转体施工工法
转体桥施工工法
转体桥施工工法一、引言随着城市交通的日益繁忙,桥梁建设的需求也在不断增加。
为了满足城市空间和交通流量的需求,转体桥作为一种新型的桥梁施工方法逐渐受到关注。
本文将详细介绍转体桥施工工法及其在桥梁建设中的应用。
二、转体桥施工工法概述转体桥施工工法是一种利用桥梁自身结构进行旋转的施工方法。
在桥梁建设中,通过将桥梁结构分为两个独立的半桥,并在合适的位置进行旋转,实现桥梁的合拢。
这种施工方法具有施工速度快、对周边环境影响小、节约成本等优点,因此在桥梁建设中得到了广泛应用。
三、转体桥施工工法流程1. 基础准备在转体桥施工前,需要对桥梁基础进行详细勘察和设计,确保基础稳定可靠。
同时,根据桥梁结构特点,选择合适的旋转装置和控制系统。
2. 半桥施工在基础准备完成后,开始进行半桥施工。
半桥一般采用分段浇筑的方式进行施工,每段浇筑完成后进行预应力张拉,确保半桥结构稳定。
3. 旋转装置安装在半桥施工完成后,进行旋转装置的安装。
旋转装置一般采用滚珠轴承或滑动轴承,通过控制系统实现桥梁的旋转。
4. 桥梁旋转合拢在旋转装置安装完成后,进行桥梁的旋转合拢。
在合拢过程中,通过控制系统精确控制旋转角度和速度,确保桥梁合拢精度。
5. 附属设施施工在桥梁合拢完成后,进行附属设施的施工,如防撞设施、伸缩缝等。
附属设施的施工质量直接影响桥梁的使用寿命和安全性。
四、转体桥施工工法优点1. 施工速度快:转体桥施工工法采用分段浇筑的方式进行施工,每段浇筑完成后即可进行预应力张拉,大大缩短了施工周期。
2. 对周边环境影响小:由于转体桥施工工法采用旋转的方式进行合拢,对周边环境的影响较小,降低了对周边居民和交通的影响。
3. 节约成本:转体桥施工工法采用分段浇筑的方式进行施工,可以充分利用施工现场资源,降低施工成本。
4. 适用范围广:转体桥施工工法适用于各种类型的桥梁建设,如公路桥、铁路桥、跨河桥等,具有广泛的适用范围。
五、转体桥施工工法应用案例近年来,随着转体桥施工工法的不断发展和完善,越来越多的桥梁建设项目采用了这种施工方法。
桥梁平转法转体平衡称重施工工法
桥梁平转法转体平衡称重施工工法一、前言桥梁平转法转体平衡称重施工工法是一种应用于桥梁施工中的特殊工法,通过采用平转工艺和称重设备,实现对桥梁结构转体过程中的平衡性控制和实时监测。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。
二、工法特点桥梁平转法转体平衡称重施工工法具有以下特点:1. 平衡性控制:通过精密的转体平衡计算和精准的补偿措施,保证转体过程中各个部位的平衡,确保施工安全性和结构稳定性。
2. 移动性强:施工过程中,可灵活控制桥梁的姿态和位置,方便施工人员调整和摆放构件。
3. 实时监测:采用称重设备对转体过程中的承重状态进行实时监测,有效预防施工过程中的超载和失衡问题。
4. 效率高:工法采用机械化操作和先进的控制系统,施工速度快,效率高,大大缩短了工期,并减少了劳动强度。
三、适应范围该工法适用于各类桥梁的转体施工过程,特别是在复杂地形条件下的桥梁施工中更具优势。
同时,该工法适用于不同类型、不同荷载的桥梁结构,具有广泛的适应性。
四、工艺原理该工法通过转体平衡计算与现场实际施工之间的联系,采取一系列技术措施来实现工程的平衡性和安全性:1. 通过对桥梁结构的几何性质和力学特征进行分析,确定转体平衡计算模型。
2. 根据计算模型,对施工过程中需要保持平衡的部位进行精确计算,确定调整方案。
3. 在施工现场,采用专用的调整装置和支撑装置,按照调整方案进行调整,保持结构平衡。
4. 同时,通过实时监测和称重设备,对转体过程中的承重状态进行实时监测,及时控制和调整平衡状态。
五、施工工艺桥梁平转法转体平衡称重施工工法包括以下施工阶段:1. 基础处理:对施工基础进行清理、修整和加固,确保基础的稳固性和承载能力。
2. 构件预制:按照设计要求,对桥梁构件进行预制和装配,准备好各个施工阶段所需构件。
3. 平转施工:将预制好的构件安装在转体平台上,通过平转工艺将整个桥梁结构垂直转体至设计位置。
桥梁转体施工工法
桥梁转体施工工法一、引言桥梁转体施工工法是一种具有独特优势的桥梁施工方法,尤其适用于跨越繁忙道路、河流、山谷等复杂地形的情况。
该工法通过将桥梁结构在合适的位置进行预制,然后利用机械设备将其整体旋转到预定位置,从而实现桥梁的合龙。
本文将详细介绍桥梁转体施工工法的原理、特点、应用范围及实施过程。
二、桥梁转体施工工法原理桥梁转体施工工法的基本原理是将桥梁结构在合适的位置进行预制,然后利用机械设备将其整体旋转到预定位置。
在施工过程中,首先需要在桥墩底部设置旋转支座,将预制好的桥梁结构通过旋转支座进行连接。
然后,通过机械设备(如千斤顶、卷扬机等)提供动力,使桥梁结构在桥墩底部进行旋转。
当桥梁结构旋转到预定位置后,进行合龙施工,完成桥梁的主体结构。
三、桥梁转体施工工法特点1. 适用范围广:桥梁转体施工工法适用于跨越繁忙道路、河流、山谷等复杂地形的情况,可以避免对周围环境的影响。
2. 施工效率高:通过预制桥梁结构,可以大大缩短施工周期,提高施工效率。
3. 施工质量好:由于桥梁结构在合适的位置进行预制,可以保证施工质量,减少施工误差。
4. 安全性高:通过机械设备进行旋转,可以避免传统吊装施工方法中存在的安全隐患。
四、桥梁转体施工工法应用范围桥梁转体施工工法广泛应用于各种类型的桥梁建设中,包括公路桥、铁路桥、市政桥等。
特别是在跨越繁忙道路、河流、山谷等复杂地形的情况下,该工法具有显著的优势。
五、桥梁转体施工工法实施过程1. 施工准备:在施工前,需要进行详细的勘察和设计,确定合适的旋转支座位置和旋转角度。
同时,需要准备好所需的机械设备和材料。
2. 预制桥梁结构:在合适的位置进行桥梁结构的预制,确保其尺寸和重量符合设计要求。
3. 设置旋转支座:在桥墩底部设置旋转支座,将预制好的桥梁结构通过旋转支座进行连接。
4. 旋转桥梁结构:利用机械设备提供动力,使桥梁结构在桥墩底部进行旋转。
在旋转过程中,需要密切关注各项参数,确保旋转的稳定性和准确性。
转体工程桥梁施工法(3篇)
第1篇一、转体工程桥梁施工法原理转体工程桥梁施工法是利用桥梁本身的转动特性,通过转动轴心将桥梁分为上、下两部分,上部整体旋转,下部为固定墩台、基础。
在施工过程中,上部结构可在路堤上或河岸上预制,旋转角度可根据地形随意调整。
当上部结构旋转到预定位置后,再与下部结构进行对接,从而完成桥梁的建造。
二、转体工程桥梁施工法工艺流程1. 设计阶段:根据工程需求,对桥梁结构进行设计,确定转体轴心位置、旋转角度、预制部分等关键参数。
2. 预制阶段:在路堤或河岸上预制桥梁上部结构,包括梁体、桥面板、桥墩等部分。
3. 安装转动轴心:在桥梁墩台上安装转动轴心,为桥梁旋转提供支撑。
4. 施工准备:对施工现场进行清理,确保施工环境安全。
5. 桥梁转动:利用绞磨、滑轮等设备,将预制好的桥梁上部结构旋转到预定位置。
6. 对接:将旋转到位的上部结构与下部结构进行对接,完成桥梁的整体建造。
7. 桥梁验收:对完成后的桥梁进行检查、验收,确保桥梁质量符合设计要求。
三、转体工程桥梁施工法优势1. 施工便捷:转体工程桥梁施工法无需大型吊装设备,施工过程简单,节省了大量的人力、物力资源。
2. 安全可靠:转体施工过程中,上部结构整体旋转,减少了施工过程中的风险,提高了施工安全性。
3. 整体性好:转体工程桥梁施工法预制部分与现场施工部分连接紧密,整体性好,桥梁结构稳定。
4. 节省资源:转体工程桥梁施工法可减少支架木材或钢材的使用,降低施工成本。
5. 适应性强:转体工程桥梁施工法适用于各种地形、地质条件,能够满足不同工程需求。
总之,转体工程桥梁施工法作为一种先进的桥梁施工技术,在我国桥梁建设中具有广泛的应用前景。
随着我国基础设施建设的不断推进,转体工程桥梁施工法将在未来发挥更加重要的作用。
第2篇一、转体工程桥梁施工法的原理转体工程桥梁施工法的基本原理是将桥梁分为上下两部分,以桥梁本身为转动体,利用转动轴心将桥梁分为可旋转的上部和固定不动的下部。
转体施工法
转体施工法《转体施工法2010年9月30日》《转体施工法》简介:第五节转体施工法桥梁转体施工是本世缆40年代以后发展起来的一种架桥工艺。
它是在河流的两岸或适当的位置.利用地形成使用简便的支架先将半桥预制《转体施工法》正文开始>>第五节转体施工法桥梁转体施工是本世缆40年代以后发展起来的一种架桥工艺。
它是在河流的两岸或适当的位置.利用地形成使用简便的支架先将半桥预制完成,之后以桥梁结构本身为转动体,使用一些机具设备,分别将两个半桥转体到桥位轴线位置合拢成桥。
转体施工一般适用于单孔或三孔的桥梁。
转体的方法可以采用平面转体、竖向转体或平竖结合转体.目前已应用在拱桥、梁桥、斜拉桥、斜腿刚架桥等不同桥型上部结构的施工中。
用转体施工法建造大跨径桥,可不搭设费用昂贵的支架,减少安装架设工序,把复杂的、技术性强的高空作业和水上作业变为岸边的陆上作业,不但施工安全、质量可取,而且在通航河道或车辆频繁的跨线立交桥的施工中可不干扰交通、不间断通航、减少对环境的损害、减少施工费用和机具设备,是具有良好的技术经济效益和我国研究转体施工始于1975年。
1977年四川省公路部门首创拱桥使用四氟板平面转体施工,建成了净跨70m的箱形肋拱桥,转体重力12000kN。
1979年四川阿坝地区第一次用砼球面铰和钢滚轮的转体装置建成了曾达独塔斜拉桥。
1985年在山东和江西用转体法建造了立交桥和跨越铁路的立交桥,拓宽了转体施工的使用范围。
1989年四川省建成跨度达200m的钢筋砼箱形拱桥,采用天平衡重水平转体,并采用双箱对称同步转体施工,给转体施工的发展作出重要贡献。
近年由于钢管砼拱桥在国内快速发展,为钢管砼拱桥转体法施工创造了有利条件。
1994年建成的浙江省新安江大桥,采用竖向转体施工。
1996年建成的三座对外公路上三座钢管砼拱桥,莲花大桥采用竖向转体施工,黄柏河大桥和下牢溪大桥均采用水平转体施工。
1997年建成的江西省索都大桥,采用竖向转体施工。
转体施工法
桥梁转体施工工艺适用于跨径较大的单孔或多孔钢筋混凝土桥梁施工。尤其适用于跨越深谷、水深流急和公 铁立交、风景胜地、自然保护区等施工受限制的现场。由于桥梁转体施工是靠结构自身旋转就位,不用吊装设备, 并可节省大量支架木材或钢材。采用混凝土轴心转体施工,转体工艺简便易行,转体重量全部由桥墩(或桥台) 球面混凝土轴心承受,承载力大,转动安全、平衡、可靠。可将半孔上部结构整体预制,结构整体性强,稳定性 好,更能体现结构的力学性能的合理性。施工工艺和所用施工机械简单,转体时仅需两盘绞磨、几组滑轮即可使 上部结构在短时间内转体就位,简便易行,易于掌握,便于推广。
转体施工法的关键技术问理是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合拢与体系 的转换。
竖转法: 竖转法主要用于肋拱桥,拱肋通常在低位浅筑或拼装,然后向上拉升达到设计位置,再合拢。 平转法: 平转法的转动体系主要有转动支承系统 、转动牵引系统和平衡系统 。 转体施工系统(2张)转动支承系统是平转法施工的关键设备,由上转盘和下转盘构成。上转盘支承转动结构, 下转盘与基础相联。通过上转盘相对于下转盘转动,达到转体目的。转动支承系统必须兼顾转体、承重及平衡等 多种功能。按转动支承时的平衡条件,转动支承可分为磨心支承、撑脚支承和磨心与撑脚共同支承三种类型。
成功案例
西北首座市政转体桥在杨凌成功转体转体桥全长112米 武汉万吨大桥成功“转体”跨越京广铁路 邢衡高速上跨石德铁路立交桥实现完美“转身” 唐山市二环路上跨津山铁路立交桥 北京大兴国际机场高速公路、轨道交通新机场线和团河路的4座桥梁以同步方式在京沪铁路上转体成功 8月21日1时55分,重庆市快速路二横线项目在确保三条繁忙铁路正常运营的前提下,5座全长383.5米、总重 量达吨的大跨度混凝土梁式桥梁经82分钟完成转体,最终实现“完美牵手”。 重庆快速路二横线项目刷新了大 跨度集群式转体里转体桥数量最多、3座以上大跨度集群式转体吨位最重、首次同联多T构转体桥等多项世界纪 录。
转体施工工艺标准
7.8.7 转体施工工艺标准(重编)1 总则1.1 适用范围本标准适用于本企业承接的城市桥梁工程拱桥转体的施工及验收。
1.2 参考标准及规范本标准依据现行国家标准《城市桥梁工程施工与质量验收规范》GJJ2-2008、《城市桥梁养护技术标准》GJJ99-2003、J281-2003、《公路桥涵施工技术规范》JTJ041-2000等的要求进行编制。
在工程施工时除执行本标准外,尚应符合现行国家、行业及地方有关标准(规范)的相应规定。
2 术语2.0.1 转体施工桥梁转体施工是指将桥梁结构在非设计轴线位置制作(浇注或拼接)成形后,通过转体就位的一种施工方法。
3 基本规定3.0.1 转动设施和锚固体系必须经过严格检查,安全可靠。
3.0.2 采用两侧对称同步转动转体施工时,必须设位控,严格控制两侧同步,使误差控制在设计允许的范围内。
3.0.3 桥梁转体转动前应进行试转,以检验转动系统的可靠性。
3.0.4 在转体施工中,梁体若出现裂缝,应查明原因,采取措施后方可继续转体施工。
3.0.5 合拢段两侧高差必须在设计规定的允许范围内。
4 施工准备4.1 技术准备4.1.1 认真熟悉图纸、根据现场条件编制施工方案,报有关部门批准:4.1.2 向班组进行交底。
4.2 材料准备4.2.1 城市桥梁工程转体施工所用材料应符合设计要求、现行产品标准及环保规定。
4.2.2 城市桥梁工程转体施工所用材料应有产品合格证、出厂日期。
4.2.3 成品进场时应有相关的产品质量合格证书。
4.3 主要机具主要工具:锚索、转盘、牵引系统、助推千斤顶等。
4.4 劳动力组织依据工程规模、作业环境、工期要求等综合考虑人员数量。
4.5 作业条件转体结构完成并验收合格,锚索、转盘、牵引系统已安装完成,并试车合格。
5 质量、技术要点5.1 材料要求主要的施工材料具有合格证明,且复检试验合格。
5.2 技术要求做好构件的定位,制作好之后及时的进行转体就位。
5.3 质量要求构件的制作均应满足相应的施工规范。
跨既有线连续梁转体施工工法(2)
跨既有线连续梁转体施工工法一、前言跨既有线连续梁转体施工工法是一种用于铁路桥梁维修和改造的工程技术,旨在通过将桥梁进行转体施工,解决既有线铁路上的桥梁改造难题。
本文将介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。
二、工法特点跨既有线连续梁转体施工工法具有以下特点:1. 在不中断铁路运行的情况下进行改造和维修,不影响列车通行。
2. 采用转体施工方法,减少对现有桥墩和铺装的破坏,节约施工时间和成本。
3. 由于梁体整体转动,减小了对邻近管线和线路等固定设施的影响。
4. 施工过程中可以进行其他维修和加固工作,提高工作效率。
5. 对于需要提升梁体高度的既有线铁路,可以通过转体施工方法实现,无需其他复杂的施工工艺。
三、适应范围跨既有线连续梁转体施工工法适用于既有线铁路上的桥梁维修和改造,特别适用于需要提升梁体高度、增加通航空间或进行相邻桥梁维修的情况。
四、工艺原理跨既有线连续梁转体施工工法的工艺原理是通过合理的工艺措施和施工流程,将既有桥梁进行转体施工,实现对桥梁进行改造和维修的目的。
在实际工程中,首先需要对原有桥梁进行结构检测和加固设计,确定转体施工方案。
然后,通过梁头吊装系统将梁体进行升起,并用特制的转体器转动梁体到相应位置。
最后,将梁体降回到新的墩台上,完成整个转体施工流程。
五、施工工艺跨既有线连续梁转体施工工法的具体施工工艺包括以下几个阶段:1. 梁体分解:对原有梁体进行分解,并准备进行转体施工的各个部件。
2. 墩台准备:对既有桥墩和台面进行检修和加固,确保能够承受梁体的重量。
3. 吊装升起:通过梁头吊装系统将梁体升起到一定高度,准备进行后续工作。
4. 转体施工:使用转体器将梁体进行转动,使其达到所需角度和位置。
5. 降回墩台:将梁体降回到新的墩台上,并进行精确调整和固定。
六、劳动组织跨既有线连续梁转体施工工法的劳动组织包括各个施工工艺的分工和协调安排。
大跨连续梁墩顶转体施工工法(2)
大跨连续梁墩顶转体施工工法大跨连续梁墩顶转体施工工法一、前言大跨连续梁墩顶转体施工工法是指在大跨度连续梁的施工过程中,采用将梁体自身进行旋转的方式来实现梁体的转体施工。
该工法具有独特的技术特点和应用优势,提高了施工效率和质量,广泛应用于桥梁工程中。
二、工法特点1. 高效快速:梁体通过自身的旋转完成转体施工,施工时间大大缩短。
2. 施工质量好:采用工法可以保证梁体的转体过程平稳、顺畅,减少了施工过程中的斜拉点变形和移位等问题。
3. 结构简单:工法不需要额外的支撑结构,仅需设置梁体旋转装置,减少了施工难度和成本。
4. 适应性强:适用于各种形式的大跨连续梁施工,可针对不同要求进行调整和改进,具有较高的灵活性和适应性。
三、适应范围大跨连续梁墩顶转体施工工法适用于大跨度、大型桥梁的施工。
根据实际情况,可以用于钢筋混凝土梁、钢梁、悬索梁等各种类型的大跨连续梁的施工。
四、工艺原理大跨连续梁墩顶转体施工工法的工艺原理主要基于以下几个方面:1. 结构稳定性:在施工过程中,通过搭设必要的支撑和固定工具,保证梁体的稳定性,防止倒塌和变形。
2. 施工过程控制:通过精确控制旋转装置的运动速度和力度,确保梁体在转体过程中保持平稳、均匀和对称。
3.构造可行性:根据实际工程要求和梁体结构形式,设计合适的旋转装置,保证施工工法的可行性和有效性。
五、施工工艺大跨连续梁墩顶转体施工工法的施工工艺主要包括以下几个阶段:1. 准备工作:梁体支撑结构和旋转装置的搭设与调试,施工场地的布置和准备。
2. 上梁段的施工:搭设必要的支撑结构,将上部预制好的梁段放置在墩顶上,并进行初步固定。
3. 转体施工:利用旋转装置,通过调节旋转装置运动速度和力度,使梁体在水平方向上旋转,完成转体施工过程。
4. 固定和调整:在梁体转体结束后,对梁体进行最终固定和调整,确保梁体的位置和姿态满足设计要求。
六、劳动组织大跨连续梁墩顶转体施工工法需要配备有经验丰富的工程师和技术人员,负责工法的施工组织和管理。
桥梁转体支座安装施工工法
桥梁转体支座安装施工工法桥梁转体支座安装施工工法一、前言桥梁转体支座安装施工工法是桥梁建设中的一项重要工艺,其目的是确保桥梁在使用过程中能够正常转动,从而适应不同水位和温度变化,同时保持桥梁的稳定性和安全性。
本文将详细介绍桥梁转体支座安装施工工法,包括工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例。
二、工法特点桥梁转体支座安装施工工法的特点包括:1. 可调性强:转体支座可以根据桥梁的需求进行调整,以适应不同的转动角度和承载能力。
2. 施工周期短:通过优化施工流程和配备适当的机具设备,可以大幅减少施工时间。
3. 工程质量高:采用先进的技术和科学的质量控制方法,确保施工过程中的质量符合设计要求。
4. 安全性好:严格遵守施工安全规范,采取必要的安全措施,保证施工过程中的安全。
三、适应范围桥梁转体支座安装施工工法适用于各种类型的桥梁,包括公铁桥、铁路桥、高速公路桥等。
无论是新建桥梁还是既有桥梁的维修和改造,都可以采用该工法进行转体支座的安装。
四、工艺原理桥梁转体支座安装施工工法的核心原理是通过将转体支座安装在桥梁上,实现桥梁的转动。
施工工法与实际工程之间的联系主要体现在以下几个方面:1. 转体支座选型:根据桥梁的类型、设计要求和使用环境等因素,选择适合的转体支座进行安装。
2. 支座底板铺设:在桥梁上铺设支座底板,确保底板平整、牢固,并符合设计要求。
3. 转体支座安装:将转体支座安装在支座底板上,确保支座与底板之间的接触良好,不产生松动或滑移。
4. 转体支座调试:通过调整螺栓或液压装置,使转体支座能够实现预定的转动角度,并能够承受预定的荷载。
五、施工工艺桥梁转体支座安装施工工艺包括以下几个施工阶段:1. 支座底板施工:清理桥梁上的杂物和灰尘,确保支座底板与桥梁之间的接触面干净。
然后,根据设计要求和支座尺寸,选择合适的材料进行底板施工。
2. 转体支座安装:在支座底板上准备好转体支座的安装位置,然后将支座安装在底板上,并进行调整和固定。
《转体施工法》
《转体施工法2010年9月30日》《转体施工法》简介:第五节转体施工法桥梁转体施工是本世缆40年代以后发展起来的一种架桥工艺。
它是在河流的两岸或适当的位置.利用地形成使用简便的支架先将半桥预制《转体施工法》正文开始>> ---第五节转体施工法桥梁转体施工是本世缆40年代以后发展起来的一种架桥工艺。
它是在河流的两岸或适当的位置.利用地形成使用简便的支架先将半桥预制完成,之后以桥梁结构本身为转动体,使用一些机具设备,分别将两个半桥转体到桥位轴线位置合拢成桥。
转体施工一般适用于单孔或三孔的桥梁。
转体的方法可以采用平面转体、竖向转体或平竖结合转体.目前已应用在拱桥、梁桥、斜拉桥、斜腿刚架桥等不同桥型上部结构的施工中。
用转体施工法建造大跨径桥,可不搭设费用昂贵的支架,减少安装架设工序,把复杂的、技术性强的高空作业和水上作业变为岸边的陆上作业,不但施工安全、质量可取,而且在通航河道或车辆频繁的跨线立交桥的施工中可不干扰交通、不间断通航、减少对环境的损害、减少施工费用和机具设备,是具有良好的技术经济效益和我国研究转体施工始于1975年。
1977年四川省公路部门首创拱桥使用四氟板平面转体施工,建成了净跨70m的箱形肋拱桥,转体重力12000kN。
1979年四川阿坝地区第一次用砼球面铰和钢滚轮的转体装置建成了曾达独塔斜拉桥。
1985年在山东和江西用转体法建造了立交桥和跨越铁路的立交桥,拓宽了转体施工的使用范围。
1989年四川省建成跨度达200m的钢筋砼箱形拱桥,采用天平衡重水平转体,并采用双箱对称同步转体施工,给转体施工的发展作出重要贡献。
近年由于钢管砼拱桥在国内快速发展,为钢管砼拱桥转体法施工创造了有利条件。
1994年建成的浙江省新安江大桥,采用竖向转体施工。
1996年建成的三座对外公路上三座钢管砼拱桥,莲花大桥采用竖向转体施工,黄柏河大桥和下牢溪大桥均采用水平转体施工。
1997年建成的江西省索都大桥,采用竖向转体施工。
转体法施工工艺
转体法施工工艺一、施工准备在转体法施工前,需要进行充分的施工准备工作,包括技术准备、物资准备和场地准备等。
技术准备包括施工方案的编制、技术交底和安全交底等;物资准备包括所需材料、设备等的采购、运输和存储等;场地准备包括施工现场的清理、平整和加固等。
二、基础施工基础施工是转体法施工的重要环节,包括基础的开挖、浇筑和养护等。
在开挖基础时,应按照设计要求进行放样,并采用适当的开挖方法,确保基础结构的稳定性和安全性。
浇筑基础时,应按照设计要求的混凝土强度、配比和浇筑方式进行施工,确保基础的承载能力和稳定性。
养护基础时,应采取适当的养护措施,确保基础结构的强度和耐久性。
三、上下转盘间临时固结在转体法施工中,上下转盘间的临时固结是必要的措施之一,可以确保转体过程中的结构稳定性。
临时固结可以采用钢支撑、钢拉杆等材料进行加固,同时应进行承载力和稳定性的验算,确保转体过程中的安全。
四、转动体系的安装与检查转动体系的安装与检查是转体法施工的关键环节之一,包括转动支承装置、平衡装置和牵引装置等的安装与检查。
在安装过程中,应按照设计要求进行放样、定位和固定等操作,确保转动体系的精度和稳定性。
检查过程中,应对转动支承装置、平衡装置和牵引装置等进行全面检查,确保其正常运转和安全性。
五、预制构件的浇筑预制构件的浇筑是转体法施工的重要环节之一,包括预制梁、预制墩等结构的浇筑。
在浇筑过程中,应采用合适的浇筑方法,确保预制构件的尺寸、质量和稳定性等符合设计要求。
同时,应注意防止预制构件在浇筑过程中出现裂纹、变形等问题。
六、预应力张拉预应力张拉是转体法施工的关键环节之一,可以确保预制构件的承载能力和稳定性。
在预应力张拉前,应对预应力筋进行质量检查和加工,确保其符合设计要求。
同时,应采用合适的张拉设备和工艺,按照设计要求的张拉顺序和吨位进行张拉操作,确保预制构件的预应力值符合设计要求。
在张拉过程中,应注意观察预制构件的变形和裂缝情况,及时采取措施进行处理。
转体施工法名词解释
转体施工法名词解释
转体施工法就是利用桥位地形,在岸墩或桥台陆地上预桥跨结构,并旋转就位的施工方法。
可分成三个阶段,即陆地构件的预测、预构件的转体和桥跨结构的就位。
具有设备少,工艺简便,用材节约,安全(变高空作业为陆地作业),速度快,造价低等一系列优点。
但是,目前转体施工法仅限于单跨桥梁的施工,转体施工的主要施工工艺转体技术和设备,还有待进一步改进与完善,以便使转体施工法在各种桥型中的应用更加普及和深入。
桥梁转体施工是在建高铁遇到障碍时,采用的一种施工方法。
例如,高速铁路在跨越既有铁路、公路等障碍时,如果采用常规方法施工如有物体掉落会危及通行的火车、汽车、行人的安全,也可能对电气化铁路的高空线路形成威胁,电气化铁路的高压线还会对上方进行连续梁施工作业人员
形成危险等。
为了解决这一技术难题,工程师们创造性地发明了转体施工法。
所谓的转体施工,就是连续梁在与障碍物平行的方向上施工,这样桥梁施工对运营线路没有任何影响,但是需要在连续梁的桥墩下部设置一个转轴,当桥墩以及上方的两侧待悬臂梁体施工完成后,可以用转轴转动,实现跨越障碍的目的,这个过程称为转体。
转体过程一般需要1~2小时。
为
了安全,在转体过程中,运营的线路临时中断,转体完成后就可以恢复通车了。
转体施工方案
1.严格执行国家及地方环保法律法规,保护施工现场周边环境。
2.合理规划施工现场,减少施工对周边环境的影响。
3.采取有效措施,降低施工噪音、粉尘污染。
4.加强施工现场环境卫生管理,确保施工现场整洁。
5.提高施工人员环保意识,开展文明施工。
六、施工组织与管理
1.成立项目管理部,负责项目施工的组织与管理。
3.提高施工效率,缩短施工周期。
三、施工方案
1.转体施工工艺
(1)转体系统:采用自行式转体系统,包括转体装置、驱动装置、控制装置等。
(2)转体结构:采用预应力混凝土箱梁结构,分为上下两幅,通过转体系统实现转体。
(3)转体角度:根据设计要求,桥梁转体角度为90度。
2.施工步骤
(1)施工准备:进行现场勘查,制定施工方案,办理施工手续,完成施工前各项准备工作。
七、施工组织与管理
1.成立项目管理部,负责项目施工的组织与管理。
2.制定施工组织设计,明确施工流程、施工方法、施工周期等。
3.加强施工现场调度,确保施工进度、质量和安全。
4.建立完善的施工管理制度,确保施工有序进行。
5.定期对施工人员进行考核,提高施工管理水平。
本转体施工方案旨在为项目施工提供严谨、细致的指导,以确保项目顺利进行。在施工过程中,应严格遵循相关法律法规,确保施工质量、安全和环保要求。同时,根据实际情况调整施工方案,不断提高施工水平,为我国桥梁建设贡献力量。
2.制定施工组织设计,明确施工流程、施工方法、施工周期等。
3.加强施工现场调度,确保施工进度、质量和安全。
4.建立完善的施工管理制度,确保施工有序进行。
5.定期对施工人员进行考核,提高施工管理水平。
本转体施工方案旨在为项目施工提供详细、严谨的指导,以确保项目顺利实施。在施工过程中,应严格遵循相关法律法规,确保施工质量、安全和环保要求。同时,根据实际情况调整施工方案,不断提高施工水平,为我国城市建设贡献力量。
转体施工方案(正式)1
第一节工程概况梅河口松江大桥钢拱总重496吨,整体高度68米,底部外形尺寸3.2米X4.8米,就位后与桥面夹角75度。
整体工程竣工后满足了城市交通需要,又给城市增添了一道亮丽的风景。
第二节钢塔施工工艺的制定卧式拼装、整体竖转法利用有利地势,平面上进行卧式拼装,然后通过两台履带吊提升,将结构转体就位。
竖向转体施工具有如下的优点:由于钢拱塔结构在地面整体拼装,便于使用机械化焊接作业,从而使焊接质量和装配精度及检测精度更容易得到保证。
而分段吊装由于高空作业,无论构件拼装精度,还是焊接质量、测控精度,都难以得到有效保障。
钢拱塔结构主要的拼装、焊接及涂装等工作在地面进行,施工效率高,安全防护工作易于组织,施工质量易于保证;采用整体竖转吊装钢塔,技术成熟,吊装过程的安全性有充分的保障;针对本工程的特点、为此钢拱塔安装采用“卧式拼装、整体竖转”的施工工艺,即钢拱塔在桥面上焊接拼装成型后,由两台履带吊同步提升将钢拱塔整体竖转到位。
第三节钢拱塔竖转施工工艺概述拱塔在桥面上水平安装完成后,进行拱塔竖转施工。
拱塔竖转到位后,焊接塔柱,并安装拉索,使塔体达到稳定状态;最后拆除转体结构的相关临时设施,转体施工完成。
本工程采用的钢拱塔竖转施工工艺主要分为以下几个步骤:1、转体施工的准备按照审定的设计方案现场安装、焊接、调试竖转设备(铰接系统,起重吊具等设备等)。
2、拱塔竖转施工拱塔在桥面上拼装,拱塔上安装吊耳和铰接系统结构完毕,进行拱塔竖转施工。
拱塔竖转到位后,焊接拱塔连接段,并在拱塔与桥面间安装前拉索,拆除拱塔吊耳和铰接系统。
第四节钢拱塔竖转施工关键控制点为了完成如此超重结构的整体提升,需充分考虑提升过程中的各个环节,提升方案的优劣将直接影响到整体提升过程中的结构稳定和施工安全性,因此,对整体提升应慎重考虑,提升方案应保证足够的安全、可靠性。
我们将主要从以下几个方面来着重考虑。
一、转体相关结构设计对转体施工的各种工况进行了受力分析和结构设计。
平转法转体施工工法
平转法转体施工工法平转法转体施工工法中图分类号:TU74 文献标识码: A 文章编号:1.前言盘锦至营口客运专线是哈大客专与京沈铁路之间的联络线,其中盘锦特大桥124#〜127#墩设计为(80+ 128+ 80) m现浇连续梁,其中124#〜125 #墩跨林丰路,125#〜126#墩跨既有沟海线和电厂专用线,与沟海线斜交角度167° 10’, 126#〜127#墩跨石油管廊。
该梁平面位于半径5500m的圆曲线上,纵面位于半径25000m的竖曲线上,线路纵坡由%至%。
为减少上部结构施工对铁路行车安全的影响,该桥采用转体(平转)的施工方法。
即先在铁路一侧浇筑梁体, 然后通过转体使主梁就位、调整梁体线形、封固转动体系的上、下转盘,最后浇筑合拢段,使全桥贯通。
转体段梁长(63+63)m 转体角度125#墩为12° 23“ 126#墩为12° 10";转体重量12000t。
为抵消转体时曲梁的横向不平衡弯矩,转动中心横向偏离桥墩中心7cm。
平转法转动体系主要由承重系统、顶推牵引系统和平衡系统三部分构成。
承重系统由上转盘、下转盘和转动球铰构成;顶推牵引系统由牵引索、牵引设备、牵引反力支座、助推反力支座构成;平衡系统由结构本身、上转盘的钢管混凝土圆形撑脚、大吨位千斤顶及梁顶配重等构成。
2.工法特点实用性强,有效改善施工条件,尤其适用于跨越营业线路、立交,水深流急和深谷、风景胜地、自然保护区等施工受限制的现场,与梁下空间无关,极大的改善施工条件。
施工过程安全性较好。
因为转体施工是在跨越障碍两侧施工,从安全方面比在障碍物上空作业要更安全。
而且,不会对桥梁下部的铁路、公路、立交、通航等造成影响。
梁部施工工艺灵活多样。
采用转体施工时,梁部可以采用挂篮悬浇、支架现浇或预制拼装进行施工。
施工工艺和所用施工机械简单,仅需千斤顶牵引,上转盘盘转动即可使上部结构在短时间内转体就位,简便易行,易于控制,便于推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转体法施工预应力钢筋混凝土连续箱梁工法中铁十五局集团有限公司1 前言随着国家的交通道路网的迅速发展,转体法施工大跨度预应力钢筋混凝土连续梁桥已经广泛应用于一些横跨主要陆地交通道路和水上交通道路的桥梁施工。
转体法施工在整个桥梁施工过程中几乎不会对其跨的交通道路或水路造成任何影响。
其技术性能直接关系到施工质量、施工进度、工程造价等因素。
转体施工中由于转体T 构重量大,转体对磨心、滑到、环道的制作精度和转体过程中对转体角度和转体后合拢精度要求较高,所以磨心、滑到、环道的施工以及箱梁施工中标高及线形的控制是桥梁是否能够顺利转体并精确就位的关键。
2006年由中铁十五局集团承建的苏州市兴郭路跨苏嘉杭高速公路大桥工程主桥预应力钢筋混凝土连续箱梁(具体结构形式见图1-1)转体施工中,借鉴以往转体施工中的实践经验并在磨心、滑到、环道以及在箱梁转体施工中自主创新,避免在以往转体桥梁施工中的通病:滑到在箱梁转体过程中全部被支腿挤压变形、箱梁转体后梁端高差过大、箱梁转体后线形不顺畅等问题,顺利转体,就位准确。
合拢后两个转体T 构梁端高差最大仅为9mm ,完全小于国家规定20mm 。
该工程顺利竣工验收后,工程质量得到业主和苏州市领导的一致好评。
2008年8月结合该工程进行研究的科技开发项目《跨线桥连续性箱梁转体施工技术研究》经专家评审鉴定,达到国内先进水平,取得了显著的经济效益和社会效益,经总结后形成本工法。
图1-1 主桥箱梁结构布置图 2 工法特点2.1本工法采用千斤顶直接顶推比传统牵引系统转体方案节省了大量的地锚工程,节约了资金,缩短了工期。
2.2本工法整体施工过程中仅在中跨合拢安装和拆除吊架时临时封锁了高速公路的一个车道,整个主桥施工没有影响高速公路的正常通车。
主桥转体段跨径布置图2.3 本工法施工机具简单,便于操作,转体所用机具采用箱梁施工中的张拉机具就可以,无需投入专项机械;在箱梁施工中采用更为成熟、安全的满堂支架法进行施工,同以往的跨线桥的挂篮施工相比更为安全可靠。
2.4本工法施工和挂篮施工相比较,由于挂篮施工阶段较小而且主要是高空作业危险性较大;而转体施工箱梁采用满堂支架施工分段可以增长,可以节省大量锚具,加快施工进度,施工简单容易控制。
相对挂篮施工来说对桥梁所跨河道、公路、铁路的影响也较小。
2.5 本工法施工中涉及到高空作业项目减少,施工安全性更高。
3 适用范围本工法适用于所有跨铁路、公路、水路的跨线预应力钢筋混凝土连续梁桥施工,其中本工法的磨心、滑到、环道还适用于跨线的转体斜拉桥以及拱桥的施工。
4工艺原理本工法工艺原理即在以往跨线桥梁施工基础上,在承台上增加一个转动中心球面铰—磨心和转体滑动轨道—滑道。
将原横跨铁路、公路、水路的桥梁平行于原有道路施工,转体段施工完毕后用机械将转体段精确平行转动一定角度后将桥梁箱梁转体段合拢,这样在不对原有道路造成影响的前提下实现桥梁的横跨。
5 施工工艺流程及操作要点5.1工艺流程见图5.1-15.2 钻孔灌注桩施工本工程主桥采用群桩基础,每个主墩设计18根直径1.2m钻孔灌注桩,单根桩长65m。
桥梁钻孔灌注桩同其他桥梁相同采用GP S-18型正循环钻机进行施工。
施工中控制要点也同其他桥梁相同主要是桩径、桩长、钢筋骨架的长度和位置、桩混凝土强度。
并在最后通过桩基超声波检测桩身完整性。
本工程主桥全部桩基经检测全部为Ⅰ类桩。
5.3 下承台及磨心、滑道、环道施工桥梁转体的中心机构转体球面铰和环道以及滑道设计在下承台上施工时要和下承台一起浇筑,其结构图见图5.2-1主桥转体体系构造图。
主桥桩基施工完毕并通过检测合格后进行下承台钢筋施工,由于磨心设计在下承台上所以磨心钢筋要个下承台钢筋一起进行安装。
磨心钢筋大样图见图5.2-2主墩磨心一般构造图,在下承台钢筋绑扎完毕后在顶层钢筋网上预留施工人洞,这样人可以下到承台里面进行磨心钢筋的施工,磨心钢筋在承台内部空设置4层钢筋网片,钢筋网片采用绑扎完毕后用手拉葫芦吊机及承台骨架钢筋焊接固定。
磨心中心图5.1-1 转体桥梁施工工艺流程图设计为直径20cm高度70cm钢柱,钢柱表面镀铬及磨盖中的钢套筒相结合形成转体的中心转动轴。
磨心在承台内部钢筋网片安装完毕后进行磨心钢柱的安装,在下承台顶面于钢筋焊接一块40cm×40cm×2cm钢板,在钢板精确放出主墩中心,按照主墩中心进行钢柱的安装。
钢柱的安装偏差顺桥梁和垂直于桥向都要小于5mm。
钢柱安装完毕后进行下承台上侧磨心钢筋的安装,磨心钢筋安装完毕后进行滑到和环道以及后座的钢筋的安装。
在磨心、滑道、环道钢筋安装过程中要注意以下几点:(1、磨心、环道、滑道钢筋要严格按照图纸进行施工,钢筋安装过程中要严格按照图纸进行施工,滑道、环道钢筋于下承台钢筋存在冲突的位置适当调节间距,钢筋绝对不可以切断。
(2、磨心钢筋安装过程中要严格控制钢筋的间距,并且保证每层钢筋之间的钢筋网孔要对应,这样才能保证混凝土浇筑过程中振捣棒可以下放到磨心内部进行振捣,这样才能保证磨心混凝土密实。
(3、在绑扎磨心顶层钢筋时要带磨进行安装,严格控制磨心保护层厚度,保护层厚度偏差只能存在正偏差,这样防止在磨心磨合过程中造成钢筋外露。
如果磨心钢筋外露就会造成磨心和磨盖无法磨合,最后造成转体驱动力加大,转体不稳,甚至可以造成箱梁转体段无法转动,转体失败。
图5.2-1主桥转体体系构造图磨心模板根据磨心直径制作定型钢模,钢模安装固定在下承台顶面,磨心的球面通过按照设计的球型直径定做的母线器来形成。
母线器一侧焊接到及磨心钢柱配套的钢套筒上另一端搭到磨心钢模上,在磨心混凝土浇筑完毕后用母线板以磨心钢柱为中心反复转动来形成磨心的球面。
在安装磨心钢模过程中要严格控制模板顶面高程。
模板安装完毕后在磨心钢模上按照直线距离20cm在钢模上作点要求每两点间的高差要控制在2mm以内,而且每点到磨心钢柱的距离即磨心直径误差要控制到±5mm。
这样在通过母线板形成磨心球面时才能保证磨心圆度和平整度。
图5.2-2主桥转体体系构造图5.4 磨心初磨由于本工程施工磨心正是冬季,磨心混凝土浇筑完毕后对磨心采用搭棚蒸汽养护确保磨心混凝土强度。
待到磨心混凝土强度达到设计80%时在拆除磨心模板并在磨心上以钢柱为中心按照10cm等间距画同心圆并在同心圆上按照10°圆心角将同心圆等分并用水准仪精确测量每两点间的高差并记录。
用角磨机对每个点附近混凝土进行打磨,直到每两点间的高差控制在±1mm以内,具体见图5.4-1磨心磨合大样图。
因为测量精度一般水准尺无法达到,在施工中我单位自己用水平尺和钢筋制作了精确水准尺,具体样式见图5.4-1精确水准尺大样图。
图5.4-1磨心磨合大样图图5.4-2精确水准尺大样图5.5 磨盖施工磨心磨合完毕后进行磨盖施工,磨盖为上承台及磨心的接触部分,为了方便磨合减小起吊重量,上承台分两次浇筑,先浇筑磨盖部分,磨盖具体尺寸为 3.5m ×3.5m ×1.0m ,其重量为32t 。
磨盖以磨心为底模进行浇筑,磨心外底模采用砖砌中间填砂,顶层采用砂浆抹面隔离层采用SBS 防水层。
磨心的隔离层采用石蜡要求石蜡的厚度不能小于5mm 。
之后在磨心上进行磨盖钢筋的安装,安装钢筋过程中要严格控制磨盖下保护层厚度,保护层厚度只能出现正误差。
在安装磨盖钢筋的同时要注意其中上承台钢筋的安装。
上承台预埋钢套筒及钢柱之间用黄油涂满,接缝处封闭防止水泥浆进入空隙。
本桥磨合采用水磨法进行施工,在钢套筒顶连接直径20mm 钢管以便以后磨合时注水,钢管伸出磨盖顶部30~50cm 。
磨盖施工完毕并达到设计强度的90%后用千斤顶将磨盖和磨心分离,并在下承台上搭设贝雷梁架将磨盖吊起,人工清除磨心顶部杂物,清洗干净后放下磨盖进行磨合。
5.6磨心和磨盖的磨合桥梁转体过程中整个箱梁T 构的重量全部有磨心来承担,本桥磨心为C50混凝土,其轴心抗压设计强度为:27MPa ,假想磨心和磨盖完全结合则磨心混凝土承受平均压应力为: MPa AN 13.9==σ (5.6-1) N :箱梁转体过程中上部T 构总重(本桥为6600t );A :磨心表面积为7.23 m 2;有关资料表明,由于材料的塑性及徐变影响,磨心应力只有在加载的初期分布不均匀,一周后趋于平均应力。
磨心和磨盖虽磨合但是不能完全结合,实际施工中接触面一般控制达到70%为度(此时轴心平均应力为13.04MPa <27.0MPa )磨心和磨盖的磨合方法鉴于以前的转体桥梁经验,采用水磨法。
即在磨盖周围砌筑水池,使水面高于磨合面,这样水可以浸入磨合面起到润滑和降温的作用,再磨合过程中要不断从磨盖顶注水,这样磨合产生的磨渣可以通过水流带出。
磨盖磨合转动的动力采用两台卷扬机提供力偶矩,驱使磨盖转动。
采用水磨法大大节省磨合时间,并且磨合效果也明显较好。
磨心和磨盖磨合完毕,验收合格后在磨心涂上1cm厚的黄油,然后将磨盖放下,继续进行上承台施工。
磨合工作完成的判断方法:⑴磨合面手感光滑;⑵磨心磨合面积大于磨心面积的70%;⑶标高测量:在磨盖四角设点测量各点高程,在磨盖分别转动45°、90°、135°、180°、后分别测量各点高程,要求同一点的相对高差小于5mm;5.7 滑道施工由于箱梁T构的前后左右重量相对磨心很难保证平衡,箱梁转体稳定由滑道来控制,滑道下层为宽度50cm,下部设置厚度1cm的A3钢板和5mm厚的F4钢板,A3钢板和F4钢板通过加载加工黏合后用环氧砂浆及下承台结合。
上部为厚度1cm的A3钢板和厚度5mm的不锈钢板和组成,在浇筑上承台时预埋道上承台支腿下侧具体形式见图5.7-1主桥滑道一般构造图。
在以往转体桥梁中大多数在桥梁转体过程中滑道F4钢板全部被挤压变形,为了防止此类问题的再次发生,我部经过技术研究经过设计同意A3钢板和钢板钢板和F4钢板在厂家加工黏结,现场组合拼装。
安装时由于环氧砂浆硬化时间过快,安装过程中不易控制滑道标高,所以我单位联系设计通过A3钢板和F4钢板用膨胀螺栓及下承台固定,在A3钢板下铺设高强砂浆找平,这样既能很好的固定A3钢板又能在安装过程中很好的控制滑道标高。
安装时在下承台上切深2cm的槽用水冲干净,在槽中坐砂浆调平,用膨胀螺栓将钢板固定在下承台上,严格控制F4板的顶面高程,每块板测4个点每两个点的相对高差不能超过1mm,一块调整符合要求后才能继续安装下一块钢板,每两块板的接缝处,接缝两边相对高差控制在0.5mm内,在桥梁的转体方向上只能存在负误差。
上承台设置支腿为滑道的顶面,滑道顶面为宽度40cm、厚度1cm的A3钢板和厚度3mm的不锈钢板,A3钢板和不锈钢板采用焊接的形式连接,在焊接过程中采取降温措施来防止不锈钢板的变形。