等差数列基础测试题题库doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.已知等差数列{}n a 的公差d 为正数,()()111,211,
n n n a a a tn a t +=+=+为常数,则
n a =( )
A .21n -
B .43n -
C .54n -
D .n
2.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32
B .33
C .34
D .35
3.设等差数列{}n a 的前n 项和为n S ,10a <且11101921
a a =,则当n S 取最小值时,n 的值为( ) A .21
B .20
C .19
D .19或20
4.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且
713n n S n T n -=,则5
5
a b =( ) A .
34
15
B .
2310
C .
317
D .
62
27
5.已知等差数列{}n a 中,前n 项和2
15n S n n =-,则使n S 有最小值的n 是( )
A .7
B .8
C .7或8
D .9
6.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121
B .161
C .141
D .151
7.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60
B .120
C .160
D .240
8.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2
B .
43
C .4
D .4-
9.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160
B .180
C .200
D .220
10.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15
B .20
C .25
D .30
11.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-=
⎪⎪⎝⎭⎝⎭
,数列{}n b 满足1111n n n
b a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1
B .2
C .3
D .4
12.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列
{}n a ,已知11a =,2
2a
=,且满足()211+-=+-n
n n a a (n *∈N ),则该医院30天入
院治疗流感的共有( )人
A .225
B .255
C .365
D .465
13.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103
B .107
C .109
D .105
14.在数列{}n a 中,11a =,且11n
n n
a a na +=+,则其通项公式为n a =( ) A .
2
1
1n n -+ B .2
1
2n n -+
C .22
1
n n -+
D .2
2
2
n n -+
15.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36
B .48
C .56
D .72
16.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >
D .70S <,且80S <
17.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若
p m n q <<<且()
*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )
A .22p p S p a =⋅
B .p q m n a a a a >
C .1111p q m n
a a a a +<+ D .1111p q m n
S S S S +>+ 18.已知数列{}n a 的前n 项和()2
*
n S n n N =∈,则{}n
a 的通项公式为( )
A .2n a n =
B .21n a n =-
C .32n a n =-
D .1,1
2,2n n a n n =⎧=⎨≥⎩