高三数学函数的定义域
高三数学第一轮复习:函数的定义域值域.ppt
例 1 已知函数 f ?x?定义域为(0,2),求下列函数的定义域:
(1) f (x2 ) ? 23 ;
(2) y ?
f (x2 ) ? 1
log 1 (2 ? x)
2
分析:x 的函数 f(x 2 )是由 u=x 2 与 f(u)这两个函数复合而成的复合函 数,其中 x 是自变量,u 是中间变量 由于 f(x),f(u)是同一个函数,故(1) 为已知 0<u<2,即 0<x 2 <2 求 x 的取值范围
又∵ ? ? ? x2 ? 6x ? 5 ? ? ( x ? 3)2 ? 4 ? 4 ,
∴ 0 ? ? ? 4 ,故 ? ? [0,2] ,
∴ y ? ? x2 ? 6x ? 5 的值域为 [0,2]
(3)(法一)反函数法:
y ? 3x ? 1 的反函数为 y ? 2x ? 1 ,其定义域为{x ? R | x ? 3},
x? 2
x? 3
∴原函数 y ? 3x ? 1 的值域为{y? R | y ? 3} x? 2
(法二)分离变量法: y ? 3x ? 1 ? 3(x ? 2) ? 7 ? 3 ? 7 ,
x? 2
x? 2
x? 2
∵ 7 ? 0 ,∴ 3 ? 7 ? 3 ,
x? 2
x? 2
∴函数 y ? 3x ? 1 的值域为{y? R | y ? 3} x? 2
1? sin x 2 ? cos x
解:(1)(配方法)Q y ? 3x2 ? x ? 2 ? 3(x ? 1 )2 ? 23 ? 23 , 6 12 12
∴ y ? 3x2 ? x ? 2 的值域为 [ 23 , ?? ) 12
改题: 求函数 y ? 3x2 ? x ? 2 , x? [1,3]的值域
高考数学重难点第9讲-函数的定义域、解析式与值域8大题型(新高考用)(解析版)(全国通用)(老师专用
重难点第9讲 函数定义域、解析式与值域8大题型——每天30分钟7天掌握函数定义域、解析式与值域8大题型【命题趋势】函数的定义域、解析式与值域问题是高考数学的必考内容。
函数问题定义域优先,在解答函数问题时切记要先考虑定义域;函数解析式在高考中较少单独考查,多在解答题中出现;函数的值域在整个高考范畴应用的非常广泛,例如恒成立问题、有解问题、数形结合问题;基本不等式及“耐克函数”、“瘦腰函数”模型;数列的最大项、最小项;向量与复数的四则运算及模的最值;向量与复数的几何意义的最值;解析几何的函数性研究问题等;都需要转化为求最值问题。
在复习过程中,在熟练掌握基本的解题方法的同时,要多加训练综合性题目。
第1天 认真研究满分技巧及思考热点题型【满分技巧】一、求函数的定义域的依据函数的定义域是指使函数有意义的自变量的取值范围 1、分式的分母不能为零.2、偶次方根的被开方数的被开方数必须大于等于零,(2,)n k k N *=∈其中中0,x ≥(21,)n k k N *=+∈其中中.3、零次幂的底数不能为零,即0x 中0x ≠.4、如果函数是一些简单函数通过四则运算复合而成的,那么它的定义域是各个简单简单函数定义域的交集。
【注意】定义域用集合或区间表示,若用区间表示熟记,不能用“或”连接,而应用并集符号“∪”连接。
二、抽象函数及定义域求法1、已知)(x f 的定义域为A ,求))((x g f 的定义域,其实质是)(x g 的取值范围为A ,求x 的取值范围;2、已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中的x 的取值范围为B ,求)(x g 的范围(值域),此范围就是)(x f 的定义域.3、已知))((x g f 的定义域,求))((x h f 的定义域,要先按(2)求出)(x f 的定义域.三、函数解析式的四种求法1、待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法.(1)确定所有函数问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含有待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决。
高三数学函数的定义域与值域试题答案及解析
高三数学函数的定义域与值域试题答案及解析1.已知集合,则= .【答案】【解析】因为,所以,即=.【考点】函数的定义域,集合的运算.2.函数的定义域为()A.B.C.D.【答案】C【解析】由已知,解得,故选C.【考点】函数的定义域,对数函数的性质.3.以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当,时,,.现有如下命题:①设函数的定义域为,则“”的充要条件是“,,”;②函数的充要条件是有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数(,)有最大值,则.其中的真命题有 .(写出所有真命题的序号)【答案】①③④【解析】对①,若对任意的,都,使得,则的值域必为R;反之,的值域为R,则对任意的,都,使得.故正确.对②,比如函数属于B,但是它既无最大值也无最小值.故错误.对③,因为,而有界,故,所以.故正确.对④,.当或时,均无最大值.所以若有最大值,则,此时,.故正确【考点】1、新定义;2、函数的定义域值域.4.已知函数,.若存在使得,则实数的取值范围是.【答案】【解析】方程变形为,记函数的值域为,函数的值域为,设的取值范围为,则,作出函数和的图象,可见在上是增函数,在上是减函数,且,而函数的值域是,因此,因此.【考点】函数的图象,方程的解与函数的值域问题.5.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.6.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式7.设函数若是的三条边长,则下列结论正确的是_____ _.(写出所有正确结论的序号)①②,使不能构成一个三角形的三条边长;③若【答案】①②③【解析】由题意得.令,则是单调递减函数.对①,..②,令,因为是单调递减函数,所以在上一定存在零点,即,此时不能构成三角形的三边.③,为钝角三角形,则由余弦定理易知,即,又,且连续,所以使.故①②③都正确.【考点】1、函数的单调性;2、三角形.8.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.9.设函数若,则实数( )A.4B.-2C.4或D.4或-2【答案】C【解析】因为,所以得到或所以解得或.所以或.当可时解得.当时可解得.【考点】1.复合函数的运算.2. 分类讨论的思想.10.函数的定义域是( )A.B.C.D.【答案】A【解析】根据题意可得,所以该函数定义域为,故选A.【考点】定义域二次不等式11.如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;(2)当AP为多少时,“总噪音影响度”最小?【答案】(1)y=(≤x≤)(2)AP=km【解析】(1)(解法1)如图,连结OP,设∠AOP=α,则≤α≤.在△AOP中,由余弦定理得x2=12+22-2×1×2cosα=5-4cosα,在△BOP中,由余弦定理得BP2=12+22-2×1×2cos(π-α)=5+4cosα,∴BP2=10-x2,∴y=.∵≤α≤,∴≤x≤,∴y=(≤x≤).(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m,n),则PA2=(m+1)2+n2,PB2=(m-1)2+n2.∵m2+n2=4,PA=x,∴PB2=10-x2(后面解法过程同解法1).(2)(解法1)y==[x2+(10-x2)]=(5+)≥(5+2)=,当且仅当,即x=∈[,]时取等号.故当AP=km时,“总噪音影响度”最小.(解法2)由y=,得y′=-.∵≤x≤,∴令y′=0,得x=,且当x∈时,y′<0;当x∈(,]时,y′>0.∴x=时,y=取极小值,也即最小值.故当AP=km时,“总噪音影响度”最小12.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>113.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].14.已知函数f(x)=-的定义域为R,则f(x)的值域是.【答案】【解析】∵2x>0,∈(0,1),∴-<-<,故函数值域为.15.函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【答案】D【解析】要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).16.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.17.函数f(x)=的定义域为________.【答案】(-1,0)∪(0,2]【解析】根据使函数有意义的条件求解.由得-1<x≤2,且x≠0.18.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.19.函数f(x)=e x sin x在区间上的值域为 ().【答案】A【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)=minf(0)=0,f(x)=f=.max20.设函数,若和是函数的两个零点,和是的两个极值点,则等于( )A.B.C.D.【答案】C【解析】,若和是函数的两个零点,即和是方程的两根,得到,,,由已知得和是的两根,所以,故选C.【考点】1.函数的零点;2.函数的极值点.21.函数的定义域为______________.【答案】【解析】为使有意义,须解得,所以函数的定义域为【考点】函数的定义域,对数函数的性质,简单不等式的解法.22.函数的定义域为( )A.;B.;C.;D.;【答案】C【解析】函数的定义域包含三个要求,由不等式组解得.所以选C.本题要注意的解法将不等式化为.由于函数是递增的,所以结合另两个的式子可得结论.【考点】1.偶次方根的定义域.2.分母的定义域.3.对数的定义域.23.函数的定义域是( )A.(-¥,+¥)B.[-1,+¥)C.[0,+¥]D.(-1,+¥)【答案】B【解析】依题意可得.故选B.本小题是考查函数的定义域问题;函数的偶次方根的被开方数要大于或等于零这种情况.函数的定义域是函数三要素之一,也是研究函数的首要组成部分,大致情况有四种.在接触函数的题型时就得考虑函数的定义域.【考点】函数的定义域.24.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.25.已知函数.(1)求函数的定义域;(2)若函数在上单调递增,求的取值范围.【答案】(1)若即时,;若即时,;若即时,.(2).【解析】(1)对数函数要有意义,必须真数大于0,即,这是一个含有参数的不等式,故对m分情况进行讨论;(2)根据复合函数单调性的判断法则,因为是增函数,要使得若函数在上单调递增,则函数在上单调递增且恒正,据些找到m满足的不等式,解不等式即得m的范围.试题解析:(1)由得:若即时,若即时,若即时,(2)若函数在上单调递增,则函数在上单调递增且恒正。
专题05 函数 5.1函数的三要素 题型归纳讲义-2022届高三数学一轮复习(原卷版)
专题四《函数》讲义5.1函数的三要素知识梳理.函数的概念1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的三种表示法解析法图象法列表法就是把变量x,y之间的关系用一个关系式y=f(x)来表示,通过关系式可以由x的值求出y的值.就是把x,y之间的关系绘制成图象,图象上每个点的坐标就是相应的变量x,y的值.就是将变量x,y的取值列成表格,由表格直接反映出两者的关系.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.题型一.定义域考点1.具体函数定义域1.函数f(x)=(1﹣)−12+(2x﹣1)0的定义域是()A.(﹣∞,1]B.(−∞,12)∪(12,1)C.(﹣∞,1)D.(12,1)2.函数op=M,g(x)=ln(x2+3x+2)的定义域为N,则M∪∁R N=A.[﹣2,1)B.(﹣2,1)C.(﹣2,+∞)D.(﹣∞,1)考点2.抽象函数定义域3.若函数f(3﹣2x)的定义域为[﹣1,2],则函数f(x)的定义域是.4.函数y=f(x)的定义域为[﹣1,2],则函数y=f(1+x)+f(1﹣x)的定义域为()A.[﹣1,3]B.[0,2]C.[﹣1,1]D.[﹣2,2]考点3.已知定义域求参5.已知函数f(x)=lg(ax2+3x+2)的定义域为R,则实数a的取值范围是.6.若函数f(x)=(2a2+5a+3)x2+(a+1)x﹣1的定义域、值域都为R,则实数a满足()A.a=﹣1或a=−32B.−139<<−1C.a≠﹣1或a≠−32D.a=−32题型二.解析式考点1.待定系数法1.已知函数f(x)是一次函数,且f[f(x)]=9x+4,求函数f(x)的解析式.2.已知f(x)是二次函数,且满足f(0)=1,f(x+1)﹣f(x)=2x,则f(x)的解析式是.考点2.换元法3.已知o−1)=−2,则函数f(x)的解析式为.4.已知f(1−1+)=1−21+2,求f(x)的解析式.考点3.凑配法5.(1)已知f(1)=1−2,求f(x)的解析式;(2)已知f(x+1)=x2+12,求f(x).6.已知f(3x)=4x log23+10,则f(2)+f(4)+f(8)+…+f(210)的值等于.考点4.方程组法7.已知函数f(x)满足f(x)+2f(﹣x)=3x,则f(1)=.8.已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,f(x)+g(x)=2•3x,则函数f(x)=.考点5.求谁设谁9.已知函数f(x)为奇函数,当x∈(0,+∞)时,f(x)=log2x,(1)求f(x)的解析式;(2)当f(x)>0时.求x的取值范围.10.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2﹣x,则当x∈(﹣1,0]时,f(x)的值域为()A.[−18,0]B.[−14,0]C.[−18,−14]D.[0,14]考点6.利用对称求解析式11.下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)12.设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1B.1C.2D.4题型三.值域考点1.利用单调性求值域1.下列函数中,与函数op=(15)的定义域和值域都相同的是()A.y=x2+2x,x>0B.y=|x+1|C.y=10﹣x D.=+12.已知函数f(x)=log3(x﹣2)的定义域为A,则函数g(x)=(12)2﹣x(x∈A)的值域为()A.(﹣∞,0)B.(﹣∞,1)C.[1,+∞)D.(1,+∞)考点2.换元法3.函数=2+41−的值域为()A.(﹣∞,﹣4]B.(﹣∞,4]C.[0,+∞)D.[2,+∞)4.函数f(x)=log2(x2﹣2x+3)的值域为()A.[0,+∞)B.[1,+∞)C.R D.[2,+∞)考点3.分离常数5.函数=2r1r1在x∈[0,+∞)上的值域是.6.已知函数op=2+4,则该函数在(1,3]上的值域是()A.[4,5)B.(4,5)C.[133,5)D.[133,5] 7.函数=2+2r2r1的值域是.8.下列求函数值域正确的是()A.函数=5K14r2,x∈[﹣3,﹣1]的值域是{U≠54}B.函数=2−3r1的值域是{U≤−1,≥−15}C.函数=sB+1K2,∈[2,2)∪(2,p的值域是{U≤4K4,≥1K2} D.函数=+1−2的值域是{U−1≤≤2}课后作业.函数的三要素1.函数op=−2+9+10−2B(K1)的定义域为()A.[1,10]B.[1,2)∪(2,10]C.(1,10]D.(1,2)∪(2,10]2.已知函数f(x)=l2,>03,<0,则no14)]的值为()A.19B.13C.﹣2D.3 3.已知o p=2−2,则函数f(x)的解析式为()A.f(x)=x4﹣2x2(x≥0)B.f(x)=x4﹣2x2C.op=−2o≥0)D.op=−24.已知函数f(x)满足2f(x﹣1)+f(1﹣x)=2x﹣1,求:f(x)解析式.5.已知f(x)=(1−2p+3o<1)Bo≥1)的值域为R,那么a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,12)C.[﹣1,12)D.(0,1)6.用min{a,b,c}表示a,b,c三个数中的最小值设f(x)=min{2x,x+2,10﹣x}(x≥0),则f(x)的最大值为.。
高三数学函数的定义域与值域试题答案及解析
高三数学函数的定义域与值域试题答案及解析1.函数的定义域是(用区间表示);【答案】【解析】由得,所以定义域为.【考点】函数的定义域.2.函数的图像为【答案】D【解析】因为=,其图像为D.【考点】对数恒等式,分类整合思想,常见函数图像,分段函数3.设函数f(x)= (x+|x|),则函数f[f(x)]的值域为________.【答案】[0,+∞)【解析】先去绝对值,当x≥0时,f(x)=x,故f[f(x)]=f(x)=x,当x<0时,f(x)=0,故f[f(x)]=f(0)=0,即f[f(x)]=易知其值域为[0,+∞).4. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].5.设a,b为实数,关于x的方程的4个实数根构成以d为公差的等差数列,若,则的取值范围是 .【答案】【解析】设4个实数根依次为,由等差数列性质,不妨设为的两个实数根,则为方程的两个根,由韦达定理,即,又,,故,∴,即的取值范围是.【考点】等差数列的性质、函数值域.6.江西高考函数y=ln(1-x)的定义域为()A.(0,1)B.[0,1)C.(0,1]D.[0,1]【答案】B【解析】由得,函数定义域为[0,1).7.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.8.函数的定义域为( )A.B.C.D.【答案】C【解析】要使函数有意义,则有,即,所以,即函数定义域为,选C.9.已知,对,使成立,则a的取值范围是( )A.[-1,+)B.[-1,1]C.(0,1]D.(-,l]【答案】B【解析】解:由题意知函数的值域是函数的值域的子集;因为当时,当时,所以函数的值域是所以,解得:故选B.【考点】1、分段函数;2、函数的值域;3、等价转化的思想.10.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式11.函数()的最大值等于 .【答案】4【解析】因为对称轴为,所以函数在[-1,1]上单调递增,因此当时,函数取最大值4.【考点】二次函数最值12.函数的定义域为________.【答案】【解析】依题意可得.即.【考点】1.函数的定义.2.对数函数的知识.13.已知函数f(x)=lg(k∈R,且k>0).(1)求函数f(x)的定义域;(2)若函数f(x)在[10,+∞)上单调递增,求k的取值范围.【答案】(1)当0<k<1时,函数定义域为;当k≥1时,函数定义域为.(2)【解析】(1)由>0,k>0,得>0,当0<k<1时,得x<1或x>;当k=1时,得x∈R且x≠1;当k>1时,得x<或x>1.综上,当0<k<1时,函数定义域为;当k≥1时,函数定义域为.(2)由函数f(x)在[10,+∞)上单调递增,知>0,∴k>.又f(x)=lg=lg,由题意,对任意的x1、x2,当10≤x1<x2,有f(x1)<f(x2),即lg<lg,得<(k-1)(-)<0.∵x1<x2,∴>,∴k-1<0,即k<1.综上可知,k的取值范围是.14.若函数y=f(x)的定义域是[0,2],求函数g(x)=的定义域.【答案】[0,1)【解析】由得0≤x<1,即定义域是[0,1).15.函数f(x)=的定义域为()A.(0,+∞)B.(1,+∞) C.(0,1)D.(0,1)∪(1,+∞)【答案】D【解析】由得∴0<x<1或x>1,故选D.16.已知函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域是() A.[0,]B.[-1,4]C.[-5,5]D.[-3,7]【答案】A【解析】【思路点拨】先求y=f(x)的定义域,再求y=f(2x-1)的定义域. 解:由-2≤x≤3,得-1≤x+1≤4,由-1≤2x-1≤4,得0≤x≤,故函数y=f(2x-1)的定义域为[0,].17.已知函数f(x)=.(1)求函数f(x)的定义域;(2)设α是第四象限的角,且tan α=-,求f(α)的值.【答案】(1)(2)【解析】(1)函数f(x)要有意义需满足cos x≠0,解得x≠+kπ(k∈Z),即f(x)的定义域为(2)f(x)====2(cos x-sin x),由tan α=-,得sin α=-cos α,又∵sin2α+cos2α=1,∴cos2α=.∵α是第四象限的角,∴cos α=,sin α=-,∴f(α)=2(cos α-sin α)=18.函数f(x)=的定义域是()A.[-3,3]B.[-,]C.(1,]D.[-,1)∪(1,]【答案】D【解析】由题意知所以-≤x≤且x≠119.函数的定义域是_____________.【答案】【解析】函数的定义域是使函数式有意义的自变量的集合,求定义域时要注意基本初等函数的定义域.【考点】函数的定义域.20.已知是定义在上的奇函数,则的值域为 .【答案】【解析】由奇函数性质知其定义域关于原点对称,值域也关于原点对称.首先求出参数,可利用特殊值法,奇函数,得.时,,,则,因此值域为.【考点】奇函数的性质与函数的值域.21.设函数,且,表示不超过实数的最大整数,则函数的值域是__________.【答案】.【解析】由题意,,,当时,;当时,;当时,.【考点】函数解析式.22.已知函数的定义域为,值域为.下列关于函数的说法:①当时,;②将的图像补上点,得到的图像必定是一条连续的曲线;③是上的单调函数;④的图象与坐标轴只有一个交点.其中正确命题的个数为()A.1B.2C.3D.4【答案】B【解析】设函数的图象如图根据图形知,①②③错误,④正确. 选B【考点】函数的定义域、值域,函数的图象性质.23.已知方程在上有解,则实数的取值范围为.【答案】【解析】由,参变分离得,记,且,所以,即,故实数的取值范围为.【考点】二次函数的值域.24.函数的值域为 .【答案】【解析】当时,,当且仅当时,等号成立;当时,,当且仅当时等号成立,综上知,函数的值域为.【考点】基本不等式,函数的值域.25.设函数,则下列结论错误的是()A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数【答案】C【解析】因为,,所以,函数的值域为{0,1};因为,是有理数或无理数时,依然为有理数或无理数,所以,函数值不变,即D(x)是偶函数;因为,==,所以,为其一个周期,故C错,选C.【考点】函数的性质26.下列函数中,值域为的函数是( )A.B.C.D.【答案】C【解析】确定函数的值域,应首先关注函数的定义域.根据指数函数的性质可知的值域为,故选C.【考点】函数的定义域、值域,常见函数的性质.27.函数的定义域是()A.B.C.D.【答案】C【解析】自变量满足,解得且,故函数的定义域是,故选C.【考点】函数的定义域28.函数f(x)=-x4+2x2+3的最大值为.【答案】4【解析】令,则,则当时,取最大值4.【考点】换元法求值域.29.设,函数有意义, 实数取值范围 .【答案】【解析】由题意得,对都成立,当时,显然成立,或当即时不等式也成立,所以实数取值范围.【考点】对数函数的定义域、一元二次不等式.30.函数的定义域为 .【答案】【解析】由,得且.所以定义域为.【考点】定义域的求法、解不等式31.函数的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)(1,+)【答案】B【解析】根据题意,由于对数真数大于零,偶次根号下为非负数,则可知,故可知答案为(1,+∞),选B.【考点】函数定义域点评:主要是考查了函数定义域的求解,属于基础题。
高考数学复习考点知识讲解课件6 函数的定义域与值域
— 返回 —
— 4—
(新教材) 高三总复习•数学
(2)基本初等函数的定义域 ①整式函数的定义域为 R. ②分式函数中分母_不___等__于__0__. ③偶次根式函数被开方式__大__于__或__等__于___0___. ④一次函数、二次函数的定义域均为 R. ⑤函数 f(x)=x0 的定义域为__{_x_|x_≠__0_}__. ⑥指数函数的定义域为____R______. ⑦对数函数的定义域为_(_0_,__+__∞__)_.
0<2-x<1, ⇒x≠32
1<x<2, ⇒x≠32.
所以函数的定义域为1,32∪32,2.
— 14 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:求抽象函数的定义域 【例 2】 已知函数 f(2x+1)的定义域为(0,1),则 f(x)的定义域是___(1_,_3_)__. [思路引导] 由已知得 x∈(0,1)→求 2x+1 的范围→得 f(x)的定义域.
2
— 返回 —
— 13 —
(新教材) 高三总复习•数学
— 返回 —
[解析] (1)要使原函数有意义,
-x2+9x+10≥0, 则x-1>0,
x-1≠1,
解得 1<x≤10 且 x≠2,所以函数 f(x)= -x2+9x+10-
lnx2-1的定义域为(1,2)∪(2,10],故选 D.
(2)要使函数有意义,则log12 2-x>0, 2x-3≠0
— 11 —
— 返回 —
6函数的概念、定义域、值域求法-教师版
教学内容概要教学内容【知识精讲】一、函数的概念1、函数的定义:设A B 、是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。
记作:(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。
2、函数的三要素分别指函数的定义域、值域、对应法则;当两个函数的定义域、对应法则分别相同时,那么这两个函数是同一函数。
3、函数的表示方法一般有解析法、列表法、图像法当图像满足和,x a a R =∈的图像最多只有一个交点时才可作为函数图像。
分段函数:在用解析法表示函数的时候,往往在其定义域的不同子集上,因对应法则不同而用几个式子来表示的函数即分段函数。
分段函数是一个函数,而不是几个函数。
在解决问题过程中,要处理好整体与局部的关系。
4、函数的运算:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,设φ≠⋂=21D D D 把函数()()()D x x g x f ∈+叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的和函数 把函数()()()D x x g x f ∈叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的积函数 6、复合函数:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,若满足()1D x g ∈的x 的取值范围为E ,设φ≠⋂=2D E D ,把函数()()x g f y =叫做函数()()1D x x f y ∈=,()()2D x x g y ∈=的复合函数,x 是复合函数()()x g f y =的自变量,定义域为D ,()x g 叫做内函数,()x f 叫做外函数。
高三数学函数的定义域与值域试题答案及解析
高三数学函数的定义域与值域试题答案及解析1.函数的定义域为___________.【答案】.【解析】由已知有,故答案为:(0,1)(1,+).【考点】函数的定义域.2.函数的定义域是(用区间表示);【答案】【解析】由得,所以定义域为.【考点】函数的定义域.3.函数的定义域为()A.B.C.D.【答案】D【解析】由1-x≥0且x>0可得0<x≤1,选D【考点】函数的定义域4.某同学为研究函数f(x)=+(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的极值点是________;函数f(x)的值域是________.【答案】x= [,+1]【解析】显然当点P为线段BC的中点时,A,P,F三点共线,此时AP=PF,且函数f(x)取得最小值,函数f(x)的图像的对称轴为x=;当x∈[0,]时,函数f(x)单调递减,且值域为[,+1];当x∈[,1]时,函数f(x)单调递增,且值域为[,+1],∴函数f(x)的值域为[,+1].5.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若∀x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.【答案】(1)奇函数(2)见解析(3)[-6,6](4)(,+∞)【解析】解:(1)取x=y=0,则f(0+0)=2f(0),∴f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),∴f(-x)=-f(x)对任意x∈R恒成立,∴f(x)为奇函数.(2)证明:任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,∴f(x2)<-f(-x1),又f(x)为奇函数,∴f(x1)>f(x2).∴f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,∴对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),∵f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,∴f(-3)=-f(3)=6,f(x)在[-3,3]上的值域为[-6,6].(4)f(x)为奇函数,整理原式得f(ax2)+f(-2x)<f(x)+f(-2),则f(ax2-2x)<f(x-2),∵f(x)在(-∞,+∞)上是减函数,∴ax2-2x>x-2,当a=0时,-2x>x-2在R上不是恒成立,与题意矛盾;当a>0时,ax2-2x-x+2>0,要使不等式恒成立,则Δ=9-8a<0,即a>;当a<0时,ax2-3x+2>0在R上不是恒成立,不合题意.综上所述,a的取值范围为(,+∞).6.已知函数的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为()A.7B.8C.9D.10【答案】C【解析】由题意知f(x)=x2+ax+b=∵f(x)的值域为[0,+∞),∴,即,∴f(x)=又∵f(x)<c. ∴,即∴解得,∴c=9,选C.7.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.8.已知的定义域为,则函数的定义域为 ( )A.B.C.D.【答案】B【解析】因为,的定义域为,所以,由,得,,所以,函数的定义域为,选B.【考点】函数的定义域9.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].10.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.11.函数f(x)=的定义域为______.【答案】(0,]【解析】由题意所以x∈(0,]12.若函数的定义域为,则实数的取值范围为 .【答案】【解析】据题意,不等式恒成立,所以.又,所以.【考点】不等式选讲.13.下列函数在定义域内为奇函数,且有最小值的是A.B.C.D.【答案】D【解析】,且【考点】函数的奇偶性和值域.14.函数的定义域是.【答案】【解析】函数的定义域就是使函数式有意义的自变量的取值集合,如分母,偶次根式的被开方数,零次幂的底数等等,此外还有基本初等函数本身定义域的要求,如本题中有,解得.【考点】函数的定义域.15.函数的定义域是_________________________【答案】(-1,1)【解析】由题意可得,,解得,故函数的定义域是.【考点】函数的定义域.16.设函数(1)当时,求函数的定义域;(2)若函数的定义域为R,试求的取值范围.【解析】(1)不等式的解集就是函数的定义域,在同一直角坐标系中,分别作出①和②的图像,①的图象落在②的图象上方的部分所对应的的范围就是不等式的解集;(2)等价于在实数范围内恒成立,只需函数的最小值大于等于.试题解析:(1)由题设知:,在同一坐标系中作出函数和的图象,知定义域为.(2)由题设知,当时,恒有,即,又由(1),∴【考点】1、绝对值不等式的解法;2、函数的定义域.17.函数的定义域是,则其值域为()A.B.C.D.【答案】A.【解析】由于函数在和上都是减函数,当时,;当时,,所以函数的值域为,故选A.【考点】1.函数的值域求法;2.还是的单调性.18.已知函数是奇函数,并且函数的图像经过点(1,3),(1)求实数的值;(2)求函数的值域.【答案】(1);(2)函数的值域为【解析】(1)由奇函数的定义可知,结合解析式可求,又由函数的图像经过点(1,3),代入解析式可求得得;(2)由(1)知,从而可由分类讨论的思想,分和两种情况对函数的值域进行讨论,利用基本不等式可得函数的值域为.本题注意分类讨论的思想方法的应用,易错点是基本不等式运用时的条件容易忽略.试题解析:(1)函数是奇函数,则(3分)又函数的图像经过点(1,3),∴a=2 (6分)(2)由(1)知(7分)当时,当且仅当即时取等号(10分)当时,当且仅当即时取等号(11分)综上可知函数的值域为(12分)【考点】1.函数解析式的求法;2.函数的值域的求法;3.基本不等式的应用19.函数的值域是______________.【答案】【解析】当时,,所以;当时,.所以函数的值域是.【考点】1.函数的值域及其求法;2.对数函数的值域;3.分段函数的图像与性质20.函数的定义域是,值域是,则符合条件的数组的组数为()A.B.C.D.【答案】B【解析】,故函数在上单调递减,在上单调递增,故函数在处取得最小值,即,若,则,矛盾!故,当时,则函数在上单调递减,于是有,事实上,,而,矛盾!当时,由于函数在上单调递增,故有,即方程在至少有两个解,解方程,即,解得,故,,故选B.【考点】1.分段函数;2.函数的值域21.函数的定义域为()A.B.C.D.【答案】 B【解析】由,得,所以选B.【考点】函数的定义域.22.函数的定义域为()A.B.C.D.【答案】 B【解析】由,得,所以选B.【考点】函数的定义域.23.下列函数中,值域是的函数是( )A.B.C.D.【答案】C【解析】 A项,因为,所以函数值域为;B,D项值域为,C项,因为,根据指数函数性质可知其值域为,选C.【考点】函数的值域.24.函数的定义域是 ___________.【答案】【解析】依题意得解得函数的定义域为.【考点】函数的定义域.25.函数的定义域为 .【答案】【解析】由,得且.所以定义域为.【考点】定义域的求法、解不等式26.函数的定义域为_______________.【答案】【解析】由题意得,解得,所以所求函数的定义域为.【考点】1.函数的定义域;2.一元二次不等式的解法.27.函数的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)(1,+)【答案】B【解析】根据题意,由于对数真数大于零,偶次根号下为非负数,则可知,故可知答案为(1,+∞),选B.【考点】函数定义域点评:主要是考查了函数定义域的求解,属于基础题。
5:函数的定义域和值域高三复习数学知识点总结(全)
(二)函数的定义域(1)解决函数问题,优先考虑定义域.若没有标明定义域,则认为定义域是使得函数解析式有意义的x 的取值范围.实际问题中还要考虑自变量的实际意义.(2)分式中分母0≠;偶次根式中被开方数应为非负数;)0(10≠==x x y ;)10(≠>=a a a y x 且;,log x y a =真数,0>x 底数10≠>a a 且;x y sin =定义域为,R x y cos =定义域为,R x y tan =定义域为x {|},2Z k k x ∈+≠ππ.(3)复合函数的定义域方法:①定义域是输入值x 的集合;②同一对应法则下的括号内整体范围一样.例:已知)1(+=x f y 的定义域为],3,2[-则)12(-=x f y 的定义域为.答案:]25,0[小结:①若已知)(x f 的定义域为],,[b a 则复合函数))((x g f 的定义域可由b x g a ≤≤)(解出;②若已知))((x g f 的定义域为],,[b a 则)(x f 的定义域即为],[b a x ∈时)(x g 的值域.(三)函数的值域(数形结合)常用方法法一:图象法(形)1.)10(22≤<+-=x x x y 2..30,113<≤+-=x x x y 3..14,4-≤≤-+=x xx y 法二:换元法+图象法(形)4.3212++=x x y 5.x x y 21-+= 6.1212+-=x x y 7.)0(422>+=x x x y 8.).1(1542>-+-=x x x x y 9.)10(210212≤≤++=x x xy 法三:单调性(导数和单调性的性质)(数)10.x x y 21--=11.2,0[,sin π∈+=x x x y 12.]3,3[,8123-∈+-=x x x y 法四:几何意义(形)13.2cos 1sin --=x x y 答案:1.]81,1[-;2.)2,1[-;3.]4,5[--;4.]21,0(;5.]1,(-∞;6.)1,1(-;7.]21,0(;8.),222[+∞-;9.]10103,22[;10.21,(-∞;11.]12,0[+π;12.]24,8[-;13.34,0[。
函数的定义域、值域--高考数学【解析版】
专题06 函数的定义域、值域函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f (x )=|x |,x ∈[0,2]与函数f (x )=|x |,x ∈[-2,0]. 2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 3.常见函数定义域的求法类型x 满足的条件2()nf x (n ∈N *) f (x )≥0 21()n f x (n ∈N *)f (x )有意义 1()f x 与[f (x )]0 f (x )≠0 log a f (x )(a >0且a ≠1) f (x )>0 a f (x )(a >0且a ≠1)f (x )有意义 tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一 已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可. 【详解】因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤.即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .22⎡⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B 【解析】 【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313x f x =-+,()30,x∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈2⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<, 所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。
高三数学函数的定义域与值域试题答案及解析
高三数学函数的定义域与值域试题答案及解析1.函数的定义域是()A.B.C.D.【答案】D【解析】由得且,选.【考点】函数的定义域.2.函数的图像为【答案】D【解析】因为=,其图像为D.【考点】对数恒等式,分类整合思想,常见函数图像,分段函数3. f(x)=,f(x)的定义域是________.【答案】[,+∞)【解析】由已知得,∴∴x≥,∴f(x)的定义域为[,+∞).4. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].5.函数的定义域是.【答案】【解析】根据偶次根式下被开方数非负得:,因此函数的定义域是.【考点】函数定义域6.(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.【答案】(1)y=2π•,(0,2](2)【解析】(1)由体积V=,解得l=,∴y=2πrl×3+4πr2×c=6πr×+4cπr2=2π•,又l≥2r,即≥2r,解得0<r≤2∴其定义域为(0,2].(2)由(1)得,y′=8π(c﹣2)r﹣,=,0<r≤2由于c>3,所以c﹣2>0当r3﹣=0时,则r=令=m,(m>0)所以y′=①当0<m<2即c>时,当r=m时,y′=0当r∈(0,m)时,y′<0当r∈(m,2)时,y′>0所以r=m是函数y的极小值点,也是最小值点.②当m≥2即3<c≤时,当r∈(0,2)时,y′<0,函数单调递减.所以r=2是函数y的最小值点.综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=7. (2014·荆州模拟)函数y=ln(2-x-x2)+的定义域是()A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)【答案】C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1).8.函数的定义域为__________。
高三数学函数的定义域
函数的独立元素:解析式;定义域 值域,性质
一、由函数解析式求定义域
非空
明晰函数的约束条件→细致
数集
求下列函数的定义域: 1、 y=lg(4x+3) 2、y=1/lg(4x+3) 3、y=(5x-4)0 4、y=x2/lg(4x+3)+(5x-4)0
课堂回顾: 求定义域的几种类型: 一类重要的数学问题:
;;
; /abcpkscum/ ; /abcfffse/ ; /abchyxd/ ; /abctitfzp/ ; /abczimow/ ; /abcfgsm/ ; /abctbe/ ; /abcjgkd/ ; /abcpfn/ ; /abcndt/ ; /abcnsughd/ ; /abckl/ ; /abcyrd/ ; /abcrxsytc/ ; /abcms/ ; /abcqsrhk/ ; /abcimmieg/ ; /abcfpla/ ; /abcpmbhmd/ ; /abccmivf/ ; /abcmuxjyp/ ; /abccj/ ; /abcfpuen/ ; /abcvluh/ ; /abcjkcn/ ; /abcfkosap/ ; /abcrg/ ; /abcvo/ ; /abcmunr/ ; /abcvupsw/ ; /abcysyy/ ; /abchndgr/ ; /abcuxmanc/ ; /abchvjnl/ ; /abckmx/ ; /abcvpa/ ; /abchuowrf/ ; /abcfm/ ; /abcwknkct/ ; /abcuge/ ; /abcrdr/ ; /abcun/ ; /abcvafdd/ ; /abclqumh/ ; /abcxkusm/ ; /abcdqgq/ ; /abcft/ ; /abctesyj/ ; /abcbkrdrq/ ; /abcmzx/ ; /abcsj/ ; /abcbyn/ ; /abcgjgj/ ; /abcjgcus/ ; /abccmw/ ; /abcas/ ; /abctc/ ; /abcus/ ; /abccfegd/ ; /abcngikt/ ; /abclk/ ; /abciozueq/ ; /abcnnyxq/ ; /abcmxhemg/ ; /abccnfxg/ ; /abcikar/ ; /abcshy/ ; /abcdmv/ ; /abciisd/ ; /abcpgtcsn/ ; /abcbecqtl/ ; /abcjmx/ ; /abcdnx/ ; /abcobm/ ; /abcngag/ ; /abcsmbish/ ; /abcbhzr/ ; /abckihtm/ ; /abcmm/ ; /abcaosc/ ; /abcmqoi/ ; /abcpdy/ ; /abclwebzs/ ; /abcwpapuq/ ; /abcmnz/ ; /abchm/ ; /abcbp/ ; /abcjnrosn/ ; /abcsedhwk/ ; /abcsvlsmm/ ; /abcsdtsmj/ ; /abcvdmbqx/ ; /abcgqmsug/ ; /abcdmdjo/ ; /abcje/ ; /abcqvv/ ; /abchsioyu/ ; /abcxor/ ; /abccyq/ ; /abcoaq/ ; /abcsqwmnl/ ; /abcmptzhk/ ; /abchn/ ; /abcbqezjk/ ; /abcfkonyv/ ; /abcav/ ; /abckshd/ ; /abcgmr/ ; /abcbzmpxo/ ; /abcjpkdm/ ; /abczso/ ; /abcvynbtn/ ; /abcyc/ ; /abceap/ ; /abcpizga/ ; /abcsefar/ ; /abcruonec/ ; /abctjh/ ; /abcavtz/ ; /abchf/ ; /abcrnone/ ; /abcim/ ; /abcsiuenk/ ; /abcpjtck/ ; /abcfp/ ; /abckdzxm/ ; /abcpxo/ ; /abczzw/ ; /abccnkobb/ ; /abcsp/ ; /abccs/ ; /abcxxsezo/ ;
高三数学函数的定义域与值域试题答案及解析
高三数学函数的定义域与值域试题答案及解析1.函数的定义域为()A.B.C.D.【答案】D【解析】由1-x≥0且x>0可得0<x≤1,选D【考点】函数的定义域2.函数f(x)=e x(sinx+cosx)在区间[0,]上的值域为()【答案】A【解析】f′(x)=e x(sinx+cosx)+e x·(cosx-sinx)=e x cosx,当0≤x≤时,f′(x)≥0,且只有在x=时,f′(x)=0,∴f(x)是[0,]上的增函数,3.已知函数g(x)=+1,h(x)=,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)·h(x).(1)求函数f(x)的表达式,并求其定义域;(2)当a=时,求函数f(x)的值域.【答案】(1)x∈[0,a],(a>0)(2)[,]【解析】解:(1)f(x)=,x∈[0,a],(a>0).(2)函数f(x)的定义域为[0,],令+1=t,则x=(t-1)2,t∈[1,],f(x)=F(t)==,∵t=时,t=±2∉[1,],又t∈[1,]时,t+单调递减,F(t)单调递增,F(t)∈[,].即函数f(x)的值域为[,].4. f(x)=,f(x)的定义域是________.【答案】[,+∞)【解析】由已知得,∴∴x≥,∴f(x)的定义域为[,+∞).5.已知函数f(x)= (a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()<.其中正确命题的所有序号是________.【答案】①③④【解析】作出函数f(x)的图象如图所示,显然f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的最小值为f(0)=-1,故命题①正确;显然,函数f(x)在R上不是单调函数,②错误;因为f(x)在(0,+∞)上单调递增,故函数f(x)在[,+∞)上的最小值为f()=2a×-1=a-1,所以若f(x)>0在[,+∞)上恒成立,则a-1>0,即a>1,故③正确;由图象可知,在(-∞,0)上,对任意x1<0,x2<0且x1≠x2,恒有f()<成立,故④正确.6.若函数f(x)=x2-2x,g(x)=ax+2(a>0),∀x1∈[-1,2],∃x∈[-1,2],使g(x1)=f(x),则a的取值范围是()A.(0,]B.[,3]C.[3,+∞)D.(0,3]【答案】A【解析】由于函数g(x)在定义域[-1,2]内是任意取值的,且必存在x0∈[-1,2]使得g(x1)=f(x),因此问题等价于函数g(x)的值域是函数f(x)值域的子集.函数f(x)的值域是[-1,3],函数g(x)的值域是[2-a,2+2a],则有2-a≥-1且2+2a≤3,即a≤,又a>0,故a的取值范围是(0,].7.已知函数f(x)=- (a>0,x>0),若f(x)在上的值域为,则a=__________.【答案】【解析】由反比例函数的性质知函数f(x)=- (a>0,x>0)在上单调递增,所以,即解得a=.8. [2013·湖北荆门期末]函数f(x)=ln(+)的定义域为()A.(-∞,-4]∪(2,+∞)B.(-4,0)∪(0,1)C.[-4,0)∪(0,1]D.[-4,0)∪(0,1)【答案】D【解析】要使函数f(x)有意义,必须且只需解得-4≤x<0或0<x<1.故选D.9. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].10.函数的定义域是________.【答案】【解析】得.【考点】函数的定义域.11.函数的定义域为,其图像上任一点都位于椭圆:上,下列判断①函数一定是偶函数;②函数可能既不是偶函数,也不是奇函数;③函数可能是奇函数;④函数如果是偶函数,则值域是;⑤函数值域是,则一定是奇函数.其中正确的命题个数有()个A.1B.2C.3D.4【答案】C【解析】如图是椭圆的图象,去掉点后,椭圆上每一点都有可能是函数的图象上点,如图象是弧和弧,则不是偶函数;的图象可能取弧,另外在弧上取一段,在弧上取一段,这样既不是奇函数,也不是偶函数;当然也可能是奇函数,也有可能是偶函数;当为偶函数时,值域不一定是,也不一定是;由图象的对称性,及当值域是时,函数一定是奇函数,因此②③⑤正确,选C.【考点】函数的奇偶性的定义.12.函数的定义域为__________。
函数问题的灵魂-定义域问题-学会解题之高三数学多题一解(解析版)
函数问题的灵魂——定义域【高考地位】在函数的三要素中,函数的定义域是函数的灵魂,对应法则相同的函数只有在定义域相同时才算同一函数.定义域问题始终是函数中最重要的问题,许多问题的解决都是必须先解决定义域,不要就会出现问题.通过对近几年高考试题的分析看出,本课时内容也是高考考查的重点之一,题型是选择题、填空题.试题难度较小.方法一 直接法万能模板 内 容使用场景 函数()f x 的解析式已知的情况下解题模板第一步 找出使函数()f x 所含每个部分有意义的条件,主要考 虑以下几种情形:(1) 分式中分母不为0; (2) 偶次方根中被开方数非负; (3) 0x 的底数不为零;(4) 对数式中的底数大于0、且不等于1,真数大于0; (5) 正切函数tan y x =的定义域为{|,}2x x k k Z ππ≠+∈.第二步 列出不等式(组);第三步 解不等式(组),即不等式(组)的解集即为函数()f x 的定义域.【例1】(2023·全国·高三专题练习)函数()21f x x x =-- ) A .[]1,2 B .()1,2C .(]1,2D .[)1,2【答案】C【分析】根据二次根式的性质以及分数分母不为0求出函数的定义域即可.【详解】解:由题意得:1020x x ->⎧⎨-≥⎩ 解得12x x >⎧⎨≤⎩,即()f x 的定义域为(]1,2.故选:C.【变式演练1】(2023·全国·高三专题练习)函数()261xf x x x x =-++-的定义域为( )A .(][)23∞∞--⋃+,,B .[)(]3112-⋃,,C .[)(]2113-⋃,,D .()()2113-⋃,,【答案】C【分析】由具体函数的定义域列出方程式即可得出答案.【详解】由26010x x x ⎧-++≥⎨-≠⎩,解得:23x -≤≤且1x ≠.故选:C例2.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可 【详解】由题意,得2sin102x π-≥,1sin22x π≥,所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B【变式演练2】5.(2023·全国·高三专题练习)若函数()22ln 2y x x a x =+++的定义域为[)1,+∞,则=a ( ) A .-3 B .3C .1D .-1【答案】A【分析】根据题意可知1x =为方程220x x a ++=的一个根,从而可求出a 的值【详解】由22020x x a x ⎧++≥⎨+>⎩,得2202x x a x ⎧++≥⎨>-⎩,由题意可知上式的解集为[)1,+∞,所以1x =为方程220x x a ++=的一个根,所以120a ++=,得3a =-, 故选:A例3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4D .[]0,4【答案】D【分析】分0a =、0a >、0a <讨论即可求解.【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D【变式演练3】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__.【答案】[1,+∞)【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x =++的定义域为R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).方法二 抽象复合法 万能模板 内 容使用场景涉及到抽象函数求定义域解题模板 利用抽象复合函数的性质解答:(1)已知函数的定义域为,求复合函数的定义域:只需解不等式,不等式的解集即为所求函数的定义域.(2)已知复合函数的定义域为,求函数的定义域: 只需根据求出函数的值域,即为函数的定义域.例4.(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( ) A .(0,)+∞ B .(0,1)C .22⎡⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∈函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∈112x -≤≤,1122x ≤+≤∈函数2(log )y f x =中,21log 22x ≤≤ ∈24x ≤≤所以函数2(log )y f x =的定义域为[24,]. 故选:D【变式演练4】(2023·全国·高三专题练习)已知函数()2f x +的定义域为()3,4-,则函数()()31g x x =-的定义域为( ) A .1,43⎛⎫⎪⎝⎭B .1,23⎛⎫ ⎪⎝⎭C .1,63⎛⎫ ⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭【答案】C【分析】根据抽象函数的定义域的求解,结合具体函数单调性的求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以()f x 的定义域为()1,6-.又因为310x ->,即13x >,所()f x (,)a b [()]f g x ()a g x b <<[()]f g x [()]f g x (,)a b ()f x a x b <<()g x ()f x以函数()g x 的定义域为1,63⎛⎫⎪⎝⎭.故选:C.【变式演练5】11.(2023·全国·高三专题练习)已知函数()21log xf x x-=,()1f x +的定义域为M ,()2f x 的定义域为N ,则( ) A .M N B .M N ⋂=∅C .M ⊆ND .N ⊆M【答案】B【分析】分别求出()1f x +的定义域为M 和()2f x 的定义域为N 即可求解. 【详解】()21log 1xf x x -+=+,则{}10M x x =-<<, ()2122log 2xf x x -=,则102N x x ⎧⎫=<<⎨⎬⎩⎭,所以M N ⋂=∅,故选:B .方法三 实际问题的定义域万能模板 内 容使用场景 函数的实际应用问题解题模板第一步 求函数的自变量的取值范围; 第二步 考虑自变量的实际限制条件;第三步 取前后两者的交集,即得函数的定义域.例5.(2022·全国·高三专题练习)已知等腰三角形的周长为40cm ,底边长()y cm 是腰长()x cm 的函数,则函数的定义域为( ) A .()10,20 B .()0,10C .()5,10D .[)5,10【答案】A【分析】利用两边之和大于第三边及边长为正数可得函数的定义域. 【详解】由题设有402y x =-,由4020402x x x x ->⎧⎨+>-⎩得1020x <<,故选A.【点睛】本题考查应用题中函数的定义域,注意根据实际意义和几何图形的性质得到自变量的取值范围. 【变式演练7】(2021·全国课时练习)一枚炮弹发射后,经过26s 落到地面击中目标,炮弹的射高为845m ,且炮弹距地面的高度h (单位:m )与时间t (单位:s )的关系为.①21305h t t =-求①所表示的函数的定义域与值域,并用函数的定义描述这个函数. 【答案】定义域为{|026}t t ≤≤,值域为{|0845}h h ,描述见解析. 【解析】定义域为{|026}t t ≤≤,值域为{|0845}h h ≤≤, 对于数集{|026}t t ≤≤中的任一个数t ,在数集{|0845}h h ≤≤中都有唯一确定的数21305h t t =-与之对应. 【点睛】本题考查函数的定义域、值域以及函数的定义,需要对函数概念及三要素的灵活掌握,属于基础题.【高考再现】1.【2017山东理】设函数的定义域A ,函数的定义域为B ,则A B ⋂=(A )(1,2) (B ) (C )(-2,1) (D )[-2,1)【答案】D【考点】 1.集合的运算2.函数的定义域3.简单不等式的解法.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.【2016·全国卷①】 下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x【答案】D【解析】 y =10lg x =x ,定义域与值域均为(0,+∞),只有选项D 满足题意. 3.【2014山东.理3】 函数1)(log 1)(22-=x x f 的定义域为( )A .)21,0(B .),2(+∞C .),2()21,0(+∞D .),2[]21,0(+∞ 【答案】C【解析】由已知得22(log )10,x ->即2log 1x >或2log -1x <,解得2x >或102x <<,故选C . 【名师点睛】本题考查函数的概念、函数的定义域.解答本题关键是利用求函数定义域的基本方法,建立不等式组求解.本题属于基础题,注意基本概念的正确理解以及计算的准确性. 4.【2015高考重庆,文3】函数的定义域是( )(A) (B) (C) (D)【答案】D【解析】由解得或,故选D . 【考点定位】函数的定义域与二次不等式.【名师点睛】本题考查对数函数的定义域与一元二次不等式式的解法,由对数的真数大于零得不等式求解.本题属于基础题,注意不等式只能是大于零不能等于零.5.【2015高考湖北,文6】函数的定义域为( )A .B .C .D .【答案】.【解析】由函数的表达式可知,函数的定义域应满足条件:,解之得,即函数的定义域为,故应选.【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.6.【2020年高考北京卷11】函数1()=ln 1f x x x ++的定义域是__________. 【答案】(0,)+∞【解析】要使得函数1()ln 1f x x x =++有意义,则100x x +≠⎧⎨>⎩,即0x >,∴定义域为(0,)+∞. 【专家解读】本题考查了分式函数、对数函数定义域的求法,考查数学运算学科素养.22(x)log (x 2x 3)f [3,1](3,1)(,3][1,)-∞-+∞(,3)(1,)-∞-+∞0)1)(3(0322>-+⇒>-+x x x x 3-<x 1>x 256()4||lg 3x x f x x x -+=--(2,3)(2,4](2,3)(3,4](1,3)(3,6]-C ()y f x =()f x 2564||0,03x x x x -+-≥>-22,2,3x x x -≤≤>≠()f x (2,3)(3,4]C7.【2015高考山东,理14】已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[]1,0-,则a b += .【答案】32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以1110a b b -⎧+=-⎨+=⎩,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以1011a b b -⎧+=⎨+=-⎩,解得122a b ⎧=⎪⎨⎪=-⎩,所以32a b +=-.【考点定位】指数函数的性质.【名师点睛】本题考查了函数的有关概念与性质,重点考查学生对指数函数的性质的理解与应用,利用方程的思想解决参数的取值问题,注意分类讨论思想方法的应用. 8.【2019年高考江苏】函数276y x x =+-的定义域是 ▲ . 【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域.由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤,故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.【反馈练习】1.(2021·天津高三期末)函数的定义域为( ) A . B . C . D .【答案】D【解析】要使函数有意义,只需21020x x x -≠⎧⎨->⎩,解得102x x ≠⎧⎨<<⎩,即函数定义域为{|01x x <<或12}x <<.故选D.2.【云南省昆明市第一中学2020届高三考前第九次适应性训练】设函数21y x =-A ,函数12x y -=的值域为B ,则A B =( )()()221log 21f x x x x =+--()1,2()(),02,-∞+∞()(),11,2-∞()()0,11,2A .()0,1B .(]0,1C .()1,1-D .[]1,1-【答案】A【解析】函数定义域满足:210x ->,即11x -<<,所以{}11A x x =-<<, 函数12x y -=的值域{}0B y y =>,所以()0,1A B =,故选:A. 【名师点睛】本题考查了函数定义域,值域,交集运算,意在考查学生的计算能力和综合应用能力. 3.(2023·全国·高三专题练习)若函数()y f x =的定义域是[]1,3,则函数()()21ln f x h x x-=的定义域是( )A .[]1,3B .(]1,3C .(]1,2D .[]1,2【答案】C【分析】利用复合函数的定义及给定函数式列出不等式组,求出其解集即可作答. 【详解】函数()y f x =的定义域是[1,3], ∈1213x ≤-≤,解得12x ≤≤. 又0x >,且1x ≠,∈(]1,2x ∈. 故函数()h x 的定义域是(]1,2. 故选:C.4.(2023·全国·高三专题练习)已知函数()21f x -的定义域为{}1|0x x <<,则函数()211f x x --的定义域为( ) A .(0,1) B .(1,2)C .()()0,11,2 D .()(),11,1-∞--【答案】C【分析】先求出()f x 的定义域,再根据分母不为零和前者可求题设中函数的定义域. 【详解】因为函数()21f x -的定义域为{}1|0x x <<,故1211x -<-<, 所以()f x 的定义域为()1,1-, 故函数()211f x x --中的x 需满足:211110x x -<-<⎧⎨-≠⎩, 故02,1x x <<≠,故函数()211f x x --的定义域为()()0,11,2.故选:C5.(2021·广东深圳中学高三期中)已知等腰三角形的周长为,底边长是腰长的函数,则函数的定义域为( ) A . B .C .D .【答案】A【解析】由题设有402y x =-,由4020402x x x x ->⎧⎨+>-⎩得1020x <<,故选A.【点睛】本题考查应用题中函数的定义域,注意根据实际意义和几何图形的性质得到自变量的取值范围.6.(2022·福建·上杭一中高三阶段练习)已知函数()f x 的定义域为B ,函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,若x B ∃∈,使得21a x x >-+成立,则实数a 的取值范围为( ) A .13,16⎛⎫-∞ ⎪⎝⎭B .130,16⎛⎫⎪⎝⎭C .13,16⎛⎫+∞ ⎪⎝⎭D .1313,1616⎛⎫- ⎪⎝⎭【答案】C【分析】由复合函数的定义域求得集合B ,记2()1g x x x =-+,问题转化为求()g x 在x B ∈时的最小值,从而得参数范围.【详解】∈()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,∈114x ≤≤,12134x -≤-≤,则12,4B ⎡⎤=-⎢⎥⎣⎦.令()21g x x x =-+,x B ∃∈,使得21a x x >-+成立,即a 大于()g x 在12,4⎡⎤-⎢⎥⎣⎦上的最小值.∈213()24g x x ⎛⎫=-+ ⎪⎝⎭,∈()g x 在12,4⎡⎤-⎢⎥⎣⎦上的最小值为113416g ⎛⎫= ⎪⎝⎭,∈实数a 的取值范围是13,16⎛⎫+∞ ⎪⎝⎭.故选:C .7.(2019·河北张家口中学月考)若函数2()2f x mx mx =-+的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞ 【答案】A【解析】∵函数f (x )的定义域为R ,∴不等式mx 2-mx +2>0的解集为R , ①m =0时,2>0恒成立,满足题意;40cm ()y cm ()x cm ()10,20()0,10()5,10[)5,10②m ≠0时,则2080m m m ⎧⎨=-<⎩>,解得0<m <8. 综上得,实数m 的取值范围是[0,8),故选A .【名师点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.8.(2022·全国·高三专题练习)函数()1ln 34y x x=-+的定义域是________ 【答案】()3,00,4∞⎛⎫-⋃ ⎪⎝⎭【分析】根据题意可知3400x x ->⎧⎨≠⎩,由此即可求出结果. 【详解】由题意可知3400x x ->⎧⎨≠⎩,所以()3,00,4x ∞⎛⎫∈-⋃ ⎪⎝⎭. 所以函数的定义域为()3,00,4∞⎛⎫-⋃ ⎪⎝⎭. 故答案为:()3,00,4∞⎛⎫-⋃ ⎪⎝⎭. 9.(2022·全国·高三专题练习)函数()()02112y x x x =++-的定义域是________. 【答案】(3,1)(1,2)--⋃- 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果.【详解】函数()()02lg 2112x y x x x -=+++-的解析式有意义, 由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<,故该函数的定义域为(3,1)(1,2)--⋃-.故答案为:(3,1)(1,2)--⋃-10.(2022·北京市第二十二中学高三开学考试)函数()1f x x=-的定义域为___________. 【答案】(0,1)【分析】根据对数、分式及根式的性质列不等式组求定义域. 【详解】由解析式知:010x x >⎧⎨->⎩可得01x <<, 所以函数定义域为(0,1).故答案为:(0,1)11.(2023·全国·高三专题练习)函数()2lg 1tan π14y x x =+-___________. 【答案】11,42⎛⎫- ⎪⎝⎭【分析】使对数的真数大于零,二次根式的被开方数大于等于零列出不等式组,结合正切函数的性质求解.【详解】由题意得:21tan π0πππ,2140x x k k x +>⎧⎪⎪≠+∈⎨⎪-≥⎪⎩Z ,解得1142x -<<. 故答案为:11,42⎛⎫- ⎪⎝⎭. 12.(2023·全国·高三专题练习)函数()()21lg 2f x x x +-的定义域是_______.【答案】1[,2)2- 【分析】依据题意列出不等式组,解之即可得到函数的定义域【详解】由题意可得,21020x x +≥⎧⎨->⎩,解之得122x -≤< 则函数()()21lg 2f x x x =++-的定义域是1[,2)2- 故答案为:1[,2)2- 13.(2023·全国·高三专题练习)函数()()22log 29142f x x x =-+-的定义域为___________. 【答案】()5,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭ 【分析】根据偶次根号下的被开方数大于等于零,分母不为0,根据真数列出不等式,进行求解再用集合或区间的形式表示出来.【详解】由题意可知()22log 291420x x -+->,而以2为底的对数函数是单调递增的,因此229144x x -+>,求解可得2x <或52x >. 故答案为:()5,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭. 14.(2023·全国·高三专题练习)函数()2lgcos 25f x x x =-的定义域为______.【答案】335,,,52222ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦【分析】由题意可得2cos 0250x x >⎧⎨-≥⎩,解得22,2255k x k k Z x ππππ⎧-+<<+∈⎪⎨⎪-≤≤⎩,分别令k =-1、0、1,综合即可得答案.【详解】由题意得2cos 0250x x >⎧⎨-≥⎩,解得22,2255k x k k Z x ππππ⎧-+<<+∈⎪⎨⎪-≤≤⎩, 令k =-1,解得35,2x π⎡⎫∈--⎪⎢⎣⎭, 令k =0,解得,22x ππ⎛⎫∈- ⎪⎝⎭, 令k =1,解得3,52x π⎛⎤∈ ⎥⎝⎦, 综上,定义域为335,,,52222ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦. 故答案为:335,,,52222ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦ 15.(2021·全国)设计一个水渠,其横截面为等腰梯形(如图),要求满足条件(常数),,写出横截面的面积y 关于腰长x 的函数,并求它的定义域和值域.【答案】定义城为0,2a ⎛⎫ ⎪⎝⎭,值域为23⎛⎤ ⎥ ⎝⎦. 【解析】如图,连接AD ,过,B C 分别作AD 的垂线,垂足为,E F ,因为AB BC CD a ++=,所以20BC EF a x ==->,即02a x <<, 因为120ABC ︒∠=,所以60A ︒∠=,所以2x AE DF ==, 3BE x =,13()2(2)222x x x y BC AD BE a x ⎤=+⋅=-++=⎥⎣⎦)222333333)323a a x x x ax x ⎫-=-=-⎪⎝⎭, 故当3a x =时,y 23,故它的定义城为0,2a ⎛⎫ ⎪⎝⎭,值域为23⎛⎤ ⎥ ⎝⎦. AB BC CD a ++=120ABC ︒∠=【点睛】本题考查了求函数的解析式、定义域和值域的问题,解题时应认真解析题意,建立函数的解析式,求出函数的定义域和值域,是中档题.16.(2023·全国·高三专题练习)如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A 、B 及CD 的中点P 处.20AB =km ,10BC =km .为了处理这三家工厂的污水,现要在该矩形区域内(含边界)且与A 、B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为y km .(1)设BAO θ∠=(弧度),将y 表示成θ的函数并求函数的定义域;(2)假设铺设的污水管道总长度是(10103+km ,请确定污水处理厂的位置. 【答案】(1)2010sin π10,0cos 4y θθθ-=+≤≤ (2)位置是在线段AB 的中垂线上且离AB 的距离是1033km 【分析】(1)依据题给条件,先分别求得OA OB OP 、、的表达式,进而得到管道总长度y 的表达式,再去求其定义域即可解决;(2)先解方程2010sin 1010103cos θθ-+=+,求得π6θ=,再去确定污水处理厂的位置. (1)矩形ABCD 中,20AB =km ,10BC =km ,DP PC =,DC PO ⊥,BAO ABO θ∠=∠=,则()10km,1010tan km cos OA OB OP θθ===-, 201010tan cos y OA OB OP θθ∴=++=+-,则2010sin π10,0cos 4y θθθ-=+≤≤ (2)令2010sin 1010103cos θθ-+=+ π10sin 103cos 20,20sin 20,3θθθ⎛⎫∴+=∴+= ⎪⎝⎭则πsin 1,3θ⎛⎫+= ⎪⎝⎭又π04θ≤≤,即ππ7π3312θ≤+≤,则ππ32θ+=,则π6θ= 此时π101010tan103(km)63OP =-=- 所以确定污水处理厂的位置是在线段AB 的中垂线上且离AB 的距离是1033 km 17.(2022·浙江·高三专题练习)如图,点D 是曲线()22104y x y +=≥上的动点(点D 在y 轴左侧),以点D 为顶点作等腰梯形ABCD ,使点C 在此曲线上,点,A B 为曲线与x 轴的交点.(1)若直线l 过原点,且斜率为-2,与曲线交于点D ,求此时等腰梯形ABCD 的面积;(2)若设2CD x =,等腰梯形ABCD 的面积为()S x ,写出函数()S x 的解析式,并求出函数的定义域. 【答案】(1)12+;(2)()()2211S x x x =+-,定义域为()0,1【分析】(1)联立方程得到2,22D ⎛⎫- ⎪ ⎪⎝⎭,再计算面积得到答案.(2)计算得到()2,21D x x --,根据面积公式得到解析式,再计算定义域得到答案. (1)直线l 方程为:2y x =-,22214y x y x =-⎧⎪⎨+=⎪⎩,解得222x y ⎧=-⎪⎨⎪=⎩,222x y ⎧=⎪⎨⎪=-⎩(舍去), 故2,22D ⎛⎫- ⎪ ⎪⎝⎭,2AB =,()1222122S =+⨯=+(2)2CD x =,()2,21D x x --,故()()()22122212112S x x x x x =+⨯-=+-, ()22104y x y +=≥,2CD x =,故01x <<,故定义域为()0,1.。
高考数学 第二章 函数与基本初等函数 2.2 函数的定义域与值域 理
高考调研 ·高三总复习 ·数学 (理)
(4)方法一:单调性法 定义域为{x|x≤12},函数 y=x,y=- 1-2x均在(-∞,12] 上递增,故 y≤12- 1-2×12=12.
第43页
高考调研 ·高三总复习 ·数学 (理)
方法二:换元法 令 1-2x=t,则 t≥0,且 x=1-2 t2. ∴y=-12(t+1)2+1≤12(t≥0). ∴y∈(-∞,12]. ∴函数值域为(-∞,12].
第25页
高考调研 ·高三总复习 ·数学 (理)
思考题 1 (1)(2014·山东理)函数 f(x)= (log21x)2-1的 定义域为( )
A.0,12 C.0,12∪(2,+∞)
B.(2,+∞) D.0,12∪[2,+∞)
第26页
高考调研 ·高三总复习 ·数学 (理)
【解析】 (log2x)2-1>0,即 log2x>1 或 log2x<-1,解得 x>2 或 0<x<12,故所求的定义域是0,12∪(2,+∞).
第29页
高考调研 ·高三总复习 ·数学 (理)
例 2 (1)若函数 f(x)的定义域为[0,1],求 f(2x-1)的定义域. (2)若函数 f(2x-1)的定义域为[0,1],求 f(x)的定义域.
第30页
高考调研 ·高三总复习 ·数学 (理)
【解析】 (1)由 0≤2x-1≤1,得12≤x≤1,∴函数 f(2x-1) 的定义域为[12,1].
第18页
高考调研 ·高三总复习 ·数学 (理)
授人以渔
第19页
高考调研 ·高三总复习 ·数学 (理)
题型一 函数的定义域 例 1 (1)函数 y= log0.5(1 x-1)的定义域为________. 【解析】 由 log0.5(x-1)>0,得 0<x-1<1,∴1<x<2,∴定义 域为(1,2). 【答案】 (1,2)
高三数学函数的定义域与值域试题答案及解析
高三数学函数的定义域与值域试题答案及解析1.函数的定义域为()A.B.C.D.【答案】C【解析】由题意得:解得或,所以选C.【考点】函数定义域2.(5分)(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【答案】C【解析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选C.点评:本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.3.定义函数(为定义域)图像上的点到坐标原点的距离为函数的的模.若模存在最大值,则称之为函数的长距;若模存在最小值,则称之为函数的短距.(1)分别判断函数与是否存在长距与短距,若存在,请求出;(2)求证:指数函数的短距小于1;(3)对于任意是否存在实数,使得函数的短距不小于2,若存在,请求出的取值范围;不存在,则说明理由?【答案】(1)短距为,长距不存在,短距为,长距为5;(2)证明见解析;(3).【解析】本题属于新定义概念,问题的实质是求函数图象上的点到原点的距离的最大值和最小值(如有的话),正面讨论时我们把距离表示为的函数.(1)对,(当且仅当时等号成立),因此存在短距为,不存在长距,对,,,即有最大值也有最小值,因此短距和长距都有;(2)对函数,,由于,因此短距不大于1,令,则有,故当时,存在使得,当时,存在使得,即证;(3)记,按题意条件,则有不等式对恒成立,这类不等式恒成立求参数取值范围问题,我们可采取分离参数法,转化为求函数的最值,按分别讨论,由此可求得的范围.(1)设(当且仅当取得等号)+2分短距为,长距不存在。
+4分(2)设 +6分+8分短距为,长距为5。
+9分(3)设函数的短距不小于2即对于始终成立:+10分当时:对于始终成立 +12分当时:取即可知显然不成立 +13分当时:对于始终成立 +15分综上 +16分【考点】新定义概念,函数的最大值与最小值,不等式恒成立问题.4.下列函数中,与函数的值域相同的函数为()A..B..C..D..【答案】B【解析】函数的值域为R,而,只有,所以选B.【考点】函数值域5.某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低?【答案】(1)y=+,定义域(2)32个【解析】(1)设转盘上总共有n个座位,则x=即n=,y=+,定义域.(2)y=f(x)=k2,y′=k2,令y′=0得x=.当x∈时,f′(x)<0,即f(x)在x∈上单调递减,当x∈时,f′(x)>0,即f(x)在x∈上单调递增,y的最小值在x=时取到,此时座位个数为=32个.6.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.7.已知函数是奇函数,则函数的定义域为【答案】【解析】本题定义域不确定,不要用奇函数的必要条件来求参数,而就根据奇函数的定义有,即,化简得恒成立,所以,则.由,解得.【考点】奇函数的定义与函数的定义域.8.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>19.若函数y=f(x)的定义域是[0,2],求函数g(x)=的定义域.【答案】[0,1)【解析】由得0≤x<1,即定义域是[0,1).10.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是________.【答案】∪(2,+∞)【解析】由题意f(x)==下面分段求值域,再取并集.11.设函数的定义域为,值域为,则=()A.B.C.D.【答案】D【解析】的定义域是,值域是,所以.【考点】函数的定义域与值域.12.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.13.函数f(x)=e x sin x在区间上的值域为 ().【答案】A=【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)minf(0)=0,f(x)=f=.max14.函数y=的定义域是 ( ).A.[-,-1)∪(1,]B.(-,-1)∪(1,)C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)【答案】A【解析】∵⇔⇔⇔⇔-≤x<-1或1<x≤.∴y=的定义域为[-,-1)∪(1,].15.下列函数在定义域内为奇函数,且有最小值的是A.B.C.D.【答案】D【解析】,且【考点】函数的奇偶性和值域.16.函数的定义域为.【答案】【解析】由对数的真数为正知,两边取自然对数得,因为,所以,或由指数函数的图象可知,所以函数的定义域为.【考点】指数函数和对数函数的性质.17.函数()A.B.C.D.【答案】C【解析】由题意得,即,所以函数的定义域为,所以正确答案为C.【考点】对数函数的定义域18.函数的定义域是_____________.【答案】【解析】函数的定义域是使函数式有意义的自变量的集合,求定义域时要注意基本初等函数的定义域.【考点】函数的定义域.19.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.20.函数的定义域是()A.B.C.D.【答案】D.【解析】由,得原函数的定义域为.【考点】函数的定义域.21.已知函数,定义域为,则函数的定义域为_______.【答案】【解析】由题意,解得,故的定义域为.【考点】1.抽象函数的定义域.22.函数的定义域为 .【答案】(0,]【解析】由且得:.【考点】函数定义域的求法23.某同学为研究函数(0≤x≤1)的性质,构造了两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的极值点是________;函数f(x)的值域是 __ __.【答案】;【解析】由图易知当点P从C点移动到B点的过程中时,AP+PF=f(x)先减小后增大,根据两点间直线最短的原理,当AP与PF在一条直线上时,即点P位于BC中点时,f(x)最小.所以易知时,;时,.所以是函数f(x)的极值点.且为极小值点.易知;又,所以.所以函数f(x)的值域是.【考点】函数的极值、函数的值域24.下列函数中,既是奇函数又在定义域上单调递增的是()A.B.C.D.【答案】C【解析】函数在定义域上是增函数,不是奇函数;函数在定义域上是减函数;函数,在定义域上既是奇函数又是增函数;函数在定义域上不具有单调性. 故选C.【考点】函数的定义域,函数,,,的奇偶性、单调性.25.函数y=的定义域是( )A.B.C.D.【答案】D.【解析】由得,故选D.【考点】函数的定义域.26.函数的定义域为()A.B.C.D.【答案】 B【解析】由,得,所以选B.【考点】函数的定义域.27.已知函数,则________.【答案】【解析】,.【考点】分段函数求值,考查学生的基本运算能力.28.已知函数,且.(1)求实数的值;(2)解不等式.【答案】(1) ;(2)【解析】(1)首先判断出的范围,带入相应的函数解析式即可求出值;(2)根据(1)问中的值先分段求出的范围后再求并集即可.试题解析:(1)∵,∴,由得,解得 .(2) 由得:当时解得;当时解得,故的解集为 .【考点】1.分段函数;2.解不等式组.29.已知函数的值域为,则的取值范围是.【答案】【解析】函数,令,解得显然当时;当时,所以.【考点】二次函数的值域.30.符号表示不超过的最大整数,例如,,定义函数,给出下列四个命题:(1)函数的定义域为,值域为;(2)方程有无数个解;(3)函数是周期函数;(4)函数是增函数.其中正确命题的个数有()A.1B.2C.3D.4【答案】B【解析】函数的定义域是,值域是,所以①错;②,③正确;当时,;当时,,所以不是增函数,所以④错.【考点】1.考查信息题的分析问题解决问题的能力;2.函数的定义域、值域、单调性、周期性.31.对于任意实数,表示不超过的最大整数,如.定义在上的函数,若,则中所有元素的和为()A.65B.63C.58D.55【答案】C【解析】当时:,当时:,同理可得:时:;时:;时:;时:;时:;时:;时:,所以中所有元素的和为.【考点】1.取整函数;2.函数的值域.32.设函数的图像在处取得极值4.(1)求函数的单调区间;(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.【答案】(1)递增区间是和,递减区间是;(2)不存在.【解析】(1)求导,利用极值点的坐标列出方程组,解出,确定函数解析式,再求导,求单调区间;(2)先假设存在“正保值区间”,通过已知条件验证是否符合题意,排除不符合题意得情况.试题解析:(1), 1分依题意则有:,即解得 v 3分∴.令,由解得或,v 5分所以函数的递增区间是和,递减区间是 6分(2)设函数的“正保值区间”是,因为,故极值点不在区间上;①若极值点在区间,此时,在此区间上的最大值是4,不可能等于;故在区间上没有极值点; 8分②若在上单调递增,即或,则,即,解得或不符合要求; 10分③若在上单调减,即1<s<t<3,则,两式相减并除得:,①两式相除可得,即,整理并除以得:,②由①、②可得,即是方程的两根,即存在,不合要求. 12分综上可得不存在满足条件的s、t,即函数不存在“正保值区间”。
高三数学定义域知识点
高三数学定义域知识点数学作为一门抽象而又精确的学科,具备了自己的特殊语言和逻辑体系。
在高三数学学习中,定义域是一个重要的概念。
本文将探讨高三数学中与定义域相关的知识点。
一、定义域的基本概念定义域是指函数在自变量取值范围内,能够得到有效的函数值的集合。
通俗地说,就是函数存在的输入范围。
一般情况下,定义域可以是实数集、有理数集或整数集等。
二、定义域的判断方法1. 有理函数的定义域判断有理函数是指由多项式函数和分式函数构成的函数。
对于有理函数而言,考虑分式函数分母的取值。
只要分母不为零,就能得到有效的函数值。
因此,有理函数的定义域就是分母不为零的自变量的取值范围。
2. 根式函数的定义域判断根式函数是指含有根号(开放状态)的函数。
对于根式函数来说,考虑根号内的实数范围,使得根号内的数值非负。
即根号内的值是大于等于0的。
因此,我们需要求解不等式,找到满足条件的自变量的取值范围,即为根式函数的定义域。
3. 指数函数和对数函数的定义域判断指数函数和对数函数是数学中的重要函数之一。
对于指数函数而言,其定义域是全体实数集R;而对于对数函数,其定义域是正实数集R+。
对于特殊情况,如指数函数底数为负数时,则需要额外考虑底数、指数的取值范围,以确保函数的定义域是有效的。
三、定义域的应用举例1. 函数f(x) = 1 / (x - 2),求定义域。
由于分母中含有(x - 2),在定义域中,分母不能为零。
因此,定义域为除去x = 2的实数集,即定义域为R - {2}。
2. 函数f(x) = √(3 - x),求定义域。
根式函数中,根号内的值必须大于等于零。
因此,需要解不等式3 - x ≥ 0。
解得x ≤ 3。
因此,定义域为闭区间(-∞, 3]。
3. 函数f(x) = log2(x - 1),求定义域。
对数函数中,底数必须为正数且不等于1,且自变量必须大于0。
因此,需要满足x - 1 > 0,且底数为2。
解得x > 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂回顾:
求定义域的几种类型:
一类重要的数学问题:
适用范围 Gibco南美胎牛血清来源于南美洲,Gibco胎牛血清南美(Gibco南美血清10270106)适合于培养各种常规的比 较容易养活的细胞株和癌细胞株。 Gbico北美胎牛血清质量很好,血源来源于美国,Gibco胎牛血清北美 (Gibco北美血清16000044)能够满足各种普通细胞和原代细胞,干细胞(胚胎干细胞,间充质干细胞等)。同时由于血红素 和内毒素含量都非常低,比较适合于培养比较敏感和娇贵的细胞。 Gibco澳洲胎牛血清来源于澳大利亚, Gibco胎牛血清澳洲(Gibco澳洲血清10099141)适用于各种癌细胞株,娇贵细胞,原代细胞,干细胞(胚胎干细胞,间充质干 细胞等)培养,可以用于体外诊断;做干细胞培养的首选,性价比极高。 Gibco胎牛血清 /xueqing/Gibco-xueqing.html Gibco胎牛血清 vfg35wiv Gibco新 西兰胎牛血清来源于新西兰,Gibco胎牛血清新西兰(Gibco新西兰血清10091148),适用于各种癌细胞株,娇贵细胞,原代细 胞,干细胞(胚胎干细胞,间充质干细胞等)培养,可以用于体外诊断;做干细胞培养的首选,性价比极高。 Gibco胚 胎干细胞专用胎牛血清16141079价格昂贵,是经过胚胎干细胞测试的Gibco ES专用胎牛血清(Gibco ES专用血清16141079), 主要用于培养胚胎干细胞,间充质干细胞等干细胞。 啊。“我说啊,其实我在享受的是夜深人静的时刻。没有别人的打扰,微风为你赶走燥热,月光为你增添美感,只要全身心的 放松,那就是最舒服的了。”我一边享受着一边说道。发现隔壁没什么声音,我便猜到她也在按我所说的在放松自己。两个人 光是在躺着也怪无聊的,于是我自言自语讲道,“你知道吗?其实月亮是不会发光的,她是借助太阳的光亮来展现自己的光。 有时候,人也是这样,自己实现不了的事情总是借助别人的力量去满足自己,但是假如不这样做,恐怕自己会被人们永远的忘 记。其实,我希望月亮可以不借助太阳的光而自己发出光芒,但是我知道这是不可能实现的,也正如有些事情我们不能靠着自 己去完成一样。”说罢,心中又是一阵伤感。“为什么啊?我不明白你说的,月亮不是很亮吗?”隔壁传来一声疑问。对了, 古代人不懂得这科学知识。想了想,正准备说出个缘由解释给她听,蓦地觉得还是不说为好。现在的她并不懂有些事情的无可 奈何,也许会一直抱着自信去挑战那些不可能的事情,为自己的梦想努力,这不是很好吗?对了,我自己为何不也抱着去试试 的心态呢?这样的话,我也不至于整天胡思乱想什么。“恩,我其实只是乱说的而已,这月亮真的很亮。”说罢,我又继续不 作声地躺着。“喂,你叫什么名字啊?怎么不去睡觉跑出来看月亮?“那女的突然问道。听罢,我决定胡扯一下。“我啊,其 实是从好遥远的地方来的。我那个地方长得丑的人特多,因而特别讨厌长得帅的。自从我出世之后,我就受到别人冷眼,只因 为我长得实在是太帅了。那里的人都妒忌我的样貌,时刻都想我把弄死。就那么有一次,我在回家的路上,被三个丑货截住, 他们不断吐槽自己有多丑,说我有多帅,那时我担心自己会被他们毁容,于是我不等他们吐完槽,就拼命的逃跑,跑着跑着就 跑进着傅家当起家丁来了。”说罢,我还真佩服自己车大炮的能力啊。“啊!原来是这样的啊。”那女生有的惊讶的说道。听 着,我闭着眼睛点着头嗯了好几声。这人真逗,胡扯的都信。“那我倒是要看看你长得有多好看。”,蓦地又传出一声。突然 间,我感到光线被挡住了,于是蓦地睁开眼睛。只瞧见一张脸出现在我面前,离得好近。我闻到了她的香味,感觉到了她的呼 吸,也感觉到了她的温度。我从来没和陌生女生靠的这么近,此时的心跳得好快,小心脏要受不了了。此时,我全身动弹不了, 硬是愣在那里,双眼睁得大大的。过了一会,那女的把脸移开,无趣的说了一句,“太暗了,什么也看不清。”此时,我才缓 过神来,脑海还想着刚才那一幕。和古代陌生女子靠这么近还是第一次,而且我闻到了女子特有的体香,感觉到了我和她之间 的那极端的距离,害我心如鹿撞的。这女的未免太
⑵问f(x)是否存在最大值和最小值?如果存在, 请把它写出来;如果不存在,说明理由。
四:定义域为R的数学问题
等价于对于一切实数恒成立问题 ax 1 例7:若函数y 的定义域为R, 3 ax2 4ax 3 则实数a的取值范围。
例8、若函数y=lg(4-a•2x)的定义域为R,
则实数a的取值范围是_______
D 2x
C
A
B
综合1:
x2 2 1)使解析式 log 2 x 4 x 3 无意 4 x 义
的x的取值范围是______________ 2)已知y是x的函数x=2t+2-t,y=4t+4-t-2t+2-22-t, 其中t∈R,求y=f(x)的函数解析式及其定义域
二、由y=f(x)的定义域,求复合函数 y=f(g(x))的定义域;或者反过来。 例2、设函数f(x)的定义域为[-2,9),求下 列函数的定义域:
1、y lg( x 2) x 1
x2 2、y (5x 4) 0 lg(4 x 3)
3、y
7 | x 2 |
lg(9 3 x )
2 4、f ( x) log( 2 x1) 3 3x 2 5、y 25 x lg cos x
5、用长为l的铁丝弯成下部的矩形,上部 分为半圆的框架(如图),若矩形的底边 长为2x,求此框架围成面积y与x的函数, 写出的定义域。
认真听讲,及时总结,温故旧知
第十讲
函数的定义域
函数的独立元素:解析式;定义域
值域,性质
一、由函数解析式求定义域
明晰函数的约束条件→细致 求下列函数的定义域:
非空 数集
1、 y=lg(4x+3)
3、y=(5x-4)0
2、y=1/lg(4x+3)
4、y=x2/lg(4x+3)+(5x-4)0
例1、求下列函数的定义域
1) f(x+2)
2) f(3x)
3) f(x2)
4) f(lgx+5) 5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域, 求x的 范围。 练习:已知函数f(x)的定义域为[-1,1),则 F(x)=f(1―x)+f(1―x2)的定义域为__。
例3、函数f(2x)的定义域是[-1,1],则 f(log2x)的定义域为______ 例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义 域为_____ 由值域求定义域:
综合3: 已知函数f(x)=lg(mx2-4mx+m+3) 1)若f(x)的定义域为R,则实数m的取 值范围是_______ 2)若f(x)的值域为R,则实数m的取值 范围___________
例9、渔场中鱼群的最大养殖量为m吨,为保 证鱼群的生长空间,实际养殖量不能达到最 大养殖量,必须留出适当的空闲量,已知鱼 群的年增长量y吨和实际养殖量x吨与空闲率 成正比,比例系数为k(k>0)。 ⑴写出y关于x的函数关系式并指出这个函数 的定义域;⑵求鱼群年增长量的最大值;⑶ 当鱼的年增长量达到最大值时,求实数k的取 值范围。
y
函数 此函数的定义域是_____
2x 5 x 3 的值域是{y|y≤0或y≥4}则
三、含参的函数的定义域
注意:对参数的一切值分类讨论
如求函数y=log2(1-ax)的定义域?
2 a loga 2 log a a 2
例5、求函数f(x)=lg(ax-k•2x)(a>0且a≠1,
a≠2)的定义域。
例6、已知函数f(x)的定义域是(0,1], 求g(x)=f(x+a)+f(x-a)(其中-1/2<a≤0) 的定义域。
?把2改写成 以a为底的指 数和对数
综合2:
设函数
f ( x) log 2
x 1 log 2 ( x 1) log 2 ( p x) x 1
⑴求f(x)的定义域;