=0,解得x=﹣1.故选B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.6.在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( )A.2B.3C.4D.6【考点】X4:概率公式.【分析】首先设黄球的个数为x个,然后根据题意得: = ,解此分式方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得: = ,解得:x=4,经检验,x=4是原分式方程的解,∴黄球的个数为4个.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7.若四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=1:3:8,则∠D的度数是( )A.10°B.30°C.80°D.120°【考点】M6:圆内接四边形的性质.【分析】题可设∠A=x,则∠B=3x,∠C=8x;利用圆内接四边形的对角互补,可求出∠A、∠C的度数,进而求出∠B和∠D的度数,由此得解.【解答】解:设∠A=x,则∠B=3x,∠C=8x,因为四边形ABCD为圆内接四边形,所以∠A+∠C=180°,即:x+8x=180,∴x=20°,则∠A=20°,∠B=60°,∠C=160°,所以∠D=120°,故选D.【点评】本题需仔细分析题意,利用圆内接四边形的性质和四边形的内角和即可解决问题.8.下列选项中的图形,不属于中心对称图形的是( )A.等边三角形B.正方形C.正六边形D.圆【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是( )A. B. C. D.【考点】T1:锐角三角函数的定义.【分析】根据锐角的余弦等于邻边比斜边求解即可.【解答】解:∵AB=5,BC=3,∴AC=4,∴cosA= = .故选D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边10.不等式组的解是( )A.x<1B.x≥3C.1≤x<3D.1【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x≤3,∴不等式组的解集为1故选D.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.11.一次函数y=2x+4的图象与y轴交点的坐标是( )A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)【考点】F8:一次函数图象上点的坐标特征.【分析】在解析式中令x=0,即可求得与y轴的交点的纵坐标.【解答】解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.【点评】本题考查了一次函数图象上点的坐标特征,是一个基础题.12.在半径为2的圆中,弦AB的长为2,则的长等于( )A. B. C. D.【考点】MN:弧长的计算.【分析】连接OA、OB,求出圆心角∠AOB的度数,代入弧长公式求出即可.【解答】解:连接OA、OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴ 的长为: = ,故选:C.【点评】本题考查了弧长公式,等边三角形的性质和判定的应用,注意:已知圆的半径是R,弧AB对的圆心角的度数是n°,则弧AB的长= .13.,直线y=2x+4与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移4个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )A.(5,2)B.(4,2)C.(3,2)D.(﹣1,2)【考点】F8:一次函数图象上点的坐标特征;Q3:坐标与图形变化﹣平移.【分析】先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=﹣1,即可得到C′的坐标为(﹣1,2).【解答】解:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等腰三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣1.则C′(﹣1,2),将其向右平移4个单位得到C(3,2).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为2是解题的关键.14.,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是( )A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(2,1)【考点】R7:坐标与图形变化﹣旋转.【分析】,Rt△ABC绕点C按顺时针方向旋转90°得到Rt△FEC,根据旋转的性质知道CA=CF,∠ACF=90°,而根据图形容易得到A的坐标,也可以得到点A的对应点F的坐标.【解答】解:,将Rt△ABC绕点C按顺时针方向旋转90°得到Rt△FEC,∴根据旋转的性质得CA=CF,∠ACF=90°,而A(﹣2,1),∴点A的对应点F的坐标为(﹣1,2).故选B.【点评】本题涉及图形体现了新课标的精神,抓住旋转的三要素:旋转中心C,旋转方向顺时针,旋转角度90°,通过画图即可得F点的坐标.15.,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.若P、Q两点同时出发,当点Q运动到点C时,P、Q两点同时停止运动,则在整个运动过程中PQ的长度变化情况是( )A.先变长后变短B.一直变短C.一直变长D.先变短后变长【考点】E7:动点问题的函数图象.【分析】根据勾股定理得到PQ2与时间t的函数关系式,由函数关系式对选项作出选择.【解答】解:设PQ=y,点P、Q的运动时间为t,则y2=(6﹣t)2+(2t)2=4t2﹣12t+36=4(t﹣ )2+27,该函数图象是抛物线,且顶点坐标是( ,27).则y2的值是先变短或变长,所以y即PQ的值是先变短或变长,故选:D.【点评】考查了动点问题的函数图象.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二.填空题(共7小题)16.分解因式:x3﹣4x= x(x+2)(x﹣2) .【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.17.数据1、5、6、5、6、5、6、6的众数是 6 ,方差是 2.5 .【考点】W7:方差;W5:众数.【分析】(1)根据众数的概念,找出数据中出现次数最多的数即为所求;(2)先求平均数,然后根据方差公式计算.【解答】解:(1)1、5、6、5、6、5、6、6中,6出现了四次,次数最多,故6为众数;(2)1、5、6、5、6、5、6、6的平均数为 (1+5+6+5+6+5+6+6)=5,则S2= [(1﹣5)2+2×(5﹣5)2+4×(6﹣5)2]=2.5.故填6;2.5.【点评】此题考查了明确众数和方差的意义:(1)众数是一组数据中出现次数最多的那个数据.(2)方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.18.,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 80 度.【考点】JA:平行线的性质.【分析】根据平行线的性质求出∠C,根据三角形外角性质求出即可.【解答】解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°,故答案为:80.【点评】本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.19.,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为45°.【考点】M5:圆周角定理;LE:正方形的性质.【分析】首先连接OB,OC,由⊙O是正方形ABCD的外接圆,即可求得∠BOC的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BEC的度数.【解答】解:连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC= ∠BOC=45°.故答案是:45°.【点评】此题考查了圆周角定理与圆的内接多边形的知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.20.,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46 度.【考点】R2:旋转的性质.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C 按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.【点评】本题考查了旋转的性质,解决本题的关键是由旋转得到△ABC≌△A′B′C.21.1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是76 .【考点】KR:勾股定理的证明.【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=6.∴这个风车的外围周长是:4(x+y)=4×19=76.故答案是:76.【点评】本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.22.,若双曲线y= 与边长为5的等边△AOB的边OA、AB分别相交于C、D 两点,且OC=2BD.则实数k的值为 4 .【考点】G8:反比例函数与一次函数的交点问题;KK:等边三角形的性质.【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE= x,则点C坐标为(x, x),在Rt△BDF中,BD=x,∠DBF=60°,则BF= x,DF= x,则点D的坐标为(5﹣ x, x),将点C的坐标代入反比例函数解析式可得:k= x2,将点D的坐标代入反比例函数解析式可得:k= x﹣ x2,则 x2= x﹣ x2,解得:x1=2,x2=0(舍去),故k= x2= ×4=4 .故答案为:4 .【点评】本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.三.解答题(共8小题)23.(2016•温州)(1)计算: +(﹣3)2﹣( ﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【考点】2C:实数的运算;4A:单项式乘多项式;4F:平方差公式;6E:零指数幂.【分析】(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)直接利用平方差公式计算,进而去括号得出答案.【解答】解:(1)原式=2 +9﹣1=2 +8;(2)(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.【点评】此题主要考查了实数运算以及整式的混合运算,正确化简各数是解题关键.24.(2016•温州)为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?【考点】VB:扇形统计图;V5:用样本估计总体.【分析】(1)根据扇形统计图可以求得“非常了解”的人数的百分比;(2)根据扇形统计图可以求得对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人.【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200× =600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.【点评】本题考查扇形统计图好、用样本估计总体,解题的关键是明确扇形统计图的特点,找出所求问题需要的条件.25.(2017•温州一模)在梯形ABCD中,AD∥BC,连结AC,且AC=BC,在对角线AC上取点E,使CE=AD,连接BE.(1)求证:△DAC≌△ECB;(2)若CA平分∠BCD,且AD=3,求BE的长.【考点】KD:全等三角形的判定与性质.【分析】(1)由平行可得到∠DAC=∠ECB,结合条件可证明△DAC≌△ECB;(2)由条件可证明DA=DC,结合(1)的结论可得到BE=CD,可求得BE的长.【解答】(1)证明:∵AD∥BC,∴∠DAC=∠ECB,在△DAC和△ECB中,,∴△DAC≌△ECB(SAS);(2)解:∵CA平分∠BCD,∴∠ECB=∠DCA,且由(1)可知∠DAC=∠ECB,∴∠DAC=∠DCA,∴CD=DA=3,又∵由(1)可得△DAC≌△ECB,∴BE=CD=3.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(SSS、SAS、ASA、AAS和HL)和性质(对应边、对应角相等)是解题的关键.26.(2016•温州),在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)【考点】L5:平行四边形的性质.【分析】(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.【解答】解:(1)①:.(2)②,.【点评】本题主要考查了中垂线性质,平行四边形的判定、性质及圆周角定理的应用,熟练掌握这些判定、性质及定理并灵活运用是解题的关键.27.(2017•温州一模),点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD= ,AD=8,求⊙O直径AB的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)连接OC,由DE为圆O的切线,得到OC垂直于CD,再由AD垂直于DE,得到AD与OC平行,得到一对内错角相等,根据OA=OC,利用等边对等角得到一对角相等,等量代换即可得证;2•1•c•n•j•y(2)在直角三角形ADC中,利用锐角三角函数定义求出CD的长,根据勾股定理求出AD的长,由三角形ACD与三角形ABC相似,得到对应边成比例,即可求出AB的长.【解答】证明:(1)连结OC,∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥CE,∴AD∥OC,∵OA=OC,∴∠DAC=∠ACO=∠CAO,∴AC平分∠B AD;(2)解:∵AD⊥CE,tan∠CAD= ,AD=8,∴CD=6,∴AC=10,∵AB是⊙O的直径,∴∠ACB=90°=∠D,∵∠DAC=∠CAO,∴△ACD∽△ABC,∴AB:AC=AC:AD,∴AB= .【点评】此题考查了切线的性质,以及解直角三角形,熟练掌握切线的判定与性质是解本题的关键.28.(2012•温州)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地 B地 C地合计产品件数(件) x 2x 200运费(元) 30x②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)①运往B地的产品件数=总件数n﹣运往A地的产品件数﹣运往B地的产品件数;运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,求得正整数解的个数即可;(2)总运费=A产品的运费+B产品的运费+C产品的运费,进而根据函数的增减性及(1)中②得到的x的取值求得n的最小值即可.【解答】解:(1)①根据信息填表A地 B地 C地合计产品件数(件) 200﹣3x运费 1600﹣24x 50x 56x+1600②由题意,得,解得40≤x≤42 ,∵x为正整数,∴x=40或41或42,∴有三种方案,分别是(i)A地40件,B地80件,C地80件;(ii)A地41件,B地77件,C地82件;(iii)A地42件,B地74件,C地84件;(2)由题意,得30x+8(n﹣3x)+50x=5800,整理,得n=725﹣7x.∵n﹣3x≥0,∴725﹣7x﹣3x≥0,∴﹣10x≥﹣725,∴x≤72.5,又∵x≥0,∴0≤x≤72.5且x为正整数.∵n随x的增大而减少,∴当x=72时,n有最小值为221.【点评】考查一次函数的应用;得到总运费的关系式是解决本题的关键;注意结合自变量的取值得到n的最小值.29.(2017•温州一模),抛物线y=x2+bx经过原点O,与x轴相交于点A(1,0),(1)求该抛物线的解析式;(2)在抛物线上方构造一个平行四边形OABC,使点B在y轴上,点C在抛物线上,连结AC.①求直线AC的解析式.②在抛物线的第一象限部分取点D,连结OD,交AC于点E,若△ADE的面积是△AOE面积的2倍,这样的点D是否存在?若存在,求出点D的坐标,若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入y=x2+bx中求出b的值即可得到抛物线解析式;(2)①根据平行四边形的性质得BC=OA=1,BC∥OA,则C点的横坐标为﹣1,再计算对应的函数值即可得到C点坐标,然后利用待定系数法求直线AC的解析式;②分别作DM⊥x轴于M,EN⊥x轴于N,,根据三角形面积公式可判断DE=2OE,再证明△ONE∽△OMD,则利用相似比可得 = = ,于是设E(t,﹣t+1),则D(3t,﹣3t+3),然后把D(3t,﹣3t+3)代入y=x2﹣x得关于t的一元二次方程,再解方程即可得到满足条件的D点坐标.【解答】解:(1)把A(1,0)代入y=x2+bx得1+b=0,解得b=﹣1,所以抛物线解析式为y=x2﹣x;(2)①∵四边形OABC为平行四边形,∴BC=OA=1,BC∥OA,∴C点的横坐标为﹣1,当x=﹣1时,y=x2﹣x=1﹣(﹣1)=2,则C(﹣1,2),设直线AC的解析式为y=mx+n,把A(1,0),C(2,﹣1)代入得,解得,所以直线AC的解析式为y=﹣x+1;②存在.分别作DM⊥x轴于M,E N⊥x轴于N,,∵△ADE的面积是△AOE面积的2倍,∴DE=2OE,∵EN∥DM,∴△ONE∽△OMD,∴ = = = ,设E(t,﹣t+1),则D(3t,﹣3t+3)把D(3t,﹣3t+3)代入y=x2﹣x得9t2﹣3t=﹣3t+3,解得t1= ,t2=﹣(舍去),∴点D的坐标为( ,﹣ +3).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的性质;会利用待定系数法求函数的解析式;理解坐标与图形的性质;灵活利用相似比求线段之间的关系.30.(2012•河北),A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.【考点】MC:切线的性质;D5:坐标与图形性质;KQ:勾股定理;T7:解直角三角形.【分析】(1)由∠CBO=45°,∠BOC为直角,得到△BOC为等腰直角三角形,又OB=3,利用等腰直角三角形AOB的性质知OC=OB=3,然后由点C在y轴的正半轴可以确定点C的坐标;(2)需要对点P的位置进行分类讨论:①当点P在点B右侧时,2所示,由∠BCO=45°,用∠BCO﹣∠BCP求出∠PCO为30°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;②当点P在点B左侧时,3所示,用∠BCO+∠BCP求出∠PCO为60°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;(3)当⊙P与四边形ABCD的边(或边所在的直线)相切时,分三种情况考虑:①当⊙P与BC边相切时,利用切线的性质得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP为等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ﹣OP求出P运动的路程,即可得出此时的时间t;②当⊙P与CD相切于点C时,P与O重合,可得出P运动的路程为OQ的长,求出此时的时间t;③当⊙P与AD相切时,利用切线的性质得到∠DAO=90°,得到此时A为切点,由PC=PA,且PA=9﹣t,PO=t﹣4,在Rt△OCP中,利用勾股定理列出关于t 的方程,求出方程的解得到此时的时间t.综上,得到所有满足题意的时间t的值.【解答】解:(1)∵∠BCO=∠CBO=45°,∴OC=OB=3,又∵点C在y轴的正半轴上,∴点C的坐标为(0,3);(2)分两种情况考虑:①当点P在点B右侧时,2,若∠BCP=15°,得∠PCO=30°,故PO=CO•tan30°= ,此时t=4+ ;。
2017年凉山州中考数学试题(修正版)
2017年凉山州高中阶段招生统一考试数学试卷本试卷共10页,分为A 卷(120分)、B 卷(30分),全卷150分,考试时间120分钟。
A 卷又分为第Ι卷和第II 卷。
注意事项1. 第 卷答在题卡上,不能答在试卷上,答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2. 每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
A 卷(共120分) 第I 卷(选择题 共48分)注意事项:1.第I 卷答在答题卡上,不能答在试卷上。
答卷前,考生务必将自己的姓名、准考证号、试题科目涂写在答题卡上。
2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。
1. 0.5-的倒数是( )A .2-B .0.5C .2D .0.5- 2. 下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得22a b ->-C .由a b >,得a b ->-D .由a b >,得22a b -<- 3. 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x-=⎧⎪⎨+=⎪⎩ C .20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩ 4. 下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C .某彩票中奖率为36%,说明买100张彩票,有36张中奖。
D .打开电视,中央一套正在播放新闻联播。
5.已知y =2xy 的值为( )A .15-B .15C .152-D . 1526. 某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A .()21731%127x += B .()17312%127x -=C .()21731%127x -=D .()21271%173x +=7. 为离家某班学生每天使用零花钱的使用情况,张华随机调查了15名同学,结果如下表:关于这15名同同学每天使用的零花钱,下列说法正确的是( )A .众数是5元B .平均数是2.5元C .级差是4元D .中位数是3元 8. 如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513 C .6013 D .75139. 如图,100AOB ∠= ,点C 在O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( ) A .50B .80或50C .130D .50或13010. 方程24321x xx x x ++=++的解为( ) A .124,1x x == B.12x x ==C .4x = D .124,1x x ==-11.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( ) A .66 B .48 C .36 D .5712. 二次函数2y ax bx c =++的图像如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图像是( )左视图 主视图俯视图ABO9题图三、解答题(共2小题,每小题6分,共12分)18. 计算:()()0233sin 30380.125+--+⨯- 19. 我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。
凉山彝族自治州中考数学模拟考试试卷
凉山彝族自治州中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列方程是一元二次方程的是()A . (x﹣3)x=x2+2B . ax2+bx+c=0C . 3x2﹣+2=0D . 2x2=12. (2分)(2017·丰台模拟) 如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为()A . 45B . 60C . 72D . 1443. (2分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有()A . 2个B . 3个C . 4个D . 5个4. (2分)如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=8,BE=2,则CD=()A . 6B . 8C . 2D . 45. (2分)(2018·河北) 对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A . 甲的结果正确B . 乙的结果正确C . 甲、乙的结果合在一起才正确D . 甲、乙的结果合在一起也不正确6. (2分)方程x2+3x﹣1=0的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 只有一个实数根7. (2分) (2019八上·江山期中) 如图,在△ABC中,AB=AC,点D在BC上,∠BAD=50°,AD=AE,则∠EDC 的度数为()A . 15°B . 25°C . 30°D . 50°8. (2分)图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB1路线爬行,则下列结论正确的是()A . 甲先到B点B . 乙先到B点C . 甲、乙同时到D . 无法确定9. (2分)已知,则的值是()A . -3B . 4C . -3或4D . 3或-410. (2分)如图示一个黑白小方块相同的长方形,李明用一个小球在上面随意滚动,球停在黑色方块(每个小方块的大小相同)的概率()A .B .C .D .11. (2分) (2019八下·宜兴期中) 如图,在矩形ABCD中,P、Q分别是BC、DC上的点,E,F分别是AP、PQ的中点.BC=12, DQ =5,在点P从B移动到C(点Q不动)的过程中,则下列结论正确的是()A . 线段EF的长逐渐增大,最大值是13B . 线段EF的长逐渐减小,最小值是6.5C . 线段EF的长始终是6.5D . 线段EF的长先增大再减小,且6.5≤EF≤1312. (2分)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a+b+c<0;②c >1;③b2﹣4ac>0;④2a﹣b<0,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共7题;共7分)13. (1分)(2020·虹口模拟) 如果函数是二次函数,那么m=________.14. (1分) (2020九上·鄞州期末) 如图,把△ABC绕着点A顺时针方向旋转角度a(0°<a<90°),得到△AB'C',若B',C,C'三点在同一条直线上,∠B'CB=46°,则a的度数是________。
四川省凉山彝族自治州九年级中考适应性考试数学试卷(一)
四川省凉山彝族自治州九年级中考适应性考试数学试卷(一)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)-2的倒数是()A . 2B . -2C .D .2. (2分)(2016·深圳模拟) 如图,正三棱柱的主视图为()A .B .C .D .3. (2分)(2017·微山模拟) 下列运算正确的是()A . (2a2)3=6a6B . ﹣a2b2•3ab3=﹣3a2b5C . • =﹣1D . + =﹣14. (2分)(2019·北部湾模拟) 下列成语中,表示必然事件的是()A . 旭日东升B . 守株待兔C . 水中捞月D . 刻舟求剑5. (2分)如图,△ABC中,D、E分别为边AB、AC上的点,且DE∥BC ,下列判断错误的是()A .B .C .D .6. (2分) (2017七下·河东期末) 小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A .B .C .D .7. (2分) (2019·吴兴模拟) 为迎接体育中考,九年级(9)班八名同学课间练习仰卧起坐,记录成绩每分钟个数如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是()A . 40,41B . 42,41C . 41,42D . 42,408. (2分)如图,⊙O中,弦AC= ,沿AC折叠劣弧交直径AB于D,DB= ,则直径AB=()A . 4B .C . 3D . 29. (2分)抛物线y=﹣x2不具有的性质是()A . 对称轴是y轴B . 开口向下C . 当x<0时,y随x的增大而减小D . 顶点坐标是(0,0)10. (2分)(2016·眉山) 把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A .B . 6C .D .二、填空题 (共6题;共6分)11. (1分) (2019九上·舟山期中) 某市常住人口约为7680000人,数据“7680000”用科学记数法可表示为________.12. (1分) (2020八上·赣榆期末) 等腰三角形的一个外角是80°,则其底角是________度.13. (1分) (2017八下·昆山期末) 如图,中,点E、F为对角线BD上两点,请添加一个条件,使四边形AECF成为平行四边形:________.14. (1分)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1 ,第二次将点A1向右移动6个单位长度到达点A2 ,第三次将点A2向左移动9个单位长度到达点A3 ,按照这种移动规律移动下去,第n次移动到点An ,如果点An与原点的距离不小于20,那么n的最小值是________.15. (1分)如图,反比例函数y1与正比例函数y2的图象的一个交点是A(2,1),若y1>y2>0,则x的取值范围为________.16. (1分)(2017·江北模拟) 甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t函数关系.那么,乙到终点后________秒与甲相遇.三、解答题 (共9题;共83分)17. (5分) (2020九上·新昌期末) 计算:(1)4sin260°﹣2+tan45°;(2)已知线段a=2,b=8,求a,b的比例中项线段.18. (5分)(2018·吉林模拟) 化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.19. (2分)(2018·黄冈模拟) 抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20. (10分) (2019七上·威海期末) 如图,某港口P位于东西方向的海岸线上,A、B两艘轮船同时从港口P出发,各自沿一固定方向航行,A轮船每小时航行12海里,B轮船每小时航行16海里.它们离开港口一个半小时后分别位于点R、Q处,且相距30海里.已知B轮船沿北偏东60°方向航行.(1) A轮船沿哪个方向航行?请说明理由;(2)请求出此时A轮船到海岸线的距离.21. (10分) (2016八上·萧山月考) 弹簧挂上适当的重物后会按一定的规律伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量(kg)0123456弹簧的长度(cm)1515.616.216.817.41818.6(1)上表反映了哪两个变量之间的关系?哪个是自变量?(2)写出与之间的关系式;(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)当所挂物体的质量为11.5kg时,求弹簧的长度。
凉山彝族自治州数学中考模拟试卷(三)
凉山彝族自治州数学中考模拟试卷(三)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·渠县期末) 如果代数式4x2+kx+25能够分解成(2x﹣5)2的形式,那么k的值是()A . 10B . ﹣20C . ±10D . ±202. (2分)(2018·龙东模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2017·古冶模拟) 如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A .B .C .D .4. (2分)(2018·龙东模拟) 已知一组数据6,8,10,x的中位数与平均数相等,这样的x有()A . 1个B . 2个C . 3个D . 4个以上(含4个)5. (2分)(2017·磴口模拟) 如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .6. (2分)(2018·龙东模拟) 已知关于x的方程有正根,则实数a的取值范围是()A . a<0且a≠﹣3B . a>0C . a<﹣3D . a<3且a≠﹣37. (2分)(2018·龙东模拟) 如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A . 92°B . 108°C . 112°D . 124°8. (2分)(2018·龙东模拟) 如图,直线y=﹣x+3与y轴交于点A,与反比例函数y= (k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A . y=B . y=﹣C . y=D . y=﹣9. (2分)(2018·龙东模拟) 小华准备购买单价分别为4元和5元的两种拼装饮料,若小华将50元恰好用完,两种饮料都买,则购买方案共有()A . 2种B . 3种C . 4种D . 5种10. (2分)(2018·龙东模拟) 如图,在△ABC中,BC的垂直平分线交AC于点E,交BC于点D,且AD=AB,连接BE交AD于点F,下列结论:①∠EBC=∠C;②△EAF∽△EBA;③BF=3EF;④∠DEF=∠DAE,其中结论正确的个数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共9题;共10分)11. (2分)的相反数是________,绝对值是________.12. (1分)(2018·龙东模拟) 在函数y= 中,自变量x的取值范围是________.13. (1分)(2018·龙东模拟) 同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是________.14. (1分) (2018·龙东模拟) 若关于x的一元一次不等式组无解,则m的取值范围为________.15. (1分)某商品经过两次连续的降价,由原来的每件25元降为每件16元,则该商品平均每次降价的百分率为________.16. (1分)(2018·龙东模拟) 如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB边上一动点,N 是AC边上的一动点,则MN+MC的最小值为________.17. (1分)(2018·龙东模拟) 已知圆锥底面圆的直径是20cm,母线长40cm,其侧面展开图圆心角的度数为________.18. (1分)(2018·龙东模拟) 在Rt△ABC中,∠A=90°,AB=AC= +2,D是边AC上的动点,BD的垂直平分线交BC于点E,连接DE,若△CDE为直角三角形,则BE的长为________.19. (1分)(2018·龙东模拟) 如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1 ,再顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第2018个正方形A2018B2018C2018D2018的周长是________.三、解答题 (共8题;共96分)20. (5分)(2019·常熟模拟) 计算: .21. (15分)(2018·龙东模拟) 如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2 ,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.22. (10分)(2018·龙东模拟) 如图,抛物线y=x2+bx+c与x轴交于A,B两点,且点A在点B的左侧,直线y=﹣x﹣1与抛物线交于A,C两点,其中点C的横坐标为2.(1)求二次函数的解析式;(2) P是线段AC上的一个动点,过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值.23. (11分) (2018八上·汽开区期末) 在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取了一部分同学就“我最喜爱的体育项目”进行了一次调查(每位同学必选且只选一项).下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙一共抽取了________名学生.(2)补全条形统计图;(3)求“其他”部分对应的扇形圆心角的度数.24. (15分)(2018·龙东模拟) 小明从家出发沿滨江路到外滩公园徒步锻炼,到外滩公园后立即沿原路返回,小明离开家的路程s(单位:千米)与走步时间t(单位:小时)之间的函数关系如图所示,其中从家到外滩公园的平均速度是4千米/时,根据图形提供的信息,解答下列问题:(1)求图中的a值;(2)若在距离小明家5千米处有一个地点C,小明从第一次经过点C到第二次经过点C,所用时间为1.75小时,求小明返回过程中,s与t的函数解析式,不必写出自变量的取值范围;(3)在(2)的条件下,求小明从出发到回到家所用的时间.25. (10分)(2018·龙东模拟) 在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,CE=BC,过点C作CF⊥DE于点F,交直线l于点H,当l在如图①的位置时,易证:BH+EH= CH(不需证明).(1)当l在如图②的位置时,线段BH,EH,CH之间有怎样的数量关系?写出你的猜想,并给予证明;(2)当l在如图③的位置时,线段BH,EH,CH之间有怎样的数量关系?写出你的猜想,不必证明.26. (15分) (2018九下·河南模拟) 近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表:A型销售数量(台)B型销售数量(台)总利润(元)510 2 000105 2 500(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m2 ,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?27. (15分)(2018·龙东模拟) 如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(4,2),D 是OA的中点,OE⊥CD交BC于点E,点P从点O出发,以每秒2个单位长度的速度沿射线OE运动.(1)求直线OE的解析式;(2)设以C,P,D,B为顶点的凸四边形的面积为S,点P的运动时间为t(单位:秒),求S关于t的函数解析式,并写出自变量t的取值范围;(3)设点N为矩形的中心,则在点P运动过程中,是否存在点P,使以P,C,N为顶点的三角形是直角三角形?若存在,请直接写出t的值及点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共8题;共96分)20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。
凉山彝族自治州数学中考五模试卷
凉山彝族自治州数学中考五模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·信阳期中) 关于0,下列几种说法不正确的是()A . 0既不是正数,也不是负数B . 0的相反数是0C . 0的绝对值是0D . 0是最小的数2. (2分) (2017七下·港南期末) 下列等式中,正确的是()A . 3a﹣2a=1B . a2•a3=a5C . (﹣2a3)2=﹣4a6D . (a﹣b)2=a2﹣b23. (2分)(2017·祁阳模拟) 下列图形中,是中心对称图形的是()A .B .C .D .4. (2分)(2019·昌图模拟) 如图为一个台阶,它的主视图正确的是()A .B .C .D .5. (2分)下表为某公司2008﹣2012年度的年生产总值,年产值增长率最高的年份是()年份20082009201012112012产值/万元8090110130155A . 2009年B . 2011年C . 2010年D . 2012年6. (2分)若a.b.c是△ABC的三边,且关于x的方程a(x2﹣1)﹣2cx+b(x2+1)=0有两个相等的实数根,则△ABC是()A . 等腰三角形B . 直角三角形C . 等边三角形D . 等腰直角三角形.7. (2分)下列成语所描述的事件是必然事件的是()A . 水中捞月B . 守株待兔C . 画饼充饥D . 水涨船高8. (2分) (2019九上·东港月考) 如图,点O是矩形ABCD的对角线AC的中点,交AD于点M,若,,则OB的长为A . 4B . 5C . 6D .9. (2分) (2015九上·龙华期末) 如图,已知正方形ABCD的边长为4,E是BC的中点,过点E作EF⊥AE,交CD于点F,连接AF并延长,交BC的延长线于点G.则CG的长为()A .B . 1C .D . 210. (2分)(2019·衢州) 如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)分式在实数范围内有意义,则x的取值范围是________12. (1分) (2019八上·鞍山期末) 可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是________.13. (1分)(2018·阿城模拟) 因式分解: ________.14. (1分)(2018·扬州) 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是________.15. (1分)(2017·泰兴模拟) 如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于________.16. (1分)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为________ m(精确到0.1m).(参考数据:≈1.41,, 1.73)17. (1分)(2017·微山模拟) 如图,四边形ABCD与EFGH均为正方形,点B、F在函数y= (x>0)的图象上,点G、C在函数y=﹣(x<0)的图象上,点A、D在x轴上,点H、E在线段BC上,则点G的纵坐标________.18. (1分) (2017八下·卢龙期末) 如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,则∠COE=________°三、解答题 (共8题;共92分)19. (5分)先化简,再求值:(﹣)÷,其中x满足2x﹣6=0.20. (11分) (2017八上·云南月考) 如图(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.21. (11分)(2019·海州模拟) 电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有多少人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是________.22. (10分) (2019·遵义模拟) 有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?23. (10分) (2017八下·宝安期中) 如图①已知△ACB和△DCE为等腰直角三角形,按如图的位置摆放,直角顶点C重合.(1)求证:AD=BE;(2)将△DCE绕点C旋转得到图②,点A、D、E在同一直线上时,若CD= ,BE=3,求AB 的长;(3)将△DCE绕点C顺时针旋转得到图③,若∠CBD=45°,AC=6,BD=3,求BE的长.24. (20分) (2016九上·重庆期中) 在如图所示的直角坐标系中,解答下列问题:(1)分别写出A、B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(3)求出线段B1A所在直线l的函数解析式,并写出在直线l上从B1到A的自变量x的取值范围.25. (10分) (2016九上·沁源期末) 在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1.判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,如图2.①依题意补全图2;②判断(1)中的结论是否还成立?若成立请直接写出结论;若不成立请说明理由.26. (15分)(2017·准格尔旗模拟) 如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A,B两点(点A在点B 的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A,B,C三点的坐标.(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积.(3)在(2)的条件下,当矩形PMNQ的周长最大时,连结DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2 DQ,求点F的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共92分)19-1、20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017 届凉山州初三中考适应性考试
数 学 试 卷
本试题分为A 卷(120 分)、B 卷(30 分),全卷满分 150 分,考试时间 120 分钟.
注意事项:
1. 答题前,考生务必将自己的姓名、座位号、准考证号用 0.5 毫米的黑色签字笔填写在答题卡上,并检查条形码粘贴是否正确.
2. 选择题使用 2B 铅笔涂在答题卡对应题目标号的位置上;非选择题用 0.5 毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效曰在草稿纸、试卷上答题无效.
3. 考试结束后,将答题卡收回.
A 卷(共120分)
第 I 卷(选择题 共 48 分)
一、选择题:(共12 个小题,每小题 4 分,共 48 分)在每个小题给出的四个选项中只有一项是正确 的,请把正确选项的字母填涂在答题卡上相应的位置.
1. 下列事件中,属于必然事件的是( ) A .明天我市下雨
B . 抛一枚硬币,正面朝上
C . 走出校门,看到的第一辆汽车的牌照的末位数字是偶数
D . 一口袋中装有 2 个红球和 1 个白球,从中摸出 2 个球,其中有红球
2. 下列图形:菱形、平行四边形、正方形、等边三角形、圆和线段中,既是轴对称图形又是中心对 称图形的个数有( )
A . 3 个
B . 4 个
C . 5 个
D . 6 个 3. 下列说法正确的是( )
A . 同圆或等圆中,等弦所对的圆周角相等
B . 圆的切线垂直于半径
C . 三角形的内心是三角形角平分线的交点
D . 平分弦的直径垂直于弦
4. 已知关于x 的方程2
1
(1)230m
m x x --+-=,是一元二次方程,则m 的值为( )
A . 1-
B . 1
C . ±1
D . 不能确定
5. 若一元二次方程22630x x -+= 的两根为1x 、2x , 则12x x 的值为( )
A . 3
B . 6
C .6-
D .3
2
6. 边长为 1 的正六边形的边心距是( )
A . 1
B .
12 C .2
D 7. 在平面直角坐标系中,若点 P (x ,y )在第二象限,且||10x -=,2
40y -=,则点 P 关于坐标原点对称 的点 P (x ,y )的坐标是( )
A .P '(1-,2-)
B .P '(1,2-)
C .P '(1-,2)
D .P '(1,2)
8. 若二次函数2
2222y x mx m =-+-的图象的顶点在x 轴上,则m 的值是( )
A . 2
B .2-
C .2±
D . 1±
9. 关于x 的方程2440kx x ++=有实数根,则k 的取值范围是( ) A .1k < B .1k <且0k ≠ C . 1k ≤ D .1k ≤且 0k ≠
10. 如下图,一次函数y ax b =+(0a ≠)与二次函数2y ax bx =+(0a ≠)图象大致是( )
11. 新年来临之际,某班同学向班上其他同学互赠新年贺卡,全班共互赠贺卡
2980张,设全班有
x 名学生,那么根据题意可列方程( )
A .(1)2980x x -=
B .1(1)29802x x -=
C .(1)2980x x +=
D .1
(1)29802x x +=
12. 已知二次函数2
y ax bx c =++ (0a ≠)的图象如图所示,有下列结论:①240b ac ->;②20a b -=;③0abc >;④80a c +>;⑤930a b c ++<。
其中,正确结论的个数是( ) A . 1 B . 2 C . 3 D . 4
第Ⅱ卷(非选择题 共 72 分)
二、填空题:(共 5 小题,每小题 4 分,共 20 分) 13. 已知
O 的半径是13cm ,弦AB =24cm ,CD =10cm ,AB ∥CD ,则AB 和CD 之间的距离
为 .
14. 圆锥母线长5 cm ,底面圆半径长3 cm ,那么它的侧面展开图的圆心角是 . 15. 二次函数2
5y x x =+-的最小值是 . 16. 从2-、1-、0、1、2 这 5 个数中任取一个数,作为关于x 的一元二次方程20x x k -+=的k 值,则所得的方程有两个不相等的实数根的概率是 。
17. 如图 1, 边长为 3 的正方形 ABCD 绕点C 按顺时针方向旋转 30后 得到正方形 EFCG ,EF 交 AD 于点 H , 那么DH 的长为 。
三、解答题:(共 2 小题,每小题 6 分,共 12 分) 18. 解方程(每小题 3 分,共 6 分)
(1)2(2)5(2)x x x -=-; (2)26160x x +-=;
D
. x
C
. x
B
. x
A
. x
C
D
A G
E
F H
19.用画树状图或列表的方法求下列概率:已知 24a =, ||5b =, 求||a b +的值是 7 的概率。
四、解答题(共 3 小题,每小题 8 分,共 24 分)
20. 如图,某小区规划在一个长 40 米,宽为 36 米的矩形场地 ABCD 上修建横、纵道路宽为3:2的三条道路,使其中两条与 AB 平行,另一条与 AD 平行,其余部分种草,若使每一块草坪的面积都为198 米,求道路的宽度.
21. 如图,在平面直角坐标系中,ABC △的顶点坐标为 A (-2,3)、B (-3,2)、C (-1,1).
(1)将ABC △先向右平移 3 个单位长度,再向上平移 1 个单位长度,画出平移后的111A B C △, (2)画出111A B C △绕原点旋转 180后得到的222A B C △。
(3)如图,A B C '''△与ABC △关于直线 对称.
x
22. 已知抛物线221y x kx k =-+-。
(1)求证:不论k 取何值时,抛物线与x 轴必有两个交点.
(2)设抛物线与x 轴的两个交点分别为(1x ,0)、(2x ,0),求22
12x x +的最小值.
五、解答题:(共 2 小题,每小题 8 分,共 16 分)
23. 某商店销售一种销售成本为 40 元/千克的产品,若按 50 元 /千克销售,一个月可售出 500 千 克,销售价每涨 2 元,月销售量减少 20 千克.
(1)写出月销售利润y (单位:元)与售价x (单位:元/千克)之间的函数解析式;(不要求写出 x 的取值范围)
(2)若商店想在月销售成本不超过10 000的情况下,使月销售利润达到 8 000 元,则销售单价应定为多少?
(3)当售价应定为多少元时可获最大利润? 并求出最大利润.
24. 如图,ABC △中,AB AC ,O 是BC 的中点,O 与AB 相切于点D .
求证:AC 是O 的切线.
A
C
B 卷(共 30 分)
六、填空题:(共 2 小题,每小题 5 分,共 10 分) 25. 已知
1O 与2O 的半径是方程3(2)(2)x x x -=-的两根 ,那么当1O 与2O 相切时,
圆心距12O O 的值是 。
26. 一个等腰三角形的三边长均满足 2680x x -+=,则三角形的周长是 。
七、解答题:(共 2 小题,27 题 8 分,28 题 12 分,共 20 分) 27. 如图,AB 是
O 的直径,点 C 是BD 的中点,CE AB ⊥于E ,交BD 于点F .
(1)求证:BF CF =;
(2)若3CD cm =,4AC cm =,求O 的半径及CE 的长.
B
,0),连结OA,将线段OA绕原点O顺时28.如图,在直角坐标系中,点A的坐标为(2
针旋转120,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
△的周长最小?若存在,求出点C (3)在(2)中抛物线的对称轴上是否存在点C,使BOC
的坐标;若不存在,请说明理由.
x。