五年级下册数学长方体与正方体奥数练习题[共5篇]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册数学长方体与正方体奥数练习题[共5篇]
第一篇:五年级下册数学长方体与正方体奥数练习题
长方体和正方体
(二)【例题1】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习1:
1.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?
【例题2】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了100平方厘米。
原正方体的表面积是多少平方厘米?
练习2:
1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?
【例题3】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?
练习3:
1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?
2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米? 【例题4】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?
练习4:
1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的
表面积是多少平方厘米?
2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?
3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?
【例题5】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?
练习5:
1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?
2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?
【例题4】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?
练习4:
1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。
要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?
2.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?
4 分数应用题
(二)1、甲数是乙数的,乙数是丙数的,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少?
2、某中学为某贫困山区的同学奉献爱心,学校共收得捐款2000元,已知初二年级捐款数额是一年级的多200元,初三年级捐款数额又是初一年级的2倍少200元,求初一年级共捐款多少元?
3、甲数的等于乙数的,甲、乙两数的和是162,甲、乙两数各是多少?
4、某校有的学生是男生,男生的想当医生,全校想当医生的学生的是男生,那么全校女生的几分之几想当医生?
5、已知一班学生是二班学生的,一班的女生人数是一班学生人数的,二班的男生人数是二班学生人数的,那么两班女生总人数占两班学生总人数的几分之几?
6、仓库里的大米和面粉共有2000袋,大米运走 5
长方体和正方体
(二)【例题1】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习1:
1.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?【例题2】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了100平方厘米。
原正方体的表面积是多少平方厘米?练习2:1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题3】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?练习3:1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?6 7
第二篇:五年级下册数学长方体与正方体奥数练习题
长方体和正方体
(一)一、知识要点
在数学竞赛中,有许多有关长方体、正方体的问题。
解答稍复杂的立体图形问题要注意几点:1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;
2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;
3.求一些不规则的物体体积时,可以通过变形的方法来解决。
二、精讲精练【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习1:
1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习2:
1.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?
体积为4^3-1^3=64-1=63立方厘米表面积不变,大小为6×4²=96平方厘米【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?
练习3:
1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?
【例题4】一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的
体积和表面积各是多少?
练习4:
1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?
依题意长*宽+长*高=88 即长*(宽+高)=88 而长宽高都是质数,长*(宽+高)=11*(5+3)可知长宽高分别为11,5,3 长方体的体积是11*5*3=165立方厘米。
2.一个长方体的长、宽、高是三个连续偶数,体积是960立方厘米,求它的表面积。
960=10×96,而96=8×12,表面积是2×(10×12+10×8+8×12)=592平方厘米
3.一个长方体和一个正方体的棱长之和相等,已知长方体长、宽、高分别是6分米、4分米、25分米,求正方体体积。
(6+4+2)*4=48 48/12=4 4*4*4=64 所以体积为64立方分米第14讲长方体和正方体
(二)一、知识要点
在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。
解答上述问题,必须掌握这样几点:
1.将一个物体变形为另一种形状的物体(不计损耗),体积不变;
2.两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;
3.物体浸入水中,排开的水的体积等于物体的体积。
二、精讲精练
【例题1】有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?
练习1:
1.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水
池空着,它长6分米、宽和高都是4分米。
现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。
问水面高多少?
【例题2】将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。
练习2:
1.有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。
现将三块铁熔成一个大正方体,求这个大正方体的体积。
2.将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。
【例题3】有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。
如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?练习3:
1.有一个小金鱼缸,长4分米、宽3分米、水深2分米。
把一块假山石浸入水中后,水面上升0.8分米。
这块假山石的体积是多少立方分米?
2.有一块边长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。
取出铁后,水面下降了0.5厘米。
这个长方体容器的底面积是多少平方厘米?
【例题4】有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。
如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米?
练习4:
1.有两个长方体水缸,甲缸长3分米,宽和高都是2分米;乙缸长4分米、宽2分米,里面的水深1.5分米。
现把乙缸中的水倒进甲缸,水在甲缸里深几分米?
2.有一块边长2分米的正方体铁块,现把它煅造成一根长方体,这长方体的截面是一个长4厘米、宽2厘米的长方形,求它的长。
【例题5】长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。
这个长方体的体积是多少立方厘米?
练习5:
1.一个长方体,不同的三个面的面积分别是25平方厘米、18平方厘米和8平方厘米,这个长方体的体积是多少立方厘米?
2.一个长方体,不同的三个面的面积分别是35平方厘米、21平方厘米和15平方厘米,且长、宽、高都是质数,这个长方体的体积是多少立方厘米?
3.一个长方体的体积是48立方厘米,并且长、宽、高是三个连续的偶数。
这个长方体的表面积是多少平方厘米?
长方体和正方体(三)
一、知识要点
解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
二、精讲精练
【例题1】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?
练习1:
1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?大正方体的表面积为3*3*6=54 小正方体的表面积为1*1*6*27=162 162-54=108
2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?
表面积增加=8*6*1/2*1/2-6*1*1=6.表面积增加了6平方米.【例题2】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?
练习2:
1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的
表面积是多少平方厘米?
2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?
3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?【例题3】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?
练习3:
1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?
2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?
【例题4】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?
练习4:
1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。
要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?
2.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?
第三篇:小学数学五年级《长方体和正方体》练习题
小学数学五年级《长方体和正方体》练习题
一、填空。
((26分,每空2分)
1、在括号里填上适当的数。
2.1平方米=()平方分米2.04立方米=()立方分米0.08立方米=()升=()毫升
3.8升=()升()毫升
2、长方体、正方体都有()个面、()条棱和()个顶点。
3、一个长方体相交于一个顶点的三条棱分别长5厘米、3厘米、4厘米,这个长方体的所有棱长之和是()厘米。
体积是()
4、长方体和正方体的体积都可用字母公式()来表示。
5、一个正方体的底面积是2平方厘米,它的表面积是()平方厘米。
6、用三个长5厘米、宽3厘米、高2厘米的长方体木块拼成一个表面积最大的长方体,这个大长方体的表面积是()平方厘米。
二、填表。
(18分)
三、判断题。
(对的在括号里打,错的打)(10分)
1、一个长方体木箱,竖着放和横着放时所占的空间不一样大。
()
2、一个厚度为2毫米的铁皮箱的体积和容积完全相等。
()
3、正方体的棱长扩大2倍,它的表面积就扩大8倍。
()
4、体积相等的两个正方体,它的表面积也一定相等。
()
5、一个棱长为1米的无盖正方体铁箱,它的表面积是5平方米。
()
五、计算下列各题。
(16分)
6.8+ 6.8×6.8 –1.5× 6.8(3.6+ 12.03÷ 0.3)× 2.5 1.25× 0.25×8× 0.4 96.356 ×(5.9 + 5.1-10)六、一种汽车上的油箱,里面长8分米,宽5分米,高3.5分米。
做这个油箱需要多少平方分米的铁皮?这个油箱可以装多少升汽油?(8分)
八、用一根长36厘米的铁丝做成一个最大的正方体框架,在框架外面全部糊上白纸,需要白纸多少平方厘米?(7分)
九、把一个棱长6分米的正方体钢块,锻造成横截面积为4平方分米的长方体钢锭,这根钢锭长多少米?(7分)
附加题:(10分)
一个底面是正方形的长方体,所有棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?
1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是少平方厘米?
想一想:你还能用别的方法来计算它的体积吗?
练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?
练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。
2、有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
你能算出它的体积和表面积吗?(单位:厘米)
第四篇:五年级下册数学长方体和正方体心得体会
五年级下册数学长方体和正方体心得体会
尹丽娟
一眨眼,本学期最难教的一个单元《长方体和正方体》,就这样在我手上完成了教学。
学生们单元测试考得不尽人意,但却已经尽力。
回想这一过程,我有很多感慨和反思。
这个单元,最基本的要求是认识长方体和正方体,并且会求长方体、正方体的棱长总和、表面积、体积,这里一共要教学6个独立公式,还要加上体积的统一公式V=sh。
接着,还要求学时运用所学知识去解决实际问题。
学生要学好这一单元,得突破三座大山——棱长总和、表面积、体积。
按照学生惯有的学习方法,背公式,然后计算。
但是,公式这么多,太容易混淆了,怎么办呢?我的做法是,尽量让学生先理解,再熟记。
棱长总和,用学生的话来说,就是“12条边的和”,学生能记好。
比较麻烦的是表面积,看它的公式:
长方体的表面积=(长×宽+长×高+宽×高)×2 这条长长的公式,看着就头晕,好不容易背下来吧,题目又这样考:
已知长方体的长、宽、高分别为2dm、3dm、4dm,求它前面、上面的面积。
已知教室是一个长方体,长、宽、高分别为8m、6m、4m,教室门窗面积为10m²,如果要粉刷这个教室,要刷多少平方米?
刚才的公式是求长方体6个面的面积,那如果单独求一个面或者不足六个面的面积,公式用不了了,怎么办?
分析原因,最主要的是大部分学生空间想象能力差,如果题目不给出图,他们就会无从下手。
我想了一个办法,教学生画出“三线图”,也即画“一横一竖一斜”三条线,分别标上长、宽、高,这样的图画起来不难,学生容易掌握。
有了这“三线图”,再稍微引导一下,学生不难发现,前面(后面)的面积=长×高,上面(下面)的面积=长×宽,左面(右面)的面积=高×宽。
这样,即使忘记公式,只要把“三线图”画出来,一样可以顺利求出长方体的表面积。
对于一些实际问题,如粉刷教室,只要刷四周和天花板,地板不用刷,有些学生喜欢先用公式把6个面的面积都求出来,再减去“下面”的面积,有些学生喜欢分别求出5个面的面积再求和,这些方法我都一一给予肯定,顺着学生的思维,他喜欢或者习惯用哪种方法,就用哪种方法,不强求一定要一个套路去解决问题。
本单元教学另外一个难点,就是“求不规则物体的体积”,课本上例题的方法是排水法。
比如要测一个土豆的体积,可以将它放入一个装有水的长方体或者正方体容器中,测量水升高的高度,再就算出水增加的体积,就是土豆的体积。
这一类问题,学生运用起来非常难,很多学生总想像不到要怎么样去求体积。
一开始,我教给学生的方法是,计算出水升高的高度,然后乘以容器的底面积,求出来的就是该物体的体积。
我认为这是一种最快最优的方法,然而,学生的作业情况告诉我,这种方法只有小部分学生能接受和掌握,大部分学生还是晕乎乎的,无从下手,乱乘一通。
怎么办?终于有一次,我在辅导班里一个学生时,问:“你觉得可以怎么求不规则物体的体积呢?”他说:“用后面的体积减去前面的体积,得到的就是那个物体的体积”。
我顿悟了。
我之前教学的方法,虽然列式简单,但是需要跳跃性思维,对于反应稍稍慢的学生,可能一时接受不了我是怎么得到这个式子的。
于是,我尝试着揣摩学生的思维:把土豆放到容器中,水位升高,这时求出这时候容器中水(包括土豆)的体积,也即:升高后
水位×容器底面积。
接着,用这个体积减去原来水的体积,得到的就是土豆的体积。
我在课堂上教学了这种方法后,又有一部分学生理解了。
慢慢的,结合这两种方法来训练题目,班上大部分学生掌握了这类题目的解决方法。
这个单元的教学,让我深刻地体验到了一点,学生的思维方式不是统一的,对于一类题目,学生的思考方向是会不一样的,我们可以多方引导学生去思考,在课堂上多让学生表达自己的想法,然后再根据他们的思维方向去总结解决问题的方法,这样,比起我们自己把认为最好的方法直接传授给学生,来的更好一些。
尊重学生思维的“百花齐放”,让学生在学习的路途上走得更好。
第五篇:五年级下册数学长方体和正方体教案
第三单元:长方体和正方体
第1课时长方体
教学内容:长方体的认识
教学目标:
1.初步认识立体图形、认识长方体的特征。
2.通过观察、想象、动手操作等活动进一步发展空间观念。
3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。
教学重点:
掌握长方体的特征。
教学难点:
通过观察、想象、动手操作等活动进一步发展空间观念教学过程
一、复习导入1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)
2.投影出示教材第18页的主题图。
提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。
提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?
3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。
二、新课讲授
1.认识长方体的面、棱、顶点。
(1)请学生拿出自己准备的长方体学具,摸一摸,说一说。
你有什么发现?(长方体有平平的面)板书:面
(2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。
板书:棱
(3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。
板书:顶点
(4)师生在长方体教具上指出面、棱、顶点。
学生依次说出名称。
2.研究长方体的特征。
(1)面的认识。
①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前
后,上
下,左
右。
②引导学生观察长方体的6个面各是什么形状的?
板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。
教师分别出示这两种情况的教具。
③引导学生进一步验证长方体相对的面的特征。
板书:相对的面完全相同。
④请学生完整叙述长方体面的特征。
(2)棱的认识。
教师出示长方体框架教具,引导学生注意观察:
①长方体有几条棱?②这些棱可分为几组?③哪些棱的长度相等?通过以上三个问题,分组讨论,实际测量。
根据学生汇报后并板书:相对的棱长度相等。
教师:请大家把长方体棱的特征完整地总结一下。
(3)顶点的认识。
课件演示:先闪动三条棱再分别闪动三条棱相交的点。
师:请你们按照一定的顺序数一数,长方体有几个顶点?板书:8个顶点。
指名让学生把长方体的特征完整地总结一下。
3.认识长方体的直观图。
(1)请学生拿出长方体学具,放在桌面上观察,最多能看到它的几个面?(三个面)。