数值分析课后习题及答案

合集下载

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析-课后习题答案

数值分析-课后习题答案

1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
6
0.518889
1-4.求方程x2-56x+1=0的两个根,使它们至少具有四 位有效数字 ( 7832.798)2.
解 x1=28+27.982=55.982,x2=1/x1=0.017863
精选课件
2
二.习题2 (第50页)
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
2.11
3-4.用J迭代法和G-S迭代法求解方程组Ax=b,其中
A 1 1
问取何值时这两种迭代法是收敛的? 解 J迭代法和G-S迭代法的迭代矩阵分别为
B 0 0
G 0 0
2
易得:(B)=||,(G)=2.故当||<1时两种方法都收敛.
3-7.给定方程组
精选课件
16
(1 ) 3 x 1 x 1 2 2 x x 22 3 4
x2 0
1 4 1
x3
0
1 4 1x4 0
1精选课4件x5 200
8

4 1 1 4 1
44
111 444
11

数值分析课后部分习题答案

数值分析课后部分习题答案

习题一(P.14)1. 下列各近似值均有4个有效数字,300.2,521.13,001428.0***===z y x ,试指出它们的绝对误差和相对误差限.解*20.001428=0.142810x -=⨯有4个有效数,即4n =,2m =-由有效数字与绝对误差的关系得绝对误差限为611101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *213.521=0.1352110y =⨯有4个有效数,即4n =,2m =由有效数字与绝对误差的关系得绝对误差限为211101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *12.300=0.230010z =⨯有4个有效数,即4n =,1m =由有效数字与绝对误差的关系得绝对误差限为311101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101024n a ---⨯=⨯.2.下列各近似值的绝对误差限都是31021-⨯,试指出它们各有几位有效数字.***2.00021,0.032,0.00052x y z ===解*12.000210.20002110x ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,2n =;*10.0320.3210y ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,4n =;*30.000520.5210z -==⨯,即3m =-由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,0n =.4.设有近似数35.2,84.1,41.2***===z y x 且都有3位有效数字,试计算***z y x S +=,问S 有几位有效数字.解 方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,211|(*)|101022m n e y --≤⨯=⨯,211|(*)|101022m n e z --≤⨯=⨯,|(**)||*(*)*(*)|*|(*)|*|(*)|e y z z e y y e z z e y y e z ≈+≤+222112.3510 1.8410 2.0951022---≤⨯⨯+⨯⨯=⨯,221|(***)||(*)(**)|10 2.095102e x y z e x e y z --+≈+≤⨯+⨯1110.259510102--=⨯≤⨯, 又1***=2.41 1.84 2.350.673410x y z ++⨯=⨯,此时1m =,1m n -=-,从而得2n =.方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,2110(*)2|(*)|=||* 2.41r e x e x x -⨯≤, 211|(*)|101022m n e y --≤⨯=⨯,2110(*)2|(*)|=||* 1.84r e y e y y -⨯≤,211|(*)|101022m n e z --≤⨯=⨯,2110(*)2|(*)|=||* 2.35r e z e z z -⨯≤|(**)||(*)(*)|r r r e y z e y e z ≈+,***|(***)||(*)(**)|******r r rx y z e x y z e x e y z x y z x y z +≈+++2.41 1.84 2.35|(*)||(*)+(*)|2.41 1.84 2.35 2.41 1.84 2.35r rr e x e y e z ⨯≤++⨯+⨯22211110 1.8410 2.35102222.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.35---⨯⨯⨯⨯⨯≤+++⨯+⨯+⨯20.385410-<⨯21102-<⨯,由有效数字与绝对误差的关系得2n =.5.序列{}n y 有递推公式),2,1(,1101 =-=-n y y n n若41.120≈=y (三位有效数字),问计算10y 的误差有多大,这个计算公式稳定吗?解 用0ε表示0y 的误差,由41.120≈=y ,得0=0.0042ε,由递推公式),2,1(,1101 =-=-n y y n n ,知计算10y 的误差为810=0.4210ε⨯,因为初始误差在计算的过程中被逐渐的放大,这个计算公式不稳定.习题2 ( P.84)3.证明()1nkk lx ==∑,对所有的x其中()k l x 为Lagrange 插值奇函数. 证明 令()1f x =,则()1i f x =, 从而 0()()()()nnn k k k k k L x l x f x l x ====∑∑,又(1)1()()()0(1)!n n n f R x x n ξω++==+,可得 ()()1n l x f x ==,从而()1nkk lx ==∑.4. 求出在=012x ,,和3处函数2()1f x x =+的插值多项式. 解 方法一 因为给出的节点个数为4,而2()1f x x =+从而余项(4)34()()()04!f R x x ξω==,于是233()()()()=+1L x f x R x f x x =-=(n 次插值多项式对次数小于或等于的多项式精确成立).方法二 因为(0)1(1)2(2)5(3)10f f f f ====,,,, 而0(1)(2)(3)1()=-(1)(2)(3)(01)(02)(03)6x x x l x x x x ---=------,1(2)(3)1()=(2)(3)(10)(12)(13)2x x x l x x x x --=-----,2(1)(3)1()=-(1)(3)(20)(21)(23)2x x x l x x x x --=-----,3(1)(2)1()=(1)(2)(30)(31)(32)6x x x l x x x x --=-----,从而30123()()(0)()(1)()(2)()(3)L x l x f l x f l x f l x f =+++2=+1x .5. 设2()[,]f x C a b ∈且()()0f a f b ==,求证21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-.证明 因()()0f a f b ==,则1()0L x =, 从而1()()()()()2!f f x R x x a x b ξ''==--,由极值知识得 21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-6. 证明 (()())()()()(+)f x g x f x g x f x g x h ∆=⋅∆+∆⋅. 证明 由差分的定义(()())(+)()()()f xg x f xh g x h f x g x ∆=+-[(+)()()(+)][()()()()]f x h g x h f x g x h f x g x h f x g x =+-++-()()()(+)f x g x f x g x h =⋅∆+∆⋅或着 (()())(+)()()()f x g x f x h g x h f x g x ∆=+-[(+)()()()][()()()()]f x hg xh f x h g x f x h g x f x g x =+-+++- ()()()()f x h g x f x g x =+⋅∆+∆⋅7. 证明 n 阶差商有下列性质(a ) 如果()()F x cf x =,则0101[,,,][,,,]n n F x x x cf x x x =. (b ) 如果()()()F x f x g x =+,则010101[,,,][,,,][,,,]n n n F x x x f x x x g x x x =+.证明 由差商的定义 (a ) 如果()()F x cf x =,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-120110[,,,]-[,,,]n n n cf x x x cf x x x x x -=-120110[,,,]-[,,,]n n n f x x x f x x x c x x -=⋅-01[,,,]n cf x x x =.(b ) 如果()()()F x f x g x =+,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-12120110110[[,,,][,,,]]-[[,,,][,,,]]n n n n n f x x x g x x x f x x x g x x x x x --++=-12011120110,,,]-[,,,][,,,][,,,]+n n n n n n f x x x f x x x g x x x g x x x x x x x ---=--[ 0101[,,,][,,,]n n f x x x g x x x =+8. 设74()3431f x x x x =+++,求0172,2,,2]f [,0182,2,,2]f [.解 由P.35定理7的结论(2),得7阶差商0172,2,,2]=3f [(()f x 的最高次方项的系数),8阶差商0182,2,,2]=0f [(8阶以上的差商均等与0).9. 求一个次数不超过4次的多项式()P x ,使它满足:(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =.解 方法一 先求满足插值条件(0)0P =,(1)=1P ,(2)1P =的二次插值多项式2()P x 213=22x -+(L-插值基函数或待定系数法), 设()P x 22=()(1)(2)(1)(2)P x Ax x x Bx x x +--+--213=22x x -+2+(1)(2)(1)(2)Ax x x Bx x x --+-- 从而()P x '323=4B +(39)(641)(2)2x A B x A B x A -+-+-++,再由插值条件(0)0P '=,(1)1P '=,得3=,4A -1=,4B所以 ()P x 213=22x x -+231(1)(2)(1)(2)44x x x x x x ---+--, 即 ()P x 41=4x 332x -29+4x .方法二 设()P x 23401234=a a x a x a x a x ++++, 则 ()P x '231234=234a a x a x a x +++由插值条件(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =,得010********0123400++++1+2+3+41+2+4+8+161a a a a a a a a a a a a a a a a =⎧⎪=⎪⎪=⎨⎪=⎪=⎪⎩ 解得 234931=,=-,=424a a a , 从而()P x 41=4x 332x -29+4x . 方法三 利用埃尔米特插值基函数方法构造. 10. 下述函数()S x 在[1,3]上是3次样条函数吗?3232321,12()=92217,23x x x x S x x x x x ⎧-++≤≤⎨-+-+≤≤⎩ 解 因为22362,12()=31822,23x x x S x x x x ⎧-+≤≤'⎨-+-≤≤⎩, 66,12()=618,23x x S x x x -≤≤⎧''⎨-+≤≤⎩而12(2)=1=(2)S S ,12(2)=2=(2)S S '',12(2)=6=(2)S S '''', 又()S x 是三次函数,所以函数()S x 在[1,3]上是3次样条函数.补 设f (x )=x 4,试利用L-余项定理写出以-1,0,1,2为插值节点的三次插值多项式.解 因为 (4)34()()()(+1)(1)(2)4!f R x x x x x x ξω==--,从而3233()()()22L x f x R x x x x =-=+-习题3 ( P.159)1.设n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组且)(x k ϕ为首项系数为1的k 次的多项式,则n k k x 0)}({=ϕ于],[b a 线性无关.解 方法一 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,采用反证法:若{}n ϕϕϕ,,,10 于],[b a 线性相关,于是,存在不全为零,,,,10n c c c 使0011()()()0,[,]n n c x c x c x x a b ϕϕϕ+++=∈上式两边与i ϕ作内积得到0011(,)(,)(,)0(0,1,,)i i n i n c c c i n ϕϕϕϕϕϕ+++==,由于{}i c 不全为零,说明以上的齐次方程组有非零解),,,,(10n c c c 故系数矩阵的行列式为零,即{}0,,,10=n G ϕϕϕ 与假设矛盾.方法二 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,由( P.95)定理2得n k k x 0)}({=ϕ于],[b a 线性无关.2.选择α,使下述积分取得最小值1221()[],a x x dx α--⎰120()()x b e x dx α-⎰解1221()[]a x x dx αα-∂-∂⎰1221=[]x x dx αα-∂-∂⎰1221=2[]()x x x dx α--⋅-⎰5112=5x α-4=5α,令1221[]=0x x dx αα-∂-∂⎰,得=0α. 12()()x b e x dx αα∂-∂⎰120=()xe x dx αα∂-∂⎰1=2()()x e x x dx α-⋅-⎰2=23α- 令120()=0x e x dx αα∂-∂⎰,得=3α.3.设],3,1[,1)(∈=x xx f 试用},1{1x H 求)(x f 一次最佳平方逼近多项式.解 取权函数为()x x ω=(为了计算简便),则32311(1,1)42x xdx ===⎰,33321126(1,)(,1)33x x x x dx ====⎰, 343311(,)204x x x x dx ===⎰,33111((),1)2f x xdx x x=⋅==⎰,3232111((),)42x f x x x dx x =⋅==⎰, 得法方程0126423264203a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦,解得011211311a a ⎧=⎪⎪⎨⎪=-⎪⎩, 所以)(x f 的一次最佳平方逼近多项式1123()1111P x x =-. 8.什么常数C 能使得以下表达式最小? ∑=-ni x i iCe x f 12))((解21(())i n x i i f x Ce C =∂-∂∑1=2(())()i i nx x i i f x Ce e =-⋅-∑, 令21(())=0i nx i i f x Ce C =∂-∂∑,得121()(),iinx x ii nx xx i f x ef x e C e e e=-=⋅==∑∑()(,). 14.用最小二乘法求解矛盾方程组2+314921x y x y x y =⎧⎪-=-⎨⎪-=-⎩. 解 方法一方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,原问题转化成在已知三组离散数据3142211()922t f t ----下求一次最小二乘逼近函数1()P x x yt =+(x 与y 为一次函数的系数,t 为自变量),取1H 基{}1,t ,求解法方程331133321113()()i i i i i i i i i i i x t f x t t t f x y =====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑∑∑, 即3-3-93737-32x y ⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得到矛盾方程组的解为37=-3156=31x y ⎧⎪⎪⎨⎪⎪⎩. 方法二方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,令(,)I x y 2223111=+-+4+9++2222x y x y x y --()()()(,)I x y x ∂∂3111=2+-+24+9+2+2222x y x y x y ⨯⨯-⨯-()()()=6618x y -+,(,)I x y y ∂∂331111=+44+9+222222x y x y x y ⨯--⨯--⨯-()()() 37=3372x y -+- 令(,)0(,)0I x y x I x y y∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩, 得3373372x y x y -=-⎧⎪⎨-+-⎪⎩, 解之得矛盾方程组的解为37315631x y ⎧=-⎪⎪⎨⎪=⎪⎩. 习题47. 对列表函数 124810()0152127x f x求(5)(5).f f ''',解 一阶微商用两点公式(中点公式),得(8)(2)10(5),63f f f -'≈= 二阶微商用三点公式(中点公式),首先用插值法求(5)f , 由(4)5,(8)21,f f ==得一次插值函数1()411,L x x =-从而 1(5)(5)9f L ≈=,于是,2(2)2(5)(8)4(5).39f f f f -+''≈= 8. 导出数值数分公式)]23()2(3)2(3)23([1)(3)3(h x f h x f h x f h x f h x f ---++-+≈并给出余项级数展开的主部.解 由二阶微商的三点公式(中点公式),得213()[()2()()]2222h h h f x f x f x f x h h ''-≈+--+-,213()[()2()()]2222h h h hf x f x f x f x h ''+≈+-++-从而 (3)()()22()h h f x f x f x h''''+--≈3133=[()3()3()()]2222h h f x h f x f x f x h h +-++--- 将33()()()()2222h h f x h f x f x f x h ++--,,,分别在x 处展开,得2(3)3(4)4(5)55331313()=()()()()()()222!23!21313()()()()+()(1)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''++⋅+⋅+⋅+⋅+⋅2(3)3(4)4(5)5511()=()()()()()()222!23!211()()()()()(2)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''++⋅+⋅+⋅+⋅+⋅+2(3)3(4)4(5)5511()=()()()()()()()222!23!211()()()()()(3)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+2(3)3(4)4(5)55331313()=()()()()()()()222!23!21313()()()()()(4)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+(1)-(2)×3 +(3)×3-(4), 得(5)222131()[()2()()]()()22228h h h f x f x f x f x h f x h O h h ''--+--+-=-+,即余项主部为(5)21()8f x h -习 题 5 (P. 299)3. 设n n R A ⨯∈为对称矩阵,且011≠a ,经高斯消去法一步后,A约化为11120T a a A ⎡⎤⎢⎥⎣⎦,试证明2A 亦是对称矩阵. 证明设1111()=T ij aa A a A α⎛⎫= ⎪⎝⎭,其中 21311=n a a a α⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,121311=n a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,22232123=n n n nn a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭, 则经高斯消去法一步后,A 约化为111111110TT a a A a a α⎡⎤⎢⎥⎢⎥-⎢⎥⎣⎦, 因而211111T A A a a α=-,若n n R A ⨯∈为对称矩阵,则1A 为对称矩阵,且1=a α,易知211111T A A a a α=-为对称矩阵. 13. 设⎥⎦⎤⎢⎣⎡=989999100A(1) 计算2||||,||||A A ∞; (2) 计算∞)(A Cond ,及2)(A Cond . 解 (1) 计算||||=199A ∞,⎥⎦⎤⎢⎣⎡=989999100A,其特征值为1,299λ=,又⎥⎦⎤⎢⎣⎡=989999100A 为对称矩阵,则2=T A A A 的特征值为221,2(99λ=±,因此2||||99A ===+;(2)1989999100A --⎡⎤=-⎢⎥-⎣⎦,1||||=199A -∞, 所以1()=||||||||=9801Cond A A A -∞∞∞⋅,1989999100A --⎡⎤=-⎢⎥-⎣⎦为对称矩阵,其特征值为1,299λ=-± 则1112()=()T A A A ---的特征值为221,2(99λ=,因此12||||99A -===+所以1222()=||||||||Cond A A A -⋅2(99=+15. 设,n n n A R x R ⨯∈∈,求证 (1)1xx n x ∞∞≤≤; (2)∞∞≤≤An A A n11.证明 (2) 由(1)1x x n x∞∞≤≤,得1AxAx n Ax∞∞≤≤,则 11Ax Ax n Ax n x xx∞∞∞∞≤≤,从而11max max max nnnx Rx Rx RAxAx n Ax n xxx∞∞∀∈∀∈∀∈∞∞≤≤,由算子范数的定义max nx RAx Ax∞∞∀∈∞=,111max nx RAx A x∀∈=,得∞∞≤≤An A A n11.17. 设n n R W ⨯∈为非奇异阵,又设x为n R 上一向量范数,定义WxWx=,求证:Wx是nR 上向量的一种范数(称为向量的W 一范数).证明 ①正定性,因Wx为一向量,0WxWx =≥,下证=0=0Wxx ⇔,⇒“”若=0Wx 即=0Wx ,由向量范数的正定性得=0Wx ,n n R W ⨯∈为非奇异阵,所以=0x ;⇐“”若=0x ,则=0Wx ,由向量范数的正定性得=0Wx 即=0Wx.②齐次性,任意实数α有=Wx W x Wxααα=,由向量范数的齐次性,得=WWxW x Wx Wx xααααα===;③ 三角不等式,任意实数,n n x R y R ∈∈,有+(+)=+Wx yW x y Wx Wy=,再由向量范数的三角不等式,得+(+)=+WWWx yW x y Wx Wy Wx Wy xy=≤+=+.习 题 6 (P.347)1. 设有方程组(b )1231231232211221x x x x x x x x x +-=⎧⎪++=⎨⎪++=⎩,考查用Jacobi迭代法,G-S 迭代法解此方程组的收敛性.解 系数矩阵分裂如下,122111221A -⎛⎫⎪= ⎪ ⎪⎝⎭D L U =--10022110112200-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ Jacobi迭代矩阵为1()J D L U -=+=02211220-⎛⎫ ⎪-- ⎪ ⎪--⎝⎭, J 的特征方程为2211022λλλ-=,展开得 30λ=,即01λ=<,所以用Jacobi 迭代法解此方程组是收敛的.G-S 迭代矩阵为1()G D L U -=-11022=11012210--⎛⎫⎛⎫⎪ ⎪⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭100022=110010210-⎛⎫⎛⎫ ⎪ ⎪-⋅- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭122=023002-⎛⎫ ⎪- ⎪ ⎪⎝⎭, G 的特征方程为12221002λλλ---=-, 展开得 (1)(2)(2)0λλλ---=,即1λ=或2λ=,由迭代基本定理得用G-S 迭代法解此方程组是不收敛的.4. 设有方程组Ax b =,其中A 为对称正定阵,且有迭代公式(1)()()()k k k x x b Ax ω+=+- (0,1,k =),试证明当20ωβ<<时,上述迭代法收敛(其中A 的特征值满足0()A αλβ<≤≤).证明 A 为对称正定阵, A 的特征值满足0()A αλβ<≤≤,且20ωβ<<,则0()2A ωλ<<又迭代公式可变形为(1)()()k k x I A x bωω+=-+ (0,1,k =),从而迭代矩阵 B I A ω=-,迭代矩阵的特征值为1()A ωλ-,且满足11()1A ωλ-<-<,即 |()|1B λ<,由迭代基本定理得该迭代法是收敛的.5. 设111a a A aa a a⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中a 为实数,试确定a 满足什么条件时,解Ax b =的Jacobi 迭代法收敛.解 系数矩阵分裂如下,111a a A aa a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭D L U =--1001100a a aa aa--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭Jacobi迭代矩阵为1()J D L U -=+=000a a aa a a--⎛⎫⎪-- ⎪ ⎪--⎝⎭,J 的特征方程为0a aa a aaλλλ=,展开得 323320a a λλ--=,即a λ=-或2a λ=-,()max{||,|2|}J a a ρ=--()1J ρ<当且仅当1122a -<<,所以当1122a -<<时,解Ax b=的Jacobi 迭代法收敛.。

数值分析第六章课后习题答案

数值分析第六章课后习题答案

第六章课后习题解答(1)()()123(1)()213(1)()()312(01.21125551154213351010(1,1,1),17( 4.0000186,2.99999k k k k k k k k k Tx x x x x x x x x x x+++ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-(17)解:(a )因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。

(b )雅可比法的迭代格式为取迭代到次达到精度要求(1)()()123(1)(1)()213(1)(1)(1)312(0)(8)15,2.0000012)21125551154213351010(1,1,1),8( 4.0000186,2.9999915,2.0000012)Tk k k k k k k k k TTx x x x x x x x x x++++++-ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-高斯塞德尔法的迭代格式为x 取迭代到次达到精度要求1212:00.40.4.0.400.80.40.80||(0.8)(0.80.32)()1.09282031,00.40.4()00.160.6400.0320.672DL U I BD L U l l l l--骣--÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--÷ç桫-=-+-=>-æ--çççç=-=-ççççèlJJJS解(a )雅可比法的迭代矩阵B()BB故雅可比迭代法不收敛高斯塞德尔法迭代矩阵131()||||0.81022101220||022023002SJBDL U I BD L Ul l¥--ö÷÷÷÷÷÷÷÷÷÷ç÷ø?<骣-÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--ç÷桫-=骣-÷ç÷ç÷ç÷ç÷=-=-ç÷ç÷÷ç÷ç÷ç桫llSJJ SB故高斯-塞德尔迭代法收敛。

数值分析课后习题部分参考答案

数值分析课后习题部分参考答案

数值分析课后习题部分参考答案Chapter 1(P10)5. 求2的近似值*x ,使其相对误差不超过%1.0。

解: 4.12=。

设*x 有n 位有效数字,则n x e -⨯⨯≤10105.0|)(|*。

从而,1105.0|)(|1*nr x e -⨯≤。

故,若%1.0105.01≤⨯-n,则满足要求。

解之得,4≥n 。

414.1*=x 。

(P10)7. 正方形的边长约cm 100,问测量边长时误差应多大,才能保证面积的误差不超过12cm 。

解:设边长为a ,则cm a 100≈。

设测量边长时的绝对误差为e ,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:e ⨯⨯≈1002。

按测量要求,1|1002|≤⨯⨯e 解得,2105.0||-⨯≤e 。

Chapter 2(P47)5. 用三角分解法求下列矩阵的逆矩阵:⎪⎪⎪⎭⎫ ⎝⎛--=011012111A 。

解:设()γβα=-1A。

分别求如下线性方程组:⎪⎪⎪⎭⎫ ⎝⎛=001αA ,⎪⎪⎪⎭⎫ ⎝⎛=010βA ,⎪⎪⎪⎭⎫ ⎝⎛=100γA 。

先求A 的LU 分解(利用分解的紧凑格式),⎪⎪⎪⎭⎫ ⎝⎛-----3)0(2)1(1)1(2)0(1)1(2)2(1)1(1)1(1)1(。

即,⎪⎪⎪⎭⎫ ⎝⎛=121012001L ,⎪⎪⎪⎭⎫⎝⎛---=300210111U 。

经直接三角分解法的回代程,分别求解方程组,⎪⎪⎪⎭⎫ ⎝⎛=001Ly 和y U =α,得,⎪⎪⎪⎭⎫ ⎝⎛-=100α;⎪⎪⎪⎭⎫ ⎝⎛=010Ly 和y U =β,得,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=323131β;⎪⎪⎪⎭⎫ ⎝⎛=100Ly 和y U =γ,得,;⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=313231γ。

所以,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=-3132132310313101A。

(P47)6. 分别用平方根法和改进平方根法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----816211515311401505231214321x x x x 解:平方根法:先求系数矩阵A 的Cholesky 分解(利用分解的紧凑格式),⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----1)15(2)1(1)5(3)3(3)14(2)0(1)1(1)5(2)2(1)1(,即,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=121332100120001L ,其中,TL L A ⨯=。

数值分析课后习题答案

数值分析课后习题答案

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字: 因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

数值分析课后部分习题答案

数值分析课后部分习题答案


x * = 2.00021 = 0.200021 × 101 ,即 m = 1
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 2 ; y* = 0.032 = 0.32 × 101 ,即 m = 1
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 ,Fra bibliotek2 2=
f [x1 , x2 ,⋯ , x n ]-f [ x0 , x1 ,⋯ , x n−1 ] g[ x1 , x2 ,⋯ , x n ] − g[ x0 , x1 ,⋯ , x n−1 ] + x n − x0 x n − x0
( x − 1)( x − 2)( x − 3) 1 =- ( x − 1)( x − 2)( x − 3) , (0 − 1)(0 − 2)(0 − 3) 6
x ( x − 2)( x − 3) 1 = x ( x − 2)( x − 3) , (1 − 0)(1 − 2)(1 − 3) 2 x( x − 1)( x − 3) 1 =- x( x − 1)( x − 3) , (2 − 0)(2 − 1)(2 − 3) 2 x( x − 1)( x − 2) 1 = x ( x − 1)( x − 2) , (3 − 0)(3 − 1)(3 − 2) 6

数值分析课程课后习题答案(李庆扬等)1

数值分析课程课后习题答案(李庆扬等)1

第一章 绪论1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值分析课后习题答案

数值分析课后习题答案

7、计算的近似值,取。

利用以下四种计算格式,试问哪一种算法误差最小。

〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。

解:在计算机上计算该级数的是一个收敛的级数。

因为随着的增大,会出现大数吃小数的现象。

9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。

10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。

解:此算法是数值稳定的。

第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。

〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

设A是n×n的正交矩阵。

证明A-1也是n×n的正交矩阵。

证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。

设A是非奇异的对称阵,证A-1也是非奇异的对称阵。

A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。

证A-1也是单位上〔下〕三角阵。

证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。

R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0的根底解系。

A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。

数值分析课后习题答案

数值分析课后习题答案

第一章习题解答1. 在下列各对数中,X 是精确值a的近似值(1) a=π,x=3.1 (2) a=1/7,x=0.143 (3) a=π/1000,x=0.0031 (4) a=100/7,x=14.3 试估计x 的绝对误差和相对误差。

解:(1) e=∣3.1-π∣≈0.0416, δr = e/∣x ∣≈0.0143 (2) e=∣0.143-1/7∣≈0.0143 δr = e/∣x ∣≈0.1 (3) e=∣0.0031-π/1000∣≈0.0279 δr = e/∣x ∣≈0.9 (4) e=∣14.3-100/7∣≈0.0143 δr = e/∣x ∣≈0.0012. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。

试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。

解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[-x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.497073. 设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案课后习题一:a) 求解非线性方程f(x) = x^3 - 2x - 5的根。

解答:可使用牛顿迭代法来求解非线性方程的根。

牛顿迭代法的迭代公式为:x_(n+1) = x_n - f(x_n)/f'(x_n),其中x_n为第n次迭代的近似解。

对于给定的方程f(x) = x^3 - 2x - 5,计算f'(x)的导数为f'(x) = 3x^2 - 2。

选择一个初始近似解x_0,并进行迭代。

迭代的终止条件可以选择两次迭代间的解的差值小于某个预设的精度。

b) 计算矩阵加法和乘法的运算结果。

解答:设A和B为两个矩阵,A = [a_ij],B = [b_ij],则A和B的加法定义为C = A + B,其中C的元素为c_ij = a_ij + b_ij。

矩阵乘法定义为C = A * B,其中C的元素为c_ij = ∑(a_ik * b_kj),k的取值范围为1到矩阵的列数。

c) 使用插值方法求解函数的近似值。

解答:插值方法可用于求解函数在一组给定点处的近似值。

其中,拉格朗日插值法是一种常用的方法。

对于给定的函数f(x)和一组插值节点x_i,i的取值范围为1到n,利用拉格朗日插值多项式可以构建近似函数P(x),P(x) = ∑(f(x_i) * l_i(x)),其中l_i(x)为拉格朗日基函数,具体表达式为l_i(x) = ∏(x - x_j)/(x_i - x_j),j的取值范围为1到n并且j ≠ i。

课后习题二:a) 解决数值积分问题。

解答:数值积分是求解定积分的数值近似值的方法。

常用的数值积分方法包括矩形法、梯形法和辛普森法。

矩形法采用矩形面积的和来近似曲边梯形的面积,梯形法采用等距离子区间上梯形面积的和来近似曲边梯形的面积,而辛普森法则利用等距离子区间上梯形和抛物线面积的加权和来近似曲边梯形的面积。

b) 使用迭代方法求解线性方程组。

解答:线性方程组的求解可以通过迭代方法来进行。

数值分析课后部分习题答案

数值分析课后部分习题答案

习题一(P.14)1. 下列各近似值均有4个有效数字,300.2,521.13,001428.0***===z y x ,试指出它们的绝对误差和相对误差限.解 *20.001428=0.142810x -=⨯有4个有效数,即4n =,2m =- 由有效数字与绝对误差的关系得绝对误差限为611101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *213.521=0.1352110y =⨯有4个有效数,即4n =,2m =由有效数字与绝对误差的关系得绝对误差限为211101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *12.300=0.230010z =⨯有4个有效数,即4n =,1m =由有效数字与绝对误差的关系得绝对误差限为311101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101024n a ---⨯=⨯.2.下列各近似值的绝对误差限都是31021-⨯,试指出它们各有几位有效数字.***2.00021,0.032,0.00052x y z ===解 *12.000210.20002110x ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯,即 3m n -=-,所以,2n =;*10.0320.3210y ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯,即 3m n -=-,所以,4n =;*30.000520.5210z -==⨯,即3m =-由有效数字与绝对误差的关系得 311101022m n --⨯=⨯,即 3m n -=-,所以,0n =.4.设有近似数35.2,84.1,41.2***===z y x 且都有3位有效数字,试计算***z y x S +=,问S 有几位有效数字.解 方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,211|(*)|101022m n e y --≤⨯=⨯,211|(*)|101022m n e z --≤⨯=⨯,|(**)||*(*)*(*)|*|(*)|*|(*)|e y z z e y y e z z e y y e z ≈+≤+222112.3510 1.8410 2.0951022---≤⨯⨯+⨯⨯=⨯,221|(***)||(*)(**)|10 2.095102e x y z e x e y z --+≈+≤⨯+⨯1110.259510102--=⨯≤⨯, 又 1***=2.41 1.84 2.350.673410x y z ++⨯=⨯,此时1m =,1m n -=-,从而得2n =.方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,2110(*)2|(*)|=||* 2.41r e x e x x -⨯≤, 211|(*)|101022m n e y --≤⨯=⨯,2110(*)2|(*)|=||* 1.84r e y e y y -⨯≤,211|(*)|101022m n e z --≤⨯=⨯,2110(*)2|(*)|=||* 2.35r e z e z z -⨯≤|(**)||(*)(*)|r r r e y z e y e z ≈+,***|(***)||(*)(**)|******r r rx y z e x y z e x e y z x y z x y z +≈+++2.41 1.84 2.35|(*)||(*)+(*)|2.41 1.84 2.35 2.41 1.84 2.35r rr e x e y e z ⨯≤++⨯+⨯22211110 1.8410 2.35102222.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.35---⨯⨯⨯⨯⨯≤+++⨯+⨯+⨯20.385410-<⨯21102-<⨯,由有效数字与绝对误差的关系得2n =.5.序列{}n y 有递推公式),2,1(,1101 =-=-n y y n n若41.120≈=y (三位有效数字),问计算10y 的误差有多大,这个计算公式稳定吗?解 用0ε表示0y 的误差,由41.120≈=y ,得0=0.0042ε,由递推公式 ),2,1(,1101 =-=-n y y n n ,知计算10y 的误差为810=0.4210ε⨯,因为初始误差在计算的过程中被逐渐的放大,这个计算公式不稳定.习题2 ( P.84)3.证明 0()1nk k l x ==∑,对所有的x其中()k l x 为Lagrange 插值奇函数. 证明 令()1f x =,则()1i f x =, 从而 0()()()()nnn k k k k k L x l x f x l x ====∑∑,又 (1)1()()()0(1)!n n n f R x x n ξω++==+, 可得 ()()1n l x f x ==,从而 0()1nk k l x ==∑.4. 求出在=012x ,,和3处函数2()1f x x =+的插值多项式.解 方法一 因为给出的节点个数为4,而2()1f x x =+从而余项(4)34()()()04!f R x x ξω==,于是 233()()()()=+1L x f x R x f x x =-=(n 次插值多项式对次数小于或等于的多项式精确成立).方法二 因为(0)1(1)2(2)5(3)10f f f f ====,,,, 而 0(1)(2)(3)1()=-(1)(2)(3)(01)(02)(03)6x x x l x x x x ---=------,1(2)(3)1()=(2)(3)(10)(12)(13)2x x x l x x x x --=-----,2(1)(3)1()=-(1)(3)(20)(21)(23)2x x x l x x x x --=-----,3(1)(2)1()=(1)(2)(30)(31)(32)6x x x l x x x x --=-----,从而 30123()()(0)()(1)()(2)()(3)L x l x f l x f l x f l x f =+++2=+1x .5. 设2()[,]f x C a b ∈且()()0f a f b ==,求证21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-.证明 因()()0f a f b ==,则1()0L x =, 从而1()()()()()2!f f x R x x a x b ξ''==--,由极值知识得 21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-6. 证明 (()())()()()(+)f x g x f x g x f x g x h ∆=⋅∆+∆⋅. 证明 由差分的定义(()())(+)()()()f xg x f xh g x h f x g x ∆=+-[(+)()()(+)][()()()()]f x h g x h f x g x h f x g x h f x g x =+-++-()()()(+)f xg x f x g xh =⋅∆+∆⋅或着 (()())(+)()()()f x g x f x h g x h f x g x ∆=+-[(+)()()()][()()()()]f x hg xh f x h g x f x h g x f x g x =+-+++- ()()()()f x h g x f x g x =+⋅∆+∆⋅7. 证明 n 阶差商有下列性质(a ) 如果()()F x cf x =,则0101[,,,][,,,]n n F x x x cf x x x =. (b ) 如果()()()F x f x g x =+,则010101[,,,][,,,][,,,]n n n F x x x f x x x g x x x =+.证明 由差商的定义 (a ) 如果()()F x cf x =,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-120110[,,,]-[,,,]n n n cf x x x cf x x x x x -=-120110[,,,]-[,,,]n n n f x x x f x x x c x x -=⋅-01[,,,]n cf x x x =.(b ) 如果()()()F x f x g x =+,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-12120110110[[,,,][,,,]]-[[,,,][,,,]]n n n n n f x x x g x x x f x x x g x x x x x --++=-12011120110,,,]-[,,,][,,,][,,,]+n n n n n n f x x x f x x x g x x x g x x x x x x x ---=--[ 0101[,,,][,,,]n n f x x x g x x x =+8. 设74()3431f x x x x =+++,求0172,2,,2]f [,0182,2,,2]f [.解 由P.35定理7的结论(2),得7阶差商0172,2,,2]=3f [ (()f x 的最高次方项的系数),8阶差商0182,2,,2]=0f [ (8阶以上的差商均等与0).9. 求一个次数不超过4次的多项式()P x ,使它满足:(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =.解 方法一 先求满足插值条件(0)0P =,(1)=1P ,(2)1P =的二次插值多项式2()P x 213=22x -+(L-插值基函数或待定系数法), 设()P x 22=()(1)(2)(1)(2)P x Ax x x Bx x x +--+--213=22x x -+2+(1)(2)(1)(2)Ax x x Bx x x --+-- 从而()P x '323=4B +(39)(641)(2)2x A B x A B x A -+-+-++,再由插值条件(0)0P '=,(1)1P '=,得3=,4A -1=,4B 所以 ()P x 213=22x x -+231(1)(2)(1)(2)44x x x x x x ---+--,即 ()P x 41=4x 332x -29+4x . 方法二 设()P x 23401234=a a x a x a x a x ++++,则 ()P x '231234=234a a x a x a x +++由插值条件(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =,得010********0123400++++1+2+3+41+2+4+8+161a a a a a a a a a a a a a a a a =⎧⎪=⎪⎪=⎨⎪=⎪=⎪⎩ 解得 234931=,=-,=424a a a , 从而 ()P x 41=4x 332x -29+4x .方法三 利用埃尔米特插值基函数方法构造. 10. 下述函数()S x 在[1,3]上是3次样条函数吗?3232321,12()=92217,23x x x x S x x x x x ⎧-++≤≤⎨-+-+≤≤⎩解 因为 22362,12()=31822,23x x x S x x x x ⎧-+≤≤'⎨-+-≤≤⎩,66,12()=618,23x x S x x x -≤≤⎧''⎨-+≤≤⎩而 12(2)=1=(2)S S ,12(2)=2=(2)S S '',12(2)=6=(2)S S '''', 又()S x 是三次函数,所以函数()S x 在[1,3]上是3次样条函数.补 设f (x )=x 4,试利用L-余项定理写出以-1,0,1,2为插值节点的三次插值多项式.解 因为 (4)34()()()(+1)(1)(2)4!f R x x x x x x ξω==--,从而 3233()()()22L x f x R x x x x =-=+-习题3 ( P.159)1.设n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组且)(x k ϕ为首项系数为1的k 次的多项式,则n k k x 0)}({=ϕ于],[b a 线性无关.解 方法一 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,采用反证法:若{}n ϕϕϕ,,,10 于],[b a 线性相关,于是,存在不全为零,,,,10n c c c 使0011()()()0,[,]n n c x c x c x x a b ϕϕϕ+++=∈上式两边与i ϕ作内积得到0011(,)(,)(,)0(0,1,,)i i n i n c c c i n ϕϕϕϕϕϕ+++==,由于{}i c 不全为零,说明以上的齐次方程组有非零解),,,,(10n c c c 故系数矩阵的行列式为零,即{}0,,,10=n G ϕϕϕ 与假设矛盾.方法二 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,由( P.95)定理2得n k k x 0)}({=ϕ于],[b a 线性无关.2.选择α,使下述积分取得最小值1221()[],a x x dx α--⎰120()()x b e x dx α-⎰解 1221()[]a x x dx αα-∂-∂⎰1221=[]x x dx αα-∂-∂⎰1221=2[]()x x x dx α--⋅-⎰5112=5x α-4=5α,令 1221[]=0x x dx αα-∂-∂⎰,得=0α. 120()()x b e x dx αα∂-∂⎰120=()xe x dx αα∂-∂⎰1=2()()x e x x dx α-⋅-⎰2=23α- 令120()=0x e x dx αα∂-∂⎰,得=3α.3.设],3,1[,1)(∈=x xx f 试用},1{1x H 求)(x f 一次最佳平方逼近多项式.解 取权函数为()x x ω=(为了计算简便),则32311(1,1)42x xdx ===⎰,33321126(1,)(,1)33x x x x dx ====⎰, 343311(,)204xx x x dx ===⎰,33111((),1)2f x xdx x x=⋅==⎰,3232111((),)42x f x x x dx x =⋅==⎰, 得法方程 0126423264203a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦,解得011211311a a ⎧=⎪⎪⎨⎪=-⎪⎩, 所以)(x f 的一次最佳平方逼近多项式1123()1111P x x =-. 8.什么常数C 能使得以下表达式最小?∑=-ni x i iCe x f 12))((解 21(())i n x i i f x Ce C =∂-∂∑1=2(())()i i nx x i i f x Ce e =-⋅-∑,令 21(())=0i nx i i f x Ce C =∂-∂∑,得121()(),iinx x i i nx x x i f x e f x e C e e e=-=⋅==∑∑()(,). 14.用最小二乘法求解矛盾方程组2+314921x y x y x y =⎧⎪-=-⎨⎪-=-⎩. 解 方法一 方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,原问题转化成在已知三组离散数据3142211()922tf t ----下求一次最小二乘逼近函数1()P x x yt =+(x 与y 为一次函数的系数,t 为自变量),取1H 基{}1,t ,求解法方程331133321113()()i i i i i i i i i i i x t f x t t t f x y =====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑∑∑, 即 3-3-93737-32x y ⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得到矛盾方程组的解为37=-3156=31x y ⎧⎪⎪⎨⎪⎪⎩.方法二 方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,令(,)I x y 2223111=+-+4+9++2222x y x y x y --()()()(,)I x y x ∂∂3111=2+-+24+9+2+2222x y x y x y ⨯⨯-⨯-()()()=6618x y -+,(,)I x y y ∂∂331111=+44+9+222222x y x y x y ⨯--⨯--⨯-()()() 37=3372x y -+- 令 (,)0(,)0I x y xI x y y∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩, 得 3373372x y x y -=-⎧⎪⎨-+-⎪⎩, 解之得矛盾方程组的解为37315631x y ⎧=-⎪⎪⎨⎪=⎪⎩. 习题47. 对列表函数 124810()0152127x f x求(5)(5).f f ''',解 一阶微商用两点公式(中点公式),得(8)(2)10(5),63f f f -'≈=二阶微商用三点公式(中点公式),首先用插值法求(5)f ,由(4)5,(8)21,f f ==得一次插值函数1()411,L x x =- 从而 1(5)(5)9f L ≈=, 于是, 2(2)2(5)(8)4(5).39f f f f -+''≈=8. 导出数值数分公式)]23()2(3)2(3)23([1)(3)3(h x f h x f h x f h x f h x f ---++-+≈并给出余项级数展开的主部.解 由二阶微商的三点公式(中点公式),得213()[()2()()]2222h h h f x f x f x f x h h ''-≈+--+-,213()[()2()()]2222h h h hf x f x f x f x h ''+≈+-++-从而 (3)()()22()h h f x f x f x h''''+--≈3133=[()3()3()()]2222h h f x h f x f x f x h h +-++--- 将33()()()()2222h h f x h f x f x f x h ++--,,,分别在x 处展开,得2(3)3(4)4(5)55331313()=()()()()()()222!23!21313()()()()+()(1)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''++⋅+⋅+⋅+⋅+⋅2(3)3(4)4(5)5511()=()()()()()()222!23!211()()()()()(2)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''++⋅+⋅+⋅+⋅+⋅+2(3)3(4)4(5)5511()=()()()()()()()222!23!211()()()()()(3)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+2(3)3(4)4(5)55331313()=()()()()()()()222!23!21313()()()()()(4)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+(1)-(2)×3 +(3)×3-(4), 得(5)222131()[()2()()]()()22228h h h f x f x f x f x h f x h O h h ''--+--+-=-+,即余项主部为(5)21()8f x h -习 题 5 (P. 299)3. 设n n R A ⨯∈为对称矩阵,且011≠a ,经高斯消去法一步后,A约化为11120T a a A ⎡⎤⎢⎥⎣⎦,试证明2A 亦是对称矩阵. 证明 设1111()=T ija a A a A α⎛⎫= ⎪⎝⎭,其中 21311=n a a a α⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,121311=n a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,22232123=n n n nn a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭, 则经高斯消去法一步后,A 约化为111111110TT a a A a a α⎡⎤⎢⎥⎢⎥-⎢⎥⎣⎦, 因而211111T A A a a α=-,若n n R A ⨯∈为对称矩阵,则1A 为对称矩阵,且1=a α,易知211111T A A a a α=-为对称矩阵. 13. 设 ⎥⎦⎤⎢⎣⎡=989999100A (1) 计算2||||,||||A A ∞; (2) 计算∞)(A Cond ,及2)(A Cond .解 (1) 计算||||=199A ∞,⎥⎦⎤⎢⎣⎡=989999100A,其特征值为1,299λ=, 又⎥⎦⎤⎢⎣⎡=989999100A 为对称矩阵,则2=T A A A 的特征值为221,2(99λ=±,因此2||||99A ===+;(2) 1989999100A --⎡⎤=-⎢⎥-⎣⎦,1||||=199A -∞, 所以1()=||||||||=9801Cond A A A -∞∞∞⋅,1989999100A --⎡⎤=-⎢⎥-⎣⎦为对称矩阵,其特征值为1,299λ=-± 则1112()=()T A A A ---的特征值为221,2(99λ=,因此12||||99A -===+所以 1222()=||||||||Cond A A A -⋅2(99=+15. 设,n n n A R x R ⨯∈∈,求证 (1)1x x n x∞∞≤≤;(2) ∞∞≤≤An A An11.证明 (2) 由(1)1x x n x∞∞≤≤,得1AxAx n Ax∞∞≤≤,则11Ax Ax n Ax n xxx∞∞∞∞≤≤,从而 11maxmax max nnnx Rx Rx RAxAx n Ax n xxx∞∞∀∈∀∈∀∈∞∞≤≤,由算子范数的定义max nx RAx Ax∞∞∀∈∞=,111max nx RAx A x∀∈=,得 ∞∞≤≤An A An11.17. 设n n R W ⨯∈为非奇异阵,又设x为n R 上一向量范数,定义WxWx=,求证:Wx是nR 上向量的一种范数(称为向量的W 一范数).证明 ①正定性,因Wx 为一向量,0WxWx =≥,下证=0=0Wxx ⇔,⇒“”若=0Wx 即=0Wx ,由向量范数的正定性得=0Wx ,n n R W ⨯∈为非奇异阵,所以=0x ;⇐“”若=0x ,则=0Wx ,由向量范数的正定性得=0Wx 即=0Wx.②齐次性,任意实数α有=Wx W x Wxααα=,由向量范数的齐次性,得=WWxW x Wx Wx xααααα===;③ 三角不等式,任意实数,n n x R y R ∈∈,有+(+)=+Wx yW x y Wx Wy=,再由向量范数的三角不等式,得+(+)=+WWWx yW x y Wx Wy Wx Wy xy=≤+=+.习 题 6 (P.347)1. 设有方程组(b ) 1231231232211221x x x x x x x x x +-=⎧⎪++=⎨⎪++=⎩,考查用Jacobi迭代法,G-S 迭代法解此方程组的收敛性.。

数值分析课后习题答案

数值分析课后习题答案

x2 6.6667x2 8.205
再解
1
15 56
x31.785,7得 x35.769
1 25069x4 0.47847x4 1.4872
1 x5 5.3718 x5 5.3718
2-10.证明下列不等式:
(1)x-yx-z+z-y; (2)|x-y|x-y;
证明 (1)x-y=(x-z)+(z-y)x-z+z-y
b.用Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=0.
102 x Байду номын сангаасy 1
100y 100
再用列主元Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=1.
x y
y 1
2
2-8.用追赶法求解方程组:
4 1
x1 100
1 4 1
x2 0
3-8.判定求解下列方程组的SOR方法的收敛性.
2 1 0 0 x1 1
1
0 0
2 1 0
1 2 1
0 12
x2 x3 x4
0 00
解 直接可验证系数矩阵A是负定矩阵,所以-A是对称
1-3.为了使101/2的相对误差小于0.01%,试问应取几位 有效数字?
解 因为101/2=3.162…=0.3162…10,若具有n位有效 数字,则其绝对误差限为0.5 101-n ,于是有
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
1 2
0
12 1,
1 2
1 2
0
12

数值分析课后部分习题答案

数值分析课后部分习题答案

证明 由差商的定义 (a) 如果 F ( x ) = cf ( x ) ,则
F [ x0 , x1 ,⋯ , xn ] =
=
F [ x1 , x2 ,⋯ , xn ]-F [ x0 , x1 ,⋯ , xn− 1 ] x n − x0
cf [ x1 , x2 , ⋯ , xn ]-cf [ x0 , x1 ,⋯ , xn −1 ] x n − x0 f [ x1 , x2 , ⋯ , xn ]-f [ x0 , x1 ,⋯ , xn−1 ] = cf [ x0 , x1 , ⋯ , xn ] . x n − x0
1 1 1 1 |e( x*)| ≤ × 10m − n = × 10−2 , |e( y*)| ≤ × 10m − n = × 10 −2 , 2 2 2 2 1 1 |e( z*)| ≤ × 10 m − n = × 10 −2 , 2 2 | e( y * z*) |≈| z * e ( y*) + y * e ( z *) |≤ z * | e ( y *) | + y * | e (z *) |
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 , 2 2
1 1 ≤ 2.35 × × 10−2 + 1.84 × × 10−2 = 2.095 × 10−2 , 2 2 1 | e( x * + y * z*) |≈| e( x*) + e( y * z*) |≤ × 10 −2 + 2.095 × 10−2 2 1 = 0.2595 × 10−1 ≤ × 10−1 , 2

数值分析课后部分

数值分析课后部分

数值分析课后部分习题答案103 ,22习题 1 (P.14)1. 下列各近似值均有4个有效数字,x * 0.001428, y * 13.521,z * 2.300,试指出它们的绝对误差和相对误 差限.解 x * 0.001428=0.1428 10 2 有 4 个有效数,即 n 4 , m 2 由有效数字与绝对误差的关系得绝对误差限为由有效数字与相对误差的关系得相对误差限为右10(n1)2103;y *13.52仁0.13521 102有4个有效数,即 由有效数字与绝对误差的关系得绝对误差限为1m n12-10- 10 , 22由有效数字与相对误差的关系得相对误差限为右10(n1)2103;z *2.300=0.2300 101 有 4 个有效数,即 n由有效数字与绝对误差的关系得绝对误差限为210mn 2103,由有效数字与相对误差的关系得相对误差限为士10(n1) 4103位有效数字.x * 2.00021, y * 0.032,z * 0.00052解 x *2.000210.200021 101,即 m由有效数字与绝对误差的关系得10mn即 m n 3,所以,n 4 ; y * 0.032 0.32 101,即 m 1n 4, m22.下列各近似值的绝对误差限都是 103,试指出它们各有几由有效数字与绝对误差的关系得110m n - 10 3,2 2即m n 3,所以,n 2 ;z* 0.00052 0.52 10 3,即m 3由有效数字与绝对误差的关系得110m n - 10 3,2 2即m n 3,所以,n 0.4.设有近似数x 2.41, y* 1.84,z* 2.35且都有3位有效数字,试丄咎*亠* * *计算S x y z ,问S有几位有效数字.解方法因x* 2.4仁0.241 101,y* 1.84 0.184 101,z 2.35 0.235 101都有3位有效数字,即n 3,m 1,则1 _m n 12 1 11 m n I -2|e(x*)| - 10 - 10 ,|e(y*)| -10 - 10 ,2 2 21 ,—m n 1 ,亠 2|e(z*)| - 10 - 10 ,2 2|e(y* z*) | |z*e( y*) y* e(z*) | z*| e (y*) 1 y*l e(z*) |1 2 1 2 22.35 - 10 1.84 -10 2.095 10 ,2 21 2 2| e(x* y * z*) | |e(x*) e( y* z*) |210 2.095 100.2595 10 1 1 10 1,2又x* y* z*=2.41 1.84 2.350.673101,此时m 1,m n 1,从而得n 2.方法二因x* 2.4仁0.241 101,y* 1.84 0.184 101,z 2.35 0.235 101都有3位有效数字,即n 3,m 1,则|e(x*)|2 10m210 2,6&*)|=|^^| x* -1022 ___2.41, —1|e(y*)|-10m n102,际加勞1102 2 ___ 1.84,1|e(z *)|210m10 2,10 0)1=1^^1z*1102 22.356( y* z*) ||e 「(y*) e r (z*) | ,X*|e r (X * y *z*)N ;^^er (X *)y* z*x* y* z*e 「(y* z*) |2.411.842.352.41 1.84 2.35|e r (X)l2.411.842.35|e ^(y *)+e r (z *)l21021.84 - 10222.35 - 10 2 2.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.350.3854 10 2由有效数字与绝对误差的关系得5.序列y n 有递推公式y n2 1.4110y n 11,(n 1,2, (三位有效数字) 若y 。

数值分析详细答案(全)

数值分析详细答案(全)

第二章 插值法习题参考答案2.)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0)(2+-+-⋅+------⋅-+-+-+⋅=x x x x x x x L3723652-+=x x . 3. 线性插值:取510826.0,693147.0,6.0,5.01010-=-===y y x x ,则620219.0)54.0()54.0(54.0ln 0010101-=-⋅--+=≈x x x y y y L ;二次插值:取510826.0,693147.0,916291.0,6.0,5.0,4.0210210-=-=-====y y y x x x ,则)54.0(54.0ln 2L ≈))(()54.0)(54.0())(()54.0)(54.0())(()54.0)(54.0(120210221012012010210x x x x x x y x x x x x x y x x x x x x y ----⋅+----⋅+----⋅==-0.616707 .6. i) 对),,1,0(,)(n k x x f k==在n x x x ,,,10 处进行n 次拉格朗日插值,则有)()(x R x P x n n k +=)())(()!1(1)(0)1(0n n ni k j j x x x x f n x x l --++=+=∑ ξ由于0)()1(=+ξn f,故有kni k j jxx x l≡∑=0)(.ii) 构造函数,)()(kt x x g -=在n x x x ,,,10 处进行n 次拉格朗日插值,有∑=-=ni j k j n x l t x x L 0)()()(.插值余项为 ∏=+-+=--nj j n n kx x n g x L t x 0)1()()!1()()()(ξ, 由于).,,2,1(,0)()1(n k g n ==+ξ故有 .)()()()(0∑=-==-ni j k j n kx l t x x L t x令,x t =即得 ∑==-ni j k jx l t x)()(.8. 截断误差].4,4[),)()((61)(2102-∈---=ξξx x x x x x e x R其中 ,,1210h x x h x x +=-= 则hx x 331+=时取得最大值321044392|))()((|max h x x x x x x x ⋅=---≤≤- .由题意, ,10)392(61|)(|6342-=⋅⋅≤h e x R所以,.006.0≤h16. ;1!7!7!7)(]2,,2,2[)7(71===ξf f .0!7)(]2,,2,2[)8(810==ξf f19. 采用牛顿插值,作均差表:i x)(i x f一阶均差 二阶均差0 1 20 1 11 0-1/2],,[))((],[)()()(210101000x x x f x x x x x x f x x x p x p --+-+=))()()((210x x x x x x Bx A ---++)2)(1()()2/1)(1(0--++--++=x x x Bx A x x x又由 ,1)1(,0)0(='='p p 得,41,43=-=B A 所以 .)3(4)(22-=x x x p第三章 函数逼近与计算习题参考答案4.设所求为()g x c =,(,)max(,),max (),min ()a x ba x bf g M c m c M f x m f x ≤≤≤≤∆=--==,由47页定理4可知()g x 在[],a b 上至少有两个正负交错的偏差点,恰好分别为()f x 的最大值和最小值处,故由1(),()2M c m c c M m -=--=+可以解得1()()2g x M m =+即为所求。

数值分析课后习题集部分参考答案解析

数值分析课后习题集部分参考答案解析

数值分析课后习题部分参考答案Chapter 1(P10)5. 求2的近似值*x ,使其相对误差不超过%1.0。

解: 4.12=。

设*x 有n 位有效数字,则nx e -⨯⨯≤10105.0|)(|*。

从而,1105.0|)(|1*nr x e -⨯≤。

故,若%1.0105.01≤⨯-n,则满足要求。

解之得,4≥n 。

414.1*=x 。

(P10)7. 正方形的边长约cm 100,问测量边长时误差应多大,才能保证面积的误差不超过12cm 。

解:设边长为a ,则cm a 100≈。

设测量边长时的绝对误差为e ,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:e ⨯⨯≈1002。

按测量要求,1|1002|≤⨯⨯e 解得,2105.0||-⨯≤e 。

Chapter 2(P47)5. 用三角分解法求下列矩阵的逆矩阵:⎪⎪⎪⎭⎫ ⎝⎛--=011012111A 。

解:设()γβα=-1A。

分别求如下线性方程组:⎪⎪⎪⎭⎫ ⎝⎛=001αA ,⎪⎪⎪⎭⎫ ⎝⎛=010βA ,⎪⎪⎪⎭⎫⎝⎛=100γA 。

先求A 的LU 分解(利用分解的紧凑格式),⎪⎪⎪⎭⎫⎝⎛-----3)0(2)1(1)1(2)0(1)1(2)2(1)1(1)1(1)1(。

即,⎪⎪⎪⎭⎫ ⎝⎛=121012001L ,⎪⎪⎪⎭⎫⎝⎛---=300210111U 。

经直接三角分解法的回代程,分别求解方程组,⎪⎪⎪⎭⎫ ⎝⎛=001Ly 和y U =α,得,⎪⎪⎪⎭⎫ ⎝⎛-=100α;⎪⎪⎪⎭⎫ ⎝⎛=010Ly 和y U =β,得,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=323131β;⎪⎪⎪⎭⎫ ⎝⎛=100Ly 和y U =γ,得,;⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=313231γ。

所以,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-3132132310313101A 。

(P47)6. 分别用平方根法和改进平方根法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----816211515311401505231214321x x x x 解: 平方根法:先求系数矩阵A 的Cholesky 分解(利用分解的紧凑格式),⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----1)15(2)1(1)5(3)3(3)14(2)0(1)1(1)5(2)2(1)1(,即,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=121332100120001L ,其中,TL L A ⨯=。

数值分析课后习题及答案

数值分析课后习题及答案

数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。

[解]。

3、给出的数值表用线性插值及二次插值计算的近似值。

X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。

若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。

[解]由,可知,,余项为,故。

2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。

[解]由插值余项定理,有,从而。

5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。

[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。

第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。

19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。

又,,,故法方程为,解得。

均方误差为。

27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。

,。

又,,,故法方程为,解得。

故直线运动为。

补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。

[解]电流、电阻与电压之间满足如下关系:。

应用最小二乘原理,求R使得达到最小。

对求导得到:。

令,得到电阻R为。

2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。

[解]令,求x使得达到最小。

对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

[解]由1)(000===-e x y y ,111)(-==e x y y 可知,xe x e x x e x x x x x y x x x x y x L )1(1)1(0101011)(111010110101-+=+--=--⨯+--⨯=--+--=---,余项为()1,0),1(2))((!2)()(101∈-=--''=-ξξξx x e x x x x f x R ,故8141121)1(max max 21)(10101=⨯⨯=-⨯⨯≤≤≤-≤≤x x e x R x ξξ。

2、设4)(x x f =,试利用拉格朗日插值余项定理写出以2,1,0,1-为插值节点的三次插值多项式。

[解]由插值余项定理,有x x x x x x x x x x x x x x x x x x x f x R 22)1)(2()2)(1()1(!4!4))()()((!4)()(234223210)4(3+--=--=--+=----=ξ,从而x x x x x x x x x R x f x L 22)22()()()(23234433-+=+---=-=。

5、给定数据表:5,4,3,2,1=i ,i x1 2 4 6 7)(i x f 4 1 0 1 1求4次牛顿插值多项式,并写出插值余项。

[解]i x )(i x f 一阶差商 二阶差商 三阶差商 四阶差商1 42 1-3 4 021- 656 121 41 607-7 1 061- 121- 1801 由差商表可得4次牛顿插值多项式为:)6)(4)(2)(1(1801)4)(2)(1(607)2)(1(65)1(34)6)(4)(2)(1(1801)4)(2)(1(607)2)(1(65)1(34)(4----+------+--=----+------+--=x x x x x x x x x x x x x x x x x x x x x N ,插值余项为()7,1),7)(6)(4)(2)(1(!5)()()5(4∈-----=ξξx x x x x f x R 。

第三章 函数逼近与计算(80-82)26、用最小二乘法求一个形如2bx a y +=的经验公式,使它与下列数据相拟合,并求均方误差。

i x 1925 31 38 44i y 19.0 32.3 49.0 73.3 97.8[解]由()4.2718.973.730.493.320.19)(),(5111=++++===∑=i i i i y x f x d ϕ。

()5.3693218.1893402.105845470895.201876859448.97383.73310.49253.32190.19)(),(2222251222=++++=⨯+⨯+⨯+⨯+⨯===∑=i i i i i x y x f x d ϕ。

又()51)(),(5111==∑=i i i x x ϕϕ,()5327193614449616253614438312519)(),(2222251221=++++=++++==∑=i i i i x x x ϕϕ,()7277699374809620851369235213906251303214438312519)(),(4444451422=++++=++++==∑=i i i i x x x ϕϕ,故法方程为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.3693214.2717277699532753275b a ,解得⎩⎨⎧==047.0578.4b a 。

均方误差为[][]466675.159729.4729316.0555025.0732409.2477025.6)()()(5122512=++++=-+=-∑∑==i i i i i i x f bx a x f x S 。

27、观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 0 10 30 50 80 110 [解]设直线运动为二次多项式2)(cx bx a x f ++=,则由()280110805030100)(),(6111=+++++===∑=i i i i y x f x d ϕ。

()107855031215057951109.3803509.1309.01000)(),(6122=++++=⨯+⨯+⨯+⨯+⨯+⨯===∑=i ii i i x y x f x d ϕ, ()2.453327508.12164503.1081.851109.3803509.1309.01000)(),(22222261233=++++=⨯+⨯+⨯+⨯+⨯+⨯===∑=i i i i i x y x f x d ϕ。

又()61)(),(6111==∑=i i i x x ϕϕ,()()7.1459.339.19.00)(),()(),(611221=+++++===∑=i ii i i i x x x x x ϕϕϕϕ,()()()63.532521.15961.381.059.339.19.00)(),()(),()(),(222222612221331=++++=+++++====∑=i i i i i i i i x x x x x x x ϕϕϕϕϕϕ()()907.218125319.5927859.6729.059.339.19.00)(),()(),(3333336132332=++++=+++++===∑=i i i i i i x x x x x ϕϕϕϕ()0323.9516253441.231810321.136561.059.339.19.00)(),(44444461433=++++=+++++==∑=i i i i x x x ϕϕ,故法方程为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2.453310782800323.951907.21863.53907.21863.537.1463.537.146c b a ,解得⎪⎩⎪⎨⎧==-=2488.20814.115837.0c b a 。

故直线运动为22488.20814.115837.0)(x x x f ++-=。

补充题:1、现测得通过某电阻R 的电流I 及其两端的电压U 如下表:I 1I 2I 3I …… n I U 1U 2U 3U …… n U试用最小二乘原理确定电阻R 的大小。

[解]电流、电阻与电压之间满足如下关系:IR U =。

应用最小二乘原理,求R 使得∑=-=ni i i U R I R 12)()(ϕ达到最小。

对)(R ϕ求导得到:∑=-='ni i i i I U R I R 1)(2)(ϕ。

令0)(='R ϕ,得到电阻R 为∑∑===ni ini ii IIU R 121。

2、对于某个长度测量了n 次,得到n 个近似值n x x x ,,,21 ,通常取平均值)(121n x x x nx +++=作为所求长度,请说明理由。

[解]令∑=-=ni i x x x 12)()(ϕ,求x 使得)(x ϕ达到最小。

对)(x ϕ求导得到:∑=-='ni i x x x 1)(2)(ϕ,令0)(='x ϕ,得到∑==ni i x n x 11,这说明取平均值)(121n x x x nx +++=在最小二乘意义下误差达到最小。

相关文档
最新文档