北师大版八年级数学上册测试题及答案(1-6章)
北师大版八年级数学上册第一章章节测试题及答案 - 副本
北师大版八年级数学上册第一章章节测试题及答案一、选择题(共11小题)1. 一个直角三角形的三边长分别为,,,则为A. B. C. D. 或2. 如图,一个工人拿一个米长的梯子,底端放在距离墙根点米处,另一头点靠墙,如果梯子的顶部下滑米,梯子的底部向外滑多少米?A. B. C. D.3. 如图所示,正方体的棱长为,一只蜘蛛从正方体的一个顶点爬行到另一个顶点,则蜘蛛爬行的最短距离的平方是A. B. C. D.4. 【例】下列结论中,错误的有①在中,已知两边长分别为和,则第三边的长为;②的三边长分别为,,,若,则;③在中,若,则是直角三角形;④若三角形的三边长之比为,则该三角形是直角三角形.A. 个B. 个C. 个D. 个5. 如图,有一个直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于A. B. C. D.6. 如图,有一个池塘,其底面是边长为尺的正方形,一个芦苇生长在它的中央,高出水面部分为尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边的.则这根芦苇的长度是A. 尺B. 尺C. 尺D. 尺7. 如图所示,有一个高,底面周长为的圆柱形玻璃容器,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是A. B. C. D.8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设,,则斜边的长为A. B. C. D.10. 如图所示,矩形纸片中,,,现将其沿EF对折,使得点与点重合,则的长为A. B. C. D.11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A. 米B. 米C. 米D. 米二、填空题(共10小题)12. 如图所示,,,,,则.13. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,点与点重合,则长为.14. 如图,在一个长为米,宽为米的纸板上有一长方体木块,它的长和纸板宽平行且大于,木块的正面是边长为米的正方形,一只蚂蚁从处爬行到处需要走的最短路程是米.15. 已知三角形的三边长分别为,,,则此三角形面积是.16. 如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在中,,,,点在上,将沿折叠,使点落在边上的点处,则的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在中,,分别以,,为边向外作正方形,面积分别记为,,,若,,则.20. 阅读下列题目的解题过程:已知,,为的三边,且满足,试判断的形状.解:,(A),(B),(C)是直角三角形.问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:;()错误的原因为;()本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索的长为尺,木柱的长用含的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边,,将折叠,使点与点重合,折痕为,求的长.23. 如图,有一只小鸟在一棵高的小树的树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,该小鸟立刻以的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,,厘米,点从点开始沿边向点移动,的速度为厘米/秒.点同时从点开始沿边向移动,的速度为厘米/秒.几秒后,两点相距厘米?25. 如图所示,若,,,,,,则的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图中画一条线段,使,并标出的中点;(2)在图中画一条线段,使,并标出的中点.27. 如图,在长方形中,,,是边的中点,是线段上的动点,将沿所在直线折叠得到,连接,求的最小值.28. 如图,某学校(点)到公路(直线)的距离为,到公交站(点)的距离为,现要在公路边上建一个商店(点),使之到学校及到车站的距离相等,求商店与车站之间的距离.答案1. D2. D【解析】米,米,(米),梯子的顶部下滑米,米,米,米.梯子的底部向外滑出(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接,如图所示,爬行的最短路径为线段.由勾股定理得,,故选D.4. C【解析】①在中,已知两边长分别为和,则第三边的长为或,错误;②的三边长分别为,,,若,则,错误;③在中,若,则是直角三角形,正确;④若三角形的三边长之比为,则该三角形是直角三角形,正确;故选:C.5. A【解析】在中,由勾股定理可知:,由折叠的性质可知:,,,,,设,则,,在中,由勾股定理得:,即,解得:,.6. D【解析】设芦苇长尺,则水深尺,因为边长为尺的正方形,所以尺.在中,,解之得,即水深尺,芦苇长尺.故选:D.7. C【解析】如图展开后连接,求出的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过作于,则,,在中,由勾股定理得:,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是.8. C【解析】A.正面向上的可能性为;B.正面不向上的可能性为;C.正面或反面向上的可能性为;D.正面和反面都不向上的可能性为.9. C【解析】设,则,,,,,,.10. B【解析】设,则 .矩形纸片中,,,现将其沿对折,使得点与点重合,.在中,,.解得 .11. A【解析】如图,在中.,米,米,,.在中,,米,,..,米,米.即小巷的宽度为米,故答案选A.12.【解析】,,,,;;.13.14.【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接,米,米,,米,妈蚁从处爬行到处需要走的最短路程为米.15.16.【解析】在中:,米,米,(米),此人以米每秒的速度收绳,秒后船移动到点的位置,(米),(米),(米),答:船向岸边移动了米.17.18. 米【解析】若假设竹竿长米,则水深米,由题意得,,解之得,.所以水深米.19.【解析】中,,,.,,,.20. C,没有考虑的情况,是等腰三角形或直角三角形21. ,【解析】;由题意可知,由勾股定理可得.22. 由题意得;设,则,,在中,根据勾股定理得:,即,解得;即.23. 这只小鸟至少经过才能到达大树和伙伴在一起.24. 秒或秒25. 在中,,,,所以,所以是直角三角形,且,在中,,,,所以,所以是直角三角形,且,所以.26. (1)如图,,点为线段的中点.(2)如图,,点为线段的中点.27. 如图,当,点在上时,的值最小.根据折叠的性质,得,所以, .因为是边的中点,,所以 .因为,所以,所以 .28. 过点作于点,,,,设,则,在中,,,.北师大版八年级数学上册第一章章节测试题及答案一、选择题(共11小题)1. 一个直角三角形的三边长分别为,,,则为A. B. C. D. 或2. 如图,一个工人拿一个米长的梯子,底端放在距离墙根点米处,另一头点靠墙,如果梯子的顶部下滑米,梯子的底部向外滑多少米?A. B. C. D.3. 如图所示,正方体的棱长为,一只蜘蛛从正方体的一个顶点爬行到另一个顶点,则蜘蛛爬行的最短距离的平方是A. B. C. D.4. 【例】下列结论中,错误的有①在中,已知两边长分别为和,则第三边的长为;②的三边长分别为,,,若,则;③在中,若,则是直角三角形;④若三角形的三边长之比为,则该三角形是直角三角形.A. 个B. 个C. 个D. 个5. 如图,有一个直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于A. B. C. D.6. 如图,有一个池塘,其底面是边长为尺的正方形,一个芦苇生长在它的中央,高出水面部分为尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边的.则这根芦苇的长度是A. 尺B. 尺C. 尺D. 尺7. 如图所示,有一个高,底面周长为的圆柱形玻璃容器,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是A. B. C. D.8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设,,则斜边的长为A. B. C. D.10. 如图所示,矩形纸片中,,,现将其沿EF对折,使得点与点重合,则的长为A. B. C. D.11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A. 米B. 米C. 米D. 米二、填空题(共10小题)12. 如图所示,,,,,则.13. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,点与点重合,则长为.14. 如图,在一个长为米,宽为米的纸板上有一长方体木块,它的长和纸板宽平行且大于,木块的正面是边长为米的正方形,一只蚂蚁从处爬行到处需要走的最短路程是米.15. 已知三角形的三边长分别为,,,则此三角形面积是.16. 如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在中,,,,点在上,将沿折叠,使点落在边上的点处,则的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在中,,分别以,,为边向外作正方形,面积分别记为,,,若,,则.20. 阅读下列题目的解题过程:已知,,为的三边,且满足,试判断的形状.解:,(A),(B),(C)是直角三角形.问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:;()错误的原因为;()本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索的长为尺,木柱的长用含的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边,,将折叠,使点与点重合,折痕为,求的长.23. 如图,有一只小鸟在一棵高的小树的树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,该小鸟立刻以的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,,厘米,点从点开始沿边向点移动,的速度为厘米/秒.点同时从点开始沿边向移动,的速度为厘米/秒.几秒后,两点相距厘米?25. 如图所示,若,,,,,,则的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图中画一条线段,使,并标出的中点;(2)在图中画一条线段,使,并标出的中点.27. 如图,在长方形中,,,是边的中点,是线段上的动点,将沿所在直线折叠得到,连接,求的最小值.28. 如图,某学校(点)到公路(直线)的距离为,到公交站(点)的距离为,现要在公路边上建一个商店(点),使之到学校及到车站的距离相等,求商店与车站之间的距离.答案1. D2. D【解析】米,米,(米),梯子的顶部下滑米,米,米,米.梯子的底部向外滑出(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接,如图所示,爬行的最短路径为线段.由勾股定理得,,故选D.4. C【解析】①在中,已知两边长分别为和,则第三边的长为或,错误;②的三边长分别为,,,若,则,错误;③在中,若,则是直角三角形,正确;④若三角形的三边长之比为,则该三角形是直角三角形,正确;故选:C.5. A【解析】在中,由勾股定理可知:,由折叠的性质可知:,,,,,设,则,,在中,由勾股定理得:,即,解得:,.6. D【解析】设芦苇长尺,则水深尺,因为边长为尺的正方形,所以尺.在中,,解之得,即水深尺,芦苇长尺.故选:D.7. C【解析】如图展开后连接,求出的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过作于,则,,在中,由勾股定理得:,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是.8. C【解析】A.正面向上的可能性为;B.正面不向上的可能性为;C.正面或反面向上的可能性为;D.正面和反面都不向上的可能性为.9. C【解析】设,则,,,,,,.10. B【解析】设,则 .矩形纸片中,,,现将其沿对折,使得点与点重合,.在中,,.解得 .11. A【解析】如图,在中.,米,米,,.在中,,米,,..,米,米.即小巷的宽度为米,故答案选A.12.【解析】,,,,;;.13.14.【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接,米,米,,米,妈蚁从处爬行到处需要走的最短路程为米.15.16.【解析】在中:,米,米,(米),此人以米每秒的速度收绳,秒后船移动到点的位置,(米),(米),(米),答:船向岸边移动了米.17.18. 米【解析】若假设竹竿长米,则水深米,由题意得,,解之得,.所以水深米.19.【解析】中,,,.,,,.20. C,没有考虑的情况,是等腰三角形或直角三角形21. ,【解析】;由题意可知,由勾股定理可得.22. 由题意得;设,则,,在中,根据勾股定理得:,即,解得;即.23. 这只小鸟至少经过才能到达大树和伙伴在一起.24. 秒或秒25. 在中,,,,所以,所以是直角三角形,且,在中,,,,所以,所以是直角三角形,且,所以.26. (1)如图,,点为线段的中点.(2)如图,,点为线段的中点.27. 如图,当,点在上时,的值最小.根据折叠的性质,得,所以, .因为是边的中点,,所以 .因为,所以,所以 .28. 过点作于点,,,,设,则,在中,,,.。
北师大版八年级数学第一学期第一章测试卷(含答案)
北师大版八年级数学第一学期第一章测试卷(含答案) 一、选择题1. 下列条件不能判定△ABC 为直角三角形的是( )A .∠A+∠C=∠B B .a=,b=,c=C .(b+a )(b ﹣a )=c 2D .∠A :∠B :∠C=5:3:22.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个 直角三角形的面积是( )A 、30B 、40C 、50D 、603.一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( )A 、0.6米B 、0.7米C 、0.8米D 、0.9米4. 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A 、1倍B 、2倍C 、3倍D 、4倍5. 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )A 、1,2,3B 、2,3,4C 、3,4,5D 、4,5,66. 一块木板如图1所示,已知AB =4,BC =3,DC =12,AD =13,,木板的面积为 ( )A 、60B 、30C 、24D 、12图 37. 如图2,已知正方形的面积为25,且AB 比AC 大1,BC 的长为 ( ).A 、3B 、4C 、5D 、6二、填空题1.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:2. 如图3,图中的字母、数代表正方形的面积,则A= . 90B ∠=︒ A D B C 图1 AB C 图25072A1093333 3. 如图4,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积是 .4. 如图5,根据图中的数据进行计算,AB= .5. 如图6,在方格纸中,一个小正方形的面积是1,则图中四边形ABCD 的面积是 .7. 如图7,工人师傅准备在一个长、宽分别是10cm ,9cm 的长方形铁板上打两个小孔,小孔的圆心距两边的距离都是3cm ,则两孔圆心间的距离是 cm .图4 图5 图6 图7三、解答题1.如图8,笔直的公路上A 、B 两点相距25km ,C 、D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA=15km ,CB=10km ,现在要在公路的AB 段上建一个土特产品收购站E ,使得C 、D 两村到收购站E 的距离相等,则收购站E 应建在离A 点多远处?图8 483625B A C D2. 如图9,已知在Rt ΔABC 中,M 是BC 边上的中点.过M 点作MP ⊥AC 于点P. 求证:222AP PC AB =+图9参考答案一、选择题1、B 2.A 3.C 4.B 5.C 6.C 7. A二、填空题1、13、84、852、22;3、1或4 ;4、65;5. 25;6、5.三、解答题1.解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处3.证明:略。
北师大版初中八年级数学上册第一章同步练习题(含答案解析)
第一章测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( )A .2倍B .3倍C .4倍D .5倍2.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .7,12,13C .5,9,12D .3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( )A .169B .119C .13D .1444.如图,阴影部分是一个长方形,则长方形的面积是( )A .3 cm 2B .4 cm 2C .5 cm 2D .6 cm 2(第4题)(第7题)(第9题)(第10题)5.满足下列条件的△ABC ,不是直角三角形的为( )A .∠A =∠B -∠C B .∠A ∶∠B ∶∠C =1∶1∶2C .b 2=a 2-c 2D .a ∶b ∶c =2∶3∶46.已知一轮船以18 n mile/h 的速度从港口A 出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A 出发向东南方向航行,离开港口1.5 h 后,两轮船相距( )A .30 n mileB .35 n mileC .40 n mileD .45 n mile7.如图,在△ABC 中,AB =A C =13,BC =10,点D 为BC 的中点,DE ⊥AB ,垂足为点E ,则DE 等于( ) A.1013 B.1513 C.6013D.7513 8.若△ABC 的三边长a ,b ,c 满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰三角形或直角三角形9.(枣庄)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A .B .C .D .10.(泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC 中,AB =AC ,AD 是底边上的高,若AB =5 cm ,BC =6 cm ,则AD =__________.(第11题)(第12题)(第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为________.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A重合,得折痕DE,则△ABE的周长等于________.c-b=0,则△ABC的形状14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||为__________________.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.16.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,若一只壁虎从A点出发沿着台阶面爬到B点,则壁虎爬行的最短路线的长是______.第15题图第16题图第17题图17.如图,是一种饮料的包装盒,长、宽、高分别为4cm,3cm,12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外部分的长度h的取值范围为____.18.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为____.三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.如图,在4×4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1×3的长方形的对角线,请你说明:AB⊥AE..21.如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE=c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.22.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?23.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.24.如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?25.有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).参考答案第一章测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的(B)A.2倍B.3倍C.4倍D.5倍2.下列各组线段能构成直角三角形的一组是(A)A.30,40,50B.7,12,13 C.5,9,12 D.3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是(A)A.169 B.119 C.13 D.1444.如图,阴影部分是一个长方形,则长方形的面积是(C)A.3 cm2B.4 cm2C.5 cm2D.6 cm2(第4题)(第7题)(第9题)(第10题)5.满足下列条件的△ABC,不是直角三角形的为(D)A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶46.已知一轮船以18 n mile/h的速度从港口A出发向西南方向航行,另一轮船以24 n mile/h的速度同时从港口A出发向东南方向航行,离开港口1.5 h后,两轮船相距(D)A.30 n mile B.35 n mile C.40 n mile D.45 n mile7.如图,在△ABC中,AB=A C=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于(C)A.1013B.1513C.6013D.75138.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是(D)A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形9.(枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【解析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.10.(泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为(D)A.9 B.6 C.4 D.3【解析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为: ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,若AB=5 cm,BC=6 cm,则AD=_____11.4 cm_____.(第11题)(第12题)(第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为____400 m____.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A重合,得折痕DE,则△ABE的周长等于___7 cm_____.14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||c-b=0,则△ABC的形状为_________等腰直角三角形_________.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=____4____.16.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,若一只壁虎从A点出发沿着台阶面爬到B点,则壁虎爬行的最短路线的长是__130cm____.第15题图第16题图第17题图17.如图,是一种饮料的包装盒,长、宽、高分别为4cm,3cm,12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外部分的长度h的取值范围为__3cm≤h≤4cm__.【解析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的长度最长为16-12=4cm;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.解答:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16-12=4(cm);②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线直径为5cm,高为12cm,由勾股定理可得杯里面管长为数学公式=13cm,则露在杯口外的长度最长为16-13=3cm;则可得露在杯口外的长度在3cm和4cm范围变化.18.在△ABC 中,若AC =15,BC =13,AB 边上的高CD =12,则△ABC 的周长为__32或42__.【解析】∵AC =15,BC =13,AB 边上的高CD =12,∴AD 2=AC 2-CD 2,即AD =9,BD 2=BC 2-CD 2,即BD =5.如图①,CD 在△ABC 内部时,AB =AD +BD =9+5=14,此时,△ABC 的周长为14+13+15=42;如图②,CD 在△ABC 外部时,AB =AD -BD =9-5=4,此时,△ABC 的周长为4+13+15=32.综上所述,△ABC 的周长为32或42.三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m ,如图,即AD =BC =12 m ,此时建筑物中距地面12.8 m 高的P 处有一被困人员需要救援.已知消防云梯车的车身高AB 是3.8 m ,问此消防车的云梯至少应伸长多少米?解:因为CD =AB =3.8 m ,所以PD =PC -CD =9 m.在Rt △ADP 中,AP2=AD2+PD2,得AP=15 m.所以此消防车的云梯至少应伸长15 m.20.如图,在4×4的正方形网格中,每个小正方形的边长都是1.线段AB ,AE 分别是图中两个1×3的长方形的对角线,请你说明:AB ⊥AE ..解:如图,连接BE .因为AE2=12+32=10,AB2=12+32=10,BE2=22+42=20,所以AE2+AB2=BE2.所以△ABE 是直角三角形,且∠BAE=90°,即AB ⊥AE..21.如图,四边形ABCD 是边长为a 的正方形,点E 在CD 上,DE =b ,AE =c ,延长CB 至点F ,使BF =b ,连接AF ,试利用此图说明勾股定理.解:在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b ,所以△ADE ≌△ABF.所以AE=AF=c ,∠DAE=∠BAF ,S △ADE=S △ABF.所以∠EAF=∠EAB +∠BAF=∠EAB +∠DAE=∠DAB=90°,S 正方形ABCD=S 四边形AECF.连接EF ,易知S 四边形AECF=S △AEF +S △ECF=12[c2+(a -b )(a +b )]=12(a2+c2-b2),S 正方形ABCD=a2,所以12(a2+c2-b2)=a2. 所以a2+b2=c2.22.如图,∠AOB =90°,OA =9 cm ,OB =3 cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少? 解:根据题意,BC =AC =OA -OC =9-OC .因为∠AOB=90°,所以在Rt △BOC 中,根据勾股定理,得OB2+OC2=BC2,所以32+OC2=(9-OC )2,解得OC=4 cm.所以BC=5 cm.23.如图,在长方形ABCD 中,DC =5 cm ,在DC 上存在一点E ,沿直线AE 把△AED 折叠,使点D 恰好落在BC 边上,设落点为F ,若△ABF 的面积为30 cm 2,求△ADE 的面积.解:由折叠可知AD=AF ,DE=EF.由S △ABF=12BF ·AB=30 cm2, AB=DC=5 cm ,得BF=12 cm.在Rt △ABF 中,由勾股定理,得AF=13 cm ,所以BC=AD=AF=13 cm.设DE=x cm ,则EC=(5-x )cm ,EF=x cm ,FC=13-12=1(cm ).在Rt △ECF 中,由勾股定理,得EC2+FC2=EF2,即(5-x )2+12=x2,解得x=135. 所以S △ADE=12AD ·DE=12×13×135=16.9 (cm2). 24.如图,公路MN 和公路PQ 在点P 处交会,公路PQ 上点A 处有学校,点A 到公路MN 的距离为80m ,现有一拖拉机在公路MN 上以18km/h 的速度沿PN 方向行驶,拖拉机行驶时周围100m 以内都会受到噪音的影响,试问该校受影响的时间为多长?解:设拖拉机开到C 处学校刚好开始受到影响,行驶到D 处时,结束了噪声的影响,则有CA=DA=100m.在Rt △ABC 中,CB2=1002-802=602,∴CB=60m ,∴CD=2CB=120m.∵18km/h=5m/s ,∴该校受影响的时间为120÷5=24(s ).答:该校受影响的时间为24s.25.有一个如图所示的长方体透明玻璃水缸,其长AD =8 cm ,高AB =6 cm ,水深为AE =4 cm ,在水面线EF 上紧贴内壁G 处有一粒食物,且EG =6 cm ,一只小虫想从水缸外的A 处沿水缸壁爬进水缸内的G 处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 与BC 交于点Q ,则AQ +QG 为最短路线.(2)因为AE =4 cm ,AA ′=12 cm ,所以A ′E =8 cm.在Rt △A ′EG 中,EG =6 cm ,A ′E =8 cm ,A ′G 2=A ′E 2+EG 2=102,所以A ′G =10 cm ,所以A Q +QG =A ′Q +QG =A ′G =10 cm.所以最短路线长为10 cm.。
2019秋北师大八上(BS)版数学测试题及答案(1-6章)
八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
八数上(BS)-八年级数学上册测试题及答案(1-6章)--复习资料
八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ) (A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
强化训练-北师大版八年级数学上册第一章勾股定理专项测评练习题(含答案详解)
北师大版八年级数学上册第一章勾股定理专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和2、如图,△ABC中,90∠=,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示ACB的长方形中,若要求图中两个阴影部分面积之和,则只需知道()A.以BC为边的正方形面积B.以AC为边的正方形面积C.以AB为边的正方形面积D.△ABC的面积3、在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形4、下列各组数:①3、4、5 ②4、5、6 ③2.5、6、6.5 ④8、15、17,其中是勾股数的有( )A.4组B.3组C.2组D.1组5、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A.1 B.2021 C.2020 D.20196、如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A处的最短距离是()A B.10厘米C.D.8厘米7、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使△ABC为直角三角形的概率是()A.12B.25C.47D.378、一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为()A.4.5 B.4.6 C.4.8 D.59、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm210、如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.80第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为______.2、如图,一艘轮船位于灯塔P的南偏东60︒方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45︒方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).3、如图,矩形ABCD中,AD=6,AB=8.点E为边DC上的一个动点,△AD'E与△ADE关于直线AE对称,当△CD'E为直角三角形时,DE的长为__.4、如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.5、无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.三、解答题(5小题,每小题10分,共计50分)1、如图,CE⊥AB于点E,BD⊥AC于点D,AB=AC.(1)求证:△ABD≌△ACE.(2)连接BC,若AD=6,CD=4,求△ABC的面积.2、如图,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,点D为BC的中点,12AC BC=.(1)求证:△ABC≌△DEB.(2)连结AE,若BC=4,直接写出AE的长.3、如图,在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:222AD AC BD=+.4、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.5、做4个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,再做一个边长为c的正方形,把它们按如图的方式拼成正方形,请用这个图证明勾股定理.-参考答案-一、单选题1、C【解析】【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2-b 2-a (c-b )=a 2-ac+ab=a (a+b-c ),较小两个正方形重叠部分的长=a-(c-b ),宽=a ,则较小两个正方形重叠部分底面积=a (a+b-c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C .【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.2、D【解析】【分析】如图所示,过点C 作CN ⊥AB 于N ,延长AB 、BA 分别交正方形两边于H 、E ,证明△ADE ≌△CAN 得到=ADE CAN S S △△,AE =CN 同理可证△BGH ≌△CBN ,得到=BGH CBN S S △△,BH =CN ,则==ADE BGH CAN CBN ABC S S S S S ++△△△△△,即可推出=5ABC S S △阴影由此即可得到答案.【详解】解:如图所示,过点C 作CN ⊥AB 于N ,延长AB 、BA 分别交正方形两边于H 、E ,∴∠CNA =∠DEA =∠DAC =90°,∴∠DAE +∠EDA =∠DAE +∠CAN =90°,∴∠ADE =∠CAN ,又∵AD =CA ,∴△ADE ≌△CAN (AAS ),∴=ADE CAN S S △△,AE =CN同理可证△BGH ≌△CBN ,∴=BGH CBN S S △△,BH =CN∴==ADE BGH CAN CBN ABC S S S S S ++△△△△△,∴=ABC S AB AE AB BH S ⋅+⋅+△阴影=2ABC AB CN S ⋅+△=5ABC S △,∴只需要知道△ABC 的面积的面积即可求出阴影部分的面积,故选D【考点】本题主要考查了全等三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形.3、B【解析】【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形定义即可.【详解】解:A 、∵∠A -∠B =∠C ,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此选项正确;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此选项不正确;C、如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=3x,∠C=2x,则x+3x+2x=180°,解得:x=30°,则3x=90°,∴△ABC是直角三角形,此选项正确;D、如果a2:b2:c2=9:16:25,则a2+b2=c2,∴△ABC是直角三角形,此选项正确;故选:B.【考点】本题考查了三角形内角和,勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4、C【解析】【详解】解:∵32+42=52,①符合勾股数的定义;∵42+52≠62,②不符合勾股数的定义;∵2.5和6.5不是正整数,③不符合勾股数的定义;∵82+152=172,④符合勾股数的定义,是勾股数的有:①④,共2组,故选:C.5、B【解析】【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故选:B.【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6、B【解析】【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【考点】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.7、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【详解】解:如图,1C,2C,C,4C均可与点A和B组成直角三角形.34P ,7故选:C.【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.8、C【解析】【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边的高.【详解】解:设斜边长为c,高为h.由勾股定理可得:c2=62+82,则 c=10 ,直角三角形面积S=12×6×8=12×c×h,可得h=4.8 ,故选:C.【考点】本题考查了勾股定理,利用勾股定理求直角三角形的边长和利用面积法求直角三角形的高是解决此类题的关键.9、A【解析】【分析】根据折叠的条件可得:BE DE=,在Rt BAE中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点B与点D重合,9cmAD=,9BE AE ∴=-,根据勾股定理得:229(9)AE AE +=-,解得:4(cm)AE =.21436(cm )2ABES ∴=⨯⨯=. 故选:A .【考点】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.10、C【解析】【详解】解:∵∠AEB =90°,AE =6,BE =8,∴AB 10∴S 阴影部分=S 正方形ABCD -SRt △ABE =102-1682⨯⨯=100-24=76.故选:C.二、填空题1、2223(10)x x +=-【解析】【分析】根据勾股定理即可得出结论.【详解】解:设未折断的竹干长为x 尺,根据题意可列方程为:2223(10)x x +=-.故答案为:2223(10)x x +=-.【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.2、.【解析】【分析】先作PC ⊥AB 于点C ,然后利用勾股定理进行求解即可.【详解】解:如图,作PC ⊥AB 于点C ,在Rt △APC 中,AP =50海里,∠APC =90°-60°=30°,∴1252AC AP ==海里,PC =在Rt △PCB 中,PC=BPC =90°-45°=45°,∴PC =BC =∴PB ==故答案为:【考点】此题主要考查了勾股定理的应用-方向角问题,求三角形的边或高的问题一般可以转化为用勾股定理解决问题,解决的方法就是作高线.3、3或6【解析】【分析】分两种情况分别求解,(1)当∠CED′=90°时,如图(1),根据轴对称的性质得∠AED =∠AED′=45′,得DE =AD =6;(2)当∠ED′A =90°时,如图(2),根据轴对称的性质得∠AD′E =∠D ,AD′=AD ,DE =D′E ,得A 、D′、C 在同一直线上,根据勾股定理得AC =10,设DE =D′E =x ,则EC =CD −DE =8−x ,根据勾股定理得,D′E 2+D′C 2=EC 2,代入相关的值,计算即可.【详解】解:当∠CED′=90°时,如图(1),∵∠CED′=90°,×90°=45°,根据轴对称的性质得∠AED=∠AED′=12∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E为直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直线上,根据勾股定理得10AC=,∴CD′=10−6=4,设DE=D′E=x,则EC=CD−DE=8−x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8−x)2,解得x=3,即DE=3;综上所述:DE的长为3或6;故答案为:3或6.【考点】本题考查了矩形的性质、勾股定理、轴对称的性质,熟练掌握矩形的性质、勾股定理、轴对称的性质的综合应用,分情况讨论,作出图形是解题关键.4、0.5【解析】【详解】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,(米).∵BD=0.5米,∴CD=2米,(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5、5【解析】【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【详解】解:由题意可得:15,则木筷露在杯子外面的部分至少有:20−15=5(cm ).故答案为5.【考点】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.三、解答题1、 (1)见解析(2)40【解析】【分析】(1)根据题目所给条件证()ABD ACE AAS ≌即可;(2)由ABD ACE △≌△可得10AB AC AD CD ==+=,由勾股定理可求BD ,即可求解;(1)证明:∵,CE AB BD AC ⊥⊥,∴90ADB AEC ∠=∠=︒,∵,AB AC A A =∠=∠,∴()ABD ACE AAS ≌.(2)解:∵ABD ACE △≌△,∴10AB AC AD CD ==+=,在Rt ABD △中,8BD ,∴111084022ABC S AC BD =⋅=⨯⨯=△.【考点】本题主要考查三角形的全等证明、勾股定理,掌握三角形的全等证明及性质是解题的关键.2、(1)见解析;(2)【解析】【分析】(1)根据平行可得∠DBE =90°,再由HL 定理证明直角三角形全等即可;(2)构造Rt AHE ,利用矩形性质和勾股定理即可求出AE 长.【详解】(1)∵AC ∥BE ,∴∠C +∠DBE =180°.∴∠DBE =180°-∠C =180°-90°=90°.∴△ABC 和△DEB 都是直角三角形.∵点D 为BC 的中点,12AC BC =,∴AC =DB . ∵AB =DE ,∴Rt △ABC ≌Rt △DEB (HL ).(2)AE =过程如下:连接AE 、过A 点作AH ⊥BE ,∵∠C =90°,∠DBE =90°.∴AC BH ∥,AH BC ∥,∴AH =BC =4, 122BH AC BC ===,∴2EH EB EH =-=,在Rt AHE 中,AE =【考点】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH =BC ,从而利用勾股定理求AE .3、见解析【解析】【分析】连接AM得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.【详解】证明:连接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M为BC中点,∴BM=MC.∴AD2=AC2+BD2【考点】本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素.4、84.【解析】【详解】解:作AD⊥BC于D,如图所示:设BD = x ,则14CD x =-.在Rt △ABD 中,由勾股定理得:2222215AD AB BD x =-=-,在Rt △ACD 中,由勾股定理得:()222221314AD AC CD x =-=--,∴2215x -=()221314x --,解之得:9x =.∴12AD =. ∴1·2ABC S BC AD ∆= 11412842=⨯⨯=. 5、见详解.【解析】【分析】利用4个直角三角形全等,根据=4+AEH ABCD EFGH S S S ∆正方形正方形列式,整理即可.【详解】证明:如图,AE BF CG DH a ====,AH DG CF BE b ====,HE EF FG GH c ====,∵=4+AEH ABCD EFGH S S S ∆正方形正方形,即()22142a b ab c +=⋅⋅+ ∴22222a ab b ab c ++=+,∴222+=a b c .【考点】本题考查了勾股定理的验证,运用拼图的方式,即利用两种不同的方法计算同一个图形的面积来验证勾股定理是解决本题的关键.。
八年级数学上册测试题及答案(1-6章)
八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
(北师大版)初中数学八年级上册 第一章综合测试试卷03及答案
第一章综合测试一、选择题(共10小题,满分30分,每小题3分)1.以下各组数为三角形的三条边长,其中不能构成直角三角形的是()A .3,4,5B .6,8,10C .1,1,2D .5,12,132.如图,以直角三角形的一条直角边和斜边为一边作正方形M 和N ,它们的面积分别为29cm 和225cm ,则直角三角形的面积为( )A .26cmB .212cmC .224cmD .23cm 3.在一个直角三角形中,两直角边长分别为a ,b ,斜边为c ,那么()A .222a b c +>B .222a b c +<C .222a b c +=D .222a b c +¹4.甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,若A 、B 两点的直线距离为1000m ,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A .南偏东60°B .南偏西60°C .北偏西30°D .南偏西30°5.如图,一架云梯25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米6.如图:一个长、宽、高分别为4cm 、3cm 、12cm 的长方体盒子能容下的最长木棒长为( )A .11cmB .12cmC .13cmD .14cm7.如图:在ABC △中,CE 平分ACB Ð,CF 平分ACD Ð,且EF BC ∥交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1258.如图,在ABC △中,AD BC ^于点D ,BF 平分ABC Ð交AD 于点E ,交AC 于点F ,13AC =,12AD =,14BC =,则AE 的长等于( )A .5B .6C .7D .1529. ABC △中,17AB =,10AC =,高8AD =,则ABC △的周长是()A .54B .44C .36或48D .54或3310.如图是一个66´的正方形网格,每个小正方形的顶点都是格点,Rt ABC △的顶点都是图中的格点,其中点A 、点B 的位置如图所示,则点C 可能的位置共有( )A .9个B .8个C .7个D .6个二、填空题(共6小题,满分24分,每小题4分)11.已知ABC △的三边的长分别是5AB =、4BC =、3AC =,那么C Ð=________.12.在Rt ABC △中,斜边10BC =,则22AB AC +的值是________.13.如图,每个小正方形的边长都为1,则ABC △的三边长a ,b ,c 的大小关系是________(用“>”连接).14.已知一个三角形工件尺寸(单位dm )如图所示,则高h =________dm .15.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a ,较长的直角边长为b ,那么a b +的值为________.16.如图所示,已知ABC △中,90B Ð=°,16cm BC =,20cm AC =,点P 是ABC △边上的一个动点,点P 从点A 开始沿A B C A ®®®方向运动,且速度为每秒4cm ,设出发的时间为()t s ,当点P 在边CA 上运动时,若ABP △为等腰三角形,则运动时间t =________.三.解答题(共8小题,满分66分)17.(7分)如图,在ABC △中,CD AB ^于点D ,6BC =,8AC =,10AB =.求CD 的长.18.(7分)如图,在四边形ABCD 中,13AB =,3BC =,4CD =,12DA =,90ADB Ð=°,求四边形ABCD 的面积.19.(8分)在ABC △中,已知90C Ð=°,:3:4a b =,20c =,求:(1)a 、b 的值;(2)ABC S △.20.(8分)如图,每个小正方形的边长为1.(1)求BC 与CD 的长;(2)求证:90BCD Ð=°.21.(8分)八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE ,他们进行了如下操作:①测得BD 的长为15米(注:BD CE ^);②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE .(2)过点D 作DH BC ^,垂足为H ,求BH 、DH .22.(8分)已知:整式()()22212A n n -=+,整式0B >.尝试化简整式A .发现2A B =.求整式B .联想由上可知,()()222212B n n -=+,当1n >时,21n -,2n ,B 为直角三角形的三边长,如图,填写下表中B 的值;直角三角形三边21n -2n B勾股数组Ⅰ8勾股数组Ⅱ3523.(8分)阅读下列内容:设a ,b ,c 是一个三角形的三条边的长,且a 是最长边,我们可以利用a ,b ,c 三条边长度之间的关系来判断这个三角形的形状:①若222a b c =+,则该三角形是直角三角形;②若222a b c +>,则该三角形是钝角三角形;③若222a b c +<,则该三角形是锐角三角形.例如:若一个三角形的三边长分别是4,5,6,则最长边是6,22263645=+<,故由③可知该三角形是锐角三角形,请解答以下问题:(1)若一个三角形的三边长分别是7,8,9,则该三角形是________三角形.(2)若一个三角形的三边长分别是5,12,x ,且这个三角形是直角三角形,求x 的值.24.(12分)观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式________;(2)如图2所示,90B D Ð=Ð=°,且B ,C ,D 在同一直线上.试说明:90ACE Ð=°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.第一章综合测试答案解析一、1.【答案】C【解析】解:A 、222345+=,能组成直角三角形,故此选项错误;B 、2226810+=,能组成直角三角形,故此选项错误;C 、222112+¹,不能组成直角三角形,故此选项正确;D 、22251213+=,能组成直角三角形,故此选项错误;故选:C.2.【答案】A4=(厘米),可得这个直角三角形的面积为:1462=(平方厘米).故选:A.3.【答案】C【解析】解:∵在Rt ACB △中,90C Ð=°,AC b =,AB c =,BC a =,∴由勾股定理得:222a b c +=,故选:C.4.【答案】A【解析】解:如图:∵甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了()4015600m ´=,乙客轮走了()4020800m ´=,∵A 、B 两点的直线距离为1000m ,2226008001000\+=,90AOB \Ð=°,∵甲客轮沿着北偏东30°的方向航行,∴乙客轮沿着南偏东60°的方向航行,故选:A.5.【答案】C【解析】解:由题意知25AB DE ==米,7BC =米,4AD =米,∵在直角ABC △中,AC 为直角边,24AC \==米,已知4AD =米,则24420CD =-=(米),∵在直角CDE △中,CE 为直角边15CE \==(米),15BE =米7-米8=米.故选:C.6.【答案】C【解析】解:∵侧面对角线2222345BC =+=,5m CB \=,12m AC =Q ,()13m AB \==,∴空木箱能放的最大长度为13m ,故选:C.7.【答案】B【解析】解:CE Q 平分ACB Ð,CF 平分ACD Ð,12ACE ACB \Ð=Ð,12ACF ACD Ð=Ð,即()1902ECF ACB ACD Ð=Ð+Ð=°,EFC \△为直角三角形,又EF BC Q ∥,CE 平分ACB Ð,CF 平分ACD Ð,ECB MEC ECM \Ð=Ð=Ð,DCF CFM MCF Ð=Ð=Ð,5CM EM MF \===,10EF =,由勾股定理可知222100CE CF EF +==.故选:B.8.【答案】D【解析】解:AD BC ^Q ,90ADC ADB \Ð=Ð=°,12AD =Q ,13AC =,5DC \===,14BC =Q ,1459BD \=-=,由勾股定理得:15AB ==,过点E 作EG AB ^于G ,BF Q 平分ABC Ð,AD BC ^,EG ED \=,在Rt BDE △和Rt BGE △中,EG ED BE BE=ìí=îQ ,()Rt Rt BDE BGE HL \△≌△,9BG BD \==,1596AG \=-=,设AE x =,则12ED x =-,12EG x \=-,Rt AGE △中,()222612x x =+-,152x =,152AE \=.故选:D.9.【答案】C【解析】解:分两种情况:①如图1所示:∵AD 是BC 边上的高,90ADB ADC \Ð=Ð=°,15BD \===,6CD ===,15621BC BD CD \=+=+=;此时,ABC △的周长为:17102148AB BC AC ++=++=.②如图2所示:同①得:15BD =,6CD =,1569BC BD CD \=-=-=;此时,ABC △的周长为:1710936AB BC AC ++=++=.综上所述:ABC △的周长为48或36.故选:C.10.【答案】A解:如图所示:,共9个点,故选:A.二、11.【答案】90°【解析】解:ABC ∵△中,5AB =、4BC =、3AC =,222AB BC AC \=+,ABC ∴△是直角三角形,90C \Ð=°.故答案为:90°.12.【答案】100【解析】解:在Rt ABC △中,∵斜边10BC =,222100AB AC BC \+==,故答案是:100.13.【答案】c a b>>【解析】解:由勾股定理可得:a ==b ==c ==c a b \>>.故答案为:c a b >>.14.【答案】4【解析】解:过点A 作AD BC ^于点D ,则AD h =,5dm AB AC ==Q ,6dm BC =,AD \是BC 的垂直平分线,13dm 2BD BC \==.在Rt ABD △中,4dm AD ===,即()4dm h =.答:h 的长为4dm .故答案为:4.15.【答案】5【解析】解:根据勾股定理可得2213a b +=,四个直角三角形的面积是:14131122ab ´=-=,即:212ab =,则()2222131225a b a ab b +=++=+=,则5a b +=.故答案为:5.16.【答案】425或9或192【解析】解:如图,过点B 作BH AC ^于H .90ABC Ð=°Q ,20AC =,16BC =,12AB \===,BH AC ^Q ,1122ABC S AC BH AB BC \=××=××△,121648205BH ´\==,365AH \===,当1BA BP =时,1365AH HP==,17216820161255AB BC AP \++=++-=,此时425t =,当2AB AP =时,22016121236AB BC CP ++=++-=,此时9t =,当33AP BP =时,32016121038AB BC CP ++=++-=,此时192t =,综上所述,满足条件的t 的值为425或9或192.三、17.【答案】解:∵在ABC △中,6BC =,8AC =,10AB =,222BC AC AB \+=,90ACB \Ð=°,∵由三角形的面积公式得:AC BC AB CD ´=´,6810CD \´=´,解得: 4.8CD =.18.【答案】解:在Rt ABD △中,222BD AB AD =-,222131225BD \=-=,又22223425BC CD +=+=Q ,222BC CD BD \+=,90BCD \Ð=°,51234 3622ABD BCD ABCD S S S ´´\=+=+=△△四边形.19.解:(1)如图所示::3:4a b =Q ,∴设3a x =,4b x =,由勾股定理得:5c x =,20c =Q ,520x \=,解得:4x =,12a \=,16b =;(2)11216962ABC S =´´=△.20.解:(1)由题意可知,BC CD ===;(2)证明:连接BD .BD ==Q ,BC CD ==;222BC CD BD \+=,BCD \△是直角三角形,即90BCD Ð=°.21.【答案】解:(1)在Rt CDB △中,由勾股定理,得20CD ===(米).所以20 1.621.6CE CD DE =+=+=(米);(2)由1122BD DC BC DH ´=´得15201225DH ´==,在Rt BHD △中,9BH ==.22.【答案】解:()()()222242242212214211A n n n n n n n n =-+=-++=++=+,2A B =Q ,0B >,21B n \=+,当28n =时,4n =,2214115n \-=-=,2214117n +=+=;当2135n -=时,6n =±(负值舍去),22612n \=´=,2137n +=.直角三角形三边21n -2n B 勾股数组Ⅰ15817勾股数组Ⅱ351237故答案为:15,17;12,37.23.【答案】(1)锐角(2)当最长边是12时,x ==当最长边是x 时,13x ==,即13x =【解析】(1)解:2278113+=Q ,2981=,222978\+<,∴该三角形是锐角三角形,故答案为:锐角;(2)当最长边是12时,x ==当最长边是x 时,13x ==,即13x =24.【答案】(1)解:这个公式是完全平方公式:()2222a b a ab b +=++;理由如下:∵大正方形的边长为a b +,∴大正方形的面积()2a b =+,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积22222a b ab ab a ab b =+++=++,∴()2222a b a ab b +=++;故答案为:()2222a b a ab b +=++;(2)证明:ABC CDE Q △≌△,BAC DCE \Ð=Ð,90ACB BAC Ð+Ð=°Q ,90ACB DCE \Ð+Ð=°,90ACE \Ð=°;(3)证明:90B D Ð=Ð=°Q ,180B D \Ð+Ð=°,AB DE \∥,即四边形ABDE 是梯形,∴四边形ABDE 的面积21111()()2222a b a b ab c ab =++=++,整理得:222a b c +=.。
北师大版数学八年级上册全册复习
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
图1-5
方法技巧
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 BE=a-14a=34a,
北师大八年级上第6章数据的分析单元试卷含答案解析
北师大新版八年级数学上册《第6章数据的分析》单元测试卷一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9B.极差是5C.众数是5D.中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50B.50和40C.40和50D.40和403.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3B.4C.5D.64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8B. C.2D.57.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2, B.2,1C.4, D.4,38.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7B.平均数是9C.众数是7D.极差是5二、填空题11.一组数据2、﹣2、4、1、0的中位数是.12.近年来,义乌市民用汽车拥有量持续增长,年至我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示120 123 127 132 138 141 145 148 …(度)估计李好家六月份总月电量是度.15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:38 39 40 41 42cm)件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是cm,中位数是cm.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的﹣这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组22.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?23.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.北师大新版八年级数学上册《第6章数据的分析》单元测试卷参考答案与试题解析一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9B.极差是5C.众数是5D.中位数是9【考点】极差;算术平均数;中位数;众数.【分析】根据极差、平均数、众数、中位数的概念求解.【解答】解:这组数据的平均数为: =9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.【点评】本题考查了极差、平均数、众数、中位数的知识,掌握各知识点的概念是解答本题的关键.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50B.50和40C.40和50D.40和40【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3B.4C.5D.6【考点】算术平均数;众数.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.【点评】本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】常规题型.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.【点评】本题考查了众数及中位数的定义,属于统计基础知识,难度较小.6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8B. C.2D.5【考点】方差;众数.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2= [(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]= =2.8.故选:A.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.7.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2, B.2,1C.4, D.4,3【考点】方差;算术平均数.【分析】本题可将平均数和方差公式中的x换成3x﹣2,再化简进行计算.【解答】解:∵x1,x2,…,x5的平均数是2,则x1+x2+…+x5=2×5=10.∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是:′= [(3x1﹣2)+(3x2﹣2)+(3x3﹣2)+(3x4﹣2)+(3x5﹣2)]= [3×(x1+x2+…+x5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9× [(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.【点评】本题考查的是方差和平均数的性质.设平均数为E(x),方差为D(x).则E(cx+d)=cE(x)+d;D(cx+d)=c2D(x).8.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条【考点】用样本估计总体.【专题】计算题.【分析】第二次捕捞鱼共200条,有10条做了记号,即有记号的鱼占到总数的,然后根据一共50条做了记号,来估算总数.【解答】解:设湖中有x条鱼,则200:10=x:50,解得x=1 000(条).故选D.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【考点】算术平均数.【专题】应用题.【分析】平均数是指一组数据之和再除以总个数;而中位数是数据从小到大的顺序排列,所以只要找出最中间的一个数(或最中间的两个数)即为中位数;众数是出现次数最多的数;所以,这三个量之间没有必然的联系.【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.【点评】本题主要考查了平均数与众数,中位数的关系.平均数: =(x1+x2+…x n).众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.中位数:n个数据按大小顺序排列,处于最中间位置的数(或最中间两个数据的平均数)叫做这组数据的中位数.10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7B.平均数是9C.众数是7D.极差是5【考点】极差;加权平均数;中位数;众数.【分析】根据中位数、平均数、极差、众数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为: =9,众数为:7,极差为:12﹣7=5.故选:A.【点评】本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.二、填空题11.一组数据2、﹣2、4、1、0的中位数是1.【考点】中位数.【分析】按大小顺序排列这组数据,中间两个数的平均数是中位数.【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.近年来,义乌市民用汽车拥有量持续增长,年至我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为23.【考点】算术平均数.【分析】根据平均数的计算公式进行计算即可.【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.【点评】此题考查了算术平均数,熟记平均数的计算公式是本题的关键,是一道基础题.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示120 123 127 132 138 141 145 148 …(度)估计李好家六月份总月电量是120度.【考点】用样本估计总体.【专题】计算题.【分析】从表中可以看出李好观察了7天,这7天的用电量是148﹣120=28度,即可求得平均用电量,然后乘以30即可.【解答】解:×30=120(度).【点评】本题的关键是注意表中写了8天的数字,但实际上李好观察了7天这一要点.15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:38 39 40 41 42cm)件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是39cm,中位数是40cm.【考点】众数;中位数.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为1,3,5或2,3,4.【考点】中位数;算术平均数.【专题】计算题.【分析】根据平均数和中位数的定义,结合正整数的概念求出这三个数.【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.【点评】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.平均数的求法.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是2.【考点】方差;算术平均数.【分析】先由平均数公式求得x的值,再由方差公式求解即可.【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2= [(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.【点评】本题考查了平均数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人中位数方差平均字数数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.【考点】加权平均数.【分析】按照权重为演讲内容:演讲能力:演讲效果=5:4:1的比例计算两人的测试成绩,再进行比较即可求解.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.【点评】本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的﹣这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是345,极差是24.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【考点】折线统计图;算术平均数;中位数;极差.【专题】图表型.【分析】(1)把这五年的全年空气质量优良天数按照从小到大排列,根据中位数的定义解答;根据极差的定义,用最大的数减去最小的数即可;(2)分别求出相邻两年下一年比前一年多的优良天数,然后即可得解;(3)根据平均数的求解方法列式计算即可得解.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)年与年相比,333﹣334=﹣1,与年相比,345﹣333=12,与相比,347﹣345=2,与相比,357﹣347=10,所以增加最多的是;(3)这五年的全年空气质量优良天数的平均数===343.2天.【点评】本题考查了折线统计图,要理解极差的概念,中位数的定义,以及算术平均数的求解方法,能够根据计算的数据进行综合分析,熟练掌握对统计图的分析和平均数的计算是解题的关键.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组1414 1.7乙组141511.7【考点】折线统计图;算术平均数;中位数;方差.【分析】(1)根据平均数、中位数、方差的定义,可得答案;(2)根据描点、连线,可得折线统计图;(3)根据折线统计图中的信息,统计表中的信息,可得答案.【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【点评】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.22.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【考点】条形统计图;扇形统计图;加权平均数;众数.【专题】图表型.【分析】(1)用捐款15元的人数14除以所占的百分比28%,计算即可得解;(2)用该班总人数减去其它四种捐款额的人数,计算即可求出捐款10元的人数,然后补全条形统计图,根据众数的定义,人数最多即为捐款总额的众数;(3)根据加权平均数的求解方法列式计算即可得解.【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【考点】方差;算术平均数.【分析】(1)根据图表得出甲、乙每次数据和平均数的计算公式列式计算即可;(2)根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],即可求出甲乙的方差;(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差= [(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点评】此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.。
全新北师大版八年级数学上册各单元测试卷(全册 共61页 附答案)
全新北师大版八年级数学上册各单元测试卷(全册共61页附答案)目录第一章达标测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( ) A.2倍B.3倍C.4倍D.5倍2.下列各组线段能构成直角三角形的一组是( )A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( ) A.169 B.119 C.13 D.1444.如图,阴影部分是一个长方形,则长方形的面积是( )A.3 cm2B.4 cm2C.5 cm2D.6 cm2(第4题) (第7题) (第10题)5.满足下列条件的△ABC,不是直角三角形的为( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶46.已知一轮船以18 n mile/h的速度从港口A出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A出发向东南方向航行,离开港口1.5 h后,两轮船相距( ) A.30 n mile B.35 n mile C.40 n mile D.45 n mile7.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于( )A.1013B.1513C.6013D.75138.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形9.已知直角三角形的斜边长为5 cm,周长为12 cm,则这个三角形的面积是( ) A.12 cm2B.6 cm2C.8 cm2D.10 cm210.如图,分别以直角三角形的三条边为边向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是( )A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.无法确定二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,若AB=5 cm,BC=6 cm,则AD=__________.(第11题) (第12题) (第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为________.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A 重合,得折痕DE,则△ABE的周长等于________.14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||c-b=0,则△ABC的形状为_________________________________________.15.如图是一个长方体,则AB=________,阴影部分的面积为________.(第15题) (第16题)16.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,且AH∶AE=3∶4.那么AH等于________.17.红方侦察员小马的正前方400 m处有一条东西走向的公路,突然发现一辆蓝方汽车在公路上行驶,他拿出红外线测距仪测得汽车与他相距400 m,10 s后又测得汽车与他相距500 m,则蓝方汽车的速度是________m/s.18.在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看成圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈(如图为灯管的部分示意图),则彩色丝带的总长度为__________.(第18题)三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.如图,在4³4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1³3的长方形的对角线,请你说明:AB⊥AE.21.如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE=c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.22.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?23.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.25.有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).答案一、1.B 2.A 3.A 4.C 5.D 6.D 7.C 8.D 9.B 10.B二、11.4 cm 12.400 m 13.7 cm 14.等腰直角三角形 15.13;30 16.6 17.3018.150 cm 点拨:因为灯管可近似看成圆柱,而圆柱的侧面展开图是一个长方形,所以假设把灯管的侧面展开后,得到一个由30个完全相同的小长方形组成的大长方形,且每个小长方形的长等于灯管的底面周长,小长方形的高等于灯管长度的130,则丝带的长度等于小长方形对角线长的30倍. 三、19.解:因为CD =AB =3.8 m ,所以PD =PC -CD =9 m. 在Rt △ADP 中,AP 2=AD 2+PD 2, 得AP =15 m.所以此消防车的云梯至少应伸长15 m.20.解:如图,连接BE .(第20题)因为AE 2=12+32=10,AB 2=12+32=10,BE 2=22+42=20,所以AE 2+AB 2=BE 2.所以△ABE 是直角三角形,且∠BAE =90°,即AB ⊥AE .21.解:在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b ,所以△ADE ≌△ABF .所以AE =AF =c ,∠DAE =∠BAF ,S △ADE =S △ABF .所以∠EAF =∠EAB +∠BAF =∠EAB +∠DAE =∠DAB =90°,S 正方形ABCD =S 四边形AECF .连接EF ,易知S 四边形AECF =S △AEF +S △ECF =12[c 2+(a -b )(a +b )]=12(a 2+c 2-b 2),S 正方形ABCD=a 2,所以12(a 2+c 2-b 2)=a 2.所以a 2+b 2=c 2. 22.解:垂直.理由如下:因为AB =12 m ,AC =15 m ,BC =9 m , 所以AC 2=BC 2+AB 2. 所以∠CBA =90°. 又因为AD =13 m ,AB =12 m ,BD =5 m ,所以AD 2=BD 2+AB 2. 所以∠ABD =90°, 因此电线杆和地面垂直.点拨:要判定电线杆和地面垂直,只需说明AB ⊥BD 且AB ⊥BC 即可,利用勾股定理的逆定理即可判定△ABD 和△ABC 为直角三角形,从而得出电线杆和地面垂直. 23.解:根据题意,BC =AC =OA -OC =9-OC .因为∠AOB =90°,所以在Rt △BOC 中,根据勾股定理,得OB 2+OC 2=BC 2, 所以32+OC 2=(9-OC )2, 解得OC =4 cm. 所以BC =5 cm.24.解:由折叠可知AD =AF ,DE =EF .由S △ABF =12BF ²AB =30 cm 2,AB =DC =5 cm ,得BF =12 cm.在Rt △ABF 中,由勾股定理,得AF =13 cm ,所以BC =AD =AF =13 cm. 设DE =x cm ,则EC =(5-x )cm ,EF =x cm ,FC =13-12=1(cm).在Rt △ECF 中,由勾股定理,得EC 2+FC 2=EF 2,即(5-x )2+12=x 2,解得x =135.所以S △ADE =12AD ²DE =12³13³135=16.9 (cm 2).25.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 与BC 交于点Q ,则AQ +QG 为最短路线.(第25题)(2)因为AE =4 cm ,AA ′=12 cm ,所以A ′E =8 cm.在Rt △A ′EG 中,EG =6 cm ,A ′E =8 cm ,A ′G 2=A ′E 2+EG 2=102, 所以A ′G =10 cm ,所以AQ +QG =A ′Q +QG =A ′G =10 cm. 所以最短路线长为10 cm.第二章达标测试卷一、选择题(每题3分,共30分) 1.8的平方根是( )A .4B .±4C .2 2D .±2 2的立方根是( )A .-1B .0C .1D .±13.有下列各数:0.456,3π2,(-π)0,3.14,0.801 08,0.101 001 000 1…(相邻两个1之间0的个数逐次加1),4,12.其中是无理数的有( ) A .1个B .2个C .3个D .4个4.有下列各式:①2;②13;③8x >0).其中,最简二次根式有( )A .1个B .2个C .3个D .4个5.下列语句不正确的是( )A .数轴上的点表示的数,如果不是有理数,那么一定是无理数B .大小介于两个有理数之间的无理数有无数个C .-1的立方是-1,立方根也是-1D .两个实数,较大者的平方也较大 6.下列计算正确的是( )A.12=2 3B.32=32==x7.设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .88.如图,在数轴上表示-5和19的两点之间表示整数的点有( )A .7个B .8个C .9个D .6个(第8题)(第10题)9(y +3)2=0,则x -y 的值为( )A .-1B .1C .-7D .710.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( )A .14B .16C .8+52D .14+2二、填空题(每题3分,共24分)11 ________ 5 (填“>”或“<”).12.利用计算器计算12³3-5时,正确的按键顺序是________________,显示器上显示的数是________.13.如图,数轴上表示数3的是点________.。
北师大八年级数学上册单元测试题全套及答案
最新北师大版八年级数学上册单元测试题全套及答案第一章勾股定理综合测评时间: 满分:120分、精心选一选(每小题4分,共32 分)1. 在厶 ABC 中,/ B=90° ,若 BC=3 AC=5,贝U AB 等于( )A.3B.4C.5D.62. 下列几组数中,能组成直角三角形的是()4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖 6 cm,10分钟后,两只小鼹鼠相距( )6.图2中的小方格都是边长为 1的正方形,试判断厶 ABC 的形状为()、耐心填一填(每小题4分,共32 分)9. 写出两组勾股数: ________________ . _______________10. 在厶ABC 中,ZC = 90° , 若 BC : AC = 3 :4 , AB= 10,则 BC= ___ , AC = _____ .班级: ________ 姓名: _______ 得分: _______1 1 1A.—,B.3 ,4, 6C.5 ,12, 13D.0.8 , 1.2 , 1.53 4 ,53.如图 1, 正方形 ABCD 的面积为 100 cm 2, △ ABP 为直角三角形, / P=90 ° ,且PB=6 cm ,则AP 的长为 ( )A.10 cmB.6 cmC.8 cmD.无法确定A.50 cmB.80 cmC.100 cm D.140 cm5.已知a , b , cABC 的三边,且满足 a 2 b 2 a 2 b 2 c 2 = 0,则它的形状为( A.直角三角形C.等腰直角三角形B.等腰三角形D. 等腰三角形或直角三角形A .钝角三角形 B. 锐角三角形 C.直角三角形 D.以上都有可能[来源:学科网7. 如图3, 一圆柱高8 cm,底面半径为2 cm, —只蚂蚁从点 A 爬到点B 处吃食,要爬行的最短路程( 取3 )是()A. 20 cmB.10 cmC.14 cmD.无法确定8.已知 Rt △ ABC 中,/ C=90°, 若 BC + AC = 14 cm , AB= 10 cm ,则该三角形的面积是( 2A.24 cm2B.36 cmC.48 cm2D.60 cm11. 如图4,等腰三角形ABC的底边长为16,底边上的高AD长为6,则腰AB的长度为___________13. 一个三角形的三边长之比为 5 : 12 : 13,它的周长为60,则它的面积是 _______ . 14. 图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面 爬行到B 点的最短路程是 米.屋门只有242 cm 高,100 cm 宽.你认为小明能把床垫拿进屋吗?________________________________________________________________________ .(填"能”或"不能”)16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得 米,AC = 4.5米,MC= 6米,则太阳光线 MA 的长度为 _______ 米.17. (10分)如图8,甲渔船以8海里/时的速度离开港口 O 向东北方向航行,乙渔船以5 4 BN ^ —米,NC=—米,BC = 133三、细心做一做(共56分)12.如图 5,/ OAB =Z OBC=Z OCD= 90°, AB= BC = CD= 1, OA= 2,贝U OD 2 = _____15. 一天,小明买了一张底面是边长为 260 cm 的正方形,厚30 cm 的床垫回家,至U 了家门口,才 发现6海里/时的10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树 20米处的池塘D 后直接跃到A 处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的19. (12分)如图 A 处.另一只爬到树顶速度离开港口 O 向西北方向航行,它们同时出发 .一个半小时后,甲、乙两渔船相距多少海里?9,已知在厶 ABC 中,AB=13, AD=12 AC=15, CD=9 求厶 ABC 的面积.18. (10分)如图高度.20. (12分)如图11, 一块草坪的形状为四边形 ABCDr 其中/ B=90 , AB=8 m BC=6 m CD=24 mAD=26 m.求这块草坪的面积.来源:Z#xx#]21. (12分)对任意符合条件的直角三角形保持其锐角顶点 A 不动,改变BC 的位置,使 E , D ,且/ BAE = 90°,/ CAD = 90° (如图 12).【分析】所给数据如图中所示,且四边形 ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等.第一章勾股定理综合测评一、 1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A二、 9.答案不唯一,如 3,4,5 ; 60,80,100 10.6 8 11.10 12.7 13.120 14.2.5 15.台匕冃匕16.7.533三、 17.解:由题意得 OA — 812 (海里),OB — 69 (海里), AOB 90,所以△ AOB22是直角三角形.由勾股定理,得 OA 2 OB 2 AB 2,即AB 2 =92+122=225,所以AB= 15 (海里).答略.18. 解:因为 AD=12 AC=15 CD=9所以AD+cD=144+8仁225= AC 2,所以△ ADC 为直角三角形,且/ ADC=90 .在 Rt △ ABD 中,AB=13, AD=12 由勾股定理得 BD 2 =AB 2 - AD 2 = 25,所以ED =5,所以 BC = BD+DC=5+9=1411所以 S AABC =• BC• AD=— X 14X 12=84 .2 219. 解:由题意知 AD+DB=BC+CA 且 CA=20米,BC=10米,设 BD=x 贝U AD=30-x .【解答】结合上面的分析过程验证勾股定理[来源:学科网]在Rt △ ACD中,CD+CA^AE2,即(30-x ) 2= ( 10+x) 2+202,解得x=5,故树高CD=10+x=15 (米).20. 解:如图,连接AC,因为/ B=90,所以在Rt△ ABC中,由勾股定理得AC2=AB2+BC2=82+62=100, 所以AC=10.又因为CD=24, AD=26所以在△ ACD中, AC+CD^A E J,所以△ ACD是直角三角形.1 1 1 1” *所以S 四边形ABC=S^ACD-S△ AB(= — AC?CD ——AB?BC —X 10X 24 -——X 8X6 =120-24=96 (m)."22 2 2 2/故该草坪的面积为96 m. '-一/21解:由分析可得S 正方形ACFD= S 四边形ABFE=S^ BAE+ S^ BFE・1 1即b2= c2+ (b+a) (b-a).2 2整理,得2b2= c2+ (b+ a) (b-a) .*源学一科网心所以a2+ b2= c2.第二章实数检测题【本检测题满分:100分,时间:90分钟】、选择题(每小题3分,共30分)1 .下列无理数中,在一2与1之间的是()A. —LB.—:;C.D .2. (2014 •南京中考)8的平方根是()A . 4B . ±4C .2 .刁D . ±皿3.若a,b为实数,且满足|a—2|+ . b2 =0, 则b —a的值为()A . 2B . 0C.—2 D . 以上都不对4.卜列说法错误的是()A. 5是25的算术平方根B.1是1的一个平方根C . (—4)2的平方根是一4D.0的平方根与算术平方根都是5.要使式子- x有意义,则x的取值范围是()A . x> 0 B. x>- 2 C. x> 2 D. x< 26.若a, b均为正整数,且a> .7 , b> 3 2,则a + b的最小值是( )A. 3B.4C.57.在实数-,。
北师大版八年级上册数学第一章单元测试题(含答案)
试卷第1页,共8页 北师大版八年级上册数学第一章单元测试题(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.学习了勾股定理之后,老师给大家留了一个作业题,小明看了之后,发现三角形各边都不知道,无从下手,心中着急.请你帮助一下小明.如图,ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD AC ⊥于点D ,则BD 的长为( )A .45B .85C .165D .2452.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,小正方形的面积为5,则大正方形的面积为( )A .12B .13C .14D .153.如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中5AE =,13BE =,则2EF 的值是( )试卷第2页,共8页A .128B .64C .32D .1444.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形,若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )A .4B .8C .12D .165.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示.若水面宽24cm AB =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm6.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .试卷第3页,共8页A .14B .12C .10D .87.观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a ,b ,a b >,根据图中图形面积之间的关系及勾股定理,可直接得到等式( )A .2()a a b a ab -=-B .22()()a b a b a b +-=-C .222( )2a b a ab b -=-+D .222()2a b a ab b +=++8.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c 能表示为两个正整数a ,b 的平方和,即22c a b =+,那么称a ,b ,c 为一组广义勾股数,c 为广义斜边数,则下面的结论:①m 为正整数,则3m ,4m ,5m 为一组勾股数;①1,2,3是一组广义勾股数;①13是广义斜边数;①两个广义斜边数的和是广义斜边数;①若2222,12,221a k k b k c k k =+=+=++,其中k 为正整数,则a ,b ,c 为一组勾股数;①两个广义斜边数的积是广义斜边数.依次正确的是( )A .①①①B .①①①①C .①①①D .①①①9.如图, Rt AED △中,90,,3,11AED AB AC AD EC BE ∠=====,则ED 的值为( )试卷第4页,共8页ABCD110.如图,在①ABC 中,AB =2,①ABC =60°,①ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ①l ,BF ①l ,垂足分别为E ,F ,则AE +BF 的最大值为( )AB .C .D .11.在Rt①ABC 中,①C =90°,AC =10,BC =12,点D 为线段BC 上一动点.以CD 为①O 直径,作AD 交①O 于点E ,则BE 的最小值为( )A .6B .8C .10D .1212.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:①20是“整弦数”;①两个“整弦数”之和一定是“整弦数”;①若c 2为“整弦数”,则c 不可能为正整数;①若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n 之积为“整弦数”;①若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题3分,共24分)试卷第5页,共8页 13.如图,OE ①AB 于E ,若①O 的半径为10,OE =6,则AB =_______.14.一根直立于水中的芦节(BD )高出水面(AC )2米,一阵风吹来,芦苇的顶端D 恰好到达水面的C 处,且C 到BD 的距离AC =6米,水的深度(AB )为________米15.学习完《勾股定理》后,尹老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为1米,将绳子沿地面拉直,绳子底端距离旗杆底端4米,则旗杆的高度为______米.16.已知2(4)5y x x -+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.17.一个数的平方根是4a 和25a +,则=a _________,这个正数是_________.18.已知a、b、c是一个三角形的三边长,如果满足2(3)50a c--=,则这个三角形的形状是_______.19732x y--,则2x﹣18y2=_____.20.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是______cm三、解答题(本大题共5小题,每小题8分,共40分)21.长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;①根据手中剩余线的长度计算出风筝线BC的长为25米;①牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE;试卷第6页,共8页试卷第7页,共8页 (2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?22.在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于种种原因,由C 到A 的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H (A ,H ,B 在一条直线上),并新修一条路CH ,测得CB =3千米,CH =2.4千米,HB =1.8千米.(1)问CH 是不是从村庄C 到河边的最近路,请通过计算加以说明;(2)求原来的路线AC 的长.23.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C 处吹折,竹子的顶端A 刚好触地,且与竹子底端的距离AB 是4米.求竹子折断处与根部的距离CB .24.太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE ,他们进行了如下操作: ①测得BD 的长为15米(注:BD CE );①根据手中剩余线的长度计算出风筝线BC的长为25米;①牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH BC⊥,垂足为H,求BH的长度.25.(12,其中4x=.(2)已知x=y=,求22x xy y-+值.试卷第8页,共8页参考答案1.C2.B3.A4.B5.A6.C7.C8.D9.A10.A11.B12.C13.1614.815.7.5;16.203217.-3118.直角三角形19.2220.1621.(1)风筝的高度CE为21.6米;(2)他应该往回收线8米.22.(1)是;(2)2.5米.23.3米24.(1)风筝的高度CE为21.7米(2)BH的长度为9米25.(1)62,122x(2)11答案第9页,共1页。
北师大版八年级数学上册 第一章 勾股定理--动点问题 练习(含答案)
《勾股定理--动点问题》一、单选题1.如图,在△ABC 中,AB =6,BC =8,∠B =90°,若P 是AC 上的一个动点,则AP+BP+CP 的最小值是( )A .14.8B .15C .15.2D .162.如图,Rt △ACB 中,∠ACB =90°,AB =25cm ,AC =7cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为ts ,当△APB 为等腰三角形时,t 的值为( )A .62596或252B .252或24或12C .62596或24或12D .62596或252或243.如图,在四边形ABCD 中,∠B =∠D =90°,连接AC ,∠BAC =45°,∠CAD =30°,CD =2,点P 是四边形ABCD 边上的一个动点,若点P 到AC 的距离为3,则点P 的位置有( )A .4处B .3处C .2处D .1处4.如图,在等腰三角形ABC 中,AC =BC =5,AB =8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF =( )A .5B .8C .13D .4.85.已知Rt △BCE 和Rt △ADE 按如图方式摆放,∠A =∠B =90°,A 、E 、B 在一条直线上,AD =3,AE =4,EB =5,BC =12,M 是线段AD 上的动点,N 是线段BC 上的动点,MN 的长度不可能是( )A .9B .12C .14D .16二、填空题6.如图,已知∠AOM=45°,OA=2,点B是射线OM上的一个动点.当△AOB为等腰三角形时,线段OB的长度为 .7.如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为 .8.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是 .9.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD=6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是 .三、解答题10.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C 点相遇,求BC的长度?11.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A出发沿AB方向以1cm/s 的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C运动,P,Q两点同时出发,设点P的运动时间为t秒.(1)求BC的长;(2)当t=2时,求P,Q两点之间的距离;(3)当AP=CQ时,求t的值?12.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,设运动时间为t秒.(1)求BC的长;(2)运动几秒后,△PBQ是等腰三角形;(3)运动过程中,直线PQ能否平分△ABC的周长,若能,求出t的值,若不能,请说明理由.13.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发,以2cm/秒的速度沿BC移动至点C,设运动时间为t秒.(1)求BC的长;(2)在点P的运动过程中,是否存在某个时刻t,使得点P到边AB的距离与点P到点C的距离相等?若存在,求出t的值;若不存在,请说明理由.14.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,同时停止.(1)P、Q出发4秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,出发几秒钟后,△CQB能形成直角三角形?15.某校机器人兴趣小组在如图所示的三角形场地上开展训练.已知:△ABC中,∠C=90°,AB=5,BC=3;机器人从点C出发,沿着△ABC边按C→B→A→C的方向匀速移动到点C停止;机器人移动速度为每秒1个单位,移动至拐角处调整方向需要0.5秒(即在B、A处拐弯时分别用时0.5秒).设机器人所用时间为t秒时,其所在位置用点P表示(机器人大小不计).(1)点C到AB边的距离是 ;(2)是否存在这样的时刻,使△PBC为等腰三角形?若存在,求出t的值;若不存在,请说明理由.16.如图1,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.17.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?18.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?个单位长度的速度运动.设点P的运动时间为t秒(t>0).(1)求AC的长及斜边AB上的高;(2)①当点P在AC延长线上运动时,CP的长为 ;(用含t的代数式表示)②若点P在∠ABC的角平分线上,则t的值为 ;(3)在整个运动中,直接写出△ABP是等腰三角形时t的值.度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求AC的长.(2)求斜边AB上的高.(3)①当点P在BC上时,PC的长为 .(用含t的代数式表示)②若点P在∠BAC的角平分线上,则t的值为 .(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.答案一、单选题1.【思路点拨】利用勾股定理求出AC,根据垂线段最短,求出BP的最小值即可解决问题.【解题过程】解:∵∠B=90°,AB=6,BC=8,∴AC=AB2+BC2=62+82=10,∵AP+BP+PC=BP+AC=BP+10,根据垂线段最短可知,当BP⊥AC时,BP的值最小,最小值BP=AB⋅BCAC =245= 4.8,∴AP+BP+CP的最小值=10+4.8=14.8,故选:A.2.【思路点拨】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解题过程】解:∵∠C=90°,AB=25cm,AC=7cm,∴BC=24cm.①当BP=BA=25时,∴t=252.②当AB=AP时,BP=2BC=48cm,∴t=24.③当PB=PA时,PB=PA=2t cm,CP=(24﹣2t)cm,AC=7cm,在Rt△ACP中,AP2=AC2+CP2,∴(2t)2=72+(24﹣2t)2,解得t=62596.综上,当△ABP为等腰三角形时,t=252或24或62596,3.【思路点拨】根据勾股定理,可以求得AC、AD、BC和AB的长,然后即可得到点D到AC的距离和点B到AC 的距离,从而可以得到满足条件的点P有几处,本题得以解决.【解题过程】解:∵∠CAD=30°,CD=2,∠D=90°,∴AC=4,AD=AC2−C D2=42−22=23,∴在Rt△ADC中,斜边AC上的高是:AD⋅CDAC =23×24=3,∵AC=4,∠B=90°,∠BAC=45°,∴AB=BC=22,∴在Rt△ABC中,斜边AC上的高是:BC⋅ABAC =22×224=2,∵3<2,点P是四边形ABCD边上的一个动点,点P到AC的距离为3,∴点P的位置在点D处,或者边BC上或者边AB上,即满足条件的点P有3处,故选:B.4.【思路点拨】连接CD,过C点作底边AB上的高CG,根据S△ABC=S△ACD+S△DCB不难求得DE+DF的值.【解题过程】解:连接CD,过C点作底边AB上的高CG,∵AC=BC=5,AB=8,∴BG=4,CG=BC2−B G2=52−42=3,∵S△ABC=S△ACD+S△DCB,∴AB•CG=AC•DE+BC•DF,∴8×3=5×(DE+DF)∴DE+DF=4.8.故选:D.5.【思路点拨】根据已知条件易求AB=9,AD∥BC,再确定MN的最大值及最小值可求出MN的取值范围,进而可求解.【解题过程】解:∵AE=4,EB=5,∴AB=AE+EB=4+5=9,∵∠DAE=∠B=90°,∴∠DAE+∠B=180°,∴AD∥BC,当M点与A点重合,N点与C点重合时,如图,∵∠B=90°,BC=12,∴MN=AB2+BC2=92+122=15;当M点与A点重合,N点与B点重合时,如图,MN=AB=9,∴9≤MN≤15,∴MN的长度不可能是16,故选:D.二、填空题6.【思路点拨】分三种情况,当OB=AB,OA=AB,OA=OB时,由等腰三角形的性质可求出答案.【解题过程】解:当△AOB为等腰三角形时,分三种情况:①如图,OB=AB,∴∠O=∠OAB,∵∠AOM=45°,∴∠ABO=90°,∴OB=1;②如图,OA=OB=2;③如图,OA=AB,∴∠O=∠ABO=45°,∴∠A=90°,∴OB=OA2+AB2=2+2=2.综上所述,OB的长为1或2或2.故答案为:1或2或2.7.【思路点拨】需要分类讨论:①当AP=PD时,易得△ABP≌△PCD.②当AD=PD时,根据等腰三角形的性质,勾股定理以及三角形的面积公式求得答案.③当AD=AP时,点P与点B重合.【解题过程】解:①当AP=PD时,则△ABP≌△PCD,则PC=AB=6,故PB=2.②当AD=PD时,∴∠PAD=∠APD,∵∠B=∠APD=∠C,∴∠PAD=∠C,∴PA=PC,过A作AG⊥BC于G,∴CG=4,∴AG=AC2−C G2=62−42=25,过P作PH⊥AC于H,∴CH=3,设PC=x,∴S△APC=12AG•PC=12AC•PH,∴5x=3×PH,x,∴PH=53∵PC2=PH2+CH2,∴x2=(5x)2+9,3(负值舍去),解得:x=92∴PC=9,2∴PB=7;2③当AD=AP时,点P与点B重合,不合题意..综上所述,PB的长为2或72故答案为:2或7.28.【思路点拨】分为三种情况:①PQ=BP,②BQ=QP,③BQ=BP,由等腰三角形的性质和勾股定理即可求解.【解题过程】解:∵OA=8,OB=6,C点与A点关于直线OB对称,∴BC=AB=42+32=5,分为3种情况:①当PB=PQ时,∵C点与A点关于直线OB对称,∴∠BAO=∠BCO,∵∠BPQ=∠BAO,∴∠BPQ=∠BCO,∵∠APB=∠APQ+∠BPQ=∠BCO+∠CBP,∴∠APQ=∠CBP,在△APQ与△CBP中,{∠QAP=∠PCB∠APQ=∠CBP,QP=PB∴△APQ≌△CBP(AAS),∴PA=BC,此时OP=5﹣4=1;②当BQ=BP时,∠BPQ=∠BQP,∵∠BPQ=∠BAO,∴∠BAO=∠BQP,根据三角形外角性质得:∠BQP>∠BAO,∴这种情况不存在;③当QB=QP时,∠QBP=∠BPQ=∠BAO,∴PB=PA,设OP=x,则PB=PA=4﹣x,在Rt△OBP中,PB2=OP2+OB2,∴(4﹣x)2=x2+32,解得:x=7;8∵点P在AC上,∴点P在点O左边,此时OP=7.8.∴当△PQB为等腰三角形时,OP的长度是1或78故答案为:1或7.89.【思路点拨】如图,连接AP1,AP,AP2,作AH⊥BC于H.证明△P1AP2是等腰直角三角形,推出P1P2=2 PA,求出PA的取值范围即可解决问题.【解题过程】解:如图,连接AP1,AP,AP2,作AH⊥BC于H.∵P1,P2分别为点P关于直线AB,AC的对称点,∴AP=AP1=AP2,∠PAB=∠BAP1,∠PAC=∠CAP2,∵∠BAC=45°,∴∠P1AP2是等腰直角三角形,∴P1P2=2AP2=2PA.∵CD⊥AB,∴∠ADC=90°,∠DAC=∠DCA=45°,∴AD=DC=6,∴AC=62>AB,∵AB=8,∴BD=2,BC=BD2+CD2=4+36=210,∵S△ABC=12•BC•AH=12•AB•CD,∴AH=8×6210=12510,∵12105≤PA≤62,∴2455≤P1P2≤12.故答案为2455≤P1P2≤12.三、解答题10.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.11.解:(1)在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,∴BC=AC2−A B2=24cm.(2)如图,连接PQ,BP=7﹣2=5,BQ=6×2=12,在直角△BPQ中,由勾股定理得到:PQ=BP2+BQ2=13(cm);(3)设t秒后,AP=CQ.则t=24﹣6t,.解得 t=247秒,AP=CQ.答:P、Q两点运动24712.解:(1)由勾股定理得,BC=AC2−A B2=252−72=24(cm);(2)∵△PBQ是等腰三角形,∠B=90°,∴BP=BQ,则7﹣1×t=6t,解得t=1,∴运动1秒后,△PBQ是等腰三角形;(3)假设直线PQ能平分△ABC的周长,则BP+BQ=12(AB+BC+AC)=12(7+24+25)=28(cm),则7﹣1×t+6t=28,解得t=215,当t=215时,点Q的运动路程为6×215=25.2>24,∴直线PQ不能平分△ABC的周长.13.解:(1)在Rt△ABC中,由勾股定理得:BC=AB2−A C2=102−62=8(cm);(2)存在,理由如下:如图,当点P恰好运动到∠BAC平分线上时,点P到直线AB的距离与点P到点C的距离相等,由已知可得:BP=2tcm,PC=BC﹣BP=(8﹣2t)cm,连接AP,过点P作PE⊥AB于E,如图所示:则PE=PC=(8﹣2t)cm,在△AEP与△ACP中,{∠PAE=∠PAC∠AEP=∠C=90°AP=AP,∴△AEP≌△ACP(AAS),∴AE=AC=6cm,∴BE=AB﹣AE=10﹣6=4(cm),在Rt△BEP中,由勾股定理得:BP2=BE2+PE2,即(2t)2=42+(8﹣2t)2,解得:t=52,即当t的值为52时,点P到边AB的距离与点P到点C的距离相等.14.解:(1)∵运动时间为4秒,∴BQ=2×4=8(cm),BP=AB﹣AP=16﹣1×4=12(cm),在Rt△PQB中,根据勾股定理得:PQ=BQ2+BP2=82+122=413(cm);(2)设运动时间为t秒,则BQ=2t(cm),BP=(16﹣t)(cm),根据题意得:2t=16﹣t,解得:t=163,即出发163秒钟后,△PQB能形成等腰三角形;(3)当点Q在CA边上,且△CQB形成直角三角形时,过点B作CA的垂线,垂足即为点Q.在Rt△ABC中,根据勾股定理得:AC=AB2+BC2=162+122=20(cm),根据三角形面积公式可得:BQ=AB⋅BCAC =12×1620=485(cm),在Rt△BCQ中,根据勾股定理得:CQ=BC2−B Q2=122−(485)2=365(cm),(12+365)÷2=9.6(秒),当点Q运动到点A时,△CQB也形成直角三角形,(12+20)÷2=16(秒).∴当点Q在边CA上运动时,出发9.6或16秒钟后,△CQB能形成直角三角形.15.解:(1)△ABC中,∠C=90°,∴AB2=AC2+BC2,∵AB=5,BC=3,∵52=AC2+32,∴AC=4,∴点C到AB边的距离=AC⋅BCAB =3×45= 2.4;故答案为:2.4;(2)存在,使△PBC为等腰三角形时,P在AB上或在AC上,当P在AB上时,①BC=BP,如图1,∵BP=t﹣0.5﹣3,∴t﹣0.5﹣3=3,解得:t=6.5;②CB=CP,如图2,过点C作CD⊥AB于D,则BD=PD,由(1)知:CD=2.4,∵BC=3,∴BD=32−2.42=1.8,∴BP=3.6,∴t=3.6+3+0.5=7.1;③PB=CP,如图3,∴∠B=∠PCB,∵∠ACP+∠PCB=∠A+∠B=90°,∴∠ACP=∠A,∴AP=CP=BP=2.5,∴t=2.5+0.5+3=6;当P在AC上,如图4,CB=CP=3,∴t=3+5+0.5+0.5+4﹣3=10.综上所述,t的值为6.5或7.1或6或10.16.解:(1)∵AC⊥CB,AC=15,AB=25∴BC=20,∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠EDA=∠ECA=90°,∵AE=AE,∴△ACE≌△ADE(AAS),∴CE=DE,AC=AD=15,设CE=x,则BE=20﹣x,BD=25﹣15=10在Rt△BED中∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5.(2)①当AD=AC时,△ACD为等腰三角形∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴CD=BD=DA=12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则12•AB•CH=12•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH=AC2−C H2=9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.17.解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴由勾股定理得PB=210cm∴△ABP的周长为:AP+PB+AB=6+10+210=(16+210)cm;(2)如图2所示,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC.在Rt△BPD与Rt△BPC中,{PD=PCBP=BP,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.设PC=x cm,则PA=(8﹣x)cm在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,AP平分∠CAB;(3)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC ∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或 10.8s 时△BCP为等腰三角形.18.解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP=AC2+PC2=164=241.答:AP的长为241.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB=64+256=320=85若BA=BP,则 2t=85,解得t=45;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为45、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.19.解:(1)在△ABC中,∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4.设斜边AB上的高为h,∵12AB•h=12AC•BC,∴5h=3×4,∴h=2.4.∴AC的长为4,斜边AB上的高为2.4;(2)已知点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动,①当点P在CB上时,点P运动的长度为:AC+CP=2t,∵AC=4,∴CP=2t﹣AC=2t﹣4.故答案为:2t﹣4.②若点P在∠ABC的角平分线上,则:设PM=PC=y,则AP=4﹣y,在Rt△APM中,AM2+PM2=AP2,∴22+y2=(4﹣y)2,解得y=32,(4−32)÷2=54,即若点P在∠ABC的角平分线上,则t的值为54.故答案为:54.(3)当AB作为底边时,如图所示:∵APAM =AP2.5=54,∴AP=3.125,此时t=3.125÷2=1.5625;当AB作为腰时,如图所示:AP1=AB=5,此时t=5÷2=2.5;AP2=2AC=8,此时t=4,综上,t的值为1.5625或2.5或4.20.解:(1)∵在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=AB2−B C2=102−62=8;(2)设边AB上的高为h则S△ABC =12AC⋅BC=12AB⋅h,∴12×6×8=12×10⋅h,∴h=245,答:斜边AB上的高为245;(3)①当点P在BC上时,点P运动的长度为AB+BP=2t,则PC=BC﹣BP=6﹣(2t﹣10)=6﹣2t+10=16﹣2t;②当点P'在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC,有①知,PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,{AP=APPD=PC,∴Rt△ACP≌Rt△ADP(HL),∴AD=AC=8,又∵AB=10,∴BD=2,在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:t=20.3.故答案为:①16﹣2t;②203(4)由图可知,当△BCP是等腰三角形时,点P必在线段AB上,①当点P在线段AB上时,若BC=BP,则点P运动的长度为AP=2t,∵AP=AB﹣BP=10﹣6=4,∴2t=4,∴t=2;②若PC=BC,如图,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=10,BC=6,AC=8,∴AB•CH=AC•BC,∴10CH=8×6,∴CH=245,在Rt△BCH中,由勾股定理得:BH=BC2−C H2=62−(245)2=185= 3.6,∴BP=2BH=7.2,∴点P运动的长度为:AP=AB﹣BP=10﹣7.2=2.8,∴2t=2.8,∴t=1.4;③若PC=PB,如图所示,过点P作PQ⊥BC于点Q,则BQ=CQ=12×BC=3,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=12×AC=12×8=4,在Rt△BPQ中,由勾股定理得:BP=BQ2+PQ2=32+42=5,点P运动的长度为AP=2t,AP=AB﹣BP=10﹣5=5,∴2t=5,∴t=2.5.综上,t的值为1.4或2或2.5.。
北师大版八年级数学上册
第一章 勾股定理1.勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2.勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系,222c b a =+,那么这个三角形是直角三角形。
3.勾股数:满足222c b a =+的三个正整数,称为勾股数。
4.如何走最近:【将立体图形展开,然后利用勾股定理求】 (1)圆柱体、圆锥体、正方体:展开只有一种情况;(2)长方体:如果其中两条棱相等,则展开只有两种情况;如果三条棱都不相等,则展开有三种情况;不管是两种情况还是三种情况,每一种情况都是最短(小)的,然后取最短(小)的那种情况第二章 实数一.实数的概念及分类 1.实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2.无理数:无限不循环小数叫做无理数。
※在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1(2(3(4)某些三角函数值,如sin60等二.实数的倒数、相反数和绝对值1.相反数:实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2.绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3.倒数:如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4.数轴:规定了原点、正方向和单位长度的直线叫做数轴(三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
※三.平方根、算数平方根和立方根1.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
最新版(北师大版)八年级数学上册全册同步练习(含答案)
第一章勾股定理1探索勾股定理第1课时探索勾股定理1.已知直角三角形两直角边的长分别为12,16,则其斜边的长为()A.16 B.18 C.20 D.282.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=________.3.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m.现需要在相对的顶点间用一块木板加固,则木板的长为________.4.如图,在Rt△ABC中,AC=8cm,BC=17cm.(1)求AB的长;(2)求阴影长方形的面积.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=5,AC=12,求AB、CD的长.第2课时验证勾股定理及其简单应用1.从某电线杆离地面8m处拉一根长为10m的缆绳,这条缆绳在地面的固定点到电线杆底部的距离为()A.2m B.4m C.6m D.8m2.图中不能用来证明勾股定理的是()3.如图,小丽和小明一起去公园荡秋千,秋千绳索OA长5m.小丽坐上秋千后,小明在距离秋千3m的点B处保护.当小丽荡至小明处时,试求小丽上升的高度AC.4.如图,在海上观察所A处,我边防海警发现正北方向6km的B处有一可疑船只正在向其正东方向8km的C处行驶,我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?2一定是直角三角形吗1.下列各组数中不是勾股数的是()A.9、12、15 B.41、40、9C.25、7、24 D.6、5、42.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC 是直角三角形的是()A.∠A=∠C-∠B B.a∶b∶c=2∶3∶4C.a2=b2-c2D.a=3,b=5,c=43.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定4.已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+|a-b|=0,则△ABC 的形状为______________.5.在△ABC中,AB=8,BC=15,CA=17,则△ABC的面积为________.6.如图,每个小正方形的边长均为1.(1)直接计算结果:AB2=________,BC2=________,AC2=________;(2)请说明△ABC的形状.3勾股定理的应用1.如图是一个长方形公园的示意图,游人从A景点走到C景点至少要走()A.600m B.800m C.1000m D.1400m2.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条笔直的水管,则水管的长为()A.45m B.40m C.50m D.56m3.在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,如图,量得倒下部分的长是10米.请你帮张大爷分析一下,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对4.如图,一个无盖圆柱形纸筒的底面周长是60cm,高是40cm.一只小蚂蚁在圆筒底部的A处,它想吃到上底面上与点A相对的点B处的蜜糖,试问蚂蚁爬行的最短路程是多少?第二章 实 数1 认识无理数1.下列各数中,是无理数的是( )A .0.3333… B.227 C .0.1010010001 D .-π22.下列说法正确的是( )A .0.121221222…是有理数B .无限小数都是无理数C .面积为5的正方形的边长是有理数D .无理数是无限小数3.若面积为15的正方形的边长为x ,则x 的范围是( ) A .3<x <4 B .4<x <5 C .5<x <6 D .6<x <74.有六个数:0.123,(-1.5)3,3.1416,117,-2π,0.1020020002….若其中无理数的个数为x ,整数的个数为y ,则x +y =________.5.下列各数中哪些是有理数?哪些是无理数?|+5|,-789,π,0.01·8·,3.6161161116…,3.1415926,0,-5%,π3,223.6.已知半径为1的圆.(1)它的周长l 是有理数还是无理数?说说你的理由; (2)估计l 的值(结果精确到十分位).2 平方根第1课时 算术平方根1.数5的算术平方根为( )A. 5 B .25 C .±25 D .±52.如果a -3是一个数的算术平方根,那么a 的值可能为( ) A .0 B .1 C .2 D .43.下列有关说法正确的是( ) A .0.16的算术平方根是±0.4 B .(-6)2的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是744.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________. 6.求下列各数的算术平方根: (1)0.25; (2)13; (3)⎝⎛⎭⎫-382; (4)179.7.如图,某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?第2课时 平方根1.81的平方根是( ) A .9 B .-9 C .±9 D .272.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对3.如果一个数的一个平方根是-16,那么这个数是________. 4.计算:(1)( 3.1)2=________; (2)(-8)2=________. 5.求下列各数的平方根:(1)25; (2)1681; (3)0.16; (4)(-2)2.6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.3 立方根1.9的立方根是( )A .3B .±3 C.39 D .±39 2.下列说法中正确的是( )A .-4没有立方根B .1的立方根是±1 C.136的立方根是16D .-5的立方根是3-5 3.已知(x -1)3=64,则x 的值为________. 4.-64的立方根为________. 5.求下列各式的值: (1)3-164; (2)30.001; (3)-3(-7)3.6.已知3x +1的平方根是±4,求9x +19的立方根.7.已知第一个立方体纸盒的棱长是6cm ,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127cm 3,求第二个立方体纸盒的棱长.4估算1.在3,0,-2,-2这四个数中,最小的数是()A.3 B.0C.-2 D.- 22.估计14+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.7的整数部分是________.4.比较大小:35________4 3.5用计算器开方1.用计算器求2018的算术平方根时,下列四个键中,必须按的键是() A.+ B.× C. D.÷2.计算器计算的按键顺序为1·69=,其显示的结果为________.3.用科学计算器计算:36+23≈________(结果精确到0.01).4.在某项工程中,需要一块面积为3平方米的正方形钢板,应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?6 实 数1.2的相反数是( )A .- 2 B. 2 C.12 D .22.下列各数是有理数的是( ) A .π B. 3 C.27 D.383.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示7的点是________.4.计算:(1)38+327-(-2)2; (2)|1-2|-(3)2+(6-π)0.5.在数轴上表示下列各数,并把这些数用“<”连接起来.-145,3,2,π,0.7 二次根式第1课时 二次根式及其性质1.下列式子中,不是二次根式的是( ) A.45 B.-3 C.a 2+3 D.232.下列根式中属于最简二次根式的是( ) A. 6 B.12C.8D.27 3.化简8的结果是( )A. 2 B .2 2 C .3 2 D .4 2 4.下列变形正确的是( )A.(-4)×(-9)=-4×-9B.1614=16×14=4×12=2 C.62=62= 3 D.252-242=25-24=15.3的倒数是________. 6.化简: (1)2581=________; (2)34=________; (3)3116=________. 7.化简:(1)3×25×25; (2)(-12)×(-8).第2课时 二次根式的运算1.下列根式中,能与18合并的是( ) A. 2 B. 3 C. 5 D. 62.计算12×3的结果为( ) A .2 B .4 C .6 D .36 3.下列计算正确的是( ) A .23+32=5 B.8÷2=2 C .53×52=5 6 D.412=2124.计算24-923的结果是( ) A. 6 B .- 6 C .-43 6 D.4365.若a =22+3,b =22-3,则下列等式成立的是( ) A .ab =1 B .ab =-1 C .a =b D .a =-b 6.计算:(1)(3+5)(3-5); (2)212+348; (3)153-8; (4)(3-1)2-2.第3课时二次根式的混合运算1.化简8-2(2-2)得()A.-2 B.2-2C.2 D.42-22.下列计算正确的是()A.6÷(3-6)=2-1B.27-123=9- 4C.2+5=7D.(-6)2=63.估计20×15+3的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.计算:(1)(548+12-627)÷3;(2)(23-1)2+(3+2)(3-2);(3)(25-2)0+|2-5|+(-1)2017-13×45;(4)6÷3+2(2-1).第三章位置与坐标1确定位置1.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示()A.6排4座B.4排6座C.4排4座D.6排6座2.下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排3.小明向班级同学介绍自己家的位置时,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处D.在学校东南方向800米处4.生态园位于县城东北方向5公里处,下图表示准确的是()5.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示.这样,棋子①的位置可记为(C,4),棋子②的位置可记为(E,3),则棋子⑨的位置可记为________.6.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示;(2)已知秋千在大门以东400m,再往北300m处,请你在图中标出秋千的位置.2平面直角坐标系第1课时平面直角坐标系1.下列选项中,平面直角坐标系的画法正确的是()2.在平面直角坐标系中,点(6,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(3,-4)C.(-4,-6)D.(-1,3)4.已知点A的坐标为(-2,-3),则点A到x轴的距离为________,到原点的距离为________.5.在如图所示的平面直角坐标系xOy中.(1)分别标出点A(4,2),B(0,6),C(-1,3),D(-2,-3),E(2,-4),F(3,0)的位置;(2)写出点M,N,P的坐标.第2课时平面直角坐标系中点的坐标特点1.下列各点在第四象限的是()A.(-1,2) B.(3,-5)C.(-2,-3) D.(2,3)2.下列各点中,在y轴上的是()A.(0,3) B.(-3,0)C.(-1,2) D.(-2,-3)3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2) B.(-2,0)C.(4,0) D.(0,-2)5.已知M(1,-2),N(-3,-2),则直线MN与x轴、y轴的位置关系分别为() A.相交、相交B.平行、平行C.垂直、平行D.平行、垂直6.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC;(2)求△ABC的面积.第3课时建立平面直角坐标系描述图形的位置1.如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)2.如图,已知等腰三角形ABC.若要建立直角坐标系求各顶点的坐标,则你认为最合理的方法是()A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴3.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么所在位置的坐标为()A.(0,1) B.(4,0)C.(-1,0) D.(0,-1)4.如图,长方形ABCD的长AD=6,宽AB=4.请建立适当的直角坐标系使得C点的坐标为(-3,2),并且求出其他顶点的坐标.3轴对称与坐标变化1.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5) B.(5,3)C.(-3,5) D.(3,5)2.已知点P(a,3)和点Q(4,-3)关于x轴对称,则a的值为()A.-4 B.-3 C.3 D.43.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-54.将△ABC各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是()5.已知点M(a,-1)和点N(2,b)不重合.当M、N关于________对称时,a=-2,b =-1.6.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.第四章一次函数1函数1.有下面四个关系式:①y=|x|;②|y|=x;③2x2-y=0;④y=x(x≥0).其中y是x 的函数的是()A.①②B.②③C.①②③D.①③④2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是()3.某学习小组做了一个实验:从一幢100m高的楼顶随手放下一只苹果,测得有关数据如下:下落时间t(s),1,2,3,4下落高度h(m),5,20,45,80则下列说法错误的是()A.苹果每秒下落的高度越来越大B.苹果每秒下落的高度不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒4.一个正方形的边长为3cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,则y与x之间的函数关系式是__________.5.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元.(1)写出y与x之间的函数关系式;(2)当老师带领20名学生参观时,门票的总费用为多少元?2 一次函数与正比例函数1.下列函数中,是一次函数的有( )①y =πx ;②y =2x -1;③y =1x ;④y =2-3x ;⑤y =x 2-1.A .4个B .3个C .2个D .1个2.已知y =x +2-3b 是正比例函数,则b 的值为( ) A.23 B.32C .0D .任意实数 3.若y =(m -2)x +(m 2-4)是正比例函数,则m 的值是( ) A .2 B .-2 C .±2 D .任意实数4.汽车开始行驶时,油箱内有油40升.若每小时耗油5升,则油箱内余油量y (升)与行驶时间t (小时)之间的函数关系式为( )A .y =40t +5B .y =5t +40C .y =5t -40D .y =40-5t5.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩的钱数y (元)与买邮票的枚数x (枚)之间的关系式为____________.6.甲、乙两地相距520km ,一辆汽车以80km/h 的速度从甲地开往乙地.(1)写出汽车距乙地的路程s (km)与行驶时间t (h)之间的函数关系式(不要求写出自变量的取值范围);(2)当行驶时间为4h 时,求汽车距乙地的路程.3 一次函数的图象第1课时 正比例函数的图象和性质1.正比例函数y =3x 的大致图象是( )2.已知直线y =-2x 上有两点(-1,a ),(2,b ),则a 与b 的大小关系是( ) A .a >b B .a <b C .a =b D .无法确定 3.已知正比例函数y =kx (k ≠0),点(2,-3)在该函数的图象上,则y 随x 的增大而( ) A .增大 B .减小 C .不变 D .不能确定4.画出正比例函数y =12x 的图象,并结合图象回答下列问题:(1)点(4,2)是否在正比例函数y =12x 的图象上?点(-2,-2)呢?(2)随着x 值的增大,y 的值如何变化?5.已知正比例函数y =(2-m )x |m -2|,且y 随x 的增大而减小,求m 的值.第2课时一次函数的图象和性质1.函数y=-2x+3的图象大致是()2.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是() A.a>b B.a<bC.a=b D.与m的值有关3.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是() A.0 B.-1 C.-1.5 D.-24.把直线y=-5x+6向下平移6个单位长度,得到的直线的表达式为()A.y=-x+6 B.y=-5x-12C.y=-11x+6 D.y=-5x5.已知一次函数y=(m+2)x+(3-n).(1)当m满足什么条件时,y随x的增大而增大?(2)当m,n满足什么条件时,函数图象经过原点?4 一次函数的应用第1课时 确定一次函数的表达式1.某正比例函数的图象如图所示,则此函数的表达式为( ) A .y =-12x B .y =12x C .y =-2x D .y =2x2.已知y 与x 成正比例,当x =1时,y =8,则y 与x 之间的函数表达式为( ) A .y =8x B .y =2x C .y =6x D .y =5x 3.如图,直线AB 对应的函数表达式是( ) A .y =-32x +2 B .y =32x +3C .y =-23x +2D .y =23x +24.如图,长方形ABCO 在平面直角坐标系中,且顶点O 为坐标原点.已知点B (4,2),则对角线AC 所在直线的函数表达式为____________.5.已知直线y =kx +b 经过点A (0,3)和B (1,5). (1)求这个函数的表达式;(2)当x =-3时,y 的值是多少?第2课时单个一次函数图象的应用1.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(h)之间的函数关系用图象可以表示为()2.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为()A.x=2B.y=2C.x=-3D.y=-33.周末小丽从家出发骑单车去公园,途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用了20分钟B.公园离小丽家的距离为2000米C.小丽在便利店的时间为15分钟D.便利店离小丽家的距离为1000米4.若一次函数y=ax+b的图象经过点(2,3),则关于x的方程ax+b=3的解为________.5.某工厂加工一批零件,每名工人每天的薪金y(元)与生产件数x(件)之间的函数关系如图所示.已知当生产件数x大于等于20件时,y与x之间的函数表达式为y=4x+b.当工人生产的件数为20件时,求每名工人每天获得的薪金.第3课时两个一次函数图象的应用1.如图,图象l甲,l乙分别表示甲、乙两名运动员在校运动会800米比赛中所跑的路程s(米)与时间t(分钟)之间的关系,则()A.甲跑的速度比乙跑的速度快B.乙跑的速度比甲跑的速度快C.甲、乙两人所跑的速度一样快D.图中提供的信息不足,无法判断2.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系.当该公司盈利(收入大于成本)时,销售量()A.小于3t B.大于3t C.小于4t D.大于4t3.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢.如图,现在小明让小强先跑________米,直线________表示小明所跑的路程与时间的关系,大约________秒时,小明追上了小强,小强在这次赛跑中的速度是________.4.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先出发,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分钟)之间的关系(从小强开始爬山时计时).(1)小强让爷爷先出发多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)小强经过多长时间追上爷爷?第五章 二元一次方程组1 认识二元一次方程组1.下列属于二元一次方程的是( ) A .xy +2x -y =7 B .4x +1=y C.1x+y =5 D .x 2-y 2=2 2.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +y =1,2x +y =5的解的是( )A.⎩⎪⎨⎪⎧x =-1,y =2B.⎩⎪⎨⎪⎧x =-2,y =3C.⎩⎪⎨⎪⎧x =2,y =1D.⎩⎪⎨⎪⎧x =4,y =-3 3.如果⎩⎪⎨⎪⎧x =3,y =-5是方程mx +2y =-2的一组解,那么m 的值为( )A.83 B .-83 C .-4 D.854.一个长方形的长的2倍比宽的5倍还多1cm ,宽的3倍又比长多1cm ,求这个长方形的长与宽.设长为x cm ,宽为y cm ,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧2x -5y =1,x -3y =1B.⎩⎪⎨⎪⎧5y -2x =1,3y -x =1C.⎩⎪⎨⎪⎧2x -5y =1,3y -x =1D.⎩⎪⎨⎪⎧5y -2x =1,x -3y =1 5.为了响应“足球进校园”的口号,某校计划为学校足球队购买一些足球.已知购买2个A 品牌的足球和3个B 品牌的足球共需380元,购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,请根据题意列出相应的方程组;(2)⎩⎪⎨⎪⎧x =40,y =100是(1)中列出的二元一次方程组的解吗?2 求解二元一次方程组第1课时 代入法1.方程组⎩⎪⎨⎪⎧3x -4y =2,x +2y =1用代入法消去x ,所得关于y 的一元一次方程为( )A .3-2y -1-4y =2B .3(1-2y )-4y =2C .3(2y -1)-4y =2D .3-2y -4y =22.方程组⎩⎪⎨⎪⎧y =3x ,x +y =16的解是( )A.⎩⎪⎨⎪⎧x =3,y =9B.⎩⎪⎨⎪⎧x =2,y =6C.⎩⎪⎨⎪⎧x =4,y =12D.⎩⎪⎨⎪⎧x =1,y =3 3.用代入消元法解二元一次方程组⎩⎪⎨⎪⎧3x -y =5①,5x +3y =9②,首先把方程________变形得__________,再代入方程________.4.用代入消元法解下列方程组:(1)⎩⎪⎨⎪⎧y =x +2,4x +3y =13; (2)⎩⎪⎨⎪⎧3x +2y =19,2x -y =1.5.已知|x +y -3|+(x -2y )2=0,求x ,y 的值.第2课时 加减法1.对于方程组⎩⎪⎨⎪⎧4x +7y =-19,4x -5y =17,用加减法消去x ,得到的方程是( )A .2y =-2B .2y =-36C .12y =-2D .12y =-362.方程组⎩⎪⎨⎪⎧x -y =2,2x -y =1的解为( )A.⎩⎪⎨⎪⎧x =-1,y =-3B.⎩⎪⎨⎪⎧x =1,y =-3 C.⎩⎪⎨⎪⎧x =-1,y =3 D.⎩⎪⎨⎪⎧x =1,y =3 3.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .34.用加减消元法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =2,6x -y =5; (2)⎩⎪⎨⎪⎧x +2y =5,x +y =2;(3)⎩⎪⎨⎪⎧2x +y =2,3x -2y =10; (4)⎩⎪⎨⎪⎧3x -4y =14,2x -3y =3.3 应用二元一次方程组——鸡兔同笼1.中国古代第一部数学专著《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A.⎩⎪⎨⎪⎧8y +3=x ,7y -4=xB.⎩⎪⎨⎪⎧8x +3=y ,7x -4=yC.⎩⎪⎨⎪⎧8x -3=y ,7x +4=yD.⎩⎪⎨⎪⎧8y -3=x ,7y +4=x 2.某年级共有学生246人,其中男生人数y 比女生人数x 的2倍多2人,则下面所列的方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =246,2y =x -2B.⎩⎪⎨⎪⎧x +y =246,2x =y +2C.⎩⎪⎨⎪⎧x +y =246,y =2x +2D.⎩⎪⎨⎪⎧x +y =246,2y =x +2 3.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中鸡和兔各有几只?4.小明同学发现他奶奶今年的年龄是他年龄的5倍,12年后,他奶奶的年龄是他年龄的3倍.问小明和他奶奶今年的年龄各是多少?4 应用二元一次方程组——增收节支1.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,问今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =50000,85%x +110y =95000B.⎩⎪⎨⎪⎧x +y =50000,85%x -110%y =95000C.⎩⎪⎨⎪⎧x -y =50000,115%x -90%y =95000D.⎩⎪⎨⎪⎧x -y =50000,85%x -110%y =95000 2.在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100棵树.设甲班去年植树x 棵,乙班去年植树y 棵,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧x -y =100,10%x -12%y =100B.⎩⎪⎨⎪⎧x -y =100,112%x -110%y =100C.⎩⎪⎨⎪⎧x -y =100,12%x -10%y =100D.⎩⎪⎨⎪⎧x -y =100,110%x -112%y =1003.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组______________.4.某校初三(2)班40名同学为“希望工程”共捐款100元,捐款情况如下表:捐款(元),1,2,3,4人数(人),6,●,●,7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚了,求捐款2元和3元的同学各有多少名.5 应用二元一次方程组——里程碑上的数1.已知两数x 、y 之和是10,x 比y 的2倍大1,则下面所列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =10,y =2x +1 B.⎩⎪⎨⎪⎧x +y =10,y =2x -1 C.⎩⎪⎨⎪⎧x +y =10,x =2y +1 D.⎩⎪⎨⎪⎧x +y =10,x =2y -1 2.通讯员要在规定时间骑车到达某地,若他每小时行驶15千米,则可提前24分钟到达;若他每小时行驶12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A.⎩⎨⎧x 15-15=y ,x 12+12=yB.⎩⎨⎧x 15+15=y ,x 12-12=yC.⎩⎨⎧x 15-2460=y ,x 12-1560=yD.⎩⎨⎧x 15+2460=y ,x 12-1560=y 3.一个两位数的数字和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是________.4.甲、乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?6 二元一次方程与一次函数1.已知直线y =3x 与y =-x +b 的交点为(-1,-3),则关于x ,y 的方程组⎩⎪⎨⎪⎧y -3x =0,y +x -b =0的解为( )A.⎩⎪⎨⎪⎧x =1,y =3B.⎩⎪⎨⎪⎧x =-1,y =3C.⎩⎪⎨⎪⎧x =1,y =-3D.⎩⎪⎨⎪⎧x =-1,y =-3 2.以方程2x +y =5的解为坐标的所有点组成的图象与一次函数__________的图象相同.3.若一次函数y =2x -4的图象上有一点的坐标是(3,2),则方程2x -y -4=0必有一组解为__________.4.如图,一次函数y =kx +b 的图象l 1与一次函数y =-x +3的图象l 2相交于点P ,则关于x ,y 的方程组⎩⎪⎨⎪⎧y =kx +b ,y =-x +3的解为__________. 5.用图象法解方程组⎩⎪⎨⎪⎧y =2x -2,x +y =-5.6.已知一次函数y =ax -5与y =2x +b 的图象的交点坐标为A (1,-2).(1)直接写出关于x ,y 的方程组⎩⎪⎨⎪⎧ax -y =5,2x -y =-b 的解; (2)求a ,b 的值.7 用二元一次方程组确定一次函数表达式1.一次函数y =kx +b 的图象如图所示,则( )A.⎩⎪⎨⎪⎧k =-13,b =-1B.⎩⎪⎨⎪⎧k =13,b =1C.⎩⎪⎨⎪⎧k =3,b =1D.⎩⎪⎨⎪⎧k =13,b =-12.已知一次函数y =kx +b ,下表中列出了x 与y 的部分对应值,则( )x,…,-1,1,…y,…,1,-5,…A.⎩⎪⎨⎪⎧k =3,b =-2 B.⎩⎪⎨⎪⎧k =-3,b =2 C.⎩⎪⎨⎪⎧k =-3,b =-2 D.⎩⎪⎨⎪⎧k =3,b =2 3.已知y 是关于x 的一次函数,且当x =3时,y =-2;当x =2时,y =-3,则这个一次函数的表达式为____________.4.若某公司销售人员的个人月收入y (元)与其每月的销售量x (千件)是一次函数关系(如图),则个人月收入y (元)与每月销售量x (千件)之间的函数关系式为____________.5.如图是某长途汽车站旅客携带行李费用示意图.(1)求行李费y (元)与行李质量x (千克)之间的函数关系式;(2)当旅客携带60千克行李时,需付行李费多少元?*8 三元一次方程组1.以下方程中,属于三元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +3y =4,2y +z =5,x 2+y =1B.⎩⎪⎨⎪⎧x +y +z =2,x -2y =3,y -6z =9C.⎩⎪⎨⎪⎧1x +1y +1z =16,3x -4y =3,x +z =2D.⎩⎪⎨⎪⎧x -y =2,2x -3y =4,2x -2y =42.已知三元一次方程组⎩⎪⎨⎪⎧2x -3y +2z =5,x -2y +3z =-6,3x -y +z =3消去未知数y 后,得到的方程组可能是( )A.⎩⎪⎨⎪⎧7x +z =4,5x -z =12B.⎩⎪⎨⎪⎧7x +z =4,x -5z =8C.⎩⎪⎨⎪⎧7x -z =12,x -5z =28D.⎩⎪⎨⎪⎧7x -z =4,x -5z =12 3.三元一次方程组⎩⎪⎨⎪⎧x -y =1,y -z =1,x +z =6的解是( )A.⎩⎪⎨⎪⎧x =2,y =3,z =4B.⎩⎪⎨⎪⎧x =2,y =4,z =3C.⎩⎪⎨⎪⎧x =3,y =2,z =4D.⎩⎪⎨⎪⎧x =4,y =3,z =24.有甲、乙、丙三种货物,如果购买甲3件、乙2件、丙1件共需315元;购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙各1件共需( )A .128元B .130元C .150元D .160元5.解方程组:⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6.第六章数据的分析1平均数第1课时平均数1.数据:-2,-1,0,3,4的平均数是()A.0 B.0.8 C.1 D.22.7位评委给一个演讲者打分(满分10分)如下:9,8,9,10,10,7,9.若去掉一个最高分和一个最低分,则这名演讲者的最后平均得分是()A.7分B.8分C.9分D.10分3.若一组数据2,4,3,x,4的平均数是3,则x的值为()A.1 B.2 C.3 D.44.某大学招生考试只考数学和物理,计算综合得分时,按数学占60%、物理占40%计算.如果小明数学得分为95分,物理得分为90分,那么小明的综合得分是________分.5.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:,笔试,面试,体能甲,83,79,90乙,85,80,75丙,80,90,73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%、30%、10%的比例计入总分.根据规定,请你说明谁将被录用.第2课时加权平均数的应用1.小明在七年级第二学期的数学成绩如下表所示.如果按如图所显示的权重计分,那么小明该学期的总评得分为________.姓名,平时,期中,期末,总评小明,90分,90分,85分2.某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:,面试,笔试成绩,评委1,评委2,评委388,90,86,92(1)请计算小王面试的平均成绩;(2)如果将面试的平均成绩与笔试成绩按6∶4的比例确定最终成绩,请你计算出小王的最终成绩.3.学校对王老师和张老师的工作态度、教学成绩及业务学习三个方面做了一个初步评估,成绩如下表所示:,工作态度,教学成绩,业务学习王老师,98,95,96张老师,90,99,98若工作态度、教学成绩、业务学习分别占20%、60%、20%,请分别计算王老师和张老师三个方面的平均分,并以此判断谁应评为优秀.2中位数与众数1.数据21、12、18、16、20、21的众数是()A.21 B.20 C.18 D.162.某区在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该数据的中位数是()A.77.3 B.91 C.81 D.783.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了如下统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.30,30B.30,20C.40,40D.30,404.若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是________.5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品每月的生产定额,统计了这15人某月加工的零件个数(如下表).月加工零件数(件),54,45,30,24,21,12人数,1,1,2,6,3,2(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?请说明理由.3 从统计图分析数据的集中趋势1.在一次体育课上,体育老师对九年级(1)班的40名学生进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则该班40名学生这次测试的平均分为( ) A.53分 B.354分 C.403分 D .8分2.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是( )A .98,95B .98,98C .95,98D .95,953.如图是小华同学6次数学测验的成绩统计图,则该同学这6次成绩的众数和中位数分别是____________.4.某校八(4)班共有40人,每位同学都向“希望工程”捐献了图书,捐书情况绘制成了如图所示的扇形统计图,求捐书册数的平均数、众数和中位数.4数据的离散程度第1课时极差、方差和标准差1.在九年级体育中考中,某班一组女生(每组8人)参加仰卧起坐测试的成绩如下(单位:次/分):46,44,45,42,48,46,47,45,则这组数据的极差为()A.2 B.4 C.6 D.82.甲、乙两个样本,甲样本的方差是0.105,乙样本的方差是0.055,那么样本() A.甲的波动比乙大B.乙的波动比甲大C.甲、乙的波动一样大D.甲、乙的波动大小无法确定3.某兴趣小组为了解我市气温的变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是() A.平均数是-2 B.中位数是-2C.众数是-2 D.方差是74.已知一组数据:2,4,5,6,8,则它的方差为________,标准差为________.5.甲、乙两名同学进行射击训练,在相同条件下各射靶10次,成绩统计如下(单位:环):甲:9,5,7,8,7,6,8,6,7,7;乙:7,9,6,8,2,7,8,4,9,10.谁的成绩射击成绩较稳定?。
北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)
第1章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.古希腊哲学家柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17…若此类勾股数的勾为2m(m≥3,m为正整数),则其弦(结果用含m的式子表示)是( )A.4m2−1B.4m2+1C.m2−1D.m2+12.如图,五个正方形放在直线MN上,正方形A、C、E的面积依次为3、5、4,则正方形B、D 的面积之和为()A.11B.14C.17D.203.观察下列各方格图中阴影部分所示的图形(每个方格的边长为1),如果将它们沿方格边线或对角线剪开后无缝拼接,不能拼成正方形的是()A.B.C.D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米5.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()A.2B.52C.5D.2546.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则BD2的值为()A.13B.12C.11D.107.图中不能证明勾股定理的是()A. B.C.D.8.如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1,若以点A为圆心,AD的长为半径画弧,与数轴交于点E(点E位于点A右侧),则点E表示的数为()A.3B.−2+3C.−1+3D.−39.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12cm B.13cm C.25cm D.26cm10.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用下图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI 的面积为S1,正方形BCGF的面积为S2,矩形AKJD的面积为S3,矩形KJEB的面积为S4,下列结论中:①BI⊥CD;②S1∶S△ACD=2∶1;③S1-S4=S3-S2;④S1S4=S3S2,正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .12.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使CD=13,则AD 的长为 km.13.如图,图1是第七届国际数学教育大会(ICME−7)会徽图案、它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如果图2中的OA1=A1A2=A2A3=⋅⋅⋅=A7A8=1,若S1代表△A1OA2的面积,S2代表△A2OA3的面积,以此类推,则S10的值为.14.把由5个小正方形组成的十字形纸板(如图1)剪开,以下剪法中能够将剪成的若干块拼成一个大正方形的有(填写序号).15.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点E是BC的中点,动点P从A 点出发以每秒1cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=,△APE的面积等于12.16.已知△ABC中,AC=8,AB=41,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,AD为BC边上的中线,AB=3,AC=5,AD=2,求证:AD⊥AB.18.(6分)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?19.(8分)以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(5,12,13),(7,24,25)等.(1)根据上述三组勾股数的规律,写出第四组勾股数组;(2)用含n(n为正整数)的数学等式描述上述勾股数组的规律,并证明.20.(8分)现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).(1) 求线段BG的长;(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)21.(8分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图(1),把△ABC沿直线DE折叠,使点A与点B重合,求BE的长;(2)如图(2),把△ABC沿直线AF折叠,使点C落在AB边上G点处,请直接写出BF的长.22.(8分)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图2.(1)你能在3×3方格图(图3)中,连接四个格点(网格线的交点)组成面积为5的正方形吗?若能,请用虚线画出.(2)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.(3)如图,是由两个边长不等的正方形纸片组成的一个图形,要将其剪拼成一个既不重叠也无空隙的大正方形,则剪出的块数最少为________块.请你在图中画出裁剪线,并说明拼接方法.23.(8分)公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外作正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论 .拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n 上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是 .答案解析一.选择题1.D【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2−1,∴弦是a+2=m2−1+2=m2+1,故选:D.2.C【分析】如图:由题意可得∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AAC=CE,再根据全等三角形和勾股定理可得S B=S C+S A=5+3=8,同理可得S D=S C+ S E=5+4=9,最后求正方形B、D的面积之和即可.【详解】解:如图:由题意可得:∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AC=CEA∴∠BAC+∠ACB=90°,∠DCE+∠ACB=90°,∴∠BAC=∠DCE,∴△ABC≅△CDE,∴DE=BC,∵∠ABC=90°,∴AC2=BC2+AB2,∴AC2=DE2+AB2,即S B=S C+S A=5+3=8,同理:S=S C+S E=5+4=9;D∴S+S B=8+9=17.D故选C.3.C【分析】根据网格的特点分别计算阴影部分的面积即可求得拼接后的正方形的边长,根据网格的特点能否找到构成边长的格点即可求解.【详解】解:A. 阴影部分面积为4,则正方形的边长为2,故能拼成正方形,不符合题意;B.阴影部分面积为10,则正方形的边长为10,∵12+32=10,故能拼成正方形,不符合题意;C.阴影部分面积为11,则正方形的边长为11,根据网格的特点不能构造出11的边,故不能拼成正方形,符合题意D. 阴影部分面积为13,则正方形的边长为13,∵22+32=13,故能拼成正方形,不符合题意;故选C.4.A【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+ 2.42= 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,BD2+A'D2=A'B2∴BD2+22= 6.25∴BD2= 2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A5.B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE中,勾股定理列出方程,解方程即可求解.【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=AC2−A B2=52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.6.A【分析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.【详解】解:由折叠得,AB=AE,∠BAF=∠EAF,在△BAF和△EAF中,{AB=AE∠BAF=∠EAFAF=AF,∴△BAF≌△EAF(SAS),∴BF=EF,∴AF⊥BE,又∵AF=4,AB=5,∴BF=AB2−A F2=3,在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴S△ADE =12AD⋅EF=12DG⋅h+12EG⋅h,即S△ADG +S△AEG=12AD⋅EF,∵S△AEG =12⋅GE⋅h=92,S△ADG=S△AEG,∴S△ADG +S△AEG=92+92=9,∴9=12AD⋅3,∴AD=6,∴FD=AD−AF=6−4=2,在Rt△BDF中,BF=3,FD=2,∴BD2=BF2+FD2=32+22=13,故选:A.7.A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论a2+b2=c2,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式(a+b)2=4×12ab+c2,可得a2+b2 =c2;C选项,通过梯形的面积的不同表示方法,可以列式(a+b)22=2×12ab+12c2,可得a2+b2=c2;D选项,通过这个不规则图象的面积的不同表示方法,可以列式c2+2×12ab=a2+b2+2×12ab,可得a2+b2=c2.故选:A.8.B【详解】根据勾股定理得:AB=2,AD=3,∴AE=3,∴OE=2−3,∴点E表示的数为−2+3.故答案为:B.9.B【分析】先将圆柱圆的侧面沿着点A所在的棱线剪开,得到长方形,得到AC=5cm,BC=242=12 cm,由此即可以利用勾股定理求出蚂蚁爬行的最短路线AB的长.【详解】如图,沿着点A所在的棱线剪开,此时AC=5cm,BC=242=12cm,∴蚂蚁爬行的最短路线AB=AC2+BC2=52+122=13cm,故选:B.10.D【分析】利用正方形的性质证明△ABI≌△ADC,得出∠AIB=∠ACD,即可得出∠CNI=∠NAI,即可判断①,利用△ABI≌△ADC,即可求出△ABI的面积,即可判断②,由勾股定理和S3+S4=S▱ABED,即可判断③,由③S1-S4=S3-S2,两边平方,根据勾股定理可得AC2−B C2=AK2−B K2,然后计算S12+S42−(S22+S32)=0,即可判断④.【详解】解:∵四边形ACHI和四边形ABED为正方形,∴AI=AC,AD=AB,∠CAI=∠BAD=90°,∵∠BAI=∠BAC+∠CAI,∠DAC=∠BAC+∠BAD,∴∠BAI=∠DAC,∴△ABI≌△ADC(SAS),∴∠AIB=∠ACD,∵∠CNI=∠CAI=90°,∴BI⊥CD,故①正确;∵S△ACD=S△AIB=12×AI×AC,S正方形ACHI=S1=AI×AC,∴S1:S△ACD=2:1,故②正确;∵S1=AC2,S2=BC2,S3+S4=S正方形ADEB=AB2,AC2+BC2=AB2,∴S1+S2=S3+S4,∴S1-S4=S3-S2,故③正确;∵ S1-S4=S3-S2,∴S12+S42−2S1S4=S22+S32−2S2S3,∵S1=AC2,S2=BC2,S3=AK•KJ= AK•AB,S4=BK•KJ=BK•AB,∴S12+S42=AC4+AB2BK2,S22+S32=BC4+AK2AB2,∵AB2=AC2+ BC2,AC2=AK2+CK2,BC2=BK2+CK2,∴AC2−A K2=BC2−B K2,即AC2−B C2=AK2−B K2,∴S12+S42−(S22+S32)=AC4+AB2BK2−(BC4+AK2AB2)=AC4−B C4+AB2(BK2−A K2)=(AC2+BC2)(AC2−B C2)−A B2(AC2−B C2) =AB2(AC2−B C2)−AB2(AC2−B C2)=0,∴S1•S4=S2•S3,故④正确,二.填空题11.c2+ab a2+b2+ab【详解】解:如图所示:S1=c2+12ab×2=c2+ab,S2=a2+b2+12ab×2=a2+b2+ab.故答案为c2+ab,a2+b2+ab.12. 20 13【分析】(1)根据两点的纵坐标相同即可得出AB的长度;(2)过C作AB的垂线交AB于点E,连接AD,构造方程解出即可.【详解】(1)根据A、B两点的纵坐标相同,得AB=12−(−8)=20故答案为:20(2)如图:设AD=a,根据点A、B的纵坐标相同,则AE=12,CE=1−(−17)=18由ΔADE是直角三角形,得:(CE−CD)2+AE2=a2∴52+122=a2故答案为:13 13.102【分析】利用勾股定理依次计算出OA2=2,OA3=3,OA4=4=2,.. OA n=n,然后依据计算出前几个三角形的面积,然后依据规律解答求得S10即可.【详解】由题意得:OA2=OA12+A1A22=12+12=2,OA3=OA22+A2A32=12+(2)2=3,OA4=OA32+A3A42=12+(3)2=4=2,∴OAn=n,∴OA10=10,∴S10=12OA10⋅A10A11=12×10×1=102,故答案为:102.14.①③【分析】设小正方形的边长为1,则5个小正方形的面积为5,进而可知拼成的大正方形的边长为5,再根据所画虚线逐项进行拼接,看哪种剪法能拼成边长为5的正方形即可.【详解】解:按照①中剪法,在外围四个小正方形上分别剪一刀然后放到相邻的空处,可拼接成边长为5的正方形,符合题意;如下图所示,按照③中剪法,通过拼接也可以得到边长为5的正方形,符合题意;按照②中剪法,无法拼接成边长为5的正方形,不符合题意;故选①③.故答案为:①③.15.3或18或22【分析】分当点P在线段AB上运动时,当点P在线段BC上运动且在点E的右边时和当点P在线段BC上运动且在点E的左边时三种情况讨论,即可求出t的值.【详解】解:∵∠C=90°,BC=16cm,AC=12cm,∴AB=AC2+BC2=162+122=20,∵点E是BC的中点,∴CE=BE=12BC=8cm,S△ACE=S△ABE=12S△ABC=12×12×12×16=48cm2.当点P在线段AC上运动时,∵△APE的面积等于12,即S△APE =14S△ACE,∴AP=14AC=3,∴t=3÷1=3秒;当点P在线段BC运动时上且在点E的右边时,,如图2所示,同理可知BP=14BE=2cm,∴t=(12+8+2)÷1=22秒;当点P在线段BC上运动且在点E的左边时,如图3所示,同理可知CP=12CE=2cm,∴t=(12+8−2)÷1=18秒;故答案为∶3或18或22.16.13【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH =AC ,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE +BD 的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH =AC ,连接DH ,BH .则∠HAD =∠C .在△ADH 和△CEA 中,{AD =CE ,∠HAD =∠C ,AH =CA ,∴△ADH≌△CEA(SAS),∴DH =AE ,∴AE +BD =DH +BD ,∴当B ,D ,H 三点共线时,DH +BD 的值最小,即AE +BD 的值最小,为BH 的长.∵AG ⊥BG ,AB =41,AG =5,∴在Rt △ABG 中,由勾股定理,得BG =AB 2−A G 2=(41)2−52=4.如图,过点H 作HM ⊥GC ,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴HM =AG =5,GM =AH =AC =8,∴在Rt △BMH 中,由勾股定理,得BH =BM 2+HM 2=(4+8)2+52=13.∴AE+BD的最小值为13.故答案为:13.三.解答题17.证明:如图,延长AD至点E,使得AD=DE,连接CE,∵AD为BC边上的中线,∴BD=DC,又∵AD=DE,∠ADB=∠EDC,∴△ABD≌△ECD,∴AB=EC=3,∠BAD=∠E,又∵AE=2AD=4,AC=5,∴AC2=AE2+CE2,∴∠E=90°∴∠BAD=∠E=90°∴AD⊥AB.18.解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=x m,则OC=(8-x)m,在Rt△BOC中,∵OB2+OC2=BC2,.∴32+(8-x)2=x2,解得x=7316∴机器人行走的路程BC为73m.1619.(1)解:第一组勾股数的第一个数为3=2×1+1,第二个数为4=2×1×(1+1),第三个数为4=2×(1+1)+1,第二组勾股数的第一个数为5=2×2+1,第二个数为12=2×2×(2+1),第三个数为12=2×2×(2+1)+1,第三组勾股数的第一个数为7=2×3+1,第二个数为24=2×3×(3+1),第三个数为25=2×3×(3+1)+1,所以第四组勾股数组的第一个数为2×4+1=9,第二个数为2×4×(4+1)=40,第三个数为2×4×(4+1)+1=41,∴第四组勾股数组为(9,40,41);(2)解:由(1)可知:第n组勾股数为(2n+1,2n2+2n,2n2+2n+1),证明:∵(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)220.解:(1)如图,连接BG.在直角△BCG中,由勾股定理得到:BG=BC2+GC2=42+32=5(dm),即线段BG的长度为5dm;(2)①把ADEH展开,如图此时总路程为(3+3+5)2+42=137②把ABEF展开,如图此时的总路程为(3+3+4)2+52=125=55③如图所示,把BCFGF展开,此时的总路程为(3+3)2+(5+4)2=117由于117<125<137,所以第三种方案路程更短,最短路程为117.21.(1)解:∵直线DE是对称轴,∴AE=BE,∵AC=6,BC=8,设AE=BE=x,则CE=8−x在Rt△ACE中,∠C=90°,∴AC2+CE2=AE2,∴62+(8−x)2=x2,,解得x=254∴BE=254(2)解:∵直线AF是对称轴,∴AC=AG,CF=CG,∵AC=6,BC=8,设CF=CG=x,则BF=8−x,∴在Rt△ACB中,∠C=90°,AB=AC2+BC2=62+82=10,∴BG=AB−AG=4,在Rt△BGF中,∠BGF=90°,∴GF2+BG2=BF2,∴x2+42=(8−x)2,解得x=3,∴BF=8−3=5.22.解:(1)能,如图所示,正方形ABCD即为所求;(2)能,如图所示,正方形ABCD即为所求;(3)如图所示,在AB上截取AM=BE,连接DM、MF,DM、FM即为裁剪线,将△DAM拼接△DCH处,使DA与DC重合,将△MEF拼接至△HGF处,使ME和HG重合,EF与FG 重合,得到正方形DMFH,∴剪出的块数最少为5块,故答案为:5.23.如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=(a+b)22S △ACB =12AC ⋅BC =12ab ,S △BC ′B ′=12ab ,S △ABB ′=12c 2,所以(a +b)22=12ab +12ab +12c 2,a 2+2ab+b 2=ab+ab+c 2,∴a 2+b 2=c 2;拓展1.过A 作AP ⊥BC 于点P ,如图2,则∠BMF =∠APB =90°,∵∠ABF =90°,∴∠BFM+∠MBF =∠MBF+∠ABP ,∴∠BFM =∠ABP ,在△BMF 和△ABP 中,{∠BFM =∠ABP ∠BMF =∠APB =900BF =AB,∴△BMF ≌△ABP (AAS ),∴FM =BP ,同理,EN =CP ,∴FM+EN =BP+CP ,即FM+EN =BC ,故答案为FM+EN =BC ;拓展2.过点D 作PQ ⊥m ,分别交m 于点P ,交n 于点Q ,如图3,则∠APD =∠ADC =∠CQD =90°,∴∠ADP+∠DAP =∠ADP+∠CDQ =90°,∴∠DAP =∠CDQ ,在△APD 和△DQC 中,{∠DAP =∠CDQ ∠APD =∠DQC AD =DC,∴△APD ≌△DQC (AAS ),∴AP =DQ =2,∵PD =1,∴AD 2=22+12=5,∴正方形的面积为 5,故答案为5.。
北师大版八年级上册数学第一章《勾股定理》测试卷(含答案)
北师大版八年级上册数学第一章《勾股定理》测试卷(含答案)一.选择题1.下列线段不能构成直角三角形的是()A.5,12,13B.2,3,C.4,7,5D.1,,2.下列各组数中,能构成直角三角形的三边的长度是()A.3,5,7B.,,C.0.3,0.5,0.4D.5,22,233.如图,某公园处有一块长方形草坪,有极少数人为了避开拐角∠AOB走“捷径”,在花圃内走出了一条“路”AB.他们踩伤草坪,仅仅少走了()A.4m B.6m C.8m D.10m4.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.不能确定5.传说,古埃及人常用“拉绳”的方法画直角,有一根长为m的绳子,古埃及人用这根绳子拉出了一个斜边长为n的直角三角形,那么这个直角三角形的面积用含m和n的式子可表示为()A.B.C.D.6.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.77.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.178.有一个边长为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.2022B.2021C.2020D.19.下列各组数中,不是勾股数的是()A.6,8,10B.9,41,40C.8,12,15D.5k,12k,13k(k为正整数)10.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2二.填空题11.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为.12.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.13.如图,在△ABC中,AB=AC=10,BD是边AC上的高,CD=2,则BD=.14.将一副三角尺如图所示叠放在一起,如果AB=10cm,那么AF=cm.15.若△ABC的三边a、b、c,其中b=1,且(a﹣1)2+|c﹣|=0,则△ABC的形状为.16.如图,已知在Rt△ABC中,∠BCA=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1,S2,则S1+S2=.17.如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为.18.请写出两组勾股数:、.19.如图,某开发区有一块四边形的空地ABCD,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,则要投入元.20.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.三.解答题21.如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2﹣BN2=AC2.22.如图,∠B=90°,AB=4,BC=3,CD=12,AD=13,点E是AD的中点,求CE的长.23.如图,将Rt△ABC绕其锐角顶点A旋转90°得到Rt△ADE,连接BE,延长DE、BC 相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.24.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.25.如图,在数轴上作出表示的点(不写作法,要求保留作图痕迹).26.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.27.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c 根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1(n为正整数)时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.参考答案一.选择题1.解:A、52+122=169=132,故是直角三角形,不符合题意;B、22+()2=9=32,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、12+()2=()2,故是直角三角形,不符合题意.故选:C.2.解:A、∵32+52=34≠72,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵()2+()2=7≠()2 ,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵(0.3)2+(0.4)2=0.25=(0.5)2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵52+222=509≠232,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选:C.3.解:在Rt△AOB中,AB==10m,∴AO+BO﹣AB=6+8﹣10=4m.即少走了4m.故选:A.4.解:根据题意得:如图:OA=40×20=800m.OB=40×15=600m.在直角△OAB中,AB==1000米.故选:C.5.解:设这个直角三角形的两直角边分别为a,b,由题意可得,,∴2ab=(a+b)2﹣(a2+b2)=(m﹣n)2﹣n2=m2﹣2mn,∴这个直角三角形的面积=ab=.故选:A.6.解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.7.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故选:B.8.解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2021次后形成的图形中所有的正方形的面积和为2022.故选:A.9.解:A、62+82=102,能构成直角三角形,是正整数,故是勾股数;B、92+402=412,能构成直角三角形,是正整数,故是勾股数;C、82+122≠152,不能构成直角三角形,故不是勾股数;D、(5k)2+(12k)2=(13k)2,能构成直角三角形,是正整数,故是勾股数;故选:C.10.解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.二.填空题11.解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,矩形KLMJ的面积为10×11=110.故答案是:110.12.解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.13.解:由已知得:AD=AC﹣CD=8,AB=10,∵BD是高,∴△ADB是直角三角形,∴BD2+AD2=AB2,∴BD==6.14.解:在Rt△ACB中,∠ACB=90°,∠B=30°,∴AC=AB=5,∵FC∥DE,∴∠AFC=∠D=45°,由勾股定理得,AF==5(cm),故答案为:5.15.解:∵(a﹣1)2+|c﹣|=0,∴a﹣1=0,c﹣=0,解得a=1,c=,∵12+12=()2,∴△ABC的形状为等腰直角三角形.故答案为:等腰直角三角形.16.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.17.解:在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S=AC×BC﹣AD×CD=×10×24﹣×8×6=96(m2).阴影故答案是:96m218.解:两组勾股数是:3、4、5;6、8、10;故答案为:3、4、5;6、8、10.19.解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,S 四边形ABCD =S △BAD +S △DBC =,==36. 所以需费用36×200=7200(元).故答案为:720020.解:三级台阶平面展开图为长方形,长为8dm ,宽为(2+3)×3dm , 则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理得:x 2=82+[(2+3)×3]2=172,解得x =17.故答案为:17.三.解答题21.证明:∵MN ⊥AB 于N ,∴BN 2=BM 2﹣MN 2,AN 2=AM 2﹣MN 2∴BN 2﹣AN 2=BM 2﹣AM 2,又∵∠C =90°,∴AM 2=AC 2+CM 2∴BN 2﹣AN 2=BM 2﹣AC 2﹣CM 2,又∵BM =CM ,∴BN 2﹣AN 2=﹣AC 2,即AN 2﹣BN 2=AC 2.22.解:在Rt △ABC 中,∠B =90°,∴,∵CD =12,AD =13,∵AC 2+CD 2=52+122=169,AD 2=169,∴AC 2+CD 2=AD 2,∴∠C =90°,∴△ACD 是直角三角形,∵点E 是AD 的中点,∴CE =.23.(1)△ABE 是等腰直角三角形,证明:∵Rt △ABC 绕其锐角顶点A 旋转90°得到在Rt △ADE ,∴∠BAC =∠DAE ,∴∠BAE =∠BAC +∠CAE =∠CAE +∠DAE =90°,又∵AB =AE ,∴△ABE 是等腰直角三角形;(2)∵四边形ABFE 的面积等于正方形ACFD 面积,∴四边形ABFE 的面积等于:b 2.(3)∵S 正方形ACFD =S △BAE +S △BFE即:b 2=c 2+(b +a )(b ﹣a ),整理:2b 2=c 2+(b +a )(b ﹣a )∴a 2+b 2=c 2.24.解:(1)△ABC 为直角三角形,理由:由图可知,,BC =,AB ==5,∴AC 2+BC 2=AB 2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.25.解:所画图形如下所示,其中点A即为所求;.26.解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S=BC•AD=×14×12=84.△ABC27.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013北师大版八年级上册数学评价检测试卷第一章勾股定理班级 姓名 学号 评价等级一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
13.如图1,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种地毯每平方米售价20元,主楼梯宽2米。
则购地毯至少需要元.14.有一个长为l2cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是cm15.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为________。
三、解答题16.如图2,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)17.一个零件的形状如图3所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?18.如图4是一块地,已知AD=8m,CD=6m,∠D=090,AB=26m,BC=24m,求这块地的面积。
19.“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上的行驶速度不得超过70千米/时,如图5,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪问的距离变为50米。
这辆小汽车超速了吗?20.学校校内有一块如图6所示的三角形空地ABC ,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?北师大版八年级上册数学评价检测试卷(图6)第二章 实 数班级 姓名 学号 评价等级一、选择题1.在下列实数中,是无理数的为( ) (A ) 0 (B )-3.5 (C )(D )2.A 为数轴上表示-1的点,将点A 沿数轴移动3个单位到点B ,则点B 所表示的实数为( ). (A )3 (B )2 (C )-4 (D )2或-4 3.一个数的平方是4,这个数的立方是( )(A )8 (B )-8 (C )8或-8 (D )4或-4 4.实数m 、n 在数轴上的位置如图1所示,则下列不等关系正确的是( ) (A )n <m (B ) n 2<m 2(C )n 0<m 0(D )| n |<| m | 5.下列各数中没有平方根的数是( ) (A )-(-2)3(B )33- (C )0a (D )-(a 2+1)6.下列语句错误的是( )(A )41的平方根是±21(B )-41的平方根是-21(C )41的算术平方根是21(D )41有两个平方根,它们互为相反数 7.下列计算正确的是( ). (A )628=- (B1==(C)(21= (D= 1 8.估计56 的大小应在( ).(A )5~6之间 (B )6~7之间 (C )8~9之间 (D )7~8之间9.已知a a = ,那么=a ( )(A ) 0 (B ) 0或1 (C )0或-1 (D ) 0,-1或1 10.已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( )(A ) 3 (B ) 3- (C ) 1 (D ) 1-二、填空题11.8116的平方根是____________,(21-)2的算术平方根是____________。
12.下列实数:21,16-,3π-,︱-1︱,722,39 ,0.1010010001……中无理数的个数有 个。
13.写出一个3到4之间的无理数 。
14.计算:______28=+。
15.52-的相反数是_____ _,绝对值是____ __。
三、解答题16.计算:(1)18282-+ (2)3127112-+(3))632(3- (4))2332)(2332(-+17.某位同学的卧室有25 平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到顶点B ,则它走过的最短路程为多少?19.如图3,一架长2.50.7米,如果梯子的顶端B A沿墙下滑0.4米,那么梯子的低端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长a=510m, 宽b=415m(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?北师大版八年级上册数学评价检测试卷第三章 位置与坐标班级 姓名 学号 评价等级一、选择题1.如图1,小手盖住的点的坐标可能是( ) (A )(5,2) (B )(-6,3) (C )(―4,―6) (D )(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是( )(A )(2,1) (B )(2,-1) (C )(-2,1)3.点P (—2 ,3) 关于 y 轴对称的点的坐标是( )(A )(—2 ,—3) (B )(3 ,—2) (C )(2 ,3) (D )(2 ,—3) 4.平面直角坐标系内,点A (n ,n -1)一定不在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 5.如果点P ()1,3++m m 在x 轴上,则点P 的坐标为( )(A) (0,2) (B) (2,0) (C) (4,0) (D) (0,)4-6.已知点P 的坐标为()63,2+-a a ,且点P 到两坐标轴的距离相等,则点P 的坐标为( ) (A) (3,3) (B) (3, )3- (C) (6, )6- (D) (3,3)或(6, )6- 7.已知点A (2,0)、点B (-12,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在( ) (A )第一象限(B )第二象限 (C )第三象限 (D )第四象限8.若P (b a ,)在第二象限,则Q (a b ,)在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片, 依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0) ) (A )A 处(B )B 处(C )C 处(D )D 处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于y 轴的负半轴上,则该点坐标为( ) (A )(2,0)(B )(0,-2)(C )(0,(D )(0,-)二、填空题11.点A 在y 轴上,且与原点的距离为5,则点A 的坐标是__ ______. 12.如图3,每个小方格都是边长为1个单位 长度的正方形,如果用(0,0)表示A 点的 位置,用(3,4)表示B 点的位置,那么 用 表示C 点的位置.13.已知点M ),(b a ,将点M 向右平移)0(>c c 个单位长度得到N为________.14.第三象限内的点()P x y ,,满足5x =,29y =,则点P 的坐标是 . 15.如图4,将∆AOB 绕点O 逆时针旋转900, 得到''OB A ∆。
若点A 的坐标为(b a ,),则 点'A 的坐标为________。
三、解答题16.△ABC 在直角坐标系内的位置如图5所示。
(1)分别写出A 、B 、C 的坐标 (2)请在这个坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于y 轴对称,并写出B 1的坐标; (3)请在这个坐标系内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 关于原点对称,并写出A 2的坐标;;17.小亮要从A 地赶往CC 三地,但地图被墨迹污染,C 地具体位置看不清楚了,只知道C 地在A 地的南偏西55°,在B 的北偏西70°. (1)请帮助小亮确定C 地的位置; (2)若地图的比例尺是l :10000000, 从A 地到C 地的实际距离约是多少千米?BC A •••18.在平面直角坐标系中,将坐标为(0,0),(2,1),(2,4),(0,3)的点依次连结起来形成一个图案.(1) 这四个点的横坐标保持不变,纵坐标变成原来的21,将所有的四个点用线段依次连结起来,所得的图案与原图案相比有什么变化? (2) 纵、横坐标分别变成原来的2倍呢?19.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内。